Perform analysis of variance when the experimental units are spatially correlated. There are two methods to deal with spatial dependence: Spatial autoregressive models (see Rossoni, D. F., & Lima, R. R. (2019) <doi:10.28951/rbb.v37i2.388>) and geostatistics (see Pontes, J. M., & Oliveira, M. S. D. (2004) <doi:10.1590/S1413-70542004000100018>). For both methods, there are three multicomparison procedure available: Tukey, multivariate T, and Scott-Knott.
Version: | 0.99.2 |
Depends: | R (≥ 2.10), stats, utils, graphics, geoR, shiny |
Imports: | MASS, Matrix, ScottKnott, car, gtools, multcomp, multcompView, mvtnorm, DT, shinyBS, xtable, shinythemes, rmarkdown, knitr, spdep, ape, spatialreg, shinycssloaders |
Published: | 2020-02-25 |
Author: | Lucas Roberto de Castro, Renato Ribeiro de Lima, Diogo Francisco Rossoni, Cristina Henriques Nogueira |
Maintainer: | Lucas Roberto de Castro <lrcastro at estudante.ufla.br> |
License: | GPL-3 |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | spANOVA results |
Reference manual: | spANOVA.pdf |
Package source: | spANOVA_0.99.2.tar.gz |
Windows binaries: | r-devel: spANOVA_0.99.2.zip, r-release: spANOVA_0.99.2.zip, r-oldrel: spANOVA_0.99.2.zip |
macOS binaries: | r-release: spANOVA_0.99.2.tgz, r-oldrel: spANOVA_0.99.2.tgz |
Old sources: | spANOVA archive |
Please use the canonical form https://CRAN.R-project.org/package=spANOVA to link to this page.