
Package ‘spatsoc’
July 4, 2020

Title Group Animal Relocation Data by Spatial and Temporal
Relationship

Version 0.1.14

Description Detects spatial and temporal groups in GPS relocations
(Robitaille et al. (2020) <doi:10.1111/2041-210X.13215>).
It can be used to convert GPS relocations to
gambit-of-the-group format to build proximity-based social networks
In addition, the randomizations function provides data-stream
randomization methods suitable for GPS data.

Depends R (>= 3.4)

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

Imports data.table (>= 1.10.5), sp, rgeos, adehabitatHR, igraph,
methods

Suggests testthat (>= 2.1.0), knitr, rmarkdown, asnipe, markdown

SystemRequirements GEOS (>= 3.2.0)

RoxygenNote 7.1.0

VignetteBuilder knitr

BugReports https://github.com/ropensci/spatsoc/issues

URL https://docs.ropensci.org/spatsoc,

https://github.com/ropensci/spatsoc,

http://spatsoc.robitalec.ca

NeedsCompilation no

Author Alec L. Robitaille [aut, cre] (<https://orcid.org/0000-0002-4706-1762>),
Quinn Webber [aut] (<https://orcid.org/0000-0002-0434-9360>),
Eric Vander Wal [aut] (<https://orcid.org/0000-0002-8534-4317>)

Maintainer Alec L. Robitaille <robit.alec@gmail.com>

Repository CRAN

Date/Publication 2020-07-03 23:10:04 UTC

1

https://github.com/ropensci/spatsoc/issues
https://docs.ropensci.org/spatsoc
https://github.com/ropensci/spatsoc
http://spatsoc.robitalec.ca

2 build_lines

R topics documented:
build_lines . 2
build_polys . 4
DT . 6
dyad_id . 7
edge_dist . 8
edge_nn . 10
get_gbi . 12
group_lines . 13
group_polys . 16
group_pts . 18
group_times . 20
randomizations . 21
spatsoc . 24

Index 26

build_lines Build Lines

Description

build_lines creates a SpatialLines object from a data.table. The function accepts a data.table
with relocation data, individual identifiers a sorting column and a projection. The relocation data
is transformed into SpatialLines for each individual and optionally, each splitBy. Relocation
data should be in two columns representing the X and Y coordinates.

Usage

build_lines(
DT = NULL,
projection = NULL,
id = NULL,
coords = NULL,
sortBy = NULL,
splitBy = NULL

)

Arguments

DT input data.table

projection character string defining the EPSG code. For example, for UTM zone 21N
(EPSG 32736), the projection argument is "+init=epsg:32736". See details.

id Character string of ID column name

coords Character vector of X coordinate and Y coordinate column names

sortBy Character string of date time column(s) to sort rows by. Must be a POSIXct.

build_lines 3

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

Details

The projection argument expects a character string defining the EPSG code. For example, for
UTM zone 21N (EPSG 32736), the projection argument is "+init=epsg:32736". See https://
spatialreference.org for a list of EPSG codes. Please note, R spatial has followed updates to
GDAL and PROJ for handling projections, see more at https://www.r-spatial.org/r/2020/
03/17/wkt.html.

The sortBy is used to order the input data.table when creating SpatialLines. It must a POSIXct
to ensure the rows are sorted by date time.

The splitBy argument offers further control building SpatialLines. If in your DT, you have
multiple temporal groups (e.g.: years) for example, you can provide the name of the column which
identifies them and build SpatialLines for each individual in each year.

build_lines is used by group_lines for grouping overlapping lines created from relocations.

Value

build_lines returns a SpatialLines object with a line for each individual (and optionally splitBy
combination).

An error is returned when an individual has less than 2 relocations, making it impossible to build a
line.

See Also

group_lines

Other Build functions: build_polys()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- '+init=epsg:32736'

Build lines for each individual
build_lines(DT, projection = utm, id = 'ID', coords = c('X', 'Y'),

sortBy = 'datetime')

Build lines for each individual by year
DT[, yr := year(datetime)]

https://spatialreference.org
https://spatialreference.org
https://www.r-spatial.org/r/2020/03/17/wkt.html
https://www.r-spatial.org/r/2020/03/17/wkt.html

4 build_polys

build_lines(DT, projection = utm, id = 'ID', coords = c('X', 'Y'),
sortBy = 'datetime', splitBy = 'yr')

build_polys Build Polygons

Description

build_polys creates a SpatialPolygons object from a data.table. The function accepts a
data.table with relocation data, individual identifiers, a projection, hrType and hrParams.
The relocation data is transformed into SpatialPolygons for each individual and optionally, each
splitBy. Relocation data should be in two columns representing the X and Y coordinates.

Usage

build_polys(
DT = NULL,
projection = NULL,
hrType = NULL,
hrParams = NULL,
id = NULL,
coords = NULL,
splitBy = NULL,
spPts = NULL

)

Arguments

DT input data.table

projection character string defining the EPSG code. For example, for UTM zone 21N
(EPSG 32736), the projection argument is "+init=epsg:32736". See details.

hrType type of HR estimation, either ’mcp’ or ’kernel’

hrParams a named list of parameters for adehabitatHR functions

id Character string of ID column name

coords Character vector of X coordinate and Y coordinate column names

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

spPts alternatively, provide solely a SpatialPointsDataFrame with one column repre-
senting the ID of each point.

build_polys 5

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords (and optional splitBy) arguments expect the names of respective columns in
DT which correspond to the individual identifier, X and Y coordinates, and additional grouping
columns.

The projection argument expects a character string defining the EPSG code. For example, for
UTM zone 21N (EPSG 32736), the projection argument is "+init=epsg:32736". See https://
spatialreference.org for a list of EPSG codes. Please note, R spatial has followed updates to
GDAL and PROJ for handling projections, see more at https://www.r-spatial.org/r/2020/
03/17/wkt.html.

The hrType must be either one of "kernel" or "mcp". The hrParams must be a named list of
arguments matching those of adehabitatHR::kernelUD and adehabitatHR::getverticeshr or
adehabitatHR::mcp.

The splitBy argument offers further control building SpatialPolygons. If in your DT, you have
multiple temporal groups (e.g.: years) for example, you can provide the name of the column which
identifies them and build SpatialPolygons for each individual in each year.

group_polys uses build_polys for grouping overlapping polygons created from relocations.

Value

build_polys returns a SpatialPolygons object with a polyon for each individual (and optionally
splitBy combination).

An error is returned when hrParams do not match the arguments of the hrType adehabitatHR
function.

See Also

group_polys

Other Build functions: build_lines()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- '+init=epsg:32736'

Build polygons for each individual using kernelUD and getverticeshr
build_polys(DT, projection = utm, hrType = 'kernel',

hrParams = list(grid = 60, percent = 95),

https://spatialreference.org
https://spatialreference.org
https://www.r-spatial.org/r/2020/03/17/wkt.html
https://www.r-spatial.org/r/2020/03/17/wkt.html

6 DT

id = 'ID', coords = c('X', 'Y'))

Build polygons for each individual by year
DT[, yr := year(datetime)]
build_polys(DT, projection = utm, hrType = 'mcp', hrParams = list(percent = 95),

id = 'ID', coords = c('X', 'Y'), splitBy = 'yr')

Build polygons from SpatialPointsDataFrame
library(sp)
pts <- SpatialPointsDataFrame(coords = DT[, .(X, Y)],

proj4string = CRS(utm),
data = DT[, .(ID)]

)

build_polys(spPts = pts, hrType = 'mcp', hrParams = list(percent = 95))

DT Movement of 10 "Newfoundland Bog Cows"

Description

A dataset containing the GPS relocations of 10 individuals in winter 2016-2017.

Format

A data.table with 14297 rows and 5 variables:

ID individual identifier

X X coordinate of the relocation (UTM 21N)

Y Y coordinate of the relocation (UTM 21N)

datetime character string representing the date time

population sub population within the individuals

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

dyad_id 7

dyad_id Dyad ID

Description

Generate a dyad ID for edge list generated by edge_nn or edge_dist.

Usage

dyad_id(DT = NULL, id1 = NULL, id2 = NULL)

Arguments

DT input data.table with columns id1 and id2, as generated by edge_dist or edge_nn

id1 ID1 column name generated by edge_dist or edge_nn

id2 ID2 column name generated by edge_dist or edge_nn

Details

An undirected edge identifier between, for example individuals A and B will be A-B (and reverse
B and A will be A-B). Internally sorts and pastes id columns.

More details in the edge and dyad vignette (in progress).

Value

dyad_id returns the input data.table with appended "dyadID" column

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',

8 edge_dist

returnDist = TRUE,
fillNA = TRUE

)

Generate dyad IDs
dyad_id(edges, 'ID1', 'ID2')

edge_dist Distance based edge lists

Description

edge_dist returns edge lists defined by a spatial distance within the user defined threshold. The
function accepts a data.table with relocation data, individual identifiers and a threshold argument.
The threshold argument is used to specify the criteria for distance between points which defines a
group. Relocation data should be in two columns representing the X and Y coordinates.

Usage

edge_dist(
DT = NULL,
threshold = NULL,
id = NULL,
coords = NULL,
timegroup,
splitBy = NULL,
returnDist = FALSE,
fillNA = TRUE

)

Arguments

DT input data.table

threshold distance for grouping points, in the units of the coordinates

id Character string of ID column name

coords Character vector of X coordinate and Y coordinate column names

timegroup timegroup field in the DT upon which the grouping will be calculated

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

returnDist boolean indicating if the distance between individuals should be returned. If
FALSE (default), only ID1, ID2 columns (and timegroup, splitBy columns if
provided) are returned. If TRUE, another column "distance" is returned indicat-
ing the distance between ID1 and ID2.

fillNA boolean indicating if NAs should be returned for individuals that were not within
the threshold distance of any other. If TRUE, NAs are returned. If FALSE, only
edges between individuals within the threshold distance are returned.

edge_dist 9

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords (and optional timegroup and splitBy) arguments expect the names of a column
in DT which correspond to the individual identifier, X and Y coordinates, timegroup (generated by
group_times) and additional grouping columns.

The threshold must be provided in the units of the coordinates. The threshold must be larger
than 0. The coordinates must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold
= 50 would indicate a 50m distance threshold.

The timegroup argument is optional, but recommended to pair with group_times. The intended
framework is to group rows temporally with group_times then spatially with edge_dist (or group-
ing functions).

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. edge_dist will only consider rows within each splitBy subgroup.

Value

edge_dist returns a data.table with columns ID1, ID2, timegroup (if supplied) and any columns
provided in splitBy. If ’returnDist’ is TRUE, column ’distance’ is returned indicating the distance
between ID1 and ID2.

The ID1 and ID2 columns represent the edges defined by the spatial (and temporal with group_times)
thresholds.

See Also

Other Edge-list generation: edge_nn()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',

10 edge_nn

returnDist = TRUE,
fillNA = TRUE

)

edge_nn Nearest neighbour based edge lists

Description

edge_nn returns edge lists defined by the nearest neighbour. The function accepts a data.table
with relocation data, individual identifiers and a threshold argument. The threshold argument is
used to specify the criteria for distance between points which defines a group. Relocation data
should be in two columns representing the X and Y coordinates.

Usage

edge_nn(
DT = NULL,
id = NULL,
coords = NULL,
timegroup,
splitBy = NULL,
threshold = NULL,
returnDist = FALSE

)

Arguments

DT input data.table

id Character string of ID column name

coords Character vector of X coordinate and Y coordinate column names

timegroup timegroup field in the DT upon which the grouping will be calculated

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

threshold (optional) spatial distance threshold to set maximum distance between an indi-
vidual and their neighbour.

returnDist boolean indicating if the distance between individuals should be returned. If
FALSE (default), only ID, NN columns (and timegroup, splitBy columns if pro-
vided) are returned. If TRUE, another column "distance" is returned indicating
the distance between ID and NN.

edge_nn 11

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords (and optional timegroup and splitBy) arguments expect the names of a column
in DT which correspond to the individual identifier, X and Y coordinates, timegroup (generated by
group_times) and additional grouping columns.

The threshold must be provided in the units of the coordinates. The threshold must be larger
than 0. The coordinates must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold
= 50 would indicate a 50m distance threshold.

The timegroup argument is optional, but recommended to pair with group_times. The intended
framework is to group rows temporally with group_times then spatially with edge_nn (or grouping
functions).

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. edge_nn will only consider rows within each splitBy subgroup.

Value

edge_nn returns a data.table with three columns: timegroup, ID and NN. If ’returnDist’ is TRUE,
column ’distance’ is returned indicating the distance between ID and NN.

The ID and NN columns represent the edges defined by the nearest neighbours (and temporal thresh-
olds with group_times).

If an individual was alone in a timegroup or splitBy, or did not have any neighbours within the
threshold distance, they are assigned NA for nearest neighbour.

See Also

Other Edge-list generation: edge_dist()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_nn(DT, id = 'ID', coords = c('X', 'Y'),

timegroup = 'timegroup')

Edge list generation using maximum distance threshold

12 get_gbi

edges <- edge_nn(DT, id = 'ID', coords = c('X', 'Y'),
timegroup = 'timegroup', threshold = 100)

Edge list generation, returning distance between nearest neighbours
edge_nn(DT, id = 'ID', coords = c('X', 'Y'),

timegroup = 'timegroup', threshold = 100,
returnDist = TRUE)

get_gbi Generate group by individual matrix

Description

get_gbi generates a group by individual matrix. The function accepts a data.table with indi-
vidual identifiers and a group column. The group by individual matrix can then be used to build a
network using asnipe::get_network.

Usage

get_gbi(DT = NULL, group = "group", id = NULL)

Arguments

DT input data.table
group Character string of group column (generated from one of spatsoc’s spatial group-

ing functions)
id Character string of ID column name

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The group argument expects the name of a column which corresponds to an integer group identifier
(generated by spatsoc’s grouping functions).

The id argument expects the name of a column which corresponds to the individual identifier.

Value

get_gbi returns a group by individual matrix (columns represent individuals and rows represent
groups).

Note that get_gbi is identical in function for turning the outputs of spatsoc into social networks
as asnipe::get_group_by_individual but is more efficient thanks to data.table::dcast.

See Also

group_pts group_lines group_polys

Other Social network tools: randomizations()

group_lines 13

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]
DT[, yr := year(datetime)]

EPSG code for example data
utm <- '+init=epsg:32736'

group_polys(DT, area = FALSE, hrType = 'mcp',
hrParams = list(percent = 95),
projection = utm, id = 'ID', coords = c('X', 'Y'),
splitBy = 'yr')

gbiMtrx <- get_gbi(DT = DT, group = 'group', id = 'ID')

group_lines Groups Lines

Description

group_lines groups rows into spatial groups by creating trajectories and grouping based on spa-
tial overlap. The function accepts a data.table with relocation data, individual identifiers and a
threshold. The relocation data is transformed into SpatialLines and overlapping SpatialLines
are grouped. The threshold argument is used to specify the criteria for distance between lines.
Relocation data should be in two columns representing the X and Y coordinates.

Usage

group_lines(
DT = NULL,
threshold = NULL,
projection = NULL,
id = NULL,
coords = NULL,
timegroup = NULL,
sortBy = NULL,
splitBy = NULL,
spLines = NULL

)

14 group_lines

Arguments

DT input data.table

threshold The width of the buffer around the lines in the units of the projection. Supply 0
to compare intersection without buffering.

projection character string defining the EPSG code. For example, for UTM zone 21N
(EPSG 32736), the projection argument is "+init=epsg:32736". See details.

id Character string of ID column name

coords Character vector of X coordinate and Y coordinate column names

timegroup timegroup field in the DT upon which the grouping will be calculated

sortBy Character string of date time column(s) to sort rows by. Must be a POSIXct.

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

spLines Alternatively to providing a DT, provide a SpatialLines object created with the
sp package. If a spLines object is provided, groups cannot be calculated by a
timegroup or splitBy.

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords, sortBy (and optional timegroup and splitBy) arguments expect the names of
respective columns in DT which correspond to the individual identifier, X and Y coordinates, sorting,
timegroup (generated by group_times) and additional grouping columns.

