
Package ‘soundgen’
May 24, 2020

Type Package

Title Parametric Voice Synthesis

Version 1.7.0

Date 2020-05-24

Maintainer Andrey Anikin <rty.anik@rambler.ru>

URL http://cogsci.se/soundgen.html

Description Tools for sound synthesis and acoustic analysis.
Performs parametric synthesis of sounds with harmonic and noise components
such as animal vocalizations or human voice. Also includes tools for
spectral analysis, pitch tracking, audio segmentation, self-similarity
matrices, morphing, etc.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports stats, graphics, utils, tuneR, seewave (>= 2.1.0), zoo,
reshape2, mvtnorm, dtw, phonTools, shiny, shinyjs

Depends R (>= 3.4), shinyBS

RoxygenNote 7.1.0

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Andrey Anikin [aut, cre]

Repository CRAN

Date/Publication 2020-05-24 14:20:02 UTC

R topics documented:
addFormants . 3
addVectors . 6

1

http://cogsci.se/soundgen.html

2 R topics documented:

analyze . 7
analyzeFolder . 15
beat . 20
compareSounds . 22
crossFade . 24
defaults . 26
defaults_analyze . 26
defaults_analyze_pitchCand . 27
estimateVTL . 27
fade . 29
fart . 31
filterMS . 32
filterSoundByMS . 33
flatEnv . 37
flatSpectrum . 38
gaussianSmooth2D . 40
generateNoise . 41
getEntropy . 44
getIntegerRandomWalk . 45
getLoudness . 46
getLoudnessFolder . 49
getPrior . 50
getRandomWalk . 51
getRMS . 52
getRMSFolder . 54
getRolloff . 55
getSmoothContour . 58
getSpectralEnvelope . 60
HzToSemitones . 64
invertSpectrogram . 64
matchPars . 67
modulationSpectrum . 69
modulationSpectrumFolder . 73
morph . 76
msToSpec . 78
normalizeFolder . 79
notesDict . 80
optimizePars . 81
osc_dB . 83
permittedValues . 85
pitchContour . 85
pitchManual . 86
pitchSmoothPraat . 86
pitch_app . 87
playme . 89
presets . 90
reportTime . 90
schwa . 91

addFormants 3

segment . 93
segmentFolder . 96
segmentManual . 99
semitonesToHz . 100
soundgen . 100
soundgen_app . 107
specToMS . 107
spectrogram . 108
spectrogramFolder . 112
ssm . 114
transplantEnv . 116
transplantFormants . 117

Index 121

addFormants Add formants

Description

A spectral filter that either adds or removes formants from a sound - that is, amplifies or damp-
ens certain frequency bands, as in human vowels. See soundgen and getSpectralEnvelope for
more information. With action = 'remove' this function can perform inverse filtering to remove
formants and obtain raw glottal output, provided that you can specify the correct formant structure.

Usage

addFormants(
sound,
formants,
spectralEnvelope = NULL,
action = c("add", "remove")[1],
vocalTract = NA,
formantDep = 1,
formantDepStoch = 20,
formantWidth = 1,
formantCeiling = 2,
lipRad = 6,
noseRad = 4,
mouthOpenThres = 0,
mouth = NA,
interpol = c("approx", "spline", "loess")[3],
temperature = 0.025,
formDrift = 0.3,
formDisp = 0.2,
samplingRate = 16000,
windowLength_points = 800,
overlap = 75,

4 addFormants

normalize = TRUE
)

Arguments

sound numeric vector with samplingRate

formants either a character string like "aaui" referring to default presets for speaker "M1"
or a list of formant times, frequencies, amplitudes, and bandwidths (see ex. be-
low). formants = NA defaults to schwa. Time stamps for formants and mouthOpen-
ing can be specified in ms or an any other arbitrary scale. See getSpectralEnvelope
for more details

spectralEnvelope

(optional): as an alternative to specifying formant frequencies, we can pro-
vide the exact filter - a vector of non-negative numbers specifying the power
in each frequency bin on a linear scale (interpolated to length equal to win-
dowLength_points/2). A matrix specifying the filter for each STFT step is also
accepted. The easiest way to create this matrix is to call soundgen:::getSpectralEnvelope
or to use the spectrum of a recorded sound

action ’add’ = add formants to the sound, ’remove’ = remove formants (inverse filter-
ing)

vocalTract the length of vocal tract, cm. Used for calculating formant dispersion (for adding
extra formants) and formant transitions as the mouth opens and closes. If NULL
or NA, the length is estimated based on specified formant frequencies, if any
(anchor format)

formantDep scale factor of formant amplitude (1 = no change relative to amplitudes in formants)
formantDepStoch

the amplitude of additional stochastic formants added above the highest speci-
fied formant, dB (only if temperature > 0)

formantWidth scale factor of formant bandwidth (1 = no change)

formantCeiling frequency to which stochastic formants are calculated, in multiples of the Nyquist
frequency; increase up to ~10 for long vocal tracts to avoid losing energy in the
upper part of the spectrum

lipRad the effect of lip radiation on source spectrum, dB/oct (the default of +6 dB/oct
produces a high-frequency boost when the mouth is open)

noseRad the effect of radiation through the nose on source spectrum, dB/oct (the alterna-
tive to lipRad when the mouth is closed)

mouthOpenThres open the lips (switch from nose radiation to lip radiation) when the mouth is
open >mouthOpenThres, 0 to 1

mouth mouth opening (0 to 1, 0.5 = neutral, i.e. no modification) (anchor format)

interpol the method of smoothing envelopes based on provided mouth anchors: ’approx’
= linear interpolation, ’spline’ = cubic spline, ’loess’ (default) = polynomial
local smoothing function. NB: this does NOT affect the smoothing of formant
anchors

temperature hyperparameter for regulating the amount of stochasticity in sound generation

addFormants 5

formDrift, formDisp

scaling factors for the effect of temperature on formant drift and dispersal, re-
spectively

samplingRate sampling frequency, Hz
windowLength_points

length of FFT window, points

overlap FFT window overlap, %. For allowed values, see istft

normalize if TRUE, normalizes the output to range from -1 to +1

Details

Algorithm: converts input from a time series (time domain) to a spectrogram (frequency domain)
through short-term Fourier transform (STFT), multiples by the spectral filter containing the spec-
ified formants, and transforms back to a time series via inverse STFT. This is a subroutine in
soundgen, but it can also be used on any existing sound.

See Also

getSpectralEnvelope transplantFormants soundgen

Examples

sound = c(rep(0, 1000), runif(16000), rep(0, 1000)) # white noise
NB: pad with silence to avoid artefacts if removing formants
playme(sound)
spectrogram(sound, samplingRate = 16000)

add F1 = 900, F2 = 1300 Hz
sound_filtered = addFormants(sound, formants = c(900, 1300))
playme(sound_filtered)
spectrogram(sound_filtered, samplingRate = 16000)

...and remove them again (assuming we know what the formants are)
sound_inverse_filt = addFormants(sound_filtered,

formants = c(900, 1300),
action = 'remove')

playme(sound_inverse_filt)
spectrogram(sound_inverse_filt, samplingRate = 16000)

Not run:
Use the spectral envelope of an existing recording (bleating of a sheep)
(see also the same example with noise as source in ?generateNoise)
data(sheep, package = 'seewave') # import a recording from seewave
sound_orig = as.numeric(scale(sheep@left))
samplingRate = sheep@samp.rate
sound_orig = sound_orig / max(abs(sound_orig)) # range -1 to +1
playme(sound_orig, samplingRate)

get a few pitch anchors to reproduce the original intonation
pitch = analyze(sound_orig, samplingRate = samplingRate,

pitchMethod = c('autocor', 'dom'))$pitch

6 addVectors

pitch = pitch[!is.na(pitch)]
pitch = pitch[seq(1, length(pitch), length.out = 10)]

extract a frequency-smoothed version of the original spectrogram
to use as filter
specEnv_bleating = spectrogram(sound_orig, windowLength = 5,
samplingRate = samplingRate, output = 'original', plot = FALSE)

image(t(log(specEnv_bleating)))

Synthesize source only, with flat spectrum
sound_unfilt = soundgen(sylLen = 2500, pitch = pitch,

rolloff = 0, rolloffOct = 0, rolloffKHz = 0,
temperature = 0, jitterDep = 0, subDep = 0,
formants = NULL, lipRad = 0, samplingRate = samplingRate,
invalidArgAction = 'ignore') # prevent soundgen from increasing samplingRate

playme(sound_unfilt, samplingRate)
seewave::meanspec(sound_unfilt, f = samplingRate, dB = 'max0') # ~flat

Force spectral envelope to the shape of target
sound_filt = addFormants(sound_unfilt, formants = NULL,

spectralEnvelope = specEnv_bleating, samplingRate = samplingRate)
playme(sound_filt, samplingRate) # playme(sound_orig, samplingRate)
spectrogram(sound_filt, samplingRate) # spectrogram(sound_orig, samplingRate)

The spectral envelope is now similar to the original recording. Compare:
par(mfrow = c(1, 2))
seewave::meanspec(sound_orig, f = samplingRate, dB = 'max0', alim = c(-50, 20))
seewave::meanspec(sound_filt, f = samplingRate, dB = 'max0', alim = c(-50, 20))
par(mfrow = c(1, 1))
NB: but the source of excitation in the original is actually a mix of
harmonics and noise, while the new sound is purely tonal

End(Not run)

addVectors Add overlapping vectors

Description

Adds two partly overlapping vectors, such as two waveforms, to produce a longer vector. The
location at which vector 2 is pasted is defined by insertionPoint. Algorithm: both vectors are
padded with zeros to match in length and then added. All NA’s are converted to 0.

Usage

addVectors(v1, v2, insertionPoint = 1, normalize = TRUE)

analyze 7

Arguments

v1, v2 numeric vectors

insertionPoint the index of element in vector 1 at which vector 2 will be inserted (any integer,
can also be negative)

normalize if TRUE, the output is normalized to range from -1 to +1

See Also

soundgen

Examples

v1 = 1:6
v2 = rep(100, 3)
addVectors(v1, v2, insertionPoint = 5, normalize = FALSE)
addVectors(v1, v2, insertionPoint = -4, normalize = FALSE)
note the asymmetry: insertionPoint refers to the first arg
addVectors(v2, v1, insertionPoint = -4, normalize = FALSE)

v3 = rep(100, 15)
addVectors(v1, v3, insertionPoint = -4, normalize = FALSE)
addVectors(v2, v3, insertionPoint = 7, normalize = FALSE)

analyze Analyze sound

Description

Acoustic analysis of a single sound file: pitch tracking, basic spectral characteristics, and esti-
mated loudness (see getLoudness). The default values of arguments are optimized for human
non-linguistic vocalizations. See vignette(’acoustic_analysis’, package = ’soundgen’) for details.
The defaults and reasonable ranges of all arguments can be found in defaults_analyze.

Usage

analyze(
x,
samplingRate = NULL,
dynamicRange = 80,
silence = 0.04,
scale = NULL,
SPL_measured = 70,
Pref = 2e-05,
windowLength = 50,
step = NULL,
overlap = 50,
wn = "gaussian",

8 analyze

zp = 0,
cutFreq = NULL,
formants = list(verify = FALSE),
nFormants = 3,
pitchMethods = c("dom", "autocor"),
pitchManual = NULL,
entropyThres = 0.6,
pitchFloor = 75,
pitchCeiling = 3500,
priorMean = 300,
priorSD = 6,
nCands = 1,
minVoicedCands = NULL,
pitchDom = list(),
pitchAutocor = list(),
pitchCep = list(),
pitchSpec = list(),
pitchHps = list(),
harmHeight = list(type = "n"),
shortestSyl = 20,
shortestPause = 60,
interpolWin = 75,
interpolTol = 0.3,
interpolCert = 0.3,
pathfinding = c("none", "fast", "slow")[2],
annealPars = list(maxit = 5000, temp = 1000),
certWeight = 0.5,
snakeStep = 0.05,
snakePlot = FALSE,
smooth = 1,
smoothVars = c("pitch", "dom"),
summary = FALSE,
summaryFun = c("mean", "median", "sd"),
invalidArgAction = c("adjust", "abort", "ignore")[1],
plot = TRUE,
showLegend = TRUE,
savePath = NA,
osc = TRUE,
osc_dB = FALSE,
pitchPlot = list(col = rgb(0, 0, 1, 0.75), lwd = 3, showPrior = TRUE),
ylim = NULL,
xlab = "Time, ms",
ylab = "kHz",
main = NULL,
width = 900,
height = 500,
units = "px",
res = NA,

analyze 9

...
)

Arguments

x path to a .wav or .mp3 file or a vector of amplitudes with specified samplingRate

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

silence (0 to 1) frames with RMS amplitude below silence threshold are not analyzed at
all. NB: this number is dynamically updated: the actual silence threshold may
be higher depending on the quietest frame, but it will never be lower than this
specified number.

scale maximum possible amplitude of input used for normalization of input vector
(not needed if input is an audio file)

SPL_measured sound pressure level at which the sound is presented, dB (set to 0 to skip ana-
lyzing subjective loudness)

Pref reference pressure, Pa

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

cutFreq if specified, spectral descriptives (peakFreq, specCentroid, specSlope, and quar-
tiles) are calculated under cutFreq. Recommended when analyzing record-
ings with varying sampling rates: set to half the lowest sampling rate to make
the spectra more comparable. Note that "entropyThres" applies only to this
frequency range, which also affects which frames will not be analyzed with
pitchAutocor.

formants a list of arguments passed to findformants - an external function called to
perform LPC analysis

nFormants the number of formants to extract per STFT frame (0 = no formant analysis)

pitchMethods methods of pitch estimation to consider for determining pitch contour: ’autocor’
= autocorrelation (~PRAAT), ’cep’ = cepstral, ’spec’ = spectral (~BaNa), ’dom’
= lowest dominant frequency band (” or NULL = no pitch analysis)

pitchManual manually corrected pitch contour - a numeric vector of any length, but ideally as
returned by pitch_app with the same windowLength and step as in current call
to analyze

entropyThres pitch tracking is not performed for frames with Weiner entropy above entropyThres,
but other spectral descriptives are still calculated

pitchFloor, pitchCeiling

absolute bounds for pitch candidates (Hz)

10 analyze

priorMean, priorSD

specifies the mean (Hz) and standard deviation (semitones) of gamma distribu-
tion describing our prior knowledge about the most likely pitch values for this
file. For ex., priorMean = 300,priorSD = 6 gives a prior with mean = 300 Hz
and SD = 6 semitones (half an octave)

nCands maximum number of pitch candidates per method (except for dom, which returns
at most one candidate per frame), normally 1...4

minVoicedCands minimum number of pitch candidates that have to be defined to consider a frame
voiced (if NULL, defaults to 2 if dom is among other candidates and 1 otherwise)

pitchDom a list of control parameters for pitch tracking using the lowest dominant fre-
quency band or "dom" method; see details and ?soundgen:::getDom

pitchAutocor a list of control parameters for pitch tracking using the autocorrelation or "auto-
cor" method; see details and ?soundgen:::getPitchAutocor

pitchCep a list of control parameters for pitch tracking using the cepstrum or "cep" method;
see details and ?soundgen:::getPitchCep

pitchSpec a list of control parameters for pitch tracking using the BaNa or "spec" method;
see details and ?soundgen:::getPitchSpec

pitchHps a list of control parameters for pitch tracking using the harmonic product spec-
trum ("hps") method; see details and ?soundgen:::getPitchHps

harmHeight a list of control parameters for estimating how high harmonics reach in the spec-
trum; see details and ?soundgen:::harmHeight

shortestSyl the smallest length of a voiced segment (ms) that constitutes a voiced syllable
(shorter segments will be replaced by NA, as if unvoiced)

shortestPause the smallest gap between voiced syllables (ms) that means they shouldn’t be
merged into one voiced syllable

interpolWin, interpolTol, interpolCert

control the behavior of interpolation algorithm when postprocessing pitch candi-
dates. To turn off interpolation, set interpolWin = 0. See soundgen:::pathfinder
for details.

pathfinding method of finding the optimal path through pitch candidates: ’none’ = best can-
didate per frame, ’fast’ = simple heuristic, ’slow’ = annealing. See soundgen:::pathfinder

annealPars a list of control parameters for postprocessing of pitch contour with SANN al-
gorithm of optim. This is only relevant if pathfinding = 'slow'

certWeight (0 to 1) in pitch postprocessing, specifies how much we prioritize the certainty
of pitch candidates vs. pitch jumps / the internal tension of the resulting pitch
curve

snakeStep optimized path through pitch candidates is further processed to minimize the
elastic force acting on pitch contour. To disable, set snakeStep = 0

snakePlot if TRUE, plots the snake
smooth, smoothVars

if smooth is a positive number, outliers of the variables in smoothVars are ad-
justed with median smoothing. smooth of 1 corresponds to a window of ~100
ms and tolerated deviation of ~4 semitones. To disable, set smooth = 0

analyze 11

summary if TRUE, returns only a summary of the measured acoustic variables (mean,
median and SD). If FALSE, returns a list containing frame-by-frame values

summaryFun a vector of names of functions used to summarize each acoustic characteristic
invalidArgAction

what to do if an argument is invalid or outside the range in defaults_analyze:
’adjust’ = reset to default value, ’abort’ = stop execution, ’ignore’ = throw a
warning and continue (may crash)

plot if TRUE, produces a spectrogram with pitch contour overlaid

showLegend if TRUE, adds a legend with pitch tracking methods

savePath if a valid path is specified, a plot is saved in this folder (defaults to NA)

osc should an oscillogram be shown under the spectrogram? TRUE/ FALSE. If
‘osc_dB‘, the oscillogram is displayed on a dB scale. See osc_dB for details

osc_dB should an oscillogram be shown under the spectrogram? TRUE/ FALSE. If
‘osc_dB‘, the oscillogram is displayed on a dB scale. See osc_dB for details

pitchPlot a list of graphical parameters for displaying the final pitch contour. Set to
list(type = 'n') to suppress

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency)
xlab, ylab, main

plotting parameters
width, height, units, res

parameters passed to png if the plot is saved

... other graphical parameters passed to spectrogram

Details

Each pitch tracker is controlled by its own list of settings, as follows:

pitchDom (lowest dominant frequency band) • domThres (0 to 1) to find the lowest dominant
frequency band, we do short-term FFT and take the lowest frequency with amplitude at
least domThres

• domSmooth the width of smoothing interval (Hz) for finding dom

pitchAutocor (autocorrelation) • autocorThres voicing threshold (unitless, ~0 to 1)
• autocorSmooth the width of smoothing interval (in bins) for finding peaks in the auto-

correlation function. Defaults to 7 for sampling rate 44100 and smaller odd numbers for
lower values of sampling rate

• autocorUpsample upsamples acf to this resolution (Hz) to improve accuracy in high
frequencies

• autocorBestPeak amplitude of the lowest best candidate relative to the absolute max of
the acf

pitchCep (cepstrum) • cepThres voicing threshold (unitless, ~0 to 1)
• cepSmooth the width of smoothing interval (Hz) for finding peaks in the cepstrum
• cepZp zero-padding of the spectrum used for cepstral pitch detection (final length of

spectrum after zero-padding in points, e.g. 2 ^ 13)

12 analyze

pitchSpec (ratio of harmonics - BaNa algorithm) • specThres voicing threshold (unitless,
~0 to 1)

• specPeak,specHNRslope when looking for putative harmonics in the spectrum, the thresh-
old for peak detection is calculated as specPeak * (1 -HNR * specHNRslope)

• specSmooth the width of window for detecting peaks in the spectrum, Hz
• specMerge pitch candidates within specMerge semitones are merged with boosted cer-

tainty
• specSinglePeakCert (0 to 1) if F0 is calculated based on a single harmonic ratio (as

opposed to several ratios converging on the same candidate), its certainty is taken to be
specSinglePeakCert

pitchHps (harmonic product spectrum) • hpsNum the number of times to downsample the
spectrum

• hpsThres voicing threshold (unitless, ~0 to 1)
• hpsNorm the amount of inflation of hps pitch certainty (0 = none)
• hpsPenalty the amount of penalizing hps candidates in low frequencies (0 = none)

Each of these lists also accepts graphical parameters that affect how pitch candidates are plotted, eg
pitchDom = list(domThres = .5,col = 'yellow'). Other arguments that are lists of subroutine-
specific settings include:

harmonicHeight (finding how high harmonics reach in the spectrum) • harmThres minimum
height of spectral peak, dB

• harmPerSel the number of harmonics per sliding selection
• harmTol maximum tolerated deviation of peak frequency from multiples of f0, proportion

of f0
• + plotting pars, notably set type = 'l' to plot the harmHeight contour

Value

If summary = TRUE, returns a dataframe with one row and three columns per acoustic variable (mean
/ median / SD). If summary = FALSE, returns a dataframe with one row per STFT frame and one col-
umn per acoustic variable. The best guess at the pitch contour considering all available information
is stored in the variable called "pitch". In addition, the output contains pitch estimates by separate
algorithms included in pitchMethods and a number of other acoustic descriptors:

duration total duration, s

duration_noSilence duration from the beginning of the first non-silent STFT frame to the end
of the last non-silent STFT frame, s (NB: depends strongly on windowLength and silence
settings)

time time of the middle of each frame (ms)

ampl root mean square of amplitude per frame, calculated as sqrt(mean(frame ^ 2))

amplVoiced the same as ampl for voiced frames and NA for unvoiced frames

dom lowest dominant frequency band (Hz) (see "Pitch tracking methods / Dominant frequency" in
the vignette)

entropy Weiner entropy of the spectrum of the current frame. Close to 0: pure tone or tonal sound
with nearly all energy in harmonics; close to 1: white noise

analyze 13

f1_freq, f1_width, ... the frequency and bandwidth of the first nFormants formants per STFT frame,
as calculated by phonTools::findformants

harmEnergy the amount of energy in upper harmonics, namely the ratio of total spectral mass
above 1.25 x F0 to the total spectral mass below 1.25 x F0 (dB)

harmHeight how high harmonics reach in the spectrum, based on the best guess at pitch (or the
manually provided pitch values)

HNR harmonics-to-noise ratio (dB), a measure of harmonicity returned by soundgen:::getPitchAutocor
(see "Pitch tracking methods / Autocorrelation"). If HNR = 0 dB, there is as much energy in
harmonics as in noise

loudness subjective loudness, in sone, corresponding to the chosen SPL_measured - see getLoudness

peakFreq the frequency with maximum spectral power (Hz)

pitch post-processed pitch contour based on all F0 estimates

pitchAutocor autocorrelation estimate of F0

pitchCep cepstral estimate of F0

pitchSpec BaNa estimate of F0

quartile25, quartile50, quartile75 the 25th, 50th, and 75th quantiles of the spectrum of voiced
frames (Hz)

specCentroid the center of gravity of the frame’s spectrum, first spectral moment (Hz)

specSlope the slope of linear regression fit to the spectrum below cutFreq

voiced is the current STFT frame voiced? TRUE / FALSE

See Also

analyzeFolder pitch_app getLoudness segment getRMS modulationSpectrum ssm

Examples

sound = soundgen(sylLen = 300, pitch = c(500, 400, 600),
noise = list(time = c(0, 300), value = c(-40, 0)),
temperature = 0.001,
addSilence = 50) # NB: always have some silence before and after!!!

playme(sound, 16000)
a = analyze(sound, samplingRate = 16000)

Not run:
For maximum processing speed (just basic spectral descriptives):
a = analyze(sound, samplingRate = 16000,

plot = FALSE, # no plotting
pitchMethods = NULL, # no pitch tracking
SPL_measured = 0, # no loudness analysis
nFormants = 0 # no formant analysis

)

sound1 = soundgen(sylLen = 900, pitch = list(
time = c(0, .3, .9, 1), value = c(300, 900, 400, 2300)),
noise = list(time = c(0, 300), value = c(-40, 0)),
temperature = 0.001, samplingRate = 44100)

14 analyze

improve the quality of postprocessing:
a1 = analyze(sound1, samplingRate = 44100, priorSD = 24,

plot = TRUE, pathfinding = 'slow', ylim = c(0, 5))
median(a1$pitch, na.rm = TRUE)
(can vary, since postprocessing is stochastic)
compare to the true value:
median(getSmoothContour(anchors = list(time = c(0, .3, .8, 1),

value = c(300, 900, 400, 2300)), len = 1000))

the same pitch contour, but harder to analyze b/c of
subharmonics and jitter
sound2 = soundgen(sylLen = 900, pitch = list(

time = c(0, .3, .8, 1), value = c(300, 900, 400, 2300)),
noise = list(time = c(0, 900), value = c(-40, -20)),
subDep = 10, jitterDep = 0.5,
temperature = 0.001, samplingRate = 44100)

playme(sound2, 44100)
a2 = analyze(sound2, samplingRate = 44100, priorSD = 24,

pathfinding = 'slow', ylim = c(0, 5))

Fancy plotting options:
a = analyze(sound1, samplingRate = 44100,

xlab = 'Time, ms', colorTheme = 'seewave',
contrast = .5, ylim = c(0, 4), main = 'My plot',
pitchMethods = c('dom', 'autocor', 'spec', 'hps', 'cep'),
priorMean = NA, # no prior info at all
pitchDom = list(col = 'red', domThres = .25),
pitchPlot = list(col = 'black', lty = 3, lwd = 3),
osc_dB = TRUE, heights = c(2, 1))

Different formatting options for output
a = analyze(sound1, 44100, summary = FALSE) # frame-by-frame
a = analyze(sound1, 44100, summary = TRUE,

summaryFun = c('mean', 'range')) # one row per sound
...with custom summaryFun
difRan = function(x) diff(range(x))
a = analyze(sound2, samplingRate = 16000, summary = TRUE,

summaryFun = c('mean', 'difRan'))

Save the plot
a = analyze(sound1, 44100, ylim = c(0, 5),

savePath = '~/Downloads/',
width = 20, height = 15, units = 'cm', res = 300)

