Package ‘spatialfil’

September 11, 2015
Type Package

Title Application of 2D Convolution Kernel Filters to Matrices or 3D
Arrays

Version 0.15

Date 2015-09-08

Author Nicola Dinapoli, Roberto Gatta

Maintainer Nicola Dinapoli <nicola.dinapoli@rm.unicatt.it>
Description Filter matrices or (three dimensional) array data using different convolution kernels.
License GPL-2

LazyData TRUE

Depends R (>=3.1.0), abind, fields, grDevices

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-09-11 17:10:49

R topics documented:

applyFilter e
convKernel L

Index

applyFilter Function for applying convolution kernel to a matrix or array

Description

This function applies the a convolution kernel based filter to a matrix or array object type.

Usage
applyFilter(x, kernel)

Arguments

X An object of class matrix or array

kernel A matrix containing the values chosen as convolution kernel
Details

convKernel

The application of a convolution kernel over a 2D matrix dataset allows to apply functions as
smoothing or edge detection. The aim of this function is to filter 2D matrices in order to help
signal finding across (images-derived) data. It is also possible to filter 3D arrays considering them
as slices of a series of images to be processed. Higher dimensions arrays are not allowed. The
kernel parameter is a simple square matrix with an odd number of rows/columns, that can be pre-
calculated by using the function convKernel. Not square matrices or matrices with even number

of rows/columns will exit an error.

Value

An object with the same size of x containing data processed by convolution kernel

Examples

Not run:

M <- array(runif(1000000), dim = c(100,100,100))

smooth the array M

Mfil <- applyFilter(x = M, kernel = convKernel(sigma = 1.4, k = 'gaussian'))
image(ML,,50]1, col = grey(1:1000/1000))

image (Mfil[,,50], col = grey(1:1000/1000))

now combining two filters in cascade

Mfil <- applyFilter(x = applyFilter(x = M, kernel = convKernel(k = 'sobel')),

kernel = convKernel(sigma = 1.4, k = 'gaussian'))
image(Mfil[,,50], col = grey(1:1000/1000))
End(**Not run#x)

convKernel Function for creating convolution kernel for different filters

Description

This function creates the convolution kernel for applying a filter to an array/matrix

Usage

convKernel(sigma = 1.4, k = c("gaussian”, "LoG", "sharpen”, "laplacian"”,

"emboss”, "sobel"))

convKernel 3

Arguments
sigma The numeric value of standard deviation for the Gaussian or LoG filter
k character value:
e gaussian for Gaussian kernel
* LoG for Laplacian of Gaussian kernel
* sharpen for 3x3 convolution matrix for sharpening edges
* laplacian for a 3x3 convolution matrix that enhances the edges
* emboss for a 3x3 kernel that draws edges as embossed image
* sobel gives one of the two 3x3 matrices needed to apply the Sobel filter
Details

The convolution kernel is a matrix that is used by spacialfil function over a matrix, or array, for
filtering the data. Gaussian kernel is calculated starting from the 2 dimension, isotropic, Gaussian
distribution:
1 22442
G(z) e 5t

2mo?

Laplacian of Gaussian kernel applies a second derivative to enhance regions of rapid intensity

changes:
-1 22+ %\ 22
LoG (z,y) = — (1 —)¢

the use of the underlying Gaussian kernel (so the name Laplacian of Gaussian or LoG) is needed
to reduce the effect of high frequency noise that can affect the signal distribution. Laplacian is a
Sharpen enhance the detail. Emboss kernel is a 3x3 convolution kernel that embosses the edges.
(but also the noise) in original dataset. Sobel convolution kernel returns the possibility to detect
edges in a more sofisticated way, the convKernel function returns only one of the two matrices
needed to apply the filter. The second one is calculated by transposing the returned matrix in the
other needed one.

Value

An object of class convKern with the matrix of convolution kernel whose size varies according the
value of sigma (in case of gaussian or LoG option selected), and k being the convolution kernel
type label

References

* gaussian kernel http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

e LoG kernel: http://homepages.inf.ed.ac.uk/rbf/HIPR2/1og.htm

* sharpen kernel: https://en.wikipedia.org/wiki/Kernel_(image_processing)

e laplacian kernel: https://en.wikipedia.org/wiki/Discrete_Laplace_operator

* emboss kernel: http://coding-experiments.blogspot.it/2010/07/convolution.html
¢ sobel kernel: https://en.wikipedia.org/wiki/Sobel_operator

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Discrete_Laplace_operator
http://coding-experiments.blogspot.it/2010/07/convolution.html
https://en.wikipedia.org/wiki/Sobel_operator

convKernel
Examples
Not run:
creates a convolution kernel with Gaussian function and sigma = 1.4
K <- convKernel(sigma = 1.4, k = 'gaussian')
plot(K)

End(**Not runxx)

Index

applyFilter, 1

convKernel, 2,2

	applyFilter
	convKernel
	Index