The projection argument expects a character string defining the EPSG code. For example, for
UTM zone 21N (EPSG 32736), the projection argument is "+init=epsg:32736". See https://
spatialreference.org for a list of EPSG codes. Please note, R spatial has followed updates to
GDAL and PROJ for handling projections, see more at https://www.r-spatial.org/r/2020/
03/17/wkt.html.

The sortBy is used to order the input data.table when creating SpatialLines. It must a POSIXct
to ensure the rows are sorted by date time.

The threshold must be provided in the units of the coordinates. The threshold can be equal to
0 if strict overlap is required, else it needs to be greater than 0. The coordinates must be planar
coordinates (e.g.: UTM). In the case of UTM, a threshold = 50 would indicate a 50m distance
threshold.

The timegroup argument is optional, but recommended to pair with group_times. The intended
framework is to group rows temporally with group_times then spatially with group_lines (or
group_pts, group_polys). With group_lines, pick a relevant group_times threshold such as
'1 day' or '7 days' which is informed by your study species and system.

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. The grouping performed by group_lines will only consider rows
within each splitBy subgroup.

https://spatialreference.org
https://spatialreference.org
https://www.r-spatial.org/r/2020/03/17/wkt.html
https://www.r-spatial.org/r/2020/03/17/wkt.html

group_lines 15

Value

group_lines returns the input DT appended with a group column.

This column represents the spatial (and if timegroup was provided - spatiotemporal) group cal-
culated by overlapping lines. As with the other grouping functions, the actual value of group is
arbitrary and represents the identity of a given group where 1 or more individuals are assigned to a
group. If the data was reordered, the group may change, but the contents of each group would not.

A message is returned when a column named group already exists in the input DT, because it will
be overwritten.

See Also

build_lines group_times

Other Spatial grouping: group_polys(), group_pts()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Subset only individuals A, B, and C
DT <- DT[ID %in% c('A', 'B', 'C')]

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- '+init=epsg:32736'

group_lines(DT, threshold = 50, projection = utm, sortBy = 'datetime',
id = 'ID', coords = c('X', 'Y'))

Daily movement tracks
Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '1 day')

Subset only first 50 days
DT <- DT[timegroup < 25]

Spatial grouping
group_lines(DT, threshold = 50, projection = utm,

id = 'ID', coords = c('X', 'Y'),
timegroup = 'timegroup', sortBy = 'datetime')

Daily movement tracks by population
group_lines(DT, threshold = 50, projection = utm,

id = 'ID', coords = c('X', 'Y'),
timegroup = 'timegroup', sortBy = 'datetime',

16 group_polys

splitBy = 'population')

group_polys Group Polygons

Description

group_polys groups rows into spatial groups by overlapping polygons (home ranges). The func-
tion accepts a data.table with relocation data, individual identifiers and an area argument. The
relocation data is transformed into home range SpatialPolygons. If the area argument is FALSE,
group_polys returns grouping calculated by overlap. If the area argument is TRUE, the area and
proportion of overlap is calculated. Relocation data should be in two columns representing the X
and Y coordinates.

Usage

group_polys(
DT = NULL,
area = NULL,
hrType = NULL,
hrParams = NULL,
projection = NULL,
id = NULL,
coords = NULL,
splitBy = NULL,
spPolys = NULL

)

Arguments

DT input data.table

area boolean indicating either overlap group (when FALSE) or area and proportion of
overlap (when TRUE)

hrType type of HR estimation, either ’mcp’ or ’kernel’

hrParams a named list of parameters for adehabitatHR functions

projection character string defining the EPSG code. For example, for UTM zone 21N
(EPSG 32736), the projection argument is "+init=epsg:32736". See details.

id Character string of ID column name

coords Character vector of X coordinate and Y coordinate column names

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

spPolys Alternatively, provide solely a SpatialPolygons object

group_polys 17

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords (and optional splitBy) arguments expect the names of respective columns in
DT which correspond to the individual identifier, X and Y coordinates, and additional grouping
columns.