Amplitude and loudness: analyze() should give the same results as
dedicated functions getRMS() / getLoudness()
Create 1 kHz tone
samplingRate = 16000; dur_ms = 50
sound3 = sin(2*pi*1000/samplingRate*(1:(dur_ms/1000*samplingRate)))
a1 = analyze(sound3, samplingRate = samplingRate, windowLength = 25,

overlap = 50, SPL_measured = 40, scale = 1,
pitchMethods = NULL, plot = FALSE)

a1$loudness # loudness per STFT frame (1 sone by definition)

analyzeFolder 15

getLoudness(sound3, samplingRate = samplingRate, windowLength = 25,
overlap = 50, SPL_measured = 40, scale = 1)$loudness

a1$ampl # RMS amplitude per STFT frame
getRMS(sound3, samplingRate = samplingRate, windowLength = 25,

overlap = 50, scale = 1)
or even simply: sqrt(mean(sound1 ^ 2))

The same sound as above, but with half the amplitude
a_half = analyze(sound3 / 2, samplingRate = samplingRate, windowLength = 25,

overlap = 50, SPL_measured = 40, scale = 1,
pitchMethods = NULL, plot = FALSE)

a1$ampl / a_half$ampl # rms amplitude halved
a1$loudness/ a_half$loudness # loudness is not a linear function of amplitude

Amplitude & loudness of an existing audio file
sound4 = '~/Downloads/temp/cry_451_soundgen.wav'
a2 = analyze(sound4, windowLength = 25, overlap = 50, SPL_measured = 40)
apply(a2[, c('loudness', 'ampl')], 2, median, na.rm = TRUE)
median(getLoudness(sound4, windowLength = 25, overlap = 50,

SPL_measured = 40)$loudness)
NB: not identical b/c analyze() doesn't consider very quiet frames
median(getRMS(sound4, windowLength = 25, overlap = 50, scale = 1))

Analyzing ultrasounds (slow but possible, just adjust pitchCeiling)
s = soundgen(sylLen = 200, addSilence = 10,

pitch = c(25000, 35000, 30000),
formants = NA, rolloff = -12, rolloffKHz = 0,
pitchSamplingRate = 350000, samplingRate = 350000, windowLength = 5,
pitchCeiling = 45000, invalidArgAction = 'ignore')

s is a bat-like ultrasound inaudible to humans
spectrogram(s, 350000, windowLength = 5)
a = analyze(s, 350000, pitchCeiling = 45000, priorMean = NA,

windowLength = 5, overlap = 0,
nFormants = 0, SPL_measured = 0)

NB: ignore formants and loudness estimates for such non-human sounds

End(Not run)

analyzeFolder Analyze folder

Description

Acoustic analysis of all wav/mp3 files in a folder. See analyze and vignette(’acoustic_analysis’,
package = ’soundgen’) for further details. See pitch_app for a more realistic workflow: extract
manually corrected pitch contours with pitch_app(), then run analyzeFolder() with these manual
contours

16 analyzeFolder

Usage

analyzeFolder(
myfolder,
htmlPlots = TRUE,
verbose = TRUE,
samplingRate = NULL,
dynamicRange = 80,
silence = 0.04,
SPL_measured = 70,
Pref = 2e-05,
windowLength = 50,
step = NULL,
overlap = 50,
wn = "gaussian",
zp = 0,
cutFreq = NULL,
formants = list(verify = FALSE),
nFormants = 3,
pitchMethods = c("dom", "autocor"),
pitchManual = NULL,
entropyThres = 0.6,
pitchFloor = 75,
pitchCeiling = 3500,
priorMean = 300,
priorSD = 6,
nCands = 1,
minVoicedCands = NULL,
pitchDom = list(),
pitchAutocor = list(),
pitchCep = list(),
pitchSpec = list(),
pitchHps = list(),
harmHeight = list(type = "n"),
shortestSyl = 20,
shortestPause = 60,
interpolWin = 75,
interpolTol = 0.3,
interpolCert = 0.3,
pathfinding = c("none", "fast", "slow")[2],
annealPars = list(maxit = 5000, temp = 1000),
certWeight = 0.5,
snakeStep = 0.05,
snakePlot = FALSE,
smooth = 1,
smoothVars = c("pitch", "dom"),
summary = TRUE,
summaryFun = c("mean", "median", "sd"),
plot = FALSE,

analyzeFolder 17

showLegend = TRUE,
savePlots = FALSE,
pitchPlot = list(col = rgb(0, 0, 1, 0.75), lwd = 3, showPrior = TRUE),
ylim = NULL,
xlab = "Time, ms",
ylab = "kHz",
main = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

myfolder full path to target folder

htmlPlots if TRUE, saves an html file with clickable plots

verbose if TRUE, reports progress and estimated time left

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

silence (0 to 1) frames with RMS amplitude below silence threshold are not analyzed at
all. NB: this number is dynamically updated: the actual silence threshold may
be higher depending on the quietest frame, but it will never be lower than this
specified number.

SPL_measured sound pressure level at which the sound is presented, dB (set to 0 to skip ana-
lyzing subjective loudness)

Pref reference pressure, Pa

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

cutFreq if specified, spectral descriptives (peakFreq, specCentroid, specSlope, and quar-
tiles) are calculated under cutFreq. Recommended when analyzing record-
ings with varying sampling rates: set to half the lowest sampling rate to make
the spectra more comparable. Note that "entropyThres" applies only to this
frequency range, which also affects which frames will not be analyzed with
pitchAutocor.

formants a list of arguments passed to findformants - an external function called to
perform LPC analysis

18 analyzeFolder

nFormants the number of formants to extract per STFT frame (0 = no formant analysis)

pitchMethods methods of pitch estimation to consider for determining pitch contour: ’autocor’
= autocorrelation (~PRAAT), ’cep’ = cepstral, ’spec’ = spectral (~BaNa), ’dom’
= lowest dominant frequency band (” or NULL = no pitch analysis)

pitchManual normally the output of pitch_app containing a manually corrected pitch con-
tour, ideally with the same windowLength and step as current call to analyze-
Folder; a dataframe with at least two columns: "file" (w/o path) and "pitch"
(character like "NA, 150, 175, NA")

entropyThres pitch tracking is not performed for frames with Weiner entropy above entropyThres,
but other spectral descriptives are still calculated

pitchFloor absolute bounds for pitch candidates (Hz)

pitchCeiling absolute bounds for pitch candidates (Hz)

priorMean specifies the mean (Hz) and standard deviation (semitones) of gamma distribu-
tion describing our prior knowledge about the most likely pitch values for this
file. For ex., priorMean = 300,priorSD = 6 gives a prior with mean = 300 Hz
and SD = 6 semitones (half an octave)

priorSD specifies the mean (Hz) and standard deviation (semitones) of gamma distribu-
tion describing our prior knowledge about the most likely pitch values for this
file. For ex., priorMean = 300,priorSD = 6 gives a prior with mean = 300 Hz
and SD = 6 semitones (half an octave)

nCands maximum number of pitch candidates per method (except for dom, which returns
at most one candidate per frame), normally 1...4

minVoicedCands minimum number of pitch candidates that have to be defined to consider a frame
voiced (if NULL, defaults to 2 if dom is among other candidates and 1 otherwise)

pitchDom a list of control parameters for pitch tracking using the lowest dominant fre-
quency band or "dom" method; see details and ?soundgen:::getDom

pitchAutocor a list of control parameters for pitch tracking using the autocorrelation or "auto-
cor" method; see details and ?soundgen:::getPitchAutocor

pitchCep a list of control parameters for pitch tracking using the cepstrum or "cep" method;
see details and ?soundgen:::getPitchCep

pitchSpec a list of control parameters for pitch tracking using the BaNa or "spec" method;
see details and ?soundgen:::getPitchSpec

pitchHps a list of control parameters for pitch tracking using the harmonic product spec-
trum ("hps") method; see details and ?soundgen:::getPitchHps

harmHeight a list of control parameters for estimating how high harmonics reach in the spec-
trum; see details and ?soundgen:::harmHeight

shortestSyl the smallest length of a voiced segment (ms) that constitutes a voiced syllable
(shorter segments will be replaced by NA, as if unvoiced)

shortestPause the smallest gap between voiced syllables (ms) that means they shouldn’t be
merged into one voiced syllable

interpolWin control the behavior of interpolation algorithm when postprocessing pitch candi-
dates. To turn off interpolation, set interpolWin = 0. See soundgen:::pathfinder
for details.

analyzeFolder 19

interpolTol control the behavior of interpolation algorithm when postprocessing pitch candi-
dates. To turn off interpolation, set interpolWin = 0. See soundgen:::pathfinder
for details.

interpolCert control the behavior of interpolation algorithm when postprocessing pitch candi-
dates. To turn off interpolation, set interpolWin = 0. See soundgen:::pathfinder
for details.

pathfinding method of finding the optimal path through pitch candidates: ’none’ = best can-
didate per frame, ’fast’ = simple heuristic, ’slow’ = annealing. See soundgen:::pathfinder

annealPars a list of control parameters for postprocessing of pitch contour with SANN al-
gorithm of optim. This is only relevant if pathfinding = 'slow'

certWeight (0 to 1) in pitch postprocessing, specifies how much we prioritize the certainty
of pitch candidates vs. pitch jumps / the internal tension of the resulting pitch
curve

snakeStep optimized path through pitch candidates is further processed to minimize the
elastic force acting on pitch contour. To disable, set snakeStep = 0

snakePlot if TRUE, plots the snake

smooth if smooth is a positive number, outliers of the variables in smoothVars are ad-
justed with median smoothing. smooth of 1 corresponds to a window of ~100
ms and tolerated deviation of ~4 semitones. To disable, set smooth = 0

smoothVars if smooth is a positive number, outliers of the variables in smoothVars are ad-
justed with median smoothing. smooth of 1 corresponds to a window of ~100
ms and tolerated deviation of ~4 semitones. To disable, set smooth = 0

summary if TRUE, returns only a summary of the measured acoustic variables (mean,
median and SD). If FALSE, returns a list containing frame-by-frame values

summaryFun a vector of names of functions used to summarize each acoustic characteristic

plot if TRUE, produces a spectrogram with pitch contour overlaid

showLegend if TRUE, adds a legend with pitch tracking methods

savePlots if TRUE, saves plots as .png files

pitchPlot a list of graphical parameters for displaying the final pitch contour. Set to
list(type = 'n') to suppress

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency)

xlab plotting parameters

ylab plotting parameters

main plotting parameters

width parameters passed to png if the plot is saved

height parameters passed to png if the plot is saved

units parameters passed to png if the plot is saved

res parameters passed to png if the plot is saved

... other graphical parameters passed to spectrogram

20 beat

Value

If summary is TRUE, returns a dataframe with one row per audio file. If summary is FALSE, returns
a list of detailed descriptives.

See Also

analyze pitch_app getLoudness segment getRMS

Examples

Not run:
download 260 sounds from Anikin & Persson (2017)
http://cogsci.se/publications/anikin-persson_2017_nonlinguistic-vocs/260sounds_wav.zip
unzip them into a folder, say '~/Downloads/temp'
myfolder = '~/Downloads/temp' # 260 .wav files live here
s = analyzeFolder(myfolder, verbose = TRUE) # ~ 10-20 minutes!
s = write.csv(s, paste0(myfolder, '/temp.csv')) # save a backup

Check accuracy: import manually verified pitch values (our "key")
pitchManual # "ground truth" of mean pitch per sound
pitchContour # "ground truth" of complete pitch contours per sound
files_manual = paste0(names(pitchManual), '.wav')
idx = match(s$file, files_manual) # in case the order is wrong
s$key = pitchManual[idx]

Compare manually verified mean pitch with the output of analyzeFolder:
cor(skey, spitch_median, use = 'pairwise.complete.obs')
plot(skey, spitch_median, log = 'xy')
abline(a=0, b=1, col='red')

Re-running analyzeFolder with manually corrected contours gives correct
pitch-related descriptives like amplVoiced and harmonics (NB: you get it "for
free" when running pitch_app)
s1 = analyzeFolder(myfolder, verbose = TRUE, pitchManual = pitchContour)
plot(s$harmonics_median, s1$harmonics_median)
abline(a=0, b=1, col='red')

Save spectrograms with pitch contours plus an html file for easy access
s2 = analyzeFolder('~/Downloads/temp', savePlots = TRUE,

showLegend = TRUE, pitchManual = pitchContour,
width = 20, height = 12,
units = 'cm', res = 300, ylim = c(0, 5))

End(Not run)

beat Generate beat

beat 21

Description

Generates percussive sounds from clicks through drum-like beats to sliding tones. The principle is
to create a sine wave with rapid frequency modulation and to add a fade-out. No extra harmonics
or formants are added. For this specific purpose, this is vastly faster and easier than to tinker with
soundgen settings, especially since percussive syllables tend to be very short.

Usage

beat(
nSyl = 10,
sylLen = 200,
pauseLen = 50,
pitch = c(200, 10),
samplingRate = 16000,
fadeOut = TRUE,
play = FALSE

)

Arguments

nSyl the number of syllables to generate

sylLen average duration of each syllable, ms

pauseLen average duration of pauses between syllables, ms

pitch fundamental frequency, Hz - a vector or data.frame(time = ..., value = ...)

samplingRate sampling frequency, Hz

fadeOut if TRUE, a linear fade-out is applied to the entire syllable

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

Value

Returns a non-normalized waveform centered at zero.

See Also

soundgen generateNoise fart

Examples

playback = c(TRUE, FALSE)[2]
a drum-like sound
s = beat(nSyl = 1, sylLen = 200,

pitch = c(200, 100), play = playback)
plot(s, type = 'l')

a dry, muted drum
s = beat(nSyl = 1, sylLen = 200,

22 compareSounds

pitch = c(200, 10), play = playback)

sci-fi laser guns
s = beat(nSyl = 3, sylLen = 300,

pitch = c(1000, 50), play = playback)

machine guns
s = beat(nSyl = 10, sylLen = 10, pauseLen = 50,

pitch = c(2300, 300), play = playback)

compareSounds Compare sounds (experimental)

Description

Computes similarity between two sounds based on correlating mel-transformed spectra (auditory
spectra). Called by matchPars.

Usage

compareSounds(
target,
targetSpec = NULL,
cand,
samplingRate = NULL,
method = c("cor", "cosine", "pixel", "dtw")[1:4],
windowLength = 40,
overlap = 50,
step = NULL,
padWith = NA,
penalizeLengthDif = TRUE,
dynamicRange = 80,
maxFreq = NULL,
summary = TRUE

)

Arguments

target the sound we want to reproduce using soundgen: path to a .wav file or numeric
vector

targetSpec if already calculated, the target auditory spectrum can be provided to speed
things up

cand the sound to be compared to target

samplingRate sampling rate of target (only needed if target is a numeric vector, rather than a
.wav file)

compareSounds 23

method method of comparing mel-transformed spectra of two sounds: "cor" = average
Pearson’s correlation of mel-transformed spectra of individual FFT frames; "co-
sine" = same as "cor" but with cosine similarity instead of Pearson’s correlation;
"pixel" = absolute difference between each point in the two spectra; "dtw" =
discrete time warp with dtw

windowLength length of FFT window, ms

overlap overlap between successive FFT frames, %

step you can override overlap by specifying FFT step, ms

padWith compared spectra are padded with either silence (padWith = 0) or with NA’s
(padWith = NA) to have the same number of columns. When the sounds are of
different duration, padding with zeros rather than NA’s improves the fit to target
measured by method = 'pixel' and 'dtw', but it has no effect on 'cor' and
'cosine'.

penalizeLengthDif

if TRUE, sounds of different length are considered to be less similar; if FALSE,
only the overlapping parts of two sounds are compared

dynamicRange parts of the spectra quieter than -dynamicRange dB are not compared

maxFreq parts of the spectra above maxFreq Hz are not compared

summary if TRUE, returns the mean of similarity values calculated by all methods in
method

Examples

Not run:
target = soundgen(sylLen = 500, formants = 'a',

pitch = data.frame(time = c(0, 0.1, 0.9, 1),
value = c(100, 150, 135, 100)),

temperature = 0.001)
targetSpec = soundgen:::getMelSpec(target, samplingRate = 16000)

parsToTry = list(
list(formants = 'i', # wrong

pitch = data.frame(time = c(0, 1), # wrong
value = c(200, 300))),

list(formants = 'i', # wrong
pitch = data.frame(time = c(0, 0.1, 0.9, 1), # right

value = c(100, 150, 135, 100))),
list(formants = 'a', # right

pitch = data.frame(time = c(0,1), # wrong
value = c(200, 300))),

list(formants = 'a',
pitch = data.frame(time = c(0, 0.1, 0.9, 1), # right

value = c(100, 150, 135, 100))) # right
)

sounds = list()
for (s in 1:length(parsToTry)) {

sounds[[length(sounds) + 1]] = do.call(soundgen,
c(parsToTry[[s]], list(temperature = 0.001, sylLen = 500)))

24 crossFade

}

method = c('cor', 'cosine', 'pixel', 'dtw')
df = matrix(NA, nrow = length(parsToTry), ncol = length(method))
colnames(df) = method
df = as.data.frame(df)
for (i in 1:nrow(df)) {

df[i,] = compareSounds(
target = NULL, # can use target instead of targetSpec...
targetSpec = targetSpec, # ...but faster to calculate targetSpec once
cand = sounds[[i]],
samplingRate = 16000,
padWith = NA,
penalizeLengthDif = TRUE,
method = method,
summary = FALSE

)
}
df$av = rowMeans(df, na.rm = TRUE)
row 1 = wrong pitch & formants, ..., row 4 = right pitch & formants
df$formants = c('wrong', 'wrong', 'right', 'right')
df$pitch = c('wrong', 'right', 'wrong', 'right')
df

End(Not run)

crossFade Join two waveforms by cross-fading

Description

crossFade joins two input vectors (waveforms) by cross-fading. First it truncates both input vec-
tors, so that ampl1 ends with a zero crossing and ampl2 starts with a zero crossing, both on an
upward portion of the soundwave. Then it cross-fades both vectors linearly with an overlap of
crossLen or crossLenPoints. If the input vectors are too short for the specified length of cross-faded
region, the two vectors are concatenated at zero crossings instead of cross-fading. Soundgen uses
crossFade for gluing together epochs with different regimes of pitch effects (see the vignette on
sound generation), but it can also be useful for joining two separately generated sounds without
audible artifacts.

Usage

crossFade(
ampl1,
ampl2,
crossLenPoints = 240,
crossLen = NULL,
samplingRate = NULL,
shape = c("lin", "exp", "log", "cos", "logistic")[1],

crossFade 25

steepness = 1
)

Arguments

ampl1, ampl2 two numeric vectors (waveforms) to be joined

crossLenPoints (optional) the length of overlap in points

crossLen the length of overlap in ms (overrides crossLenPoints)

samplingRate the sampling rate of input vectors, Hz (needed only if crossLen is given in ms
rather than points)

shape controls the type of fade function: ’lin’ = linear, ’exp’ = exponential, ’log’ =
logarithmic, ’cos’ = cosine, ’logistic’ = logistic S-curve

steepness scaling factor regulating the steepness of fading curves if the shape is ’exp’,
’log’, or ’logistic’ (0 = linear, >1 = steeper than default)

Value

Returns a numeric vector.

See Also

fade

Examples

sound1 = sin(1:100 / 9)
sound2 = sin(7:107 / 3)
plot(c(sound1, sound2), type = 'b')
an ugly discontinuity at 100 that will make an audible click

sound = crossFade(sound1, sound2, crossLenPoints = 5)
plot(sound, type = 'b') # a nice, smooth transition
length(sound) # but note that cross-fading costs us ~60 points
because of trimming to zero crossings and then overlapping

Not run:
Actual sounds, alternative shapes of fade-in/out
sound3 = soundgen(formants = 'a', pitch = 200,

addSilence = 0, attackLen = c(50, 0))
sound4 = soundgen(formants = 'u', pitch = 200,

addSilence = 0, attackLen = c(0, 50))

simple concatenation (with a click)
playme(c(sound3, sound4), 16000)

concatentation from zc to zc (no click, but a rough transition)
playme(crossFade(sound3, sound4, crossLen = 0), 16000)

linear crossFade over 35 ms - brief, but smooth
playme(crossFade(sound3, sound4, crossLen = 35, samplingRate = 16000), 16000)

26 defaults_analyze

s-shaped cross-fade over 300 ms (shortens the sound by ~300 ms)
playme(crossFade(sound3, sound4, samplingRate = 16000,

crossLen = 300, shape = 'cos'), 16000)

End(Not run)

defaults Shiny app defaults

Description

A list of default values for Shiny app soundgen_app() - mostly the same as the defaults for sound-
gen(). NB: if defaults change, this has to be updated!!!

Usage

defaults

Format

An object of class list of length 69.

defaults_analyze Defaults and ranges for analyze()

Description

A dataset containing defaults and ranges of key variables for analyze() and pitch_app(). Adjust as
needed.

Usage

defaults_analyze

Format

A matrix with 58 rows and 4 columns:

default default value

low lowest permitted value

high highest permitted value

step increment for adjustment ...

defaults_analyze_pitchCand 27

defaults_analyze_pitchCand

Defaults for plotting with analyze()

Description

Default plotting settings for each pitch tracker in analyze() and pitch_app(). Adjust as needed.

Usage

defaults_analyze_pitchCand

Format

A dataframe with 8 rows and 5 columns:

method pitch tracking method

col color

pch point character

lwd line width

lty line type ...

estimateVTL Estimate vocal tract length

Description

Estimates the length of vocal tract based on formant frequencies, assuming that the vocal tract can
be modeled as a tube open at one end.

Usage

estimateVTL(
formants,
method = c("meanFormant", "meanDispersion", "regression")[3],
speedSound = 35400,
checkFormat = TRUE,
plot = FALSE

)

28 estimateVTL

Arguments

formants formant frequencies in any format recognized by soundgen: a character string
like aaui referring to default presets for speaker "M1"; a vector of formant
frequencies like c(550,1600,3200); or a list with multiple values per formant
like list(f1 = c(500,550),f2 = 1200))

method the method of estimating vocal tract length (see details)

speedSound speed of sound in warm air, by default 35400 cm/s. Stevens (2000) "Acoustic
phonetics", p. 138

checkFormat if FALSE, only a list of properly formatted formant frequencies is accepted

plot if TRUE, plots the regression line to illustrate the estimation of formant disper-
sion (method = "regression" only)

Details

If method = 'meanFormant', vocal tract length (VTL) is calculated separately for each formant as
(2∗formantnumber−1)∗speedSound/(4∗formantfrequency), and then the resulting VTLs
are averaged. If method = 'meanDispersion', formant dispersion is calculated as the mean dis-
tance between formants, and then VTL is calculated as speedofsound/2/formantdispersion. If
method = 'regression', formant dispersion is estimated using the regression method described in
Reby et al. (2005) "Red deer stags use formants as assessment cues during intrasexual agonistic in-
teractions". For a review of these and other VTL-related summary measures of formant frequencies,
refer to Pisanski et al. (2014) "Vocal indicators of body size in men and women: a meta-analysis".
See also schwa for VTL estimation with additional information on formant frequencies.

Value

Returns the estimated vocal tract length in cm.

See Also

schwa

Examples

estimateVTL(NA)
estimateVTL(500)
estimateVTL(c(600, 1850, 3100))
Multiple measurements are OK
estimateVTL(
formants = list(f1 = c(540, 600, 550),
f2 = 1650, f3 = c(2400, 2550)),
plot = TRUE)

NB: this is better than averaging formant values. Cf.:
estimateVTL(

formants = list(f1 = mean(c(540, 600, 550)),
f2 = 1650, f3 = mean(c(2400, 2550))),
plot = TRUE)

Missing values are OK

fade 29

estimateVTL(c(600, 1850, 3100, NA, 5000))
estimateVTL(list(f1 = 500, f2 = c(1650, NA, 1400), f3 = 2700), plot = TRUE)

Note that VTL estimates based on the commonly reported 'meanDispersion'
depend only on the first and last formant
estimateVTL(c(500, 1400, 2800, 4100), method = 'meanDispersion')
estimateVTL(c(500, 1100, 2300, 4100), method = 'meanDispersion') # identical
...but this is not the case for 'meanFormant' and 'regression' methods
estimateVTL(c(500, 1400, 2800, 4100), method = 'meanFormant')
estimateVTL(c(500, 1100, 2300, 4100), method = 'meanFormant') # much longer

Not run:
Compare the results produced by the three methods
nIter = 1000
out = data.frame(meanFormant = rep(NA, nIter), meanDispersion = NA, regression = NA)
for (i in 1:nIter) {

generate a random formant configuration
f = runif(1, 300, 900) + (1:6) * rnorm(6, 1000, 200)
out$meanFormant[i] = estimateVTL(f, method = 'meanFormant')
out$meanDispersion[i] = estimateVTL(f, method = 'meanDispersion')
out$regression[i] = estimateVTL(f, method = 'regression')

}
pairs(out)
cor(out)
'meanDispersion' is pretty different, while 'meanFormant' and 'regression'
give broadly comparable results

End(Not run)

fade Fade

Description

Applies fade-in and/or fade-out of variable length, shape, and steepness. The resulting effect softens
the attack and release of a waveform.

Usage

fade(
x,
fadeIn = 1000,
fadeOut = 1000,
samplingRate = NULL,
shape = c("lin", "exp", "log", "cos", "logistic")[1],
steepness = 1,
plot = FALSE

)

30 fade

Arguments

x zero-centered (!) numeric vector such as a waveform
fadeIn, fadeOut

length of segments for fading in and out, interpreted as points if samplingRate
= NULL and as ms otherwise (0 = no fade)

samplingRate sampling rate of the input vector, Hz

shape controls the type of fade function: ’lin’ = linear, ’exp’ = exponential, ’log’ =
logarithmic, ’cos’ = cosine, ’logistic’ = logistic S-curve

steepness scaling factor regulating the steepness of fading curves if the shape is ’exp’,
’log’, or ’logistic’ (0 = linear, >1 = steeper than default)

plot if TRUE, produces an oscillogram of the waveform after fading

Value

Returns a numeric vector of the same length as input

See Also

crossFade

Examples

#' # Fading a real sound: say we want fast attack and slow release
s = soundgen(attack = 0, windowLength = 10,

sylLen = 500, addSilence = 0)
playme(s)
s1 = fade(s, fadeIn = 40, fadeOut = 350,

samplingRate = 16000, shape = 'cos', plot = TRUE)
playme(s1)

Illustration of fade shapes
x = runif(5000, min = -1, max = 1) # make sure to zero-center input!!!
plot(x, type = 'l')
y = fade(x, fadeIn = 1000, fadeOut = 0, plot = TRUE)
y = fade(x,

fadeIn = 1000,
fadeOut = 1500,
shape = 'exp',
plot = TRUE)

y = fade(x,
fadeIn = 1500,
fadeOut = 500,
shape = 'log',
plot = TRUE)

y = fade(x,
fadeIn = 1500,
fadeOut = 500,
shape = 'log',
steepness = 8,

fart 31

plot = TRUE)
y = fade(x,

fadeIn = 1000,
fadeOut = 1500,
shape = 'cos',
plot = TRUE)

y = fade(x,
fadeIn = 1500,
fadeOut = 500,
shape = 'logistic',
steepness = 4,
plot = TRUE)

fart Fart

Description

While the same sounds can be created with soundgen(), this facetious function produces the same
effect more efficiently and with very few control parameters. With default settings, execution time
is ~ 10 ms per second of audio sampled at 16000 Hz. Principle: creates separate glottal cycles with
harmonics, but no formants. See soundgen for more details.

Usage

fart(
glottis = c(50, 200),
pitch = 65,
temperature = 0.25,
sylLen = 600,
rolloff = -10,
samplingRate = 16000,
play = FALSE,
plot = FALSE

)

Arguments

glottis anchors for specifying the proportion of a glottal cycle with closed glottis, % (0
= no modification, 100 = closed phase as long as open phase); numeric vector
or dataframe specifying time and value (anchor format)

pitch a numeric vector of f0 values in Hz or a dataframe specifying the time (ms or 0
to 1) and value (Hz) of each anchor, hereafter "anchor format". These anchors
are used to create a smooth contour of fundamental frequency f0 (pitch) within
one syllable

temperature hyperparameter for regulating the amount of stochasticity in sound generation

sylLen syllable length, ms (not vectorized)

32 filterMS

rolloff rolloff of harmonics in source spectrum, dB/octave (not vectorized)
samplingRate sampling frequency, Hz
play if TRUE, plays the synthesized sound using the default player on your system.

If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

plot if TRUE, plots the waveform

Value

Returns a normalized waveform.

See Also

soundgen generateNoise beat

Examples

f = fart()
playme(f)

Not run:
while (TRUE) {

fart(sylLen = 300, temperature = .5, play = TRUE)
Sys.sleep(rexp(1, rate = 1))

}

End(Not run)

filterMS Filter modulation spectrum

Description

Filters a modulation spectrum by removing a certain range of amplitude modulation (AM) and
frequency modulation (FM) frequencies. Conditions can be specified either separately for AM and
FM with amCond = ...,fmCond = ..., implying an OR combination of conditions, or jointly on
AM and FM with jointCond. jointCond is more general, but using amCond/fmCond is ~100 times
faster.

Usage

filterMS(
ms,
amCond = NULL,
fmCond = NULL,
jointCond = NULL,
action = c("remove", "preserve")[1],
plot = TRUE

)

filterSoundByMS 33

Arguments

ms a modulation spectrum as returned by modulationSpectrum - a matrix of real
or complex values, AM in columns, FM in rows

amCond, fmCond character strings with valid conditions on amplitude and frequency modulation
(see examples)

jointCond character string with a valid joint condition amplitude and frequency modulation
action should the defined AM-FM region be removed (’remove’) or preserved, while

everything else is removed (’preserve’)?
plot if TRUE, plots the filtered modulation spectrum

Value

Returns the filtered modulation spectrum - a matrix of the original dimensions, real or complex.

Examples

ms = modulationSpectrum(soundgen(), samplingRate = 16000,
returnComplex = TRUE)$complex

Remove all AM over 25 Hz
ms_filt = filterMS(ms, amCond = 'abs(am) > 25')

amCond and fmCond are OR-conditions
filterMS(ms, amCond = 'abs(am) > 15', fmCond = 'abs(fm) > 5', action = 'remove')
filterMS(ms, amCond = 'abs(am) > 15', fmCond = 'abs(fm) > 5', action = 'preserve')
filterMS(ms, amCond = 'abs(am) > 10 & abs(am) < 25', action = 'remove')

jointCond is an AND-condition
filterMS(ms, jointCond = 'am * fm < 5', action = 'remove')
filterMS(ms, jointCond = 'am^2 + (fm*3)^2 < 200', action = 'preserve')

So:
filterMS(ms, jointCond = 'abs(am) > 5 | abs(fm) < 5') # slow but general
...is the same as:
filterMS(ms, amCond = 'abs(am) > 5', fmCond = 'abs(fm) < 5') # fast

filterSoundByMS Filter sound by modulation spectrum

Description

Manipulates the modulation spectrum (MS) of a sound so as to remove certain frequencies of am-
plitude modulation (AM) and frequency modulation (FM). Algorithm: produces a modulation spec-
trum with modulationSpectrum, modifies it with filterMS, converts the modified MS to a spectro-
gram with msToSpec, and finally inverts the spectrogram with invertSpectrogram, thus producing
a sound with (approximately) the desired characteristics of the MS. Note that the last step of invert-
ing the spectrogram introduces some noise, so the resulting MS is not precisely the same as the
intermediate filtered version. In practice this means that some residual energy will still be present
in the filtered-out frequency range (see examples).

34 filterSoundByMS

Usage

filterSoundByMS(
x,
samplingRate = NULL,
logSpec = FALSE,
windowLength = 25,
step = NULL,
overlap = 80,
wn = "hamming",
zp = 0,
amCond = NULL,
fmCond = NULL,
jointCond = NULL,
action = c("remove", "preserve")[1],
initialPhase = c("zero", "random", "spsi")[3],
nIter = 50,
play = FALSE,
plot = TRUE,
savePath = NA

)

Arguments

x folder, path to a wav/mp3 file, a numeric vector representing a waveform, or a
list of numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file). For a list of sounds, give either one samplingRate (the same for all) or as
many values as there are input files

logSpec if TRUE, the spectrogram is log-transformed prior to taking 2D FFT

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

amCond character strings with valid conditions on amplitude and frequency modulation
(see examples)

fmCond character strings with valid conditions on amplitude and frequency modulation
(see examples)

jointCond character string with a valid joint condition amplitude and frequency modulation

action should the defined AM-FM region be removed (’remove’) or preserved, while
everything else is removed (’preserve’)?

initialPhase initial phase estimate: "zero" = set all phases to zero; "random" = Gaussian
noise; "spsi" (default) = single-pass spectrogram inversion (Beauregard et al.,
2015)

filterSoundByMS 35

nIter the number of iterations of the GL algorithm (Griffin & Lim, 1984), 0 = don’t
run

play if TRUE, plays back the output

plot if TRUE, produces a triple plot: original MS, filtered MS, and the MS of the
output sound

savePath if a valid path is specified, a plot is saved in this folder (defaults to NA)

Value

Returns the filtered audio as a numeric vector normalized to [-1, 1] with the same sampling rate as
input.

See Also

invertSpectrogram filterMS

Examples

Create a sound to be filtered
samplingRate = 16000
s = soundgen(pitch = rnorm(n = 20, mean = 200, sd = 25),

amFreq = 25, amDep = 50, samplingRate = samplingRate,
addSilence = 50, plot = TRUE, osc = TRUE)

playme(s, samplingRate)

Filter
s_filt = filterSoundByMS(s, samplingRate = samplingRate,

amCond = 'abs(am) > 15', fmCond = 'abs(fm) > 5',
action = 'remove', nIter = 10)

playme(s_filt, samplingRate)
Not run:
Download an example - a bit of speech (sampled at 16000 Hz)
download.file('http://cogsci.se/soundgen/audio/speechEx.wav',

destfile = '~/Downloads/speechEx.wav') # modify as needed
target = '~/Downloads/speechEx.wav'
samplingRate = tuneR::readWave(target)@samp.rate
playme(target, samplingRate)
spectrogram(target, samplingRate = samplingRate, osc = TRUE)

Remove AM above 3 Hz from a bit of speech (remove most temporal details)
s_filt1 = filterSoundByMS(target, samplingRate = samplingRate,

amCond = 'abs(am) > 3', nIter = 15)
playme(s_filt1, samplingRate)
spectrogram(s_filt1, samplingRate = samplingRate, osc = TRUE)

Remove slow AM/FM (prosody) to achieve a "robotic" voice
s_filt2 = filterSoundByMS(target, samplingRate = samplingRate,

jointCond = 'am^2 + (fm*3)^2 < 300', nIter = 15)
playme(s_filt2, samplingRate)

An alternative manual workflow w/o calling filterSoundByMS()

36 filterSoundByMS

This way you can modify the MS directly and more flexibly
than with the filterMS() function called by filterSoundByMS()

(optional) Check that the target spectrogram can be successfully inverted
spec = spectrogram(s, samplingRate, windowLength = 25, overlap = 80,

wn = 'hanning', osc = TRUE, padWithSilence = FALSE)
s_rev = invertSpectrogram(spec, samplingRate = samplingRate,

windowLength = 25, overlap = 80, wn = 'hamming', play = FALSE)
playme(s_rev, samplingRate) # should be close to the original
spectrogram(s_rev, samplingRate, osc = TRUE)

Get modulation spectrum starting from the sound...
ms = modulationSpectrum(s, samplingRate = samplingRate, windowLength = 25,

overlap = 80, wn = 'hanning', maxDur = Inf, logSpec = FALSE,
power = NA, returnComplex = TRUE, plot = FALSE)$complex

... or starting from the spectrogram:
ms = specToMS(spec)
image(x = as.numeric(colnames(ms)), y = as.numeric(rownames(ms)),

z = t(log(abs(ms)))) # this is the original MS

Filter as needed - for ex., remove AM > 10 Hz and FM > 3 cycles/kHz
(removes f0, preserves formants)
am = as.numeric(colnames(ms))
fm = as.numeric(rownames(ms))
idx_row = which(abs(fm) > 3)
idx_col = which(abs(am) > 10)
ms_filt = ms
ms_filt[idx_row,] = 0
ms_filt[, idx_col] = 0
image(x = as.numeric(colnames(ms_filt)), y = as.numeric(rownames(ms_filt)),

t(log(abs(ms_filt)))) # this is the filtered MS

Convert back to a spectrogram
spec_filt = msToSpec(ms_filt)
image(t(log(abs(spec_filt))))

Invert the spectrogram
s_filt = invertSpectrogram(abs(spec_filt), samplingRate = samplingRate,

windowLength = 25, overlap = 80, wn = 'hanning')
NB: use the same settings as in "spec = spectrogram(s, ...)" above

Compare with the original
playme(s, samplingRate)
spectrogram(s, samplingRate, osc = TRUE)
playme(s_filt, samplingRate)
spectrogram(s_filt, samplingRate, osc = TRUE)

ms_new = modulationSpectrum(s_filt, samplingRate = samplingRate,
windowLength = 25, overlap = 80, wn = 'hanning', maxDur = Inf,
plot = FALSE, returnComplex = TRUE)$complex

image(x = as.numeric(colnames(ms_new)), y = as.numeric(rownames(ms_new)),
z = t(log(abs(ms_new))))

plot(as.numeric(colnames(ms)), log(abs(ms[nrow(ms) / 2,])), type = 'l')

flatEnv 37

points(as.numeric(colnames(ms_new)), log(ms_new[nrow(ms_new) / 2,]), type = 'l',
col = 'red', lty = 3)

AM peaks at 25 Hz are removed, but inverting the spectrogram adds a bit of noise

End(Not run)

flatEnv Flat envelope

Description

Flattens the amplitude envelope of a waveform. This is achieved by dividing the waveform by some
function of its smoothed amplitude envelope (Hilbert, peak or root mean square).

Usage

flatEnv(
sound,
windowLength = 200,
samplingRate = 16000,
method = c("hil", "rms", "peak")[1],
windowLength_points = NULL,
killDC = FALSE,
dynamicRange = 80,
plot = FALSE

)

Arguments

sound input vector oscillating about zero

windowLength the length of smoothing window, ms

samplingRate the sampling rate, Hz. Only needed if the length of smoothing window is speci-
fied in ms rather than points

method ’hil’ for Hilbert envelope, ’rms’ for root mean square amplitude, ’peak’ for peak
amplitude per window

windowLength_points

the length of smoothing window, points. If specified, overrides both windowLength
and samplingRate

killDC if TRUE, dynamically removes DC offset or similar deviations of average wave-
form from zero

dynamicRange parts of sound quieter than -dynamicRange dB will not be amplified

plot if TRUE, plots the original sound, smoothed envelope, and flattened sound

38 flatSpectrum

Examples

a = rnorm(500) * seq(1, 0, length.out = 500)
b = flatEnv(a, plot = TRUE, windowLength_points = 5) # too short
c = flatEnv(a, plot = TRUE, windowLength_points = 250) # too long
d = flatEnv(a, plot = TRUE, windowLength_points = 50) # about right

Not run:
s = soundgen(sylLen = 1000, ampl = c(0, -40, 0), plot = TRUE, osc = TRUE)
playme(s)
s_flat1 = flatEnv(s, plot = TRUE, windowLength = 50, method = 'hil')
s_flat2 = flatEnv(s, plot = TRUE, windowLength = 10, method = 'rms')
s_flat3 = flatEnv(s, plot = TRUE, windowLength = 10, method = 'peak')
playme(s_flat2)

Remove DC offset
s1 = c(rep(0, 50), runif(1000, -1, 1), rep(0, 50)) +

seq(.3, 1, length.out = 1100)
s2 = flatEnv(s1, plot = TRUE, windowLength_points = 50, killDC = FALSE)
s3 = flatEnv(s1, plot = TRUE, windowLength_points = 50, killDC = TRUE)

End(Not run)

flatSpectrum Flat spectrum

Description

Flattens the spectrum of a sound by smoothing in the frequency domain. Can be used for removing
formants without modifying pitch contour or voice quality (the balance of harmonic and noise
components), followed by the addition of a new spectral envelope (cf. transplantFormants).
Algorithm: makes a spectrogram, flattens the real part of the smoothed spectrum of each STFT
frame, and transforms back into time domain with inverse STFT (see also addFormants).

Usage

flatSpectrum(
x,
freqWindow = NULL,
samplingRate = NULL,
dynamicRange = 80,
windowLength = 50,
step = NULL,
overlap = 90,
wn = "gaussian",
zp = 0

)

flatSpectrum 39

Arguments

x path to a .wav or .mp3 file or a vector of amplitudes with specified samplingRate

freqWindow the width of smoothing window, Hz. Defaults to median pitch estimated by
analyze

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

Value

Returns a numeric vector with the same sampling rate as the input.

See Also

addFormants transplantFormants

Examples

sound_aii = soundgen(formants = 'aii')
playme(sound_aii, 16000)
seewave::meanspec(sound_aii, f = 16000, dB = 'max0')

sound_flat = flatSpectrum(sound_aii, freqWindow = 150, samplingRate = 16000)
playme(sound_flat, 16000)
seewave::meanspec(sound_flat, f = 16000, dB = 'max0')
harmonics are still there, but formants are gone and can be replaced

Not run:
Now let's make a sheep say "aii"
data(sheep, package = 'seewave') # import a recording from seewave
sheep_orig = as.numeric(scale(sheep@left))
samplingRate = sheep@samp.rate
playme(sheep_orig, samplingRate)
spectrogram(sheep_orig, samplingRate)
seewave::spec(sheep_orig, f = samplingRate, dB = 'max0')

sheep_flat = flatSpectrum(sheep_orig, freqWindow = 150, # freqWindow ~f0
samplingRate = samplingRate)

playme(sheep_flat, samplingRate)
spectrogram(sheep_flat, samplingRate)
seewave::spec(sheep_flat, f = samplingRate, dB = 'max0')

40 gaussianSmooth2D

So far we have a sheep bleating with a flat spectrum;
now let's add new formants
sheep_aii = addFormants(sheep_flat,

samplingRate = samplingRate,
formants = 'aii',
lipRad = -3) # negative lipRad to counter unnatural flat source

playme(sheep_aii, samplingRate)
spectrogram(sheep_aii, samplingRate)
seewave::spec(sheep_aii, f = samplingRate, dB = 'max0')

End(Not run)

gaussianSmooth2D Gaussian smoothing in 2D

Description

Takes a matrix of numeric values and smoothes it by convolution with a symmetric Gaussian win-
dow function.

Usage

gaussianSmooth2D(m, kernelSize = 5, kernelSD = 0.5, plotKernel = FALSE)

Arguments

m input matrix (numeric, on any scale, doesn’t have to be square)

kernelSize the size of the Gaussian kernel, in points

kernelSD the SD of the Gaussian kernel relative to its size (.5 = the edge is two SD’s away)

plotKernel if TRUE, plots the kernel

Value

Returns a numeric matrix of the same dimensions as input.

See Also

modulationSpectrum

Examples

s = spectrogram(soundgen(), samplingRate = 16000,
output = 'original', plot = FALSE)

image(log(s))
s1 = gaussianSmooth2D(s, kernelSize = 11, plotKernel = TRUE)
image(log(s1))

generateNoise 41

generateNoise Generate noise

Description

Generates noise of length len and with spectrum defined by linear decay of rolloffNoise dB/kHz
above noiseFlatSpec Hz OR by a specified filter spectralEnvelope. This function is called
internally by soundgen, but it may be more convenient to call it directly when synthesizing non-
biological noises defined by specific spectral and amplitude envelopes rather than formants: the
wind, whistles, impact noises, etc. See fart and beat for similarly simplified functions for tonal
non-biological sounds.

Usage

generateNoise(
len,
rolloffNoise = 0,
noiseFlatSpec = 1200,
rolloffNoiseExp = 0,
spectralEnvelope = NULL,
noise = NULL,
temperature = 0.1,
attackLen = 10,
windowLength_points = 1024,
samplingRate = 16000,
overlap = 75,
dynamicRange = 80,
interpol = c("approx", "spline", "loess")[3],
invalidArgAction = c("adjust", "abort", "ignore")[1],
play = FALSE

)

Arguments

len length of output

rolloffNoise linear rolloff of the excitation source for the unvoiced component, rolloffNoise
dB/kHz (anchor format) applied above noiseFlatSpec Hz

noiseFlatSpec linear rolloff of the excitation source for the unvoiced component, rolloffNoise
dB/kHz (anchor format) applied above noiseFlatSpec Hz

rolloffNoiseExp

exponential rolloff of the excitation source for the unvoiced component, dB/oct
(anchor format) applied above 0 Hz

spectralEnvelope

(optional): as an alternative to using rolloffNoise, we can provide the exact filter
- a vector of non-negative numbers specifying the power in each frequency bin
on a linear scale (interpolated to length equal to windowLength_points/2). A

42 generateNoise

matrix specifying the filter for each STFT step is also accepted. The easiest
way to create this matrix is to call soundgen:::getSpectralEnvelope or to use the
spectrum of a recorded sound

noise loudness of turbulent noise (0 dB = as loud as voiced component, negative values
= quieter) such as aspiration, hissing, etc (anchor format)

temperature hyperparameter for regulating the amount of stochasticity in sound generation

attackLen duration of fade-in / fade-out at each end of syllables and noise (ms): a vector
of length 1 (symmetric) or 2 (separately for fade-in and fade-out)

windowLength_points

the length of fft window, points

samplingRate sampling frequency, Hz

overlap FFT window overlap, %. For allowed values, see istft

dynamicRange dynamic range, dB. Harmonics and noise more than dynamicRange under max-
imum amplitude are discarded to save computational resources

interpol the method of smoothing envelopes based on provided anchors: ’approx’ = lin-
ear interpolation, ’spline’ = cubic spline, ’loess’ (default) = polynomial local
smoothing function. NB: this does not affect contours for "noise", "glottal", and
the smoothing of formants

invalidArgAction

what to do if an argument is invalid or outside the range in permittedValues:
’adjust’ = reset to default value, ’abort’ = stop execution, ’ignore’ = throw a
warning and continue (may crash)

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

Details

Algorithm: paints a spectrogram with desired characteristics, sets phase to zero, and generates a
time sequence via inverse FFT.

See Also

soundgen fart beat

Examples

.5 s of white noise
samplingRate = 16000
noise1 = generateNoise(len = samplingRate * .5,

samplingRate = samplingRate)
playme(noise1, samplingRate)
seewave::meanspec(noise1, f = samplingRate)

Percussion (run a few times to notice stochasticity due to temperature = .25)
noise2 = generateNoise(len = samplingRate * .15, noise = c(0, -80),

rolloffNoise = c(4, -6), attackLen = 5, temperature = .25)

generateNoise 43

noise3 = generateNoise(len = samplingRate * .25, noise = c(0, -40),
rolloffNoise = c(4, -20), attackLen = 5, temperature = .25)

playme(c(noise2, noise3), samplingRate)

Not run:
playback = c(TRUE, FALSE, 'aplay', 'vlc')[2]
1.2 s of noise with rolloff changing from 0 to -12 dB above 2 kHz
noise = generateNoise(len = samplingRate * 1.2,

rolloffNoise = c(0, -12), noiseFlatSpec = 2000,
samplingRate = samplingRate, play = playback)

spectrogram(noise, samplingRate, osc = TRUE)

Similar, but using the dataframe format to specify a more complicated
contour for rolloffNoise:
noise = generateNoise(len = samplingRate * 1.2,

rolloffNoise = data.frame(time = c(0, .3, 1), value = c(-12, 0, -12)),
noiseFlatSpec = 2000, samplingRate = samplingRate, play = playback)

spectrogram(noise, samplingRate, osc = TRUE)

To create a sibilant [s], specify a single strong, broad formant at ~7 kHz:
windowLength_points = 1024
spectralEnvelope = soundgen:::getSpectralEnvelope(

nr = windowLength_points / 2, nc = 1, samplingRate = samplingRate,
formants = list('f1' = data.frame(time = 0, freq = 7000,

amp = 50, width = 2000)))
noise = generateNoise(len = samplingRate,

samplingRate = samplingRate, spectralEnvelope = as.numeric(spectralEnvelope),
play = playback)

plot(spectralEnvelope, type = 'l')

Low-frequency, wind-like noise
spectralEnvelope = soundgen:::getSpectralEnvelope(

nr = windowLength_points / 2, nc = 1, lipRad = 0,
samplingRate = samplingRate, formants = list('f1' = data.frame(

time = 0, freq = 150, amp = 30, width = 90)))
noise = generateNoise(len = samplingRate,

samplingRate = samplingRate, spectralEnvelope = as.numeric(spectralEnvelope),
play = playback)

Manual filter, e.g. for a kettle-like whistle (narrow-band noise)
spectralEnvelope = c(rep(0, 100), 120, rep(0, 100)) # any length is fine
plot(spectralEnvelope, type = 'b') # notch filter at Nyquist / 2, here 4 kHz
noise = generateNoise(len = samplingRate, spectralEnvelope = spectralEnvelope,

samplingRate = samplingRate, play = playback)

Compare to a similar sound created with soundgen()
(unvoiced only, a single formant at 4 kHz)
noise_s = soundgen(pitch = NULL,

noise = data.frame(time = c(0, 1000), value = c(0, 0)),
formants = list(f1 = data.frame(freq = 4000, amp = 80, width = 20)),
play = playback)

44 getEntropy

Use the spectral envelope of an existing recording (bleating of a sheep)
(see also the same example with tonal source in ?addFormants)
data(sheep, package = 'seewave') # import a recording from seewave
sound_orig = as.numeric(sheep@left)
samplingRate = sheep@samp.rate
playme(sound_orig, samplingRate)

extract the original spectrogram
windowLength = c(5, 10, 50, 100)[1] # try both narrow-band (eg 100 ms)
to get "harmonics" and wide-band (5 ms) to get only formants
spectralEnvelope = spectrogram(sound_orig, windowLength = windowLength,

samplingRate = samplingRate, output = 'original', padWithSilence = FALSE)
sound_noise = generateNoise(len = length(sound_orig),

spectralEnvelope = spectralEnvelope, rolloffNoise = 0,
samplingRate = samplingRate, play = playback)

playme(sound_noise, samplingRate)

The spectral envelope is similar to the original recording. Compare:
par(mfrow = c(1, 2))
seewave::meanspec(sound_orig, f = samplingRate, dB = 'max0')
seewave::meanspec(sound_noise, f = samplingRate, dB = 'max0')
par(mfrow = c(1, 1))
However, the excitation source is now white noise
(which sounds like noise if windowLength is ~5-10 ms,
but becomes more and more like the original at longer window lengths)

End(Not run)

getEntropy Entropy

Description

Returns Weiner or Shannon entropy of an input vector such as the spectrum of a sound. Non-
positive input values are converted to a small positive number (convertNonPositive). If all elements
are zero, returns NA.

Usage

getEntropy(
x,
type = c("weiner", "shannon")[1],
normalize = FALSE,
convertNonPositive = 1e-10

)

Arguments

x vector of positive floats

getIntegerRandomWalk 45

type ’shannon’ for Shannon (information) entropy, ’weiner’ for Weiner entropy

normalize if TRUE, Shannon entropy is normalized by the length of input vector to range
from 0 to 1. It has no affect on Weiner entropy

convertNonPositive

all non-positive values are converted to convertNonPositive

Examples

Here are four simplified power spectra, each with 9 frequency bins:
s = list(

c(rep(0, 4), 1, rep(0, 4)), # a single peak in spectrum
c(0, 0, 1, 0, 0, .75, 0, 0, .5), # perfectly periodic, with 3 harmonics
rep(0, 9), # a silent frame
rep(1, 9) # white noise

)

Weiner entropy is ~0 for periodic, NA for silent, 1 for white noise
sapply(s, function(x) round(getEntropy(x), 2))

Shannon entropy is ~0 for periodic with a single harmonic, moderate for
periodic with multiple harmonics, NA for silent, highest for white noise
sapply(s, function(x) round(getEntropy(x, type = 'shannon'), 2))

Normalized Shannon entropy - same but forced to be 0 to 1
sapply(s, function(x) round(getEntropy(x,

type = 'shannon', normalize = TRUE), 2))

getIntegerRandomWalk Discrete random walk

Description

Takes a continuous random walk and converts it to continuous epochs of repeated values 0/1/2,
each at least minLength points long. 0/1/2 correspond to different noise regimes: 0 = no noise, 1 =
subharmonics, 2 = subharmonics and jitter/shimmer.

Usage

getIntegerRandomWalk(
rw,
nonlinBalance = 50,
minLength = 50,
q1 = NULL,
q2 = NULL,
plot = FALSE

)

46 getLoudness

Arguments

rw a random walk generated by getRandomWalk (expected range 0 to 100)

nonlinBalance a number between 0 to 100: 0 = returns all zeros; 100 = returns all twos

minLength the mimimum length of each epoch

q1, q2 cutoff points for transitioning from regime 0 to 1 (q1) or from regime 1 to 2 (q2).
See noiseThresholdsDict for defaults

plot if TRUE, plots the random walk underlying nonlinear regimes

Value

Returns a vector of integers (0/1/2) of the same length as rw.

Examples

rw = getRandomWalk(len = 100, rw_range = 100, rw_smoothing = .2)
r = getIntegerRandomWalk(rw, nonlinBalance = 75,

minLength = 10, plot = TRUE)
r = getIntegerRandomWalk(rw, nonlinBalance = 15,

q1 = 30, q2 = 70,
minLength = 10, plot = TRUE)

getLoudness Get loudness

Description

Estimates subjective loudness per frame, in sone. Based on EMBSD speech quality measure, par-
ticularly the matlab code in Yang (1999) and Timoney et al. (2004). Note that there are many ways
to estimate loudness and many other factors, ignored by this model, that could influence subjec-
tively experienced loudness. Please treat the output with a healthy dose of skepticism! Also note
that the absolute value of calculated loudness critically depends on the chosen "measured" sound
pressure level (SPL). getLoudness estimates how loud a sound will be experienced if it is played
back at an SPL of SPL_measured dB. The most meaningful way to use the output is to compare the
loudness of several sounds analyzed with identical settings or of different segments within the same
recording.

Usage

getLoudness(
x,
samplingRate = NULL,
scale = NULL,
windowLength = 50,
step = NULL,
overlap = 50,
SPL_measured = 70,

getLoudness 47

Pref = 2e-05,
spreadSpectrum = TRUE,
plot = TRUE,
mar = c(5.1, 4.1, 4.1, 4.1),
osc = TRUE,
...

)

Arguments

x path to a .wav or .mp3 file or a vector of amplitudes with specified samplingRate

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file), must be > 2000 Hz

scale the maximum possible value of x (only needed if x is a numeric vector, rather
than an audio file); defaults to observed max(abs(x)) if it is greater than 1 and
to 1 otherwise

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

SPL_measured sound pressure level at which the sound is presented, dB

Pref reference pressure, Pa

spreadSpectrum if TRUE, applies a spreading function to account for frequency masking

plot should a spectrogram be plotted? TRUE / FALSE

mar margins of the spectrogram

osc should an oscillogram be shown under the spectrogram? TRUE/ FALSE. If
‘osc_dB‘, the oscillogram is displayed on a dB scale. See osc_dB for details

... other plotting parameters passed to spectrogram

Details

Algorithm: calibrates the sound to the desired SPL (Timoney et al., 2004), extracts a spectrogram,
converts to bark scale (audspec), spreads the spectrum to account for frequency masking across
the critical bands (Yang, 1999), converts dB to phon by using standard equal loudness curves (ISO
226), converts phon to sone (Timoney et al., 2004), sums across all critical bands, and applies a
correction coefficient to standardize output. Calibrated so as to return a loudness of 1 sone for a 1
kHz pure tone with SPL of 40 dB.

Value

Returns a list of length two:

specSone spectrum in sone: a matrix with frequency on the bark scale in rows and time (STFT
frames) in columns

loudness a vector of loudness per STFT frame (sone)

48 getLoudness

References

• ISO 226 as implemented by Jeff Tackett (2005) on https://www.mathworks.com/matlabcentral/fileexchange/
7028-iso-226-equal-loudness-level-contour-signal

• Timoney, J., Lysaght, T., Schoenwiesner, M., & MacManus, L. (2004). Implementing loud-
ness models in matlab.

• Yang, W. (1999). Enhanced Modified Bark Spectral Distortion (EMBSD): An Objective
Speech Quality Measure Based on Audible Distortion and Cognitive Model. Temple Uni-
versity.

See Also

getLoudnessFolder getRMS analyze

Examples

sounds = list(
white_noise = runif(8000, -1, 1),
white_noise2 = runif(8000, -1, 1) / 2, # ~6 dB quieter
pure_tone_1KHz = sin(2*pi*1000/16000*(1:8000)) # pure tone at 1 kHz

)
loud = rep(0, length(sounds)); names(loud) = names(sounds)
for (i in 1:length(sounds)) {

playme(sounds[[i]], 16000)
l = getLoudness(
x = sounds[[i]], samplingRate = 16000, scale = 1,
windowLength = 20, step = NULL,
overlap = 50, SPL_measured = 40,
Pref = 2e-5, plot = FALSE)

loud[i] = mean(l$loudness)
}
loud
white noise (sound 1) is twice as loud as pure tone at 1 KHz (sound 3),
and note that the same white noise with lower amplitude has lower loudness
(provided that "scale" is specified)
compare: lapply(sounds, range)

Not run:
s = soundgen()
l = getLoudness(s, SPL_measured = 70, samplingRate = 16000)
The estimated loudness in sone depends on target SPL
l = getLoudness(s, SPL_measured = 40, samplingRate = 16000)

...but not (much) on windowLength and samplingRate
l = getLoudness(soundgen(), SPL_measured = 40, windowLength = 50,

samplingRate = 16000, plot = TRUE)

input can be an audio file
getLoudness('~/Downloads/temp/032_ut_anger_30-m-roar-curse.wav')

End(Not run)

getLoudnessFolder 49

getLoudnessFolder Loudness per folder

Description

A wrapper around getLoudness that goes through all wav/mp3 files in a folder and returns either a
list with loudness values per STFT frame from each file or, if summary = TRUE, a dataframe with a
single summary value of loudness per file. This summary value can be mean, max and so on, as per
summaryFun.

Usage

getLoudnessFolder(
myfolder,
windowLength = 50,
step = NULL,
overlap = 50,
SPL_measured = 70,
Pref = 2e-05,
spreadSpectrum = TRUE,
summary = TRUE,
summaryFun = "mean",
verbose = TRUE

)

Arguments

myfolder path to folder containing wav/mp3 files

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

SPL_measured sound pressure level at which the sound is presented, dB

Pref reference pressure, Pa

spreadSpectrum if TRUE, applies a spreading function to account for frequency masking

summary if TRUE, returns only a single value of loudness per file

summaryFun the function used to summarize loudness values across all STFT frames (if
summary = TRUE)

verbose if TRUE, reports estimated time left

See Also

getLoudness getRMS analyze

50 getPrior

Examples

Not run:
getLoudnessFolder('~/Downloads/temp1')
Compare:
analyzeFolder('~/Downloads/temp1', pitchMethods = NULL,

plot = FALSE)$loudness_mean
(per STFT frame; should be very similar, but not identical unless silence =
0, because # analyze() discards frames considered silent)

custom summaryFun
difRan = function(x) diff(range(x))
getLoudnessFolder('~/Downloads/temp', summaryFun = c('mean', 'difRan'))

save loudness values per frame without summarizing
l = getLoudnessFolder('~/Downloads/temp', summary = FALSE)

End(Not run)

getPrior Get prior for pitch candidates

Description

Prior for adjusting the estimated pitch certainties in analyze. For ex., if primarily working with
speech, we could prioritize pitch candidates in the expected pitch range (100-1000 Hz) and dampen
candidates with very high or very low frequency as unlikely but still remotely possible in everyday
vocalizing contexts (think a soft pitch ceiling). Algorithm: the multiplier for each pitch candidate
is the density of gamma distribution with mean = priorMean (Hz) and sd = priorSD (semitones)
normalized so max = 1 over [pitchFloor, pitchCeiling]. Useful for previewing the prior given to
analyze.

Usage

getPrior(
priorMean,
priorSD,
pitchFloor = 75,
pitchCeiling = 3000,
len = 100,
plot = TRUE,
pitchCands = NULL,
...

)

Arguments

priorMean specifies the mean (Hz) and standard deviation (semitones) of gamma distribu-
tion describing our prior knowledge about the most likely pitch values for this

getRandomWalk 51

file. For ex., priorMean = 300,priorSD = 6 gives a prior with mean = 300 Hz
and SD = 6 semitones (half an octave)

priorSD specifies the mean (Hz) and standard deviation (semitones) of gamma distribu-
tion describing our prior knowledge about the most likely pitch values for this
file. For ex., priorMean = 300,priorSD = 6 gives a prior with mean = 300 Hz
and SD = 6 semitones (half an octave)

pitchFloor absolute bounds for pitch candidates (Hz)
pitchCeiling absolute bounds for pitch candidates (Hz)
len the required length of output vector (resolution)
plot if TRUE, plots the prior
pitchCands a matrix of pitch candidate frequencies (for internal soundgen use)
... additional graphical parameters passed on to plot()

Value

Returns a numeric vector of certainties of length len if pitchCands is NULL and a numeric matrix
of the same dimensions as pitchCands otherwise.

See Also

analyze pitch_app

Examples

soundgen:::getPrior(priorMean = 150, # Hz
priorSD = 2) # semitones

soundgen:::getPrior(150, 6)
s = soundgen:::getPrior(450, 24, pitchCeiling = 6000)
plot(s, type = 'l')

getRandomWalk Random walk

Description

Generates a random walk with flexible control over its range, trend, and smoothness. It works by
calling rnorm at each step and taking a cumulative sum of the generated values. Smoothness is
controlled by initially generating a shorter random walk and upsampling.

Usage

getRandomWalk(
len,
rw_range = 1,
rw_smoothing = 0.2,
method = c("linear", "spline")[2],
trend = 0

)

52 getRMS

Arguments

len an integer specifying the required length of random walk. If len is 1, returns a
single draw from a gamma distribution with mean=1 and sd=rw_range

rw_range the upper bound of the generated random walk (the lower bound is set to 0)

rw_smoothing specifies the amount of smoothing, from 0 (no smoothing) to 1 (maximum
smoothing to a straight line)

method specifies the method of smoothing: either linear interpolation (’linear’, see approx)
or cubic splines (’spline’, see spline)

trend mean of generated normal distribution (vectors are also acceptable, as long as
their length is an integer multiple of len). If positive, the random walk has an
overall upwards trend (good values are between 0 and 0.5 or -0.5). Trend =
c(1,-1) gives a roughly bell-shaped rw with an upward and a downward curve.
Larger absolute values of trend produce less and less random behavior

Value

Returns a numeric vector of length len and range from 0 to rw_range.

Examples

plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .2))
plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .5))
plot(getRandomWalk(len = 1000, rw_range = 15,

rw_smoothing = .2, trend = c(.5, -.5)))
plot(getRandomWalk(len = 1000, rw_range = 15,

rw_smoothing = .2, trend = c(15, -1)))

getRMS RMS amplitude per frame

Description

Calculates root mean square (RMS) amplitude in overlapping frames, providing an envelope of
RMS amplitude as a measure of sound intensity. Longer windows provide smoother, more robust
estimates; shorter windows and more overlap improve temporal resolution, but they also increase
processing time and make the contour less smooth.

Usage

getRMS(
x,
samplingRate = NULL,
windowLength = 50,
step = NULL,
overlap = 75,
killDC = FALSE,

getRMS 53

scale = NULL,
normalize = TRUE,
windowDC = 200,
plot = TRUE,
xlab = "Time, ms",
ylab = "",
type = "b",
col = "blue",
lwd = 2,
...

)

Arguments

x path to a .wav or .mp3 file or a vector of amplitudes with specified samplingRate

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

killDC if TRUE, removed DC offset (see also flatEnv)

scale maximum possible amplitude of input used for normalization (not needed for
audio files)

normalize if TRUE, RMS amplitude is normalized to [0, 1]

windowDC the window for calculating DC offset, ms

plot should a spectrogram be plotted? TRUE / FALSE

xlab, ylab general graphical parameters

type, col, lwd graphical parameters pertaining to the RMS envelope

... other graphical parameters

Details

Note that you can also get similar estimates per frame from analyze on a normalized scale of
0 to 1, but getRMS is much faster, operates on the original scale, and plots the amplitude con-
tour. If you need RMS for the entire sound instead of per frame, you can simply calculate it as
sqrt(mean(x^2)), where x is your waveform. Having RMS estimates per frame gives more flexi-
bility: RMS per sound can be calculated as the mean / median / max of RMS values per frame.

Value

Returns a numeric vector of RMS amplitudes per frame on the scale of input. Names give time
stamps for the center of each frame, in ms.

See Also

getRMSFolder analyzegetLoudness

54 getRMSFolder

Examples

s = soundgen() + .1 # with added DC offset
plot(s, type = 'l')
r = getRMS(s, samplingRate = 16000,

windowLength = 40, overlap = 50, killDC = TRUE,
col = 'green', lty = 2, main = 'RMS envelope')

short window = jagged envelope
r = getRMS(s, samplingRate = 16000,

windowLength = 5, overlap = 0, killDC = TRUE,
col = 'green', lty = 2, main = 'RMS envelope')

Not run:
r = getRMS('~/Downloads/temp/032_ut_anger_30-m-roar-curse.wav')

End(Not run)

getRMSFolder RMS amplitude per folder

Description

A wrapper around getRMS that goes through all wav/mp3 files in a folder and returns either a list
with RMS values per frame from each file or, if summary = TRUE, a dataframe with a single summary
value of RMS per file. This summary value can be mean, max and so on, as per summaryFun.

Usage

getRMSFolder(
myfolder,
windowLength = 50,
step = NULL,
overlap = 70,
normalize = TRUE,
killDC = FALSE,
windowDC = 200,
summary = TRUE,
summaryFun = "mean",
verbose = TRUE

)

Arguments

myfolder path to folder containing wav/mp3 files

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

normalize if TRUE, RMS amplitude is normalized to [0, 1]

getRolloff 55

killDC if TRUE, removed DC offset (see also flatEnv)

windowDC the window for calculating DC offset, ms

summary if TRUE, returns only a single value of RMS per file

summaryFun the function used to summarize RMS values across all frames (if summary =
TRUE)

verbose if TRUE, reports estimated time left

See Also

getRMS analyzegetLoudness

Examples

Not run:
getRMSFolder('~/Downloads/temp')
Compare:
analyzeFolder('~/Downloads/temp', pitchMethods = NULL,

plot = FALSE)$ampl_mean
(per STFT frame, but should be very similar)

User-defined summary functions:
difRan = function(x) diff(range(x))
getRMSFolder('~/Downloads/temp', summaryFun = c('mean', 'difRan'))

meanSD = function(x) {
paste0('mean = ', round(mean(x), 2), '; sd = ', round(sd(x), 2))

}
getRMSFolder('~/Downloads/temp', summaryFun = 'meanSD')

End(Not run)

getRolloff Control rolloff of harmonics

Description

Harmonics are generated as separate sine waves. But we don’t want each harmonic to be equally
strong, so we normally specify some rolloff function that describes the loss of energy in upper
harmonics relative to the fundamental frequency (f0). getRolloff provides flexible control over
this rolloff function, going beyond simple exponential decay (rolloff). Use quadratic terms to
modify the behavior of a few lower harmonics, rolloffOct to adjust the rate of decay per octave,
and rolloffKHz for rolloff correction depending on f0. Plot the output with different parameter
values and see examples below and the vignette to get a feel for how to use getRolloff effectively.

56 getRolloff

Usage

getRolloff(
pitch_per_gc = c(440),
nHarmonics = NULL,
rolloff = -6,
rolloffOct = 0,
rolloffParab = 0,
rolloffParabHarm = 3,
rolloffParabCeiling = NULL,
rolloffKHz = 0,
baseline = 200,
dynamicRange = 80,
samplingRate = 16000,
plot = FALSE

)

Arguments

pitch_per_gc a vector of f0 per glottal cycle, Hz
nHarmonics maximum number of harmonics to generate (very weak harmonics with ampli-

tude < -dynamicRange will be discarded)
rolloff basic rolloff from lower to upper harmonics, db/octave (exponential decay). All

rolloff parameters are in anchor format. See getRolloff for more details
rolloffOct basic rolloff changes from lower to upper harmonics (regardless of f0) by rolloffOct

dB/oct. For example, we can get steeper rolloff in the upper part of the spectrum
rolloffParab an optional quadratic term affecting only the first rolloffParabHarm harmon-

ics. The middle harmonic of the first rolloffParabHarm harmonics is amplified
or dampened by rolloffParab dB relative to the basic exponential decay

rolloffParabHarm

the number of harmonics affected by rolloffParab
rolloffParabCeiling

quadratic adjustment is applied only up to rolloffParabCeiling, Hz. If not
NULL, it overrides rolloffParabHarm

rolloffKHz rolloff changes linearly with f0 by rolloffKHz dB/kHz. For ex., -6 dB/kHz
gives a 6 dB steeper basic rolloff as f0 goes up by 1000 Hz

baseline The "neutral" f0, at which no adjustment of rolloff takes place regardless of
rolloffKHz

dynamicRange dynamic range, dB. Harmonics and noise more than dynamicRange under max-
imum amplitude are discarded to save computational resources

samplingRate sampling rate (needed to stop at Nyquist frequency and for plotting purposes)
plot if TRUE, produces a plot

Value

Returns a matrix of amplitude multiplication factors for adjusting the amplitude of harmonics rel-
ative to f0 (1 = no adjustment, 0 = silent). Each row of output contains one harmonic, and each
column contains one glottal cycle.

getRolloff 57

See Also

soundgen

Examples

steady exponential rolloff of -12 dB per octave
rolloff = getRolloff(pitch_per_gc = 150, rolloff = -12,

rolloffOct = 0, rolloffKHz = 0, plot = TRUE)
the rate of rolloff slows down by 1 dB each octave
rolloff = getRolloff(pitch_per_gc = 150, rolloff = -12,

rolloffOct = 1, rolloffKHz = 0, plot = TRUE)

rolloff can be made to depend on f0 using rolloffKHz
rolloff = getRolloff(pitch_per_gc = c(150, 400, 800),

rolloffOct = 0, rolloffKHz = -3, plot = TRUE)
without the correction for f0 (rolloffKHz),

high-pitched sounds have the same rolloff as low-pitched sounds,
producing unnaturally strong high-frequency harmonics

rolloff = getRolloff(pitch_per_gc = c(150, 400, 800),
rolloffOct = 0, rolloffKHz = 0, plot = TRUE)

parabolic adjustment of lower harmonics
rolloff = getRolloff(pitch_per_gc = 350, rolloffParab = 0,

rolloffParabHarm = 2, plot = TRUE)
rolloffParabHarm = 1 affects only f0
rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = 30,

rolloffParabHarm = 1, plot = TRUE)
rolloffParabHarm=2 or 3 affects only h1
rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = 30,

rolloffParabHarm = 2, plot = TRUE)
rolloffParabHarm = 4 affects h1 and h2, etc
rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = 30,

rolloffParabHarm = 4, plot = TRUE)
negative rolloffParab weakens lower harmonics
rolloff = getRolloff(pitch_per_gc = 150, rolloffParab = -20,

rolloffParabHarm = 7, plot = TRUE)
only harmonics below 2000 Hz are affected
rolloff = getRolloff(pitch_per_gc = c(150, 600),

rolloffParab = -20, rolloffParabCeiling = 2000,
plot = TRUE)

dynamic rolloff (varies over time)
rolloff = getRolloff(pitch_per_gc = c(150, 250),

rolloff = c(-12, -18, -24), plot = TRUE)
rolloff = getRolloff(pitch_per_gc = c(150, 250), rolloffParab = 40,

rolloffParabHarm = 1:5, plot = TRUE)

Not run:
Note: getRolloff() is called internally by soundgen()
using the data.frame format for all vectorized parameters
Compare:
s1 = soundgen(sylLen = 1000, pitch = 250,

58 getSmoothContour

rolloff = c(-24, -2, -18), plot = TRUE)
s2 = soundgen(sylLen = 1000, pitch = 250,

rolloff = data.frame(time = c(0, .2, 1),
value = c(-24, -2, -18)),

plot = TRUE)

Also works for rolloffOct, rolloffParab, etc:
s3 = soundgen(sylLen = 1000, pitch = 250,

rolloffParab = 20, rolloffParabHarm = 1:15, plot = TRUE)

End(Not run)

getSmoothContour Smooth contour from anchors

Description

Returns a smooth contour based on an arbitrary number of anchors. Used by soundgen for gener-
ating intonation contour, mouth opening, etc. Note that pitch contours are treated as a special case:
values are log-transformed prior to smoothing, so that with 2 anchors we get a linear transition on
a log scale (as if we were operating with musical notes rather than frequencies in Hz). Pitch plots
have two Y axes: one showing Hz and the other showing musical notation.

Usage

getSmoothContour(
anchors = data.frame(time = c(0, 1), value = c(0, 1)),
len = NULL,
thisIsPitch = FALSE,
normalizeTime = TRUE,
interpol = c("approx", "spline", "loess")[3],
discontThres = 0.05,
jumpThres = 0.01,
loessSpan = NULL,
valueFloor = NULL,
valueCeiling = NULL,
plot = FALSE,
xlim = NULL,
ylim = NULL,
samplingRate = 16000,
voiced = NULL,
contourLabel = NULL,
NA_to_zero = TRUE,
...

)

getSmoothContour 59

Arguments

anchors a numeric vector of values or a list/dataframe with one column (value) or two
columns (time and value). achors$time can be in ms (with len=NULL) or in
arbitrary units, eg 0 to 1 (with duration determined by len, which must then be
provided in ms). So anchors$time is assumed to be in ms if len=NULL and
relative if len is specified. anchors$value can be on any scale.

len the required length of the output contour. If NULL, it will be calculated based
on the maximum time value (in ms) and samplingRate

thisIsPitch (boolean) is this a pitch contour? If true, log-transforms before smoothing and
plots in both Hz and musical notation

normalizeTime if TRUE, normalizes anchors$time values to range from 0 to 1

interpol the method of smoothing envelopes based on provided anchors: ’approx’ = lin-
ear interpolation, ’spline’ = cubic spline, ’loess’ (default) = polynomial local
smoothing function. NB: this does not affect contours for "noise", "glottal", and
the smoothing of formants

discontThres if two anchors are closer in time than discontThres, the contour is broken into
segments with a linear transition between these anchors; if anchors are closer
than jumpThres, a new section starts with no transition at all (e.g. for adding
pitch jumps)

jumpThres if two anchors are closer in time than discontThres, the contour is broken into
segments with a linear transition between these anchors; if anchors are closer
than jumpThres, a new section starts with no transition at all (e.g. for adding
pitch jumps)

loessSpan parameter that controlled the amount of smoothing when interpolating pitch etc
between anchors; passed on to loess, so only has an effect if interpol = ’loess’

valueFloor, valueCeiling

lowser/upper bounds for the contour

plot (boolean) produce a plot?

xlim, ylim plotting options

samplingRate sampling rate used to convert time values to points (Hz)
voiced, contourLabel

graphical pars for plotting breathing contours (see examples below)

NA_to_zero if TRUE, all NAs are replaced with zero

... other plotting options passed to plot()

Value

Returns a numeric vector.

Examples

long format: anchors are a dataframe
a = getSmoothContour(anchors = data.frame(

time = c(50, 137, 300), value = c(0.03, 0.78, 0.5)),
normalizeTime = FALSE,

60 getSpectralEnvelope

voiced = 200, valueFloor = 0, plot = TRUE, main = '',
samplingRate = 16000) # breathing

short format: anchors are a vector (equal time steps assumed)
a = getSmoothContour(anchors = c(350, 800, 600),

len = 5500, thisIsPitch = TRUE, plot = TRUE,
samplingRate = 3500) # pitch

a single anchor gives constant value
a = getSmoothContour(anchors = 800,

len = 500, thisIsPitch = TRUE, plot = TRUE, samplingRate = 500)

two pitch anchors give loglinear F0 change
a = getSmoothContour(anchors = c(220, 440),

len = 500, thisIsPitch = TRUE, plot = TRUE, samplingRate = 500)

Two closely spaced anchors produce a pitch jump
one loess for the entire contour
a1 = getSmoothContour(anchors = list(time = c(0, .15, .2, .7, 1),

value = c(360, 116, 550, 700, 610)), len = 500, thisIsPitch = TRUE,
plot = TRUE, samplingRate = 500)

two segments with a linear transition
a2 = getSmoothContour(anchors = list(time = c(0, .15, .17, .7, 1),

value = c(360, 116, 550, 700, 610)), len = 500, thisIsPitch = TRUE,
plot = TRUE, samplingRate = 500)

two segments with an abrupt jump
a3 = getSmoothContour(anchors = list(time = c(0, .15, .155, .7, 1),

value = c(360, 116, 550, 700, 610)), len = 500, thisIsPitch = TRUE,
plot = TRUE, samplingRate = 500)

compare:
plot(a2)
plot(a3) # NB: the segment before the jump is upsampled to compensate

getSpectralEnvelope Spectral envelope

Description

Prepares a spectral envelope for filtering a sound to add formants, lip radiation, and some stochastic
component regulated by temperature. Formants are specified as a list containing time, frequency,
amplitude, and width values for each formant (see examples). See vignette(’sound_generation’,
package = ’soundgen’) for more information.