The projection argument expects a character string defining the EPSG code. For example, for
UTM zone 21N (EPSG 32736), the projection argument is "+init=epsg:32736". See https://
spatialreference.org for a list of EPSG codes. Please note, R spatial has followed updates to
GDAL and PROJ for handling projections, see more at https://www.r-spatial.org/r/2020/
03/17/wkt.html.

The hrType must be either one of "kernel" or "mcp". The hrParams must be a named list of
arguments matching those of adehabitatHR::kernelUD or adehabitatHR::mcp.

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. The grouping performed by group_polys will only consider rows
within each splitBy subgroup.

Value

When area is FALSE, group_polys returns the input DT appended with a group column. As with
the other grouping functions, the actual value of group is arbitrary and represents the identity of
a given group where 1 or more individuals are assigned to a group. If the data was reordered, the
group may change, but the contents of each group would not. When area is TRUE, group_polys
returns a proportional area overlap data.table. In this case, ID refers to the focal individual of
which the total area is compared against the overlapping area of ID2.

If area is FALSE, a message is returned when a column named group already exists in the input DT,
because it will be overwritten.

See Also

build_polys group_times

Other Spatial grouping: group_lines(), group_pts()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- '+init=epsg:32736'

https://spatialreference.org
https://spatialreference.org
https://www.r-spatial.org/r/2020/03/17/wkt.html
https://www.r-spatial.org/r/2020/03/17/wkt.html

18 group_pts

group_polys(DT, area = FALSE, hrType = 'mcp',
hrParams = list(percent = 95), projection = utm,
id = 'ID', coords = c('X', 'Y'))

areaDT <- group_polys(DT, area = TRUE, hrType = 'mcp',
hrParams = list(percent = 95), projection = utm,
id = 'ID', coords = c('X', 'Y'))

group_pts Group Points

Description

group_pts groups rows into spatial groups. The function accepts a data.table with relocation
data, individual identifiers and a threshold argument. The threshold argument is used to specify
the criteria for distance between points which defines a group. Relocation data should be in two
columns representing the X and Y coordinates.

Usage

group_pts(
DT = NULL,
threshold = NULL,
id = NULL,
coords = NULL,
timegroup,
splitBy = NULL

)

Arguments

DT input data.table

threshold distance for grouping points, in the units of the coordinates

id Character string of ID column name

coords Character vector of X coordinate and Y coordinate column names

timegroup timegroup field in the DT upon which the grouping will be calculated

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords (and optional timegroup and splitBy) arguments expect the names of a column
in DT which correspond to the individual identifier, X and Y coordinates, timegroup (generated by
group_times) and additional grouping columns.

group_pts 19

The threshold must be provided in the units of the coordinates. The threshold must be larger
than 0. The coordinates must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold
= 50 would indicate a 50m distance threshold.

The timegroup argument is optional, but recommended to pair with group_times. The intended
framework is to group rows temporally with group_times then spatially with group_pts (or group_lines,
group_polys).

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. The grouping performed by group_pts will only consider rows within
each splitBy subgroup.

Value

group_pts returns the input DT appended with a group column.

This column represents the spatial (and if timegroup was provided - spatiotemporal) group. As
with the other grouping functions, the actual value of group is arbitrary and represents the identity
of a given group where 1 or more individuals are assigned to a group. If the data was reordered, the
group may change, but the contents of each group would not.

A message is returned when a column named group already exists in the input DT, because it will
be overwritten.

See Also

group_times

Other Spatial grouping: group_lines(), group_polys()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 5, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Spatial grouping with timegroup and splitBy on population
group_pts(DT, threshold = 5, id = 'ID', coords = c('X', 'Y'),

timegroup = 'timegroup', splitBy = 'population')

20 group_times

group_times Group Times

Description

group_times groups rows into time groups. The function accepts date time formatted data and a
threshold argument. The threshold argument is used to specify a time window within which rows
are grouped.

Usage

group_times(DT = NULL, datetime = NULL, threshold = NULL)

Arguments

DT input data.table

datetime name of date time column(s). either 1 POSIXct or 2 IDate and ITime. e.g.:
’datetime’ or c(’idate’, ’itime’)

threshold threshold for grouping times. e.g.: ’2 hours’, ’10 minutes’, etc. if not provided,
times will be matched exactly. Note that provided threshold must be in the
expected format: ’## unit’

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The datetime argument expects the name of a column in DT which is of type POSIXct or the name
of two columns in DT which are of type IDate and ITime.

threshold must be provided in units of minutes, hours or days. The character string should start
with an integer followed by a unit, separated by a space. It is interpreted in terms of 24 hours which
poses the following limitations:

• minutes, hours and days cannot be fractional

• minutes must divide evenly into 60

• minutes must not exceed 60

• minutes, hours which are nearer to the next day, are grouped as such

• hours must divide evenly into 24

• multi-day blocks should divide into the range of days, else the blocks may not be the same
length

In addition, the threshold is considered a fixed window throughout the time series and the rows
are grouped to the nearest interval.

If threshold is NULL, rows are grouped using the datetime column directly.

randomizations 21

Value

group_times returns the input DT appended with a timegroup column and additional temporal
grouping columns to help investigate, troubleshoot and interpret the timegroup.

The actual value of timegroup is arbitrary and represents the identity of a given timegroup which
1 or more individuals are assigned to. If the data was reordered, the group may change, but the
contents of each group would not.

The temporal grouping columns added depend on the threshold provided:

• threshold with unit minutes: "minutes" column added identifying the nearest minute group
for each row.

• threshold with unit hours: "hours" column added identifying the nearest hour group for each
row.

• threshold with unit days: "block" columns added identifying the multiday block for each
row.

A message is returned when any of these columns already exist in the input DT, because they will
be overwritten.

See Also

group_pts group_lines group_polys

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

group_times(DT, datetime = 'datetime', threshold = '5 minutes')

group_times(DT, datetime = 'datetime', threshold = '2 hours')

group_times(DT, datetime = 'datetime', threshold = '10 days')

randomizations Data-stream randomizations

Description

randomizations performs data-stream social network randomization. The function accepts a
data.table with relocation data, individual identifiers and a randomization type. The data.table
is randomized either using step or daily between-individual methods, or within-individual daily
trajectory method described by Spiegel et al. (2016).

22 randomizations

Usage

randomizations(
DT = NULL,
type = NULL,
id = NULL,
group = NULL,
coords = NULL,
datetime = NULL,
splitBy = NULL,
iterations = NULL

)

Arguments

DT input data.table
type one of ’daily’, ’step’ or ’trajectory’ - see details
id Character string of ID column name
group generated from spatial grouping functions - see details
coords Character vector of X coordinate and Y coordinate column names
datetime field used for providing date time or time group - see details
splitBy List of fields in DT to split the randomization process by
iterations The number of iterations to randomize

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

Three randomization types are provided:

1. step - randomizes identities of relocations between individuals within each time step.
2. daily - randomizes identities of relocations between individuals within each day.
3. trajectory - randomizes daily trajectories within individuals (Spiegel et al. 2016).

Depending on the type, the datetime must be a certain format:

• step - datetime is integer group created by group_times

• daily - datetime is POSIXct format
• trajectory - datetime is POSIXct format

The id, datetime, (and optional splitBy) arguments expect the names of respective columns in
DT which correspond to the individual identifier, date time, and additional grouping columns. The
coords argument is only required when the type is "trajectory", since the coordinates are required
for recalculating spatial groups with group_pts, group_lines or group_polys.

Please note that if the data extends over multiple years, a column indicating the year should be
provided to the splitBy argument. This will ensure randomizations only occur within each year.

The group argument is expected only when type is ’step’ or ’daily’.

For example, using data.table::year:

randomizations 23

DT[, yr := year(datetime)] randomizations(DT, type = 'step',
id = 'ID', datetime = 'timegroup', splitBy = 'yr')

iterations is set to 1 if not provided. Take caution with a large value for iterations with large
input DT.

Value

randomizations returns the random date time or random id along with the original DT, depending
on the randomization type. The length of the returned data.table is the original number of rows
multiplied by the number of iterations + 1. For example, 3 iterations will return 4x - one observed
and three randomized.

Two columns are always returned:

• observed - if the rows represent the observed (TRUE/FALSE)

• iteration - iteration of rows (where 0 is the observed)

In addition, depending on the randomization type, random ID or random date time columns are
returned:

• step - randomID each time step

• daily - randomID for each day and jul indicating julian day

• trajectory - a random date time ("random" prefixed to datetime argument), observed jul and
randomJul indicating the random day relocations are swapped to.

References

http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12553/full

See Also

Other Social network tools: get_gbi()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Date time columns
DT[, datetime := as.POSIXct(datetime)]
DT[, yr := year(datetime)]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '5 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 5, id = 'ID', coords = c('X', 'Y'), timegroup = 'timegroup')

http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12553/full

24 spatsoc

Randomization: step
randStep <- randomizations(

DT,
type = 'step',
id = 'ID',
group = 'group',
datetime = 'timegroup',
splitBy = 'yr',
iterations = 2

)

Randomization: daily
randDaily <- randomizations(

DT,
type = 'daily',
id = 'ID',
group = 'group',
datetime = 'datetime',
splitBy = 'yr',
iterations = 2

)

Randomization: trajectory
randTraj <- randomizations(

DT,
type = 'trajectory',
id = 'ID',
group = NULL,
coords = c('X', 'Y'),
datetime = 'datetime',
splitBy = 'yr',
iterations = 2

)

spatsoc spatsoc

Description

spatsoc is an R package for detecting spatial and temporal groups in GPS relocations. It can be used
to convert GPS relocations to gambit-of-the-group format to build proximity-based social networks.
In addition, the randomization function provides data-stream randomization methods suitable for
GPS data.

Details

The spatsoc package provides one temporal grouping function:

spatsoc 25

• group_times

three spatial grouping functions:

• group_pts

• group_lines

• group_polys

two edge list generating functions:

• edge_dist

• edge_nn

and two social network functions:

• randomizations

• get_gbi

Author(s)

Maintainer: Alec L. Robitaille <robit.alec@gmail.com> (ORCID)

Authors:

• Quinn Webber (ORCID)

• Eric Vander Wal (ORCID)

See Also

Useful links:

• https://docs.ropensci.org/spatsoc

• https://github.com/ropensci/spatsoc

• http://spatsoc.robitalec.ca

• Report bugs at https://github.com/ropensci/spatsoc/issues

https://orcid.org/0000-0002-4706-1762
https://orcid.org/0000-0002-0434-9360
https://orcid.org/0000-0002-8534-4317
https://docs.ropensci.org/spatsoc
https://github.com/ropensci/spatsoc
http://spatsoc.robitalec.ca
https://github.com/ropensci/spatsoc/issues

Index

∗ Build functions
build_lines, 2
build_polys, 4

∗ Edge-list generation
edge_dist, 8
edge_nn, 10

∗ Social network tools
get_gbi, 12
randomizations, 21

∗ Spatial grouping
group_lines, 13
group_polys, 16
group_pts, 18

∗ Temporal grouping
group_times, 20

_PACKAGE (spatsoc), 24

asnipe::get_group_by_individual, 12
asnipe::get_network, 12

build_lines, 2, 5, 15
build_polys, 3, 4, 17

data.table::dcast, 12
data.table::setDT, 5, 9, 11, 12, 14, 17, 18,

20, 22
data.table::year, 22
DT, 6
dyad_id, 7

edge_dist, 7, 8, 11, 25
edge_nn, 7, 9, 10, 25

get_gbi, 12, 23, 25
group_lines, 3, 12, 13, 17, 19, 21, 25
group_polys, 5, 12, 14, 15, 16, 19, 21, 25
group_pts, 12, 14, 15, 17, 18, 21, 25
group_times, 9, 11, 14, 15, 17, 19, 20, 25

randomizations, 12, 21, 25

spatsoc, 12, 24
spatsoc-package (spatsoc), 24

26

	build_lines
	build_polys
	DT
	dyad_id
	edge_dist
	edge_nn
	get_gbi
	group_lines
	group_polys
	group_pts
	group_times
	randomizations
	spatsoc
	Index