Usage

getSpectralEnvelope(
nr,
nc,
formants = NA,
formantDep = 1,

getSpectralEnvelope 61

formantWidth = 1,
lipRad = 6,
noseRad = 4,
mouth = NA,
interpol = c("approx", "spline", "loess")[3],
mouthOpenThres = 0.2,
openMouthBoost = 0,
vocalTract = NULL,
temperature = 0.05,
formDrift = 0.3,
formDisp = 0.2,
formantDepStoch = 20,
smoothLinearFactor = 1,
formantCeiling = 2,
samplingRate = 16000,
speedSound = 35400,
output = c("simple", "detailed")[1],
plot = FALSE,
duration = NULL,
colorTheme = c("bw", "seewave", "...")[1],
nCols = 100,
xlab = "Time",
ylab = "Frequency, kHz",
...

)

Arguments

nr the number of frequency bins = windowLength_points/2, where windowLength_points
is the size of window for Fourier transform

nc the number of time steps for Fourier transform

formants a character string like "aaui" referring to default presets for speaker "M1"; a
vector of formant frequencies; or a list of formant times, frequencies, ampli-
tudes, and bandwidths, with a single value of each for static or multiple values
of each for moving formants. formants = NA defaults to schwa. Time stamps
for formants and mouthOpening can be specified in ms or an any other arbitrary
scale.

formantDep scale factor of formant amplitude (1 = no change relative to amplitudes in formants)

formantWidth scale factor of formant bandwidth (1 = no change)

lipRad the effect of lip radiation on source spectrum, dB/oct (the default of +6 dB/oct
produces a high-frequency boost when the mouth is open)

noseRad the effect of radiation through the nose on source spectrum, dB/oct (the alterna-
tive to lipRad when the mouth is closed)

mouth mouth opening (0 to 1, 0.5 = neutral, i.e. no modification) (anchor format)

interpol the method of smoothing envelopes based on provided mouth anchors: ’approx’
= linear interpolation, ’spline’ = cubic spline, ’loess’ (default) = polynomial

62 getSpectralEnvelope

local smoothing function. NB: this does NOT affect the smoothing of formant
anchors

mouthOpenThres open the lips (switch from nose radiation to lip radiation) when the mouth is
open >mouthOpenThres, 0 to 1

openMouthBoost amplify the voice when the mouth is open by openMouthBoost dB
vocalTract the length of vocal tract, cm. Used for calculating formant dispersion (for adding

extra formants) and formant transitions as the mouth opens and closes. If NULL
or NA, the length is estimated based on specified formant frequencies, if any
(anchor format)

temperature hyperparameter for regulating the amount of stochasticity in sound generation
formDrift scale factor regulating the effect of temperature on the depth of random drift of

all formants (user-defined and stochastic): the higher, the more formants drift at
a given temperature

formDisp scale factor regulating the effect of temperature on the irregularity of the disper-
sion of stochastic formants: the higher, the more unevenly stochastic formants
are spaced at a given temperature

formantDepStoch

the amplitude of additional formants added above the highest specified formant
(only if temperature > 0)

smoothLinearFactor

regulates smoothing of formant anchors (0 to +Inf) as they are upsampled to the
number of fft steps nc. This is necessary because the input formants normally
contains fewer sets of formant values than the number of fft steps. smoothLinearFactor
= 0: close to default spline; >3: approaches linear extrapolation

formantCeiling frequency to which stochastic formants are calculated, in multiples of the Nyquist
frequency; increase up to ~10 for long vocal tracts to avoid losing energy in the
upper part of the spectrum

samplingRate sampling frequency, Hz
speedSound speed of sound in warm air, cm/s. Stevens (2000) "Acoustic phonetics", p. 138
output "simple" returns just the spectral filter, while "detailed" also returns a data.frame

of formant frequencies over time (needed for internal purposes such as formant
locking)

plot if TRUE, produces a plot of the spectral envelope
duration duration of the sound, ms (for plotting purposes only)
colorTheme black and white (’bw’), as in seewave package (’seewave’), or another color

theme (e.g. ’heat.colors’)
nCols number of colors in the palette
xlab, ylab labels of axes
... other graphical parameters passed on to image()

Value

Returns a spectral filter (matrix nr x nc, where nr is the number of frequency bins and nc is the
number of time steps). Accordingly, rownames of the output give central frequency of each bin(in
kHz), while colnames give time values (in ms if duration is specified, otherwise 0 to 1).

getSpectralEnvelope 63

Examples

[a] with F1-F3 visible
e = getSpectralEnvelope(nr = 512, nc = 50, duration = 300,

formants = soundgen:::convertStringToFormants('a'),
temperature = 0, plot = TRUE)

image(t(e)) # to plot the output on a linear scale instead of dB

some "wiggling" of specified formants plus extra formants on top
e = getSpectralEnvelope(nr = 512, nc = 50,

formants = soundgen:::convertStringToFormants('a'),
temperature = 0.1, formantDepStoch = 20, plot = TRUE)

a schwa based on variable length of vocal tract
e = getSpectralEnvelope(nr = 512, nc = 100, formants = NA,

vocalTract = list(time = c(0, .4, 1), value = c(13, 18, 17)),
temperature = .1, plot = TRUE)

no formants at all, only lip radiation
e = getSpectralEnvelope(nr = 512, nc = 50, lipRad = 6,

formants = NA, temperature = 0, plot = FALSE)
plot(e[, 1], type = 'l') # linear scale
plot(20 * log10(e[, 1]), type = 'l') # dB scale - 6 dB/oct

mouth opening
e = getSpectralEnvelope(nr = 512, nc = 50,

vocalTract = 16, plot = TRUE, lipRad = 6, noseRad = 4,
mouth = data.frame(time = c(0, .5, 1), value = c(0, 0, .5)))

dynamic VTL
e = getSpectralEnvelope(nr = 512, nc = 50, formants = 'a',

vocalTract = c(15, 17.5, 18), plot = TRUE)

scale formant amplitude and/or bandwidth
e1 = getSpectralEnvelope(nr = 512, nc = 50,

formants = soundgen:::convertStringToFormants('a'),
formantWidth = 1, formantDep = 1) # defaults

e2 = getSpectralEnvelope(nr = 512, nc = 50,
formants = soundgen:::convertStringToFormants('a'),
formantWidth = 1.5, formantDep = 1.5)

plot(e2[, 1], type = 'l', col = 'red', lty = 2)
points(e1[, 1], type = 'l')

manual specification of formants
e = getSpectralEnvelope(nr = 512, nc = 50, plot = TRUE, samplingRate = 16000,

formants = list(f1 = data.frame(time = c(0, 1), freq = c(900, 500),
amp = c(30, 35), width = c(80, 50)),

f2 = data.frame(time = c(0, 1), freq = c(1200, 2500),
amp = c(25, 30), width = 100),

f3 = data.frame(time = 0, freq = 2900,
amp = 30, width = 120)))

64 invertSpectrogram

HzToSemitones Convert Hz to semitones

Description

Converts from Hz to semitones above C-5 (~0.5109875 Hz). This may not seem very useful, but
note that this gives us a nice logarithmic scale for generating natural pitch transitions with the added
benefit of getting musical notation for free from notesDict (see examples).

Usage

HzToSemitones(h, ref = 0.5109875)

Arguments

h vector or matrix of frequencies (Hz)

ref frequency of the reference value (defaults to C-5, 0.51 Hz)

See Also

semitonesToHz

Examples

s = HzToSemitones(c(440, 293, 115))
to convert to musical notation
notesDict$note[1 + round(s)]
note the "1 +": semitones ABOVE C-5, i.e. notesDict[1,] is C-5

invertSpectrogram Invert spectrogram

Description

Transforms a spectrogram into a time series with inverse STFT. The problem is that an ordinary
spectrogram preserves only the magnitude (modulus) of the complex STFT, while the phase is lost,
and without phase it is impossible to reconstruct the original audio accurately. So there are a number
of algorithms for "guessing" the phase that would produce an audio whose magnitude spectrogram
is very similar to the target spectrogram. Useful for certain filtering operations that modify the mag-
nitude spectrogram followed by inverse STFT, such as filtering in the spectrotemporal modulation
domain.

invertSpectrogram 65

Usage

invertSpectrogram(
spec,
samplingRate,
windowLength,
overlap,
step = NULL,
wn = "hanning",
specType = c("abs", "log", "dB")[1],
initialPhase = c("zero", "random", "spsi")[3],
nIter = 50,
normalize = TRUE,
play = TRUE,
verbose = FALSE,
plotError = TRUE

)

Arguments

spec the spectrogram that is to be transform to a time series: numeric matrix with
frequency bins in rows and time frames in columns

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

windowLength length of FFT window, ms

overlap overlap between successive FFT frames, %

step you can override overlap by specifying FFT step, ms

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

specType the scale of target spectroram: ’abs’ = absolute, ’log’ = log-transformed, ’dB’ =
in decibels

initialPhase initial phase estimate: "zero" = set all phases to zero; "random" = Gaussian
noise; "spsi" (default) = single-pass spectrogram inversion (Beauregard et al.,
2015)

nIter the number of iterations of the GL algorithm (Griffin & Lim, 1984), 0 = don’t
run

normalize if TRUE, normalizes the output to range from -1 to +1

play if TRUE, plays back the reconstructed audio

verbose if TRUE, prints estimated time left every 10% of GL iterations

plotError if TRUE, produces a scree plot of squared error over GL iterations (useful for
choosing ‘nIter‘)

Details

Algorithm: takes the spectrogram, makes an initial guess at the phase (zero, noise, or a more in-
telligent estimate by the SPSI algorithm), fine-tunes over ‘nIter‘ iterations with the GL algorithm,

66 invertSpectrogram

reconstructs the complex spectrogram using the best phase estimate, and performs inverse STFT.
The single-pass spectrogram inversion (SPSI) algorithm is implemented as described in Beauregard
et al. (2015) following the python code at https://github.com/lonce/SPSI_Python. The Griffin-Lim
(GL) algorithm is based on Griffin & Lim (1984).

Value

Returns the reconstructed audio as a numeric vector.

References

• Griffin, D., & Lim, J. (1984). Signal estimation from modified short-time Fourier transform.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2), 236-243.

• Beauregard, G. T., Harish, M., & Wyse, L. (2015, July). Single pass spectrogram inversion.
In 2015 IEEE International Conference on Digital Signal Processing (DSP) (pp. 427-431).
IEEE.

See Also

spectrogram filterSoundByMS

Examples

Create a spectrogram
samplingRate = 16000
windowLength = 40
overlap = 75
wn = 'hanning'

s = soundgen(samplingRate = samplingRate, addSilence = 100)
spec = spectrogram(s, samplingRate = samplingRate,

wn = wn, windowLength = windowLength, overlap = overlap,
padWithSilence = FALSE, output = 'original')

Invert the spectrogram, attempting to guess the phase
Note that samplingRate, wn, windowLength, and overlap must be the same as
in the original (ie you have to know how the spectrogram was created)
s_new = invertSpectrogram(spec, samplingRate = samplingRate,

windowLength = windowLength, overlap = overlap, wn = wn,
initialPhase = 'spsi', nIter = 10, specType = 'abs', play = FALSE)

Not run:
Verify the quality of audio reconstruction
playme(s, samplingRate); playme(s_new, samplingRate)
spectrogram(s, samplingRate, osc = TRUE)
spectrogram(s_new, samplingRate, osc = TRUE)

End(Not run)

matchPars 67

matchPars Match soundgen pars (experimental)

Description

Attempts to find settings for soundgen that will reproduce an existing sound. The principle is to
mutate control parameters, trying to improve fit to target. The currently implemented optimization
algorithm is simple hill climbing. Disclaimer: this function is experimental and may or may not
work for particular tasks. It is intended as a supplement to - not replacement of - manual optimiza-
tion. See vignette(’sound_generation’, package = ’soundgen’) for more information.

Usage

matchPars(
target,
samplingRate = NULL,
pars = NULL,
init = NULL,
method = c("cor", "cosine", "pixel", "dtw"),
probMutation = 0.25,
stepVariance = 0.1,
maxIter = 50,
minExpectedDelta = 0.001,
windowLength = 40,
overlap = 50,
step = NULL,
verbose = TRUE,
padWith = NA,
penalizeLengthDif = TRUE,
dynamicRange = 80,
maxFreq = NULL

)

Arguments

target the sound we want to reproduce using soundgen: path to a .wav file or numeric
vector

samplingRate sampling rate of target (only needed if target is a numeric vector, rather than a
.wav file)

pars arguments to soundgen that we are attempting to optimize
init a list of initial values for the optimized parameters pars and the values of other

arguments to soundgen that are fixed at non-default values (if any)
method method of comparing mel-transformed spectra of two sounds: "cor" = average

Pearson’s correlation of mel-transformed spectra of individual FFT frames; "co-
sine" = same as "cor" but with cosine similarity instead of Pearson’s correlation;
"pixel" = absolute difference between each point in the two spectra; "dtw" =
discrete time warp with dtw

68 matchPars

probMutation the probability of a parameter mutating per iteration

stepVariance scale factor for calculating the size of mutations

maxIter maximum number of mutated sounds produced without improving the fit to tar-
get

minExpectedDelta

minimum improvement in fit to target required to accept the new sound candi-
date

windowLength length of FFT window, ms

overlap overlap between successive FFT frames, %

step you can override overlap by specifying FFT step, ms

verbose if TRUE, plays back the accepted candidate at each iteration and reports the
outcome

padWith compared spectra are padded with either silence (padWith = 0) or with NA’s
(padWith = NA) to have the same number of columns. When the sounds are of
different duration, padding with zeros rather than NA’s improves the fit to target
measured by method = 'pixel' and 'dtw', but it has no effect on 'cor' and
'cosine'.

penalizeLengthDif

if TRUE, sounds of different length are considered to be less similar; if FALSE,
only the overlapping parts of two sounds are compared

dynamicRange parts of the spectra quieter than -dynamicRange dB are not compared

maxFreq parts of the spectra above maxFreq Hz are not compared

Value

Returns a list of length 2: $history contains the tried parameter values together with their fit
to target ($history$sim), and $pars contains a list of the final - hopefully the best - parameter
settings.

Examples

Not run:
target = soundgen(repeatBout = 3, sylLen = 120, pauseLen = 70,

pitch = c(300, 200), rolloff = -5, play = TRUE)
we hope to reproduce this sound

Match pars based on acoustic analysis alone, without any optimization.
This *MAY* match temporal structure, pitch, and stationary formants
m1 = matchPars(target = target,

samplingRate = 16000,
maxIter = 0, # no optimization, only acoustic analysis
verbose = TRUE)

cand1 = do.call(soundgen, c(m1$pars, list(play = playback, temperature = 0.001)))

Try to improve the match by optimizing rolloff
(this may take a few minutes to run, and the results may vary)
m2 = matchPars(target = target,

modulationSpectrum 69

samplingRate = 16000,
pars = 'rolloff',
maxIter = 100,
verbose = TRUE)

rolloff should be moving from default (-9) to target (-5):
sapply(m2$history, function(x) x$pars$rolloff)
cand2 = do.call(soundgen, c(m2$pars, list(play = playback, temperature = 0.001)))

End(Not run)

modulationSpectrum Modulation spectrum

Description

Produces a modulation spectrum of waveform(s) or audio file(s), with temporal modulation along
the X axis (Hz) and spectral modulation (1/KHz) along the Y axis. A good visual analogy is de-
composing the spectrogram into a sum of ripples of various frequencies and directions. Algorithm:
prepare a spectrogram, take its logarithm (if logSpec = TRUE), center, perform a 2D Fourier trans-
form (see also spec.fft() in the "spectral" package), take the upper half of the resulting symmetric
matrix, and raise it to power. The result is returned as $original. Roughness is calculated as
the proportion of energy / amplitude of the modulation spectrum within roughRange of temporal
modulation frequencies. By default, the modulation matrix is then smoothed with Gaussian blur
(see gaussianSmooth2D) and log-warped (if logWarp is a positive number) prior to plotting. This
processed modulation spectrum is returned as $processed. For multiple inputs, such as a list of
waveforms or path to a folder with audio files, the ensemble of modulation spectra is interpolated
to the same spectral and temporal resolution and averaged. This is different from the behavior of
modulationSpectrumFolder, which produces a separate modulation spectrum per file, without
averaging.

Usage

modulationSpectrum(
x,
samplingRate = NULL,
maxDur = 5,
logSpec = FALSE,
windowLength = 25,
step = NULL,
overlap = 80,
wn = "hanning",
zp = 0,
power = 1,
roughRange = c(30, 150),
returnComplex = FALSE,
aggregComplex = TRUE,
plot = TRUE,
savePath = NA,

70 modulationSpectrum

logWarp = NA,
quantiles = c(0.5, 0.8, 0.9),
kernelSize = 5,
kernelSD = 0.5,
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],
xlab = "Hz",
ylab = "1/KHz",
main = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

x folder, path to a wav/mp3 file, a numeric vector representing a waveform, or a
list of numeric vectors

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file). For a list of sounds, give either one samplingRate (the same for all) or as
many values as there are input files

maxDur maximum allowed duration of a single sound, s (longer sounds are split)

logSpec if TRUE, the spectrogram is log-transformed prior to taking 2D FFT

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

power raise modulation spectrum to this power (eg power = 2 for ^2, or "power spec-
trum")

roughRange the range of temporal modulation frequencies that constitute the "roughness"
zone, Hz

returnComplex if TRUE, returns a complex modulation spectrum (without normalization and
warping)

aggregComplex if TRUE, aggregates complex MS from multiple inputs, otherwise returns the
complex MS of the first input (recommended when filtering and inverting the
MS of a single sound, e.g. with filterSoundByMS)

plot if TRUE, plots the modulation spectrum

savePath if a valid path is specified, a plot is saved in this folder (defaults to NA)

logWarp the base of log for warping the modulation spectrum (ie log2 if logWarp = 2);
set to NULL or NA if you don’t want to log-warp

modulationSpectrum 71

quantiles labeled contour values, % (e.g., "50" marks regions that contain 50% of the sum
total of the entire modulation spectrum)

kernelSize the size of Gaussian kernel used for smoothing (1 = no smoothing)

kernelSD the SD of Gaussian kernel used for smoothing, relative to its size

colorTheme black and white (’bw’), as in seewave package (’seewave’), or any palette from
palette such as ’heat.colors’, ’cm.colors’, etc

xlab, ylab, main

graphical parameters
width, height, units, res

parameters passed to png if the plot is saved

... other graphical parameters passed on to filled.contour.mod and contour
(see spectrogram)

Value

Returns a list with four components:

• $original modulation spectrum prior to blurring and log-warping, but after squaring if power
= TRUE, a matrix of nonnegative values. Rownames are spectral modulation frequencies (cy-
cles/KHz), and colnames are temporal modulation frequencies (Hz).

• $processed modulation spectrum after blurring and log-warping

• $roughness proportion of energy / amplitude of the modulation spectrum within roughRange
of temporal modulation frequencies, %

• $complex untransformed complex modulation spectrum (returned only if returnComplex =
TRUE)

References

• Singh, N. C., & Theunissen, F. E. (2003). Modulation spectra of natural sounds and ethologi-
cal theories of auditory processing. The Journal of the Acoustical Society of America, 114(6),
3394-3411.

See Also

modulationSpectrumFolder spectrogram

Examples

white noise
ms = modulationSpectrum(runif(16000), samplingRate = 16000,

logSpec = FALSE, power = TRUE)

harmonic sound
s = soundgen()
ms = modulationSpectrum(s, samplingRate = 16000,

logSpec = FALSE, power = TRUE)

embellish

72 modulationSpectrum

ms = modulationSpectrum(s, samplingRate = 16000,
xlab = 'Temporal modulation, Hz', ylab = 'Spectral modulation, 1/KHz',
colorTheme = 'heat.colors', main = 'Modulation spectrum', lty = 3)

Not run:
Input can also be a list of waveforms (numeric vectors)
ss = vector('list', 10)
for (i in 1:length(ss)) {

ss[[i]] = soundgen(sylLen = runif(1, 100, 1000), temperature = .4,
pitch = runif(3, 400, 600))

}
lapply(ss, playme)
ms1 = modulationSpectrum(ss[[1]], samplingRate = 16000) # the first sound
dim(ms1$original)
ms2 = modulationSpectrum(ss, samplingRate = 16000) # all 10 sounds
dim(ms2$original)

Careful with complex MS of multiple inputs:
ms3 = modulationSpectrum(ss, samplingRate = 16000,

returnComplex = TRUE, aggregComplex = FALSE)
dim(ms3$complex) # complex MS of the first input only
ms4 = modulationSpectrum(ss, samplingRate = 16000,

returnComplex = TRUE, aggregComplex = TRUE)
dim(ms4$complex) # aggregated over inputs

As with spectrograms, there is a tradeoff in time-frequency resolution
s = soundgen(pitch = 500, amFreq = 50, amDep = 100, samplingRate = 44100)
playme(s, samplingRate = 44100)
ms = modulationSpectrum(s, samplingRate = 44100,

windowLength = 50, overlap = 0) # poor temporal resolution
ms = modulationSpectrum(s, samplingRate = 44100,

windowLength = 5, overlap = 80) # poor frequency resolution
ms = modulationSpectrum(s, samplingRate = 44100,

windowLength = 15, overlap = 80) # a reasonable compromise

customize the plot
ms = modulationSpectrum(s, samplingRate = 44100,

kernelSize = 17, # more smoothing
xlim = c(-20, 20), ylim = c(0, 4), # zoom in on the central region
quantiles = c(.25, .5, .8), # customize contour lines
colorTheme = 'heat.colors', # alternative palette
power = 2) # ^2

NB: xlim/ylim currently won't work properly with logWarp on

Input can be a wav/mp3 file
ms = modulationSpectrum('~/Downloads/temp/200_ut_fear-bungee_11.wav')

Input can be path to folder with audio files (average modulation spectrum)
ms = modulationSpectrum('~/Downloads/temp', kernelSize = 11)
NB: longer files will be split into fragments <maxDur in length

A sound with ~3 syllables per second and only downsweeps in F0 contour
s = soundgen(nSyl = 8, sylLen = 200, pauseLen = 100, pitch = c(300, 200))
playme(s)

modulationSpectrumFolder 73

ms = modulationSpectrum(s, samplingRate = 16000, maxDur = .5,
xlim = c(-25, 25), colorTheme = 'seewave',
power = 2)

note the asymmetry b/c of downsweeps

"power = 2" returns squared modulation spectrum - note that this affects
the roughness measure!
ms$roughness
compare:
modulationSpectrum(s, samplingRate = 16000, maxDur = .5,

xlim = c(-25, 25), colorTheme = 'seewave', logWarp = NULL,
power = 1)$roughness # much higher roughness

Plotting with or without log-warping the modulation spectrum:
ms = modulationSpectrum(soundgen(), samplingRate = 16000,

logWarp = NA, plot = TRUE)
ms = modulationSpectrum(soundgen(), samplingRate = 16000,

logWarp = 2, plot = TRUE)

logWarp and kernelSize have no effect on roughness
because it is calculated before these transforms:
modulationSpectrum(s, samplingRate = 16000, logWarp = 5)$roughness
modulationSpectrum(s, samplingRate = 16000, logWarp = NA)$roughness
modulationSpectrum(s, samplingRate = 16000, kernelSize = 17)$roughness

Log-transform the spectrogram prior to 2D FFT (affects roughness):
ms = modulationSpectrum(soundgen(), samplingRate = 16000, logSpec = FALSE)
ms = modulationSpectrum(soundgen(), samplingRate = 16000, logSpec = TRUE)

Complex modulation spectrum with phase preserved
ms = modulationSpectrum(soundgen(), samplingRate = 16000,

returnComplex = TRUE)
image(t(log(abs(ms$complex))))

End(Not run)

modulationSpectrumFolder

Modulation spectrum per folder

Description

Extracts modulation spectra of all wav/mp3 files in a folder - separately for each file, without aver-
aging. Good for saving plots of the modulation spectra and/or measuring the roughness of multiple
files. See modulationSpectrum for further details.

Usage

modulationSpectrumFolder(
myfolder,

74 modulationSpectrumFolder

summary = TRUE,
htmlPlots = TRUE,
verbose = TRUE,
maxDur = 5,
logSpec = FALSE,
windowLength = 25,
step = NULL,
overlap = 80,
wn = "hamming",
zp = 0,
power = 1,
roughRange = c(30, 150),
plot = FALSE,
savePlots = FALSE,
logWarp = NA,
quantiles = c(0.5, 0.8, 0.9),
kernelSize = 5,
kernelSD = 0.5,
colorTheme = c("bw", "seewave", "...")[1],
xlab = "Hz",
ylab = "1/KHz",
width = 900,
height = 500,
units = "px",
res = NA,
...

)

Arguments

myfolder full path to target folder

summary if TRUE, returns only a summary of the measured acoustic variables (mean,
median and SD). If FALSE, returns a list containing frame-by-frame values

htmlPlots if TRUE, saves an html file with clickable plots

verbose if TRUE, reports progress and estimated time left

maxDur maximum allowed duration of a single sound, s (longer sounds are split)

logSpec if TRUE, the spectrogram is log-transformed prior to taking 2D FFT

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

power raise modulation spectrum to this power (eg power = 2 for ^2, or "power spec-
trum")

modulationSpectrumFolder 75

roughRange the range of temporal modulation frequencies that constitute the "roughness"
zone, Hz

plot if TRUE, produces a spectrogram with pitch contour overlaid

savePlots if TRUE, saves plots as .png files

logWarp the base of log for warping the modulation spectrum (ie log2 if logWarp = 2);
set to NULL or NA if you don’t want to log-warp

quantiles labeled contour values, % (e.g., "50" marks regions that contain 50% of the sum
total of the entire modulation spectrum)

kernelSize the size of Gaussian kernel used for smoothing (1 = no smoothing)

kernelSD the SD of Gaussian kernel used for smoothing, relative to its size

colorTheme black and white (’bw’), as in seewave package (’seewave’), or any palette from
palette such as ’heat.colors’, ’cm.colors’, etc

xlab plotting parameters

ylab plotting parameters

width parameters passed to png if the plot is saved

height parameters passed to png if the plot is saved

units parameters passed to png if the plot is saved

res parameters passed to png if the plot is saved

... other graphical parameters passed to spectrogram

Value

If summary is TRUE, returns a dataframe with just the roughness measure per audio file. If summary
is FALSE, returns a list with the actual modulation spectra.

See Also

modulationSpectrum

Examples

Not run:
ms = modulationSpectrumFolder('~/Downloads/temp', savePlots = TRUE,

kernelSize = 15)

End(Not run)

76 morph

morph Morph sounds

Description

Takes two formulas for synthesizing two target sounds with soundgen and produces a number of
intermediate forms (morphs), attempting to go from one target sound to the other in a specified
number of equal steps. Normally you will want to set temperature very low; the tempEffects
argument is not supported.

Usage

morph(
formula1,
formula2,
nMorphs,
playMorphs = TRUE,
savePath = NA,
samplingRate = 16000

)

Arguments

formula1, formula2

lists of parameters for calling soundgen that produce the two target sounds be-
tween which morphing will occur. Character strings containing the full call to
soundgen are also accepted (see examples)

nMorphs the number of morphs to produce, including target sounds

playMorphs if TRUE, the morphs will be played

savePath if it is the path to an existing directory, morphs will be saved there as individual
.wav files (defaults to NA)

samplingRate sampling rate of output, Hz. NB: overrides the values in formula1 and formula2

Value

A list of two sublists ($formulas and $sounds), each of length nMorphs. For ex., the formula for
the second hybrid is m$formulas[[2]], and the waveform is m$sounds[[2]]

See Also

soundgen

morph 77

Examples

write two formulas or copy-paste them from soundgen_app() or presets:
playback = c(TRUE, FALSE)[2]
[a] to barking
m = morph(formula1 = list(repeatBout = 2),

equivalently: formula1 = 'soundgen(repeatBout = 2)',
formula2 = presets$Misc$Dog_bark,
nMorphs = 5, playMorphs = playback)

use $formulas to access formulas for each morph, $sounds for waveforms
m$formulas[[4]]
playme(m$sounds[[3]])

Not run:
morph intonation and vowel quality
m = morph(

'soundgen(pitch = c(300, 250, 400),
formants = c(350, 2900, 3600, 4700))',

'soundgen(pitch = c(300, 700, 500, 300),
formants = c(800, 1250, 3100, 4500))',

nMorphs = 5, playMorphs = playback
)

from a grunt of disgust to a moan of pleasure
m = morph(

formula1 = 'soundgen(sylLen = 180, pitch = c(160, 160, 120), rolloff = -12,
nonlinBalance = 70, subDep = 15, jitterDep = 2,
formants = c(550, 1200, 2100, 4300, 4700, 6500, 7300),
noise = data.frame(time = c(0, 180, 270), value = c(-25, -25, -40)),
rolloffNoise = 0)',

formula2 = 'soundgen(sylLen = 320, pitch = c(340, 330, 300),
rolloff = c(-18, -16, -30), ampl = c(0, -10), formants = c(950, 1700, 3700),
noise = data.frame(time = c(0, 300, 440), value = c(-35, -25, -65)),
mouth = c(.4, .5), rolloffNoise = -5, attackLen = 30)',

nMorphs = 8, playMorphs = playback
)

from scream_010 to moan_515b
(see online demos at http://cogsci.se/soundgen/humans/humans.html)
m = morph(

formula1 = "soundgen(
sylLen = 490,
pitch = list(time = c(0, 80, 250, 370, 490),
value = c(1000, 2900, 3200, 2900, 1000)),
rolloff = c(-5, 0, -25), rolloffKHz = 0,
temperature = 0.001,
jitterDep = c(.5, 1, 0), shimmerDep = c(5, 15, 0),
formants = c(1100, 2300, 3100, 4000, 5300, 6200),
mouth = c(.3, .5, .6, .5, .3))",

formula2 = "soundgen(sylLen = 520,
pitch = c(300, 310, 300),
ampl = c(0, -30),
temperature = 0.001, rolloff = c(-18, -25),

78 msToSpec

jitterDep = .05, shimmerDep = 2,
formants = list(f1 = c(700, 900),

f2 = c(1600, 1400),
f3 = c(3600, 3500), f4 = c(4300, 4200)),

mouth = c(.5, .3),
noise = data.frame(time = c(0, 400, 660),
value = c(-20, -10, -60)),
rolloffNoise = c(-5, -15))",

nMorphs = 5, playMorphs = playback
)

End(Not run)

msToSpec Modulation spectrum to spectrogram

Description

Takes a complex MS and transforms it to a complex spectrogram with proper row (frequency) and
column (time) labels.

Usage

msToSpec(ms, windowLength = NULL, step = NULL)

Arguments

ms target modulation spectrum (matrix of complex numbers)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

Value

Returns a spectrogram - a numeric matrix of complex numbers of the same dimensions as ms.

Examples

s = soundgen(sylLen = 500, amFreq = 25, amDep = 50,
pitch = 250, samplingRate = 16000)

spec = spectrogram(s, samplingRate = 16000, windowLength = 25, step = 5)
ms = specToMS(spec)
image(x = as.numeric(colnames(ms)), y = as.numeric(rownames(ms)),

z = t(log(abs(ms))), xlab = 'Amplitude modulation, Hz',
ylab = 'Frequency modulation, cycles/kHz')

spec_new = msToSpec(ms)
image(x = as.numeric(colnames(spec_new)), y = as.numeric(rownames(spec_new)),

z = t(log(abs(spec_new))), xlab = 'Time, ms',
ylab = 'Frequency, kHz')

normalizeFolder 79

normalizeFolder Normalize folder

Description

Normalizes the amplitude of all wav/mp3 files in a folder based on their peak or RMS amplitude or
subjective loudness. This is good for playback experiments, which require that all sounds should
have similar intensity or loudness.

Usage

normalizeFolder(
myfolder,
type = c("peak", "rms", "loudness")[1],
maxAmp = 0,
summaryFun = "mean",
windowLength = 50,
step = NULL,
overlap = 70,
killDC = FALSE,
windowDC = 200,
savepath = NULL,
verbose = TRUE

)

Arguments

myfolder path to folder containing wav/mp3 files

type normalize so the output files has the same peak amplitude (’peak’), root mean
square amplitude (’rms’), or subjective loudness in sone (’loudness’)

maxAmp maximum amplitude in dB (0 = max possible, -10 = 10 dB below max possible,
etc.)

summaryFun should the output files have the same mean / median / max etc rms amplitude or
loudness? (summaryFun has no effect if type = ’peak’)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

killDC if TRUE, removed DC offset (see also flatEnv)

windowDC the window for calculating DC offset, ms

savepath full path to where the normalized files should be saved (defaults to ’/normal-
ized’)

verbose if TRUE, reports estimated time left

80 notesDict

Details

Algorithm: first all files are rescaled to have the same peak amplitude of maxAmp dB. If type =
'peak', the process ends here. If type = 'rms', there are two additional steps. First the origi-
nal RMS amplitude of all files is calculated per frame by getRMS. The "quietest" sound with the
lowest summary RMS value is not modified, so its peak amplitude remains maxAmp dB. All the
remaining sounds are rescaled linearly, so that their summary RMS values becomes the same as
that of the "quietest" sound, and their peak amplitudes become smaller, <maxAmp. Finally, if type =
'loudness', the subjective loudness of each sound is estimated by getLoudness, which assumes
frequency sensitivity typical of human hearing. The following normalization procedure is similar
to that for type = 'rms'.

See Also

getRMS analyzegetLoudness

Examples

Not run:
put a few short audio files in a folder, eg '~/Downloads/temp'
getRMSFolder('~/Downloads/temp', summaryFun = 'mean') # different
normalizeFolder('~/Downloads/temp', type = 'rms', summaryFun = 'mean',

savepath = '~/Downloads/temp/normalized')
getRMSFolder('~/Downloads/temp/normalized', summaryFun = 'mean') # same
If the saved audio files are treated as stereo with one channel missing,
try reconverting with ffmpeg (saving is handled by tuneR::writeWave)

End(Not run)

notesDict Conversion table from Hz to musical notation

Description

A dataframe of 192 rows and 2 columns: "note" and "freq" (Hz). Range: C-5 (0.51 Hz) to B10
(31608.53 Hz)

Usage

notesDict

Format

An object of class data.frame with 192 rows and 2 columns.

optimizePars 81

optimizePars Optimize parameters for acoustic analysis

Description

This customized wrapper for optim attempts to optimize the parameters of segmentFolder or
analyzeFolder by comparing the results with a manually annotated "key". This optimization
function uses a single measurement per audio file (e.g., median pitch or the number of syllables). For
other purposes, you may want to adapt the optimization function so that the key specifies the exact
timing of syllables, their median length, frame-by-frame pitch values, or any other characteristic that
you want to optimize for. The general idea remains the same, however: we want to tune function
parameters to fit our type of audio and research priorities. The default settings of segmentFolder
and analyzeFolder have been optimized for human non-linguistic vocalizations.

Usage

optimizePars(
myfolder,
key,
myfun,
pars,
bounds = NULL,
fitnessPar,
fitnessFun = function(x) 1 - cor(x, key, use = "pairwise.complete.obs"),
nIter = 10,
init = NULL,
initSD = 0.2,
control = list(maxit = 50, reltol = 0.01, trace = 0),
otherPars = list(plot = FALSE, verbose = FALSE),
mygrid = NULL,
verbose = TRUE

)

Arguments

myfolder path to where the .wav files live

key a vector containing the "correct" measurement that we are aiming to reproduce

myfun the function being optimized: either ’segmentFolder’ or ’analyzeFolder’ (in
quotes)

pars names of arguments to myfun that should be optimized

bounds a list setting the lower and upper boundaries for possible values of optimized
parameters. For ex., if we optimize smooth and smoothOverlap, reasonable
bounds might be list(low = c(5, 0), high = c(500, 95))

fitnessPar the name of output variable that we are comparing with the key, e.g. ’nBursts’
or ’pitch_median’

82 optimizePars

fitnessFun the function used to evaluate how well the output of myfun fits the key. Defaults
to 1 - Pearson’s correlation (i.e. 0 is perfect fit, 1 is awful fit). For pitch, log scale
is more meaningful, so a good fitness criterion is "function(x) 1 - cor(log(x),
log(key), use = ’pairwise.complete.obs’)"

nIter repeat the optimization several times to check convergence

init initial values of optimized parameters (if NULL, the default values are taken
from the definition of myfun)

initSD each optimization begins with a random seed, and initSD specifies the SD of
normal distribution used to generate random deviation of initial values from the
defaults

control a list of control parameters passed on to optim. The method used is "Nelder-
Mead"

otherPars a list of additional arguments to myfun

mygrid a dataframe with one column per parameter to optimize, with each row spec-
ifying the values to try. If not NULL, optimizePars simply evaluates each
combination of parameter values, without calling optim (see examples)

verbose if TRUE, reports the values of parameters evaluated and fitness

Details

If your sounds are very different from human non-linguistic vocalizations, you may want to change
the default values of other arguments to speed up convergence. Adapt the code to enforce suitable
constraints, depending on your data.

Value

Returns a matrix with one row per iteration with fitness in the first column and the best values of
each of the optimized parameters in the remaining columns.

Examples

Not run:
Download 260 sounds from the supplements in Anikin & Persson (2017)
- see http://cogsci.se/publications.html
Unzip them into a folder, say '~/Downloads/temp'
myfolder = '~/Downloads/temp' # 260 .wav files live here

Optimization of SEGMENTATION
Import manual counts of syllables in 260 sounds from
Anikin & Persson (2017) (our "key")
key = segmentManual # a vector of 260 integers

Run optimization loop several times with random initial values
to check convergence
NB: with 260 sounds and default settings, this might take ~20 min per iteration!
res = optimizePars(myfolder = myfolder, myfun = 'segmentFolder', key = key,

pars = c('shortestSyl', 'shortestPause', 'sylThres'),
fitnessPar = 'nBursts',
nIter = 3, control = list(maxit = 50, reltol = .01, trace = 0))

osc_dB 83

Examine the results
print(res)
for (c in 2:ncol(res)) {

plot(res[, c], res[, 1], main = colnames(res)[c])
}
pars = as.list(res[1, 2:ncol(res)]) # top candidate (best pars)
s = do.call(segmentFolder, c(myfolder, pars)) # segment with best pars
cor(key, as.numeric(s[, fitnessPar]))
boxplot(as.numeric(s[, fitnessPar]) ~ as.integer(key), xlab='key')
abline(a=0, b=1, col='red')

Try a grid with particular parameter values instead of formal optimization
res = optimizePars(myfolder = myfolder, myfun = 'segmentFolder', key = segment_manual,

pars = c('shortestSyl', 'shortestPause'),
fitnessPar = 'nBursts',
mygrid = expand.grid(shortestSyl = c(30, 40),

shortestPause = c(30, 40, 50)))
1 - res$fit # correlations with key

Optimization of PITCH TRACKING (takes several hours!)
res = optimizePars(

myfolder = myfolder,
myfun = 'analyzeFolder',
key = log(pitchManual), # log-scale better for pitch
pars = c('windowLength', 'silence'),
bounds = list(low = c(5, 0), high = c(500, 1)),
fitnessPar = 'pitch_median',
nIter = 2,
otherPars = list(plot = FALSE, verbose = FALSE, step = 50),
fitnessFun = function(x) {

1 - cor(log(x), key, use = 'pairwise.complete.obs') *
(1 - mean(is.na(x) & !is.na(key))) # penalize failing to detect f0

})

End(Not run)

osc_dB Oscillogram dB

Description

Plots the oscillogram (waveform) of a sound on a logarithmic scale, in dB. Analogous to "Waveform
(dB)" view in Audacity.

Usage

osc_dB(
x,
dynamicRange = 80,

84 osc_dB

maxAmpl = NULL,
samplingRate = NULL,
returnWave = FALSE,
plot = TRUE,
xlab = NULL,
ylab = "dB",
bty = "n",
midline = TRUE,
...

)

Arguments

x path to a .wav file or a vector of amplitudes with specified samplingRate

dynamicRange dynamic range of the oscillogram, dB

maxAmpl the maximum theoretically possible value indicating on which scale the sound
is coded: 1 if the range is -1 to +1, 2^15 for 16-bit wav files, etc

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than a .wav file)

returnWave if TRUE, returns a log-transformed waveform as a numeric vector

plot if TRUE, plots the oscillogram

xlab, ylab axis labels

bty box type (see ‘?par‘)

midline if TRUE, draws a line at 0 dB

... Other graphical parameters passed on to ‘plot()‘

Details

Algorithm: centers and normalizes the sound, then takes a logarithm of the positive part and a
flipped negative part.

Value

Returns the input waveform on a dB scale: a vector with range from ‘-dynamicRange‘ to ‘dynami-
cRange‘.

Examples

sound = sin(1:2000/10) *
getSmoothContour(anchors = c(1, .01, .5), len = 2000)

Oscillogram on a linear scale
plot(sound, type = 'l')
or, for fancy plotting options: seewave::oscillo(sound, f = 1000)

Oscillogram on a dB scale
osc_dB(sound)

permittedValues 85

Time in ms if samplingRate is specified
osc_dB(sound, samplingRate = 5000)

Assuming that the waveform can range up to 50 instead of 1
osc_dB(sound, maxAmpl = 50)

Embellish and customize the plot
o = osc_dB(sound, samplingRate = 1000, midline = FALSE,

main = 'My waveform', col = 'blue')
abline(h = 0, col = 'orange', lty = 3)

permittedValues Defaults and ranges for soundgen()

Description

A dataset containing defaults and ranges of key variables for soundgen() and soundgen_app(). Ad-
just as needed.

Usage

permittedValues

Format

A matrix with 58 rows and 4 columns:

default default value
low lowest permitted value
high highest permitted value
step increment for adjustment ...

pitchContour Manually corrected pitch contours in 260 sounds

Description

A dataframe of 260 rows and two columns: "file" for filename in the corpus (Anikin & Persson,
2017) and "pitch" for pitch values per frame. The corpus can be downloaded from http://cogsci.se/publications.html

Usage

pitchContour

Format

An object of class data.frame with 260 rows and 2 columns.

86 pitchSmoothPraat

pitchManual Manual pitch estimation in 260 sounds

Description

A vector of manually verified pitch values per sound in the corpus of 590 human non-linguistic
emotional vocalizations from Anikin & Persson (2017). The corpus can be downloaded from
http://cogsci.se/publications.html

Usage

pitchManual

Format

An object of class numeric of length 260.

pitchSmoothPraat Pitch smoothing as in Praat

Description

Smoothes an intonation (pitch) contour with a low-pass filter, as in Praat (http://www.fon.hum.uva.nl/praat/).
Algorithm: interpolates missing values (unvoiced frames), performs FFT to obtain the spectrum,
multiplies by a Gaussian filter, performs an inverse FFT, and fills the missing values back in.

Usage

pitchSmoothPraat(pitch, bandwidth, samplingRate, plot = FALSE)

Arguments

pitch numeric vector of pitch values (NA = unvoiced)

bandwidth the bandwidth of low-pass filter, Hz (high = less smoothing, close to zero = more
smoothing)

samplingRate the number of pitch values per second

plot if TRUE, plots the original and smoothed pitch contours

See Also

analyze

pitch_app 87

Examples

pitch = c(NA, NA, 405, 441, 459, 459, 460, 462, 462, 458, 458, 445, 458, 451,
444, 444, 430, 416, 409, 403, 403, 389, 375, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 183, 677, 677, 846, 883, 886, 924, 938, 883, 946, 846, 911, 826, 826,
788, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 307,
307, 368, 377, 383, 383, 383, 380, 377, 377, 377, 374, 374, 375, 375, 375,
375, 368, 371, 374, 375, 361, 375, 389, 375, 375, 375, 375, 375, 314, 169,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 238, 285, 361, 374, 375, 375,
375, 375, 375, 389, 403, 389, 389, 375, 375, 389, 375, 348, 361, 375, 348,
348, 361, 348, 342, 361, 361, 361, 365, 365, 361, 966, 966, 966, 959, 959,
946, 1021, 1021, 1026, 1086, 1131, 1131, 1146, 1130, 1172, 1240, 1172, 1117,
1103, 1026, 1026, 966, 919, 946, 882, 832, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA)
pitch_sm = pitchSmoothPraat(pitch, bandwidth = 2,

samplingRate = 39.57244, plot = TRUE)

pitch_app Interactive pitch editor

Description

Starts a shiny app for manually editing pitch contours. Think of it as running analyze with manual
pitch control. All pitch-dependent descriptives (percentage of voiced frames, energy in harmonics,
amplVoiced, etc.) are calculated from the manually corrected pitch contour. Supported browsers:
Firefox / Chrome. Note that the browser has to be able to play back WAV audio files, otherwise
there will be no sound. The settings in the panels on the left correspond to arguments to analyze -
see ‘?analyze‘ and the vignette on acoustic analysis for help and examples. Loudness and formants
are not analyzed to avoid delays; run analyzeFolder separately with no pitch tracking (‘pitchMeth-
ods = NULL‘) and merge the two datasets. Same for syllable segmentation: run segmentFolder
separately since it doesn’t depend on accurate pitch tracking.

Usage

pitch_app()

Value

The app produces a .csv file with one row per audio file. Apart from the usual descriptives from
analyze(), there are two additional columns: "time" with time stamps (the midpoint of each STFT
frame, ms) and "pitch" with the manually corrected pitch values for each frame (Hz). To process
pitch contours further in R, do something like:

a = read.csv('~/Downloads/output.csv', stringsAsFactors = FALSE)
pitch = as.numeric(unlist(strsplit(a$pitch, ',')))
mean(pitch, na.rm = TRUE); sd(pitch, na.rm = TRUE)

88 pitch_app

Suggested workflow
Start by clicking "Load audio" to upload one or several audio files (wav/mp3). Long files will be
very slow, so please cut your audio into manageable chunks (ideally <10 s). Adjust the settings as
needed, edit the pitch contour in the first file to your satisfaction, then click "Next" to proceed to
the next file, etc. Remember that setting a reasonable prior is often faster than adjusting the contour
one anchor at a time. When done, click "Save results". If working with many files, you might want
to save the results occasionally in case the app crashes (although you should still be able to recover
your data if it does - see below).

How to edit pitch contours
Left-click to add a new anchor, double-click to remove it or unvoice the frame. Each time you make
a change, the entire pitch contour is re-fit, so making a change in one frame can affect the path
through candidates in adjacent frames. You can control this behavior by changing the settings in
Out/Path and Out/Smoothing. If correctly configured, the app corrects the contour with only a few
manual values - you shouldn’t need to manually edit every single frame. For longer files, you can
zoom in/out and navigate within the file. You can also select a region to voice/unvoice or shift it as
a whole or to set a prior based on selected frequency range.

Audio playback
The "Play" button / spacebar plays the currently plotted region, but it uses R for playback, which
may or may not work - see playme for troubleshooting. As a fallback option, the html audio tag at
the top plays the entire file.

Recovering lost data
Every time you click "next" or "last" to move in between files in the queue, the output you’ve got so
far is saved in a backup file called "temp.csv". If the app crashes or is closed without saving the re-
sults, this backup file preserves your data. To recover it, access this file manually on disk or simply
restart pitch_app() - a dialog box will pop up and ask whether you wank to append the old data to the
new one. Path to backup file: "[R_installation_folder]/soundgen/shiny/pitch_app/www/temp.csv",
for example, "/home/allgoodguys/R/x86_64-pc-linux-gnu-library/3.6/soundgen/shiny/pitch_app/www/temp.csv"

Examples

Not run:
Recommended workflow for analyzing a lot of short audio files
path_to_audio = '~/Downloads/temp' # our audio lives here

STEP 1: extract manually corrected pitch contours
pitch_app() # runs in a browser
df1 = read.csv('~/Downloads/output.csv') # saved output from pitch_app()

STEP 2: run analyzeFolder() with manually corrected pitch contours to
obtain accurate descriptives like the proportion of energy in harmonics above
f0, etc. This also gives you formants and loudness estimates (disabled in
pitch_app to speed things up)
df2 = analyzeFolder(path_to_audio,

pitchMethods = NULL, # don't need to re-analyze pitch
nFormants = 5, # now we can measure formants as well
pitchManual = df1 # df1 contains our manually corrected contours

)

playme 89

STEP 3: add other acoustic descriptors, for ex.
df3 = segmentFolder(path_to_audio)
df4 = modulationSpectrumFolder(path_to_audio)

STEP 4: merge df2, df3, df4, ... in R or a spreadsheet editor to have all
acoustic descriptives together

End(Not run)

playme Play audio

Description

Plays an audio file (wav or mp3) or a numeric vector. This is a simple wrapper for the function-
ality provided by play. Recommended players on Linux: "play" from the "vox" library (default),
"aplay".

Usage

playme(sound, samplingRate = 16000, player = NULL, from = NULL, to = NULL)

Arguments

sound numeric vector or path to wav/mp3 file
samplingRate sampling rate (only needed if sound is a vector)
player the name of player to use, eg "aplay", "play", "vlc", etc. Defaults to "play" on

Linux, "afplay" on MacOS, and tuneR default on Windows. In case of errors,
try setting another default player for play

from, to play a selected time range (s)

Examples

Play an audio file:
playme('pathToMyAudio/audio.wav')

Create and play a numeric vector:
f0_Hz = 440
sound = sin(2 * pi * f0_Hz * (1:16000) / 16000)
playme(sound, 16000)
playme(sound, 16000, from = .1, to = .5) # play from 100 to 500 ms

In case of errors, look into tuneR::play(). For ex., you might need to
specify which player to use:
playme(sound, 16000, player = 'aplay')

To avoid doing it all the time, set the default player:
tuneR::setWavPlayer('aplay')
playme(sound, 16000) # should work without specifying the player

90 reportTime

presets Presets

Description

A library of presets for easy generation of a few nice sounds.

Usage

presets

Format

A list of length 4.

reportTime Report time

Description

Provides a nicely formatted "estimated time left" in loops plus a summary upon completion.

Usage

reportTime(i, nIter, time_start, jobs = NULL, reportEvery = 1)

Arguments

i current iteration

nIter total number of iterations

time_start time when the loop started running

jobs vector of length nIter specifying the relative difficulty of each iteration. If not
NULL, estimated time left takes into account whether the jobs ahead will take
more or less time than the jobs already completed

reportEvery report progress every n iterations

schwa 91

Examples

time_start = proc.time()
for (i in 1:20) {

Sys.sleep(i ^ 2 / 10000)
reportTime(i = i, nIter = 20, time_start = time_start,
jobs = (1:20) ^ 2, reportEvery = 5)

}
Not run:
when analyzing a bunch of audio files, their size is a good estimate
of how long each will take to process
time_start = proc.time()
filenames = list.files('~/Downloads/temp', pattern = "*.wav|.mp3",

full.names = TRUE)
filesizes = file.info(filenames)$size
for (i in 1:length(filenames)) {

...do what you have to do with each file...
reportTime(i = i, nIter = length(filenames),

time_start = time_start, jobs = filesizes)
}

End(Not run)

schwa Schwa-related formant conversion

Description

This function performs several conceptually related types of conversion of formant frequencies
in relation to the neutral schwa sound based on the one-tube model of the vocal tract. Case 1:
if we know vocal tract length (VTL) but not formant frequencies, schwa() estimates formants
corresponding to a neutral schwa sound in this vocal tract, assuming that it is perfectly cylindrical.
Case 2: if we know the frequencies of a few lower formants, schwa() estimates the deviation of
observed formant frequencies from the neutral values expected in a perfectly cylindrical vocal tract
(based on the VTL as specified or as estimated from formant dispersion). Case 3: if we want to
geneate a sound with particular relative formant frequencies (e.g. high F1 and low F2 relative to the
schwa for this vocal tract), schwa() calculates the corresponding formant frequencies in Hz. See
examples below for an illustration of these three suggested uses.

Usage

schwa(
formants = NULL,
vocalTract = NULL,
formants_relative = NULL,
nForm = 8,
speedSound = 35400

)

92 schwa

Arguments

formants a numeric vector of observed (measured) formant frequencies, Hz

vocalTract the length of vocal tract, cm
formants_relative

a numeric vector of target relative formant frequencies, % deviation from schwa
(see examples)

nForm the number of formants to estimate (integer)

speedSound speed of sound in warm air, cm/s. Stevens (2000) "Acoustic phonetics", p. 138

Details

Algorithm: the expected formant dispersion is given by speedSound/(2 ∗ vocalTract), and F1
is expected at half the value of formant dispersion. See e.g. Stevens (2000) "Acoustic phonetics",
p. 139. Basically, we estimate vocal tract length and see if each formant is higher or lower than
expected for this vocal tract. For this to work, we have to know either the frequencies of enough
formants (not just the first two) or the true length of the vocal tract. See also estimateVTL on the al-
gorithm for estimating formant dispersion if VTL is not known (note that schwa calls estimateVTL
with the option method = 'regression'.

Value

Returns a list with the following components:

vtl_measured VTL as provided by the user, cm

vocalTract_apparent VTL estimated based on formants frequencies provided by the user, cm

formantDispersion average distance between formants, Hz

ff_measured formant frequencies as provided by the user, Hz

ff_schwa formant frequencies corresponding to a neutral schwa sound in this vocal tract, Hz

ff_theoretical formant frequencies corresponding to the user-provided relative formant frequen-
cies, Hz

ff_relative deviation of formant frequencies from those expected for a schwa, % (e.g. if the first
ff_relative is -25, it means that F1 is 25% lower than expected for a schwa in this vocal tract)

ff_relative_semitones deviation of formant frequencies from those expected for a schwa, semi-
tones

See Also

estimateVTL

Examples

CASE 1: known VTL
If vocal tract length is known, we calculate expected formant frequencies
schwa(vocalTract = 17.5)
schwa(vocalTract = 13, nForm = 5)

segment 93

CASE 2: known (observed) formant frequencies
Let's take formant frequencies in three vocalizations, namely
(/a/, /i/, /roar/) by the same male speaker:
formants_a = c(860, 1430, 2900, NA, 5200) # NAs are OK - here F4 is unknown
s_a = schwa(formants = formants_a)
s_a
We get an estimate of VTL (s_a$vtl_apparent),
same as with estimateVTL(formants_a)
We also get theoretical schwa formants: s_a$ff_schwa
And we get the difference (% and semitones) in observed vs expected
formant frequencies: s_a[c('ff_relative', 'ff_relative_semitones')]
[a]: F1 much higher than expected, F2 slightly lower

formants_i = c(300, 2700, 3400, 4400, 5300, 6400)
s_i = schwa(formants = formants_i)
s_i
The apparent VTL is slightly smaller (14.5 cm)
[i]: very low F1, very high F2

formants_roar = c(550, 1000, 1460, 2280, 3350,
4300, 4900, 5800, 6900, 7900)

s_roar = schwa(formants = formants_roar)
s_roar
Note the enormous apparent VTL (22.5 cm!)
(lowered larynx and rounded lips exaggerate the apparent size)
s_roar$ff_relative: high F1 and low F2-F4

schwa(formants = formants_roar[1:4])
based on F1-F4, apparent VTL is almost 28 cm!
Since the lowest formants are the most salient,
the apparent size is exaggerated even further

If you know VTL, a few lower formants are enough to get
a good estimate of the relative formant values:
schwa(formants = formants_roar[1:4], vocalTract = 19)
NB: in this case theoretical and relative formants are calculated
based on user-provided VTL (vtl_measured) rather than vtl_apparent

CASE 3: from relative to absolute formant frequencies
Say we want to generate a vowel sound with F1 20% below schwa
and F2 40% above schwa, with VTL = 15 cm
s = schwa(formants_relative = c(-20, 40), vocalTract = 15)
s$ff_schwa gives formant frequencies for a schwa, while
s$ff_theoretical gives formant frequencies for a sound with
target relative formant values (low F1, high F2)
schwa(formants = s$ff_theoretical)

segment Segment a sound

94 segment

Description

Finds syllables and bursts. Syllables are defined as continuous segments with amplitude above
threshold. Bursts are defined as local maxima in amplitude envelope that are high enough both in
absolute terms (relative to the global maximum) and with respect to the surrounding region (relative
to local mimima). See vignette(’acoustic_analysis’, package = ’soundgen’) for details.

Usage

segment(
x,
samplingRate = NULL,
windowLength = 40,
overlap = 80,
shortestSyl = 40,
shortestPause = 40,
sylThres = 0.9,
interburst = NULL,
interburstMult = 1,
burstThres = 0.075,
peakToTrough = 3,
troughLeft = TRUE,
troughRight = FALSE,
summary = FALSE,
plot = FALSE,
savePath = NA,
col = "green",
xlab = "Time, ms",
ylab = "Amplitude",
main = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
sylPlot = list(lty = 1, lwd = 2, col = "blue"),
burstPlot = list(pch = 8, cex = 3, col = "red"),
...

)

Arguments

x path to a .wav or .mp3 file or a vector of amplitudes with specified samplingRate

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

windowLength, overlap

length (ms) and overlap (window used to produce the amplitude envelope, see
env

shortestSyl minimum acceptable length of syllables, ms

segment 95

shortestPause minimum acceptable break between syllables, ms. Syllables separated by less
time are merged. To avoid merging, specify shortestPause = NA

sylThres amplitude threshold for syllable detection (as a proportion of global mean am-
plitude of smoothed envelope)

interburst minimum time between two consecutive bursts (ms). If specified, it overrides
interburstMult

interburstMult multiplier of the default minimum interburst interval (median syllable length
or, if no syllables are detected, the same number as shortestSyl). Only used
if interburst is not specified. Larger values improve detection of unusually
broad shallow peaks, while smaller values improve the detection of sharp narrow
peaks

burstThres to qualify as a burst, a local maximum has to be at least burstThres times the
height of the global maximum of amplitude envelope

peakToTrough to qualify as a burst, a local maximum has to be at least peakToTrough times
the local minimum on the LEFT over analysis window (which is controlled by
interburst or interburstMult)

troughLeft, troughRight

should local maxima be compared to the trough on the left and/or right of it?
Default to TRUE and FALSE, respectively

summary if TRUE, returns only a summary of the number and spacing of syllables and
vocal bursts. If FALSE, returns a list containing full stats on each syllable and
bursts (location, duration, amplitude, ...)

plot if TRUE, produces a segmentation plot

savePath full path to the folder in which to save the plot. Defaults to NA
col, xlab, ylab, main

main plotting parameters
width, height, units, res

parameters passed to png if the plot is saved

sylPlot a list of graphical parameters for displaying the syllables

burstPlot a list of graphical parameters for displaying the bursts

... other graphical parameters passed to plot

Details

The algorithm is very flexible, but the parameters may be hard to optimize by hand. If you
have an annotated sample of the sort of audio you are planning to analyze, with syllables and/or
bursts counted manually, you can use it for automatic optimization of control parameters (see
optimizePars. The defaults are the results of just such optimization against 260 human vocal-
izations in Anikin, A. & Persson, T. (2017). Non-linguistic vocalizations from online amateur
videos for emotion research: a validated corpus. Behavior Research Methods, 49(2): 758-771.

Value

If summary = TRUE, returns only a summary of the number and spacing of syllables and vocal bursts.
If summary = FALSE, returns a list containing full stats on each syllable and bursts (location, dura-
tion, amplitude, ...).

96 segmentFolder

See Also

segmentFolder analyze ssm

Examples

sound = soundgen(nSyl = 8, sylLen = 50, pauseLen = 70,
pitch = c(368, 284), temperature = 0.1,
noise = list(time = c(0, 67, 86, 186), value = c(-45, -47, -89, -120)),
rolloff_noise = -8, amplGlobal = c(0, -20),
dynamicRange = 120)

spectrogram(sound, samplingRate = 16000, osc = TRUE)
playme(sound, samplingRate = 16000)

s = segment(sound, samplingRate = 16000, plot = TRUE)
accept quicker and quieter syllables
s = segment(sound, samplingRate = 16000, plot = TRUE,

shortestSyl = 25, shortestPause = 25, sylThres = .2, burstThres = .05)

just a summary
segment(sound, samplingRate = 16000, summary = TRUE)
Note that syllables are slightly longer and pauses shorter than they should
be (b/c of the smoothing of amplitude envelope), while interburst intervals
are right on target (~120 ms)

customizing the plot
s = segment(sound, samplingRate = 16000, plot = TRUE,

shortestSyl = 25, shortestPause = 25,
sylThres = .2, burstThres = .05,
col = 'black', lwd = .5,
sylPlot = list(lty = 2, col = 'gray20'),
burstPlot = list(pch = 16, col = 'gray80'),
xlab = 'ms', cex.lab = 1.2, main = 'My awesome plot')

Not run:
customize the resolution of saved plot
s = segment(sound, samplingRate = 16000, savePath = '~/Downloads/',

width = 1920, height = 1080, units = 'px')

End(Not run)

segmentFolder Segment all files in a folder

Description

Finds syllables and bursts in all .wav files in a folder.

segmentFolder 97

Usage

segmentFolder(
myfolder,
htmlPlots = TRUE,
shortestSyl = 40,
shortestPause = 40,
sylThres = 0.9,
interburst = NULL,
interburstMult = 1,
burstThres = 0.075,
peakToTrough = 3,
troughLeft = TRUE,
troughRight = FALSE,
windowLength = 40,
overlap = 80,
summary = TRUE,
plot = FALSE,
savePlots = FALSE,
savePath = NA,
verbose = TRUE,
reportEvery = 10,
col = "green",
xlab = "Time, ms",
ylab = "Amplitude",
main = NULL,
width = 900,
height = 500,
units = "px",
res = NA,
sylPlot = list(lty = 1, lwd = 2, col = "blue"),
burstPlot = list(pch = 8, cex = 3, col = "red"),
...

)

Arguments

myfolder full path to target folder

htmlPlots if TRUE, saves an html file with clickable plots

shortestSyl minimum acceptable length of syllables, ms

shortestPause minimum acceptable break between syllables, ms. Syllables separated by less
time are merged. To avoid merging, specify shortestPause = NA

sylThres amplitude threshold for syllable detection (as a proportion of global mean am-
plitude of smoothed envelope)

interburst minimum time between two consecutive bursts (ms). If specified, it overrides
interburstMult

interburstMult multiplier of the default minimum interburst interval (median syllable length
or, if no syllables are detected, the same number as shortestSyl). Only used

98 segmentFolder

if interburst is not specified. Larger values improve detection of unusually
broad shallow peaks, while smaller values improve the detection of sharp narrow
peaks

burstThres to qualify as a burst, a local maximum has to be at least burstThres times the
height of the global maximum of amplitude envelope

peakToTrough to qualify as a burst, a local maximum has to be at least peakToTrough times
the local minimum on the LEFT over analysis window (which is controlled by
interburst or interburstMult)

troughLeft should local maxima be compared to the trough on the left and/or right of it?
Default to TRUE and FALSE, respectively

troughRight should local maxima be compared to the trough on the left and/or right of it?
Default to TRUE and FALSE, respectively

windowLength length (ms) and overlap (window used to produce the amplitude envelope, see
env

overlap length (ms) and overlap (window used to produce the amplitude envelope, see
env

summary if TRUE, returns only a summary of the number and spacing of syllables and
vocal bursts. If FALSE, returns a list containing full stats on each syllable and
bursts (location, duration, amplitude, ...)

plot if TRUE, produces a segmentation plot

savePlots if TRUE, saves plots as .png files in the target folder

savePath full path to the folder in which to save the plot. Defaults to NA
verbose, reportEvery

if TRUE, reports progress every reportEvery files and estimated time left

col main plotting parameters

xlab main plotting parameters

ylab main plotting parameters

main main plotting parameters

width parameters passed to png if the plot is saved

height parameters passed to png if the plot is saved

units parameters passed to png if the plot is saved

res parameters passed to png if the plot is saved

sylPlot a list of graphical parameters for displaying the syllables

burstPlot a list of graphical parameters for displaying the bursts

... other graphical parameters passed to plot

Details

This is just a convenient wrapper for segment intended for analyzing the syllables and bursts in a
large number of audio files at a time. In verbose mode, it also reports ETA every ten iterations. With
default settings, running time should be about a second per minute of audio.

segmentManual 99

Value

If summary is TRUE, returns a dataframe with one row per audio file. If summary is FALSE, returns
a list of detailed descriptives.

See Also

segment

Examples

Not run:
Download 260 sounds from the supplements to Anikin & Persson (2017) at
http://cogsci.se/publications.html
unzip them into a folder, say '~/Downloads/temp'
myfolder = '~/Downloads/temp' # 260 .wav files live here
s = segmentFolder(myfolder, verbose = TRUE, savePlots = TRUE)

Check accuracy: import a manual count of syllables (our "key")
key = segmentManual # a vector of 260 integers
trial = as.numeric(s$nBursts)
cor(key, trial, use = 'pairwise.complete.obs')
boxplot(trial ~ as.integer(key), xlab='key')
abline(a=0, b=1, col='red')

End(Not run)

segmentManual Manual counts of syllables in 260 sounds

Description

A vector of the number of syllables in the corpus of 260 human non-linguistic emotional vocaliza-
tions from Anikin & Persson (2017). The corpus can be downloaded from http://cogsci.se/publications.html

Usage

segmentManual

Format

An object of class numeric of length 260.

100 soundgen

semitonesToHz Convert semitones to Hz

Description

Converts from semitones above C-5 (~0.5109875 Hz) to Hz. See HzToSemitones

Usage

semitonesToHz(s, ref = 0.5109875)

Arguments

s vector or matrix of frequencies (semitones above C0)

ref frequency of the reference value (defaults to C-5, 0.51 Hz)

See Also

HzToSemitones

soundgen Generate a sound

Description

Generates a bout of one or more syllables with pauses between them. Two basic components are
synthesized: the harmonic component (the sum of sine waves with frequencies that are multiples
of the fundamental frequency) and the noise component. Both components can be filtered with
independently specified formants. Intonation and amplitude contours can be applied both within
each syllable and across multiple syllables. Suggested application: synthesis of animal or human
non-linguistic vocalizations. For more information, see http://cogsci.se/soundgen.html and
vignette(’sound_generation’, package = ’soundgen’).

Usage

soundgen(
repeatBout = 1,
nSyl = 1,
sylLen = 300,
pauseLen = 200,
pitch = list(time = c(0, 0.1, 0.9, 1), value = c(100, 150, 135, 100)),
pitchGlobal = NA,
glottis = 0,
temperature = 0.025,
tempEffects = list(),

http://cogsci.se/soundgen.html

soundgen 101

maleFemale = 0,
creakyBreathy = 0,
nonlinBalance = 100,
nonlinRandomWalk = NULL,
subRatio = 2,
subFreq = 0,
subDep = 0,
subWidth = 10000,
shortestEpoch = 300,
jitterLen = 1,
jitterDep = 0,
vibratoFreq = 5,
vibratoDep = 0,
shimmerDep = 0,
shimmerLen = 1,
attackLen = 50,
rolloff = -9,
rolloffOct = 0,
rolloffKHz = -3,
rolloffParab = 0,
rolloffParabHarm = 3,
rolloffExact = NULL,
lipRad = 6,
noseRad = 4,
mouthOpenThres = 0,
formants = c(860, 1430, 2900),
formantDep = 1,
formantDepStoch = 20,
formantWidth = 1,
formantCeiling = 2,
formantLocking = 0,
vocalTract = NA,
amDep = 0,
amFreq = 30,
amShape = 0,
noise = NULL,
formantsNoise = NA,
rolloffNoise = -4,
noiseFlatSpec = 1200,
rolloffNoiseExp = 0,
noiseAmpRef = c("f0", "source", "filtered")[3],
mouth = list(time = c(0, 1), value = c(0.5, 0.5)),
ampl = NA,
amplGlobal = NA,
interpol = c("approx", "spline", "loess")[3],
discontThres = 0.05,
jumpThres = 0.01,
samplingRate = 16000,

102 soundgen

windowLength = 50,
overlap = 75,
addSilence = 100,
pitchFloor = 1,
pitchCeiling = 3500,
pitchSamplingRate = 16000,
dynamicRange = 80,
invalidArgAction = c("adjust", "abort", "ignore")[1],
plot = FALSE,
play = FALSE,
savePath = NA,
...

)

Arguments

repeatBout number of times the whole bout should be repeated

nSyl number of syllables in the bout. ‘pitchGlobal‘, ‘amplGlobal‘, and ‘formants‘
span multiple syllables, but not multiple bouts

sylLen average duration of each syllable, ms (vectorized)

pauseLen average duration of pauses between syllables, ms (can be negative between
bouts: force with invalidArgAction = ’ignore’) (vectorized)

pitch a numeric vector of f0 values in Hz or a dataframe specifying the time (ms or 0
to 1) and value (Hz) of each anchor, hereafter "anchor format". These anchors
are used to create a smooth contour of fundamental frequency f0 (pitch) within
one syllable

pitchGlobal unlike pitch, these anchors are used to create a smooth contour of average f0
across multiple syllables. The values are in semitones relative to the existing
pitch, i.e. 0 = no change (anchor format)

glottis anchors for specifying the proportion of a glottal cycle with closed glottis, % (0
= no modification, 100 = closed phase as long as open phase); numeric vector
or dataframe specifying time and value (anchor format)

temperature hyperparameter for regulating the amount of stochasticity in sound generation

tempEffects a list of scaling coefficients regulating the effect of temperature on particu-
lar parameters. To change, specify just those pars that you want to modify
(default is 1 for all of them). sylLenDep: duration of syllables and pauses;
formDrift: formant frequencies; formDisp: dispersion of stochastic formants;
pitchDriftDep: amount of slow random drift of f0; pitchDriftFreq: fre-
quency of slow random drift of f0; amplDriftDep: drift of amplitude mirror-
ing pitch drift; subDriftDep: drift of subharmonic frequency and bandwidth
mirroring pitch drift; rolloffDriftDep: drift of rolloff mirroring pitch drift;
pitchDep,noiseDep,amplDep: random fluctuations of user-specified pitch /
noise / amplitude anchors; glottisDep: proportion of glottal cycle with closed
glottis; specDep: rolloff, rolloffNoise, nonlinear effects, attack

maleFemale hyperparameter for shifting f0 contour, formants, and vocalTract to make the
speaker appear more male (-1...0) or more female (0...+1); 0 = no change

soundgen 103

creakyBreathy hyperparameter for a rough adjustment of voice quality from creaky (-1) to
breathy (+1); 0 = no change

nonlinBalance hyperparameter for regulating the (approximate) proportion of sound with dif-
ferent regimes of pitch effects (none / subharmonics only / subharmonics and
jitter). 0% = no noise; 100% = the entire sound has jitter + subharmonics. Ig-
nored if temperature = 0

nonlinRandomWalk

a numeric vector specifying the timing of nonliner regimes: 0 = none, 1 = sub-
harmonics, 2 = subharmonics + jitter + shimmer

subRatio a positive integer giving the ratio of f0 (the main fundamental) to g0 (a lower fre-
quency): 1 = no subharmonics, 2 = period doubling regardless of pitch changes,
3 = period tripling, etc; subRatio overrides subFreq (anchor format)

subFreq instead of a specific number of subharmonics (subRatio), we can specify the ap-
proximate g0 frequency (Hz), which is used only if subRatio = 1 and is adjusted
to f0 so f0/g0 is always an integer (anchor format)

subDep the depth of subharmonics relative to the main frequency component (f0), %. 0:
no subharmonics; 100: g0 harmonics are as strong as the nearest f0 harmonic
(anchor format)

subWidth Width of subharmonic sidebands - regulates how rapidly g-harmonics weaken
away from f-harmonics: large values like the default 10000 means that all g0
harmonics are equally strong (anchor format)

shortestEpoch minimum duration of each epoch with unchanging subharmonics regime or for-
mant locking, in ms

jitterLen duration of stable periods between pitch jumps, ms. Use a low value for harsh
noise, a high value for irregular vibrato or shaky voice (anchor format)

jitterDep cycle-to-cycle random pitch variation, semitones (anchor format)

vibratoFreq the rate of regular pitch modulation, or vibrato, Hz (anchor format)

vibratoDep the depth of vibrato, semitones (anchor format)

shimmerDep random variation in amplitude between individual glottal cycles (0 to 100% of
original amplitude of each cycle) (anchor format)

shimmerLen duration of stable periods between amplitude jumps, ms. Use a low value for
harsh noise, a high value for shaky voice (anchor format)

attackLen duration of fade-in / fade-out at each end of syllables and noise (ms): a vector
of length 1 (symmetric) or 2 (separately for fade-in and fade-out)

rolloff basic rolloff from lower to upper harmonics, db/octave (exponential decay). All
rolloff parameters are in anchor format. See getRolloff for more details

rolloffOct basic rolloff changes from lower to upper harmonics (regardless of f0) by rolloffOct
dB/oct. For example, we can get steeper rolloff in the upper part of the spectrum

rolloffKHz rolloff changes linearly with f0 by rolloffKHz dB/kHz. For ex., -6 dB/kHz
gives a 6 dB steeper basic rolloff as f0 goes up by 1000 Hz

rolloffParab an optional quadratic term affecting only the first rolloffParabHarm harmon-
ics. The middle harmonic of the first rolloffParabHarm harmonics is amplified
or dampened by rolloffParab dB relative to the basic exponential decay

104 soundgen

rolloffParabHarm

the number of harmonics affected by rolloffParab

rolloffExact user-specified exact strength of harmonics: a vector or matrix with one row per
harmonic, scale 0 to 1 (overrides all other rolloff parameters)

lipRad the effect of lip radiation on source spectrum, dB/oct (the default of +6 dB/oct
produces a high-frequency boost when the mouth is open)

noseRad the effect of radiation through the nose on source spectrum, dB/oct (the alterna-
tive to lipRad when the mouth is closed)

mouthOpenThres open the lips (switch from nose radiation to lip radiation) when the mouth is
open >mouthOpenThres, 0 to 1

formants either a character string like "aaui" referring to default presets for speaker "M1"
or a list of formant times, frequencies, amplitudes, and bandwidths (see ex. be-
low). formants = NA defaults to schwa. Time stamps for formants and mouthOpen-
ing can be specified in ms or an any other arbitrary scale. See getSpectralEnvelope
for more details

formantDep scale factor of formant amplitude (1 = no change relative to amplitudes in formants)
formantDepStoch

the amplitude of additional stochastic formants added above the highest speci-
fied formant, dB (only if temperature > 0)

formantWidth scale factor of formant bandwidth (1 = no change)

formantCeiling frequency to which stochastic formants are calculated, in multiples of the Nyquist
frequency; increase up to ~10 for long vocal tracts to avoid losing energy in the
upper part of the spectrum

formantLocking the approximate proportion of sound in which one of the harmonics is locked to
the nearest formant, 0 = none, 1 = the entire sound (anchor format)

vocalTract the length of vocal tract, cm. Used for calculating formant dispersion (for adding
extra formants) and formant transitions as the mouth opens and closes. If NULL
or NA, the length is estimated based on specified formant frequencies, if any
(anchor format)

amDep amplitude modulation depth, %. 0: no change; 100: amplitude modulation with
amplitude range equal to the dynamic range of the sound (anchor format)

amFreq amplitude modulation frequency, Hz (anchor format)

amShape amplitude modulation shape (-1 to +1, defaults to 0) (anchor format)

noise loudness of turbulent noise (0 dB = as loud as voiced component, negative values
= quieter) such as aspiration, hissing, etc (anchor format)

formantsNoise the same as formants, but for unvoiced instead of voiced component. If NA
(default), the unvoiced component will be filtered through the same formants as
the voiced component, approximating aspiration noise [h]

rolloffNoise, noiseFlatSpec

linear rolloff of the excitation source for the unvoiced component, rolloffNoise
dB/kHz (anchor format) applied above noiseFlatSpec Hz

rolloffNoiseExp

exponential rolloff of the excitation source for the unvoiced component, dB/oct
(anchor format) applied above 0 Hz

soundgen 105

noiseAmpRef noise amplitude is defined relative to: "f0" = the amplitude of the first partial
(fundamental frequency), "source" = the amplitude of the harmonic component
prior to applying formants, "filtered" = the amplitude of the harmonic compo-
nent after applying formants

mouth mouth opening (0 to 1, 0.5 = neutral, i.e. no modification) (anchor format)

ampl amplitude envelope (dB, 0 = max amplitude) (anchor format)

amplGlobal global amplitude envelope spanning multiple syllables (dB, 0 = no change) (an-
chor format)

interpol the method of smoothing envelopes based on provided anchors: ’approx’ = lin-
ear interpolation, ’spline’ = cubic spline, ’loess’ (default) = polynomial local
smoothing function. NB: this does not affect contours for "noise", "glottal", and
the smoothing of formants

discontThres, jumpThres

if two anchors are closer in time than discontThres, the contour is broken into
segments with a linear transition between these anchors; if anchors are closer
than jumpThres, a new section starts with no transition at all (e.g. for adding
pitch jumps)

samplingRate sampling frequency, Hz

windowLength length of FFT window, ms

overlap FFT window overlap, %. For allowed values, see istft

addSilence silence before and after the bout, ms
pitchFloor, pitchCeiling

lower & upper bounds of f0
pitchSamplingRate

sampling frequency of the pitch contour only, Hz. Low values reduce processing
time. Set to pitchCeiling for optimal speed or to samplingRate for optimal
quality

dynamicRange dynamic range, dB. Harmonics and noise more than dynamicRange under max-
imum amplitude are discarded to save computational resources

invalidArgAction

what to do if an argument is invalid or outside the range in permittedValues:
’adjust’ = reset to default value, ’abort’ = stop execution, ’ignore’ = throw a
warning and continue (may crash)

plot if TRUE, plots a spectrogram

play if TRUE, plays the synthesized sound using the default player on your system.
If character, passed to play as the name of player to use, eg "aplay", "play",
"vlc", etc. In case of errors, try setting another default player for play

savePath full path for saving the output, e.g. ’~/Downloads/temp.wav’. If NA (default),
doesn’t save anything

... other plotting parameters passed to spectrogram

Value

Returns the synthesized waveform as a numeric vector.

106 soundgen

See Also

generateNoise generateNoise fart beat

Examples

NB: GUI for soundgen is available as a Shiny app.
Type "soundgen_app()" to open it in default browser

Set "playback" to TRUE for default system player or the name of preferred
player (eg "aplay") to play back the audio from examples
playback = c(TRUE, FALSE, 'aplay', 'vlc')[2]

sound = soundgen(play = playback)
spectrogram(sound, 16000, osc = TRUE)
playme(sound)

Control of intonation, amplitude envelope, formants
s0 = soundgen(

pitch = c(300, 390, 250),
ampl = data.frame(time = c(0, 50, 300), value = c(-5, -10, 0)),
attack = c(10, 50),
formants = c(600, 900, 2200),
play = playback

)

Use the in-built collection of presets:
names(presets) # speakers
names(presets$Chimpanzee) # calls per speaker
s1 = eval(parse(text = presets$Chimpanzee$Scream_conflict)) # screaming chimp
playme(s1)
s2 = eval(parse(text = presets$F1$Scream)) # screaming woman
playme(s2)
Not run:
unless temperature is 0, the sound is different every time
for (i in 1:3) sound = soundgen(play = playback, temperature = .2)

Bouts versus syllables. Compare:
sound = soundgen(formants = 'uai', repeatBout = 3, play = playback)
sound = soundgen(formants = 'uai', nSyl = 3, play = playback)

Intonation contours per syllable and globally:
sound = soundgen(nSyl = 5, sylLen = 200, pauseLen = 140,

play = playback, pitch = data.frame(
time = c(0, 0.65, 1), value = c(977, 1540, 826)),

pitchGlobal = data.frame(time = c(0, .5, 1), value = c(-6, 7, 0)))

Subharmonics in sidebands (noisy scream)
sound = soundgen (subFreq = 75, subDep = runif(10, 0, 60), subWidth = 130,

pitch = data.frame(
time = c(0, .3, .9, 1), value = c(1200, 1547, 1487, 1154)),

sylLen = 800,
play = playback, plot = TRUE)

soundgen_app 107

Jitter and mouth opening (bark, dog-like)
sound = soundgen(repeatBout = 2, sylLen = 160, pauseLen = 100,

subFreq = 100, subDep = 100, subWidth = 60, jitterDep = 1,
pitch = c(559, 785, 557),
mouth = c(0, 0.5, 0),
vocalTract = 5, formants = NULL,
play = playback, plot = TRUE)

See the vignette on sound generation for more examples and in-depth
explanation of the arguments to soundgen()
Examples of code for creating human and animal vocalizations are available
on project's homepage: http://cogsci.se/soundgen.html

End(Not run)

soundgen_app Interactive sound synthesizer

Description

Starts a shiny app, which provides an interactive wrapper to soundgen. Supported browsers: Firefox
/ Chrome. Note that the browser has to be able to playback WAV audio files, otherwise there will
be no sound.

Usage

soundgen_app()

specToMS Spectrogram to modulation spectrum

Description

Takes a spectrogram (either complex or magnitude) and returns a MS with proper row and column
labels.

Usage

specToMS(spec, windowLength = NULL, step = NULL)

Arguments

spec target spectrogram (numeric matrix, frequency in rows, time in columns)

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

108 spectrogram

Value

Returns a MS - matrix of complex values of the same dimension as spec, with AM in rows and FM
in columns.

Examples

s = soundgen(sylLen = 500, amFreq = 25, amDep = 50,
pitch = 250, samplingRate = 16000)

spec = spectrogram(s, samplingRate = 16000, windowLength = 25, step = 5)
ms = specToMS(spec)
image(x = as.numeric(colnames(ms)), y = as.numeric(rownames(ms)),

z = t(log(abs(ms))), xlab = 'Amplitude modulation, Hz',
ylab = 'Frequency modulation, cycles/kHz')

abline(h = 0, lty = 3); abline(v = 0, lty = 3)

spectrogram Spectrogram

Description

Produces the spectrogram of a sound using short-term Fourier transform. Inspired by spectro,
this function offers added routines for noise reduction, smoothing in time and frequency domains,
manual control of contrast and brightness, plotting the oscillogram on a dB scale, grid, etc.

Usage

spectrogram(
x,
samplingRate = NULL,
dynamicRange = 80,
windowLength = 50,
step = NULL,
overlap = 70,
wn = "gaussian",
zp = 0,
normalize = TRUE,
scale = NULL,
smoothFreq = 0,
smoothTime = 0,
qTime = 0,
percentNoise = 10,
noiseReduction = 0,
contrast = 0.2,
brightness = 0,
method = c("spectrum", "spectralDerivative")[1],
output = c("original", "processed", "complex")[1],
ylim = NULL,

spectrogram 109

yScale = c("linear", "log")[1],
plot = TRUE,
osc = FALSE,
osc_dB = FALSE,
heights = c(3, 1),
padWithSilence = TRUE,
colorTheme = c("bw", "seewave", "heat.colors", "...")[1],
units = c("ms", "kHz"),
xlab = paste("Time,", units[1]),
ylab = paste("Frequency,", units[2]),
mar = c(5.1, 4.1, 4.1, 2),
main = "",
grid = NULL,
frameBank = NULL,
duration = NULL,
pitch = NULL,
...

)

Arguments

x path to a .wav or .mp3 file or a vector of amplitudes with specified samplingRate

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

normalize if TRUE, scales input prior to FFT

scale maximum possible amplitude of input used for normalization of input vector
(not needed if input is an audio file)

smoothFreq, smoothTime

length of the window, in data points (0 to +inf), for calculating a rolling median.
Applies median smoothing to spectrogram in frequency and time domains, re-
spectively

qTime the quantile to be subtracted for each frequency bin. For ex., if qTime = 0.5, the
median of each frequency bin (over the entire sound duration) will be calculated
and subtracted from each frame (see examples)

percentNoise percentage of frames (0 to 100%) used for calculating noise spectrum

noiseReduction how much noise to remove (0 to +inf, recommended 0 to 2). 0 = no noise reduc-
tion, 2 = strong noise reduction: spectrum−(noiseReduction∗noiseSpectrum),

110 spectrogram

where noiseSpectrum is the average spectrum of frames with entropy exceeding
the quantile set by percentNoise

contrast spectrum is exponentiated by contrast (-inf to +inf, recommended -1 to +1).
Contrast >0 increases sharpness, <0 decreases sharpness

brightness how much to "lighten" the image (>0 = lighter, <0 = darker)

method plot spectrum (’spectrum’) or spectral derivative (’spectralDerivative’)

output specifies what to return: nothing (’none’), unmodified spectrogram (’original’),
denoised and/or smoothed spectrogram (’processed’), or unmodified spectro-
gram with the imaginary part giving phase (’complex’)

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency)

yScale scale of the frequency axis: ’linear’ = linear, ’log’ = logarithmic

plot should a spectrogram be plotted? TRUE / FALSE

osc, osc_dB should an oscillogram be shown under the spectrogram? TRUE/ FALSE. If
‘osc_dB‘, the oscillogram is displayed on a dB scale. See osc_dB for details

heights a vector of length two specifying the relative height of the spectrogram and the
oscillogram (including time axes labels)

padWithSilence if TRUE, pads the sound with just enough silence to resolve the edges properly
(only the original region is plotted, so apparent duration doesn’t change)

colorTheme black and white (’bw’), as in seewave package (’seewave’), or any palette from
palette such as ’heat.colors’, ’cm.colors’, etc

units c(’ms’, ’kHz’) is the default, and anything else is interpreted as s (for time) and
Hz (for frequency)

xlab, ylab, main, mar

graphical parameters

grid if numeric, adds n = grid dotted lines per kHz
frameBank, duration, pitch

ignore (only used internally)

... other graphical parameters

Details

Many soundgen functions call spectrogram, and you can pass along most of its graphical parame-
ters from functions like soundgen, analyze, etc. However, in some cases this will not work (eg for
"units") or may produce unexpected results. If in doubt, omit extra graphical parameters.

Value

Returns nothing (if output = ’none’), absolute - not power! - spectrum (if output = ’original’),
denoised and/or smoothed spectrum (if output = ’processed’), or spectral derivatives (if method =
’spectralDerivative’) as a matrix of real numbers.

See Also

modulationSpectrum ssm osc_dB

modulationSpectrum ssm

spectrogram 111

Examples

synthesize a sound 1 s long, with gradually increasing hissing noise
sound = soundgen(sylLen = 500, temperature = 0.001, noise = list(

time = c(0, 650), value = c(-40, 0)), formantsNoise = list(
f1 = list(freq = 5000, width = 10000)))

playme(sound, samplingRate = 16000)

basic spectrogram
spectrogram(sound, samplingRate = 16000)

Not run:
add bells and whistles
spectrogram(sound, samplingRate = 16000,

osc = TRUE, # plot oscillogram under the spectrogram
noiseReduction = 1.1, # subtract the spectrum of noisy parts
brightness = -1, # reduce brightness
colorTheme = 'heat.colors', # pick color theme
cex.lab = .75, cex.axis = .75, # text size and other base graphics pars
grid = 5, # lines per kHz; to customize, add manually with graphics::grid()
units = c('s', 'Hz'), # plot in s or ms, Hz or kHz
ylim = c(0, 5000), # in specified units (Hz)
main = 'My spectrogram' # title
+ axis labels, etc

)

change dynamic range
spectrogram(sound, samplingRate = 16000, dynamicRange = 40)
spectrogram(sound, samplingRate = 16000, dynamicRange = 120)

add an oscillogram
spectrogram(sound, samplingRate = 16000, osc = TRUE)

oscillogram on a dB scale, same height as spectrogram
spectrogram(sound, samplingRate = 16000,

osc_dB = TRUE, heights = c(1, 1))

frequencies on a logarithmic scale
spectrogram(sound, samplingRate = 16000,

yScale = 'log', ylim = c(.05, 8))

broad-band instead of narrow-band
spectrogram(sound, samplingRate = 16000, windowLength = 5)

focus only on values in the upper 5% for each frequency bin
spectrogram(sound, samplingRate = 16000, qTime = 0.95)

detect 10% of the noisiest frames based on entropy and remove the pattern
found in those frames (in this cases, breathing)
spectrogram(sound, samplingRate = 16000, noiseReduction = 1.1,

brightness = -2) # white noise attenuated

apply median smoothing in both time and frequency domains

112 spectrogramFolder

spectrogram(sound, samplingRate = 16000, smoothFreq = 5,
smoothTime = 5)

increase contrast, reduce brightness
spectrogram(sound, samplingRate = 16000, contrast = 1, brightness = -1)

specify location of tick marks etc - see ?par() for base graphics
spectrogram(sound, samplingRate = 16000,

ylim = c(0, 3), yaxp = c(0, 3, 5), xaxp = c(0, 1400, 4))

End(Not run)

spectrogramFolder Save spectrograms per folder

Description

Creates spectrograms of all wav/mp3 files in a folder and saves them as .png files in the same folder.
This is a lot faster than running analyzeFolder if you don’t need pitch tracking. By default it also
creates an html file with a list of audio files and their spectrograms in the same folder. If you open
it in a browser that supports playing .wav and/or .mp3 files (e.g. Firefox or Chrome), you can view
the spetrograms and click on them to play each sound. Unlike analyzeFolder, spectrogramFolder
supports plotting both a spectrogram and an oscillogram if osc = TRUE. The default approximate
width of images in html (flexbox) is determined by the width parameter (ie it is the same as the
width of png images, in pixels).

Usage

spectrogramFolder(
myfolder,
htmlPlots = TRUE,
verbose = TRUE,
windowLength = 50,
step = NULL,
overlap = 50,
wn = "gaussian",
zp = 0,
ylim = NULL,
osc = TRUE,
xlab = "Time, ms",
ylab = "kHz",
width = 900,
height = 500,
units = "px",
res = NA,
...

)

spectrogramFolder 113

Arguments

myfolder full path to the folder containing wav/mp3 files

htmlPlots if TRUE, saves an html file with clickable plots

verbose if TRUE, reports progress and estimated time left

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

ylim frequency range to plot, kHz (defaults to 0 to Nyquist frequency)

osc should an oscillogram be shown under the spectrogram? TRUE/ FALSE. If
‘osc_dB‘, the oscillogram is displayed on a dB scale. See osc_dB for details

xlab graphical parameters

ylab graphical parameters

width parameters passed to png if the plot is saved

height parameters passed to png if the plot is saved

units c(’ms’, ’kHz’) is the default, and anything else is interpreted as s (for time) and
Hz (for frequency)

res parameters passed to png if the plot is saved

... other parameters passed to spectrogram

Examples

Not run:
spectrogramFolder(

'~/Downloads/temp',
windowLength = 40, overlap = 75, # spectrogram pars
width = 1500, height = 900, # passed to png()
osc = TRUE, osc_dB = TRUE, heights = c(1, 1)

)
note that the folder now also contains an html file with clickable plots

End(Not run)

114 ssm

ssm Self-similarity matrix

Description

Calculates the self-similarity matrix and novelty vector of a sound.

Usage

ssm(
x,
samplingRate = NULL,
windowLength = 40,
overlap = 75,
step = NULL,
ssmWin = 40,
maxFreq = NULL,
nBands = NULL,
MFCC = 2:13,
input = c("mfcc", "audiogram", "spectrum")[1],
norm = FALSE,
simil = c("cosine", "cor")[1],
kernelLen = 200,
kernelSD = 0.2,
padWith = 0,
plot = TRUE,
heights = c(2, 1),
specPars = list(levels = seq(0, 1, length = 30), colorTheme = c("bw", "seewave",
"heat.colors", "...")[2], xlab = "Time, s", ylab = "kHz", ylim = c(0, maxFreq/1000)),
ssmPars = list(levels = seq(0, 1, length = 30), colorTheme = c("bw", "seewave",

"heat.colors", "...")[2], xlab = "Time, s", ylab = "Time, s", main =
"Self-similarity matrix"),

noveltyPars = list(type = "b", pch = 16, col = "black", lwd = 3)
)

Arguments

x path to a .wav file or a vector of amplitudes with specified samplingRate

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than a .wav file)

windowLength length of FFT window, ms

overlap overlap between successive FFT frames, %

step you can override overlap by specifying FFT step, ms

ssmWin window for averaging SSM, ms

maxFreq highest band edge of mel filters, Hz. Defaults to samplingRate / 2. See melfcc

ssm 115

nBands number of warped spectral bands to use. Defaults to 100 * windowLength / 20.
See melfcc

MFCC which mel-frequency cepstral coefficients to use; defaults to 2:13

input either MFCCs ("cepstrum") or mel-filtered spectrum ("audiogram")

norm if TRUE, the spectrum of each STFT frame is normalized

simil method for comparing frames: "cosine" = cosine similarity, "cor" = Pearson’s
correlation

kernelLen length of checkerboard kernel for calculating novelty, ms (larger values favor
global vs. local novelty)

kernelSD SD of checkerboard kernel for calculating novelty

padWith how to treat edges when calculating novelty: NA = treat sound before and after
the recording as unknown, 0 = treat it as silence

plot if TRUE, plots the SSM

heights relative sizes of the SSM and spectrogram/novelty plot

specPars graphical parameters passed to filled.contour.mod and affecting the spectrogram

ssmPars graphical parameters passed to filled.contour.mod and affecting the plot of
SSM

noveltyPars graphical parameters passed to lines and affecting the novelty contour

Value

Returns a list of two components: $ssm contains the self-similarity matrix, and $novelty contains
the novelty vector.

References

• El Badawy, D., Marmaroli, P., & Lissek, H. (2013). Audio Novelty-Based Segmentation of
Music Concerts. In Acoustics 2013 (No. EPFL-CONF-190844)

• Foote, J. (1999, October). Visualizing music and audio using self-similarity. In Proceedings
of the seventh ACM international conference on Multimedia (Part 1) (pp. 77-80). ACM.

• Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In Mul-
timedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on (Vol. 1, pp.
452-455). IEEE.

See Also

spectrogram modulationSpectrum segment

spectrogram modulationSpectrum

Examples

sound = c(soundgen(), soundgen(nSyl = 4, sylLen = 50, pauseLen = 70,
formants = NA, pitch = c(500, 330)))

playme(sound)
ssm(sound, samplingRate = 16000,

116 transplantEnv

input = 'audiogram', simil = 'cor', norm = FALSE,
ssmWin = 10, kernelLen = 150) # detailed, local features

Not run:
m = ssm(sound, samplingRate = 16000,

input = 'mfcc', simil = 'cosine', norm = TRUE,
ssmWin = 50, kernelLen = 600, # global features
specPars = list(colorTheme = 'heat.colors'),
ssmPars = list(colorTheme = 'bw'),
noveltyPars = list(type = 'l', lty = 3, lwd = 2))

plot(m$novelty, type='b') # use for peak detection, etc

End(Not run)

transplantEnv Transplant envelope

Description

Extracts a smoothed amplitude envelope of the donor sound and applies it to the recipient sound.
Both sounds are provided as numeric vectors; they can differ in length and sampling rate. Note
that the result depends on the amount of smoothing (controlled by windowLength) and the cho-
sen method of calculating the envelope. Very similar to setenv, but with a different smoothing
algorithm and with a choice of several types of envelope: hil, rms, or peak.

Usage

transplantEnv(
donor,
samplingRateD,
recipient,
samplingRateR = samplingRateD,
windowLength = 50,
method = c("hil", "rms", "peak")[1],
killDC = FALSE,
dynamicRange = 80,
plot = FALSE

)

Arguments

donor the sound that "donates" the amplitude envelope (numeric vector - NOT an audio
file)

samplingRateD, samplingRateR

sampling rate of the donor and recipient, respectively (if only samplingRateD is
provided, samplingRateR is assumed to be the same)

recipient the sound that needs to have its amplitude envelope adjusted (numeric vector -
NOT an audio file)

transplantFormants 117

windowLength the length of smoothing window, ms

method ’hil’ for Hilbert envelope, ’rms’ for root mean square amplitude, ’peak’ for peak
amplitude per window

killDC if TRUE, dynamically removes DC offset or similar deviations of average wave-
form from zero

dynamicRange parts of sound quieter than -dynamicRange dB will not be amplified

plot if TRUE, plots the original sound, smoothed envelope, and flattened sound

Value

Returns the recipient sound with the donor’s amplitude envelope - a numeric vector with the same
sampling rate as the recipient

See Also

flatEnv, setenv

Examples

donor = rnorm(500) * seq(1, 0, length.out = 500)
recipient = soundgen(sylLen = 600, addSilence = 50)
transplantEnv(donor, samplingRateD = 200,

recipient, samplingRateR = 16000,
windowLength = 50, method = 'hil', plot = TRUE)

transplantEnv(donor, samplingRateD = 200,
recipient, samplingRateR = 16000,
windowLength = 10, method = 'peak', plot = TRUE)

transplantFormants Transplant formants

Description

Takes the general spectral envelope of one sound (donor) and "transplants" it onto another sound
(recipient). For biological sounds like speech or animal vocalizations, this has the effect of re-
placing the formants in the recipient sound while preserving the original intonation and (to some
extent) voice quality. Note that freqWindow_donor and freqWindow_recipient are crucial pa-
rameters that regulate the amount of spectral smoothing in both sounds. The default is to set them
to the estimated median pitch, but this is time-consuming and error-prone, so set them to reasonable
values manually if possible. Also ensure that both sounds have the same sampling rate.

118 transplantFormants

Usage

transplantFormants(
donor,
freqWindow_donor = NULL,
recipient,
freqWindow_recipient = NULL,
samplingRate = NULL,
dynamicRange = 80,
windowLength = 50,
step = NULL,
overlap = 90,
wn = "gaussian",
zp = 0

)

Arguments

donor the sound that provides the formants or the desired spectral filter as returned by
getSpectralEnvelope

freqWindow_donor, freqWindow_recipient

the width of smoothing window. Defaults to median pitch of each respective
sound estimated by analyze

recipient the sound that receives the formants

samplingRate sampling rate of x (only needed if x is a numeric vector, rather than an audio
file)

dynamicRange dynamic range, dB. All values more than one dynamicRange under maximum
are treated as zero

windowLength length of FFT window, ms

step you can override overlap by specifying FFT step, ms

overlap overlap between successive FFT frames, %

wn window type: gaussian, hanning, hamming, bartlett, rectangular, blackman, flat-
top

zp window length after zero padding, points

Details

Algorithm: makes spectrograms of both sounds, interpolates and smoothes the donor spectrogram,
flattens the recipient spectrogram, multiplies the spectrograms, and transforms back into time do-
main with inverse STFT.

See Also

transplantEnv getSpectralEnvelope addFormants soundgen

transplantFormants 119

Examples

Not run:
Objective: take formants from the bleating of a sheep and apply them to a
synthetic sound with any arbitrary duration, intonation, nonlinearities etc
data(sheep, package = 'seewave') # import a recording from seewave
donor = as.numeric(scale(sheep@left)) # source of formants
samplingRate = sheep@samp.rate
playme(donor, samplingRate)
spectrogram(donor, samplingRate, osc = TRUE)
seewave::meanspec(donor, f = samplingRate, dB = 'max0')

recipient = soundgen(sylLen = 1200,
pitch = c(100, 300, 250, 200),
vibratoFreq = 9, vibratoDep = 1,
addSilence = 180,
samplingRate = samplingRate,
invalidArgAction = 'ignore') # keep low samplingRate

playme(recipient, samplingRate)
spectrogram(recipient, samplingRate, osc = TRUE)

s1 = transplantFormants(
donor = donor,
recipient = recipient,
samplingRate = samplingRate)

playme(s1, samplingRate)
spectrogram(s1, samplingRate, osc = TRUE)
seewave::meanspec(s1, f = samplingRate, dB = 'max0')

if needed, transplant amplitude envelopes as well:
s2 = transplantEnv(donor = donor, samplingRateD = samplingRate,

recipient = s1, windowLength = 10)
playme(s2, samplingRate)
spectrogram(s2, samplingRate, osc = TRUE)

Now we use human formants on sheep source: the sheep says "why?"
s2 = transplantFormants(

donor = soundgen(formants = 'uaaai',
samplingRate = samplingRate,
invalidArgAction = 'ignore'),

recipient = donor,
samplingRate = samplingRate)

playme(s2, samplingRate)
spectrogram(s2, samplingRate, osc = TRUE)
seewave::meanspec(s2, f = samplingRate, dB = 'max0')

We can also transplant synthetic formants w/o synthesizing a donor sound to
save time
s3 = transplantFormants(

donor = getSpectralEnvelope(
nr = 512, nc = 100, # fairly arbitrary dimensions
formants = 'uaaai',
samplingRate = samplingRate),

120 transplantFormants

recipient = donor,
samplingRate = samplingRate)

playme(s3, samplingRate)
spectrogram(s3, samplingRate, osc = TRUE)

End(Not run)

Index

∗Topic datasets
defaults, 26
defaults_analyze, 26
defaults_analyze_pitchCand, 27
notesDict, 80
permittedValues, 85
pitchContour, 85
pitchManual, 86
presets, 90
segmentManual, 99

addFormants, 3, 38, 39, 118
addVectors, 6
analyze, 7, 15, 20, 39, 48–51, 53, 55, 80, 86,

87, 96, 110, 118
analyzeFolder, 13, 15, 81, 87, 112
approx, 52
audspec, 47

beat, 20, 32, 41, 42, 106

compareSounds, 22
contour, 71
crossFade, 24, 30

defaults, 26
defaults_analyze, 7, 26
defaults_analyze_pitchCand, 27
dtw, 23, 67

env, 94, 98
estimateVTL, 27, 92

fade, 25, 29
fart, 21, 31, 41, 42, 106
filterMS, 32, 33, 35
filterSoundByMS, 33, 66, 70
findformants, 9, 17
flatEnv, 37, 53, 55, 79, 117
flatSpectrum, 38

gaussianSmooth2D, 40, 69
generateNoise, 21, 32, 41, 106
getEntropy, 44
getIntegerRandomWalk, 45
getLoudness, 7, 13, 20, 46, 49, 53, 55, 80
getLoudnessFolder, 48, 49
getPrior, 50
getRandomWalk, 46, 51
getRMS, 13, 20, 48, 49, 52, 54, 55, 80
getRMSFolder, 53, 54
getRolloff, 55, 55, 56, 103
getSmoothContour, 58
getSpectralEnvelope, 3–5, 60, 104, 118

HzToSemitones, 64, 100

invertSpectrogram, 33, 35, 64
istft, 5, 42, 105

lines, 115
loess, 59

matchPars, 22, 67
melfcc, 114, 115
modulationSpectrum, 13, 33, 40, 69, 73, 75,

110, 115
modulationSpectrumFolder, 69, 71, 73
morph, 76
msToSpec, 33, 78

normalizeFolder, 79
notesDict, 80

optim, 10, 19, 81, 82
optimizePars, 81, 95
osc_dB, 11, 47, 83, 110, 113

palette, 71, 75, 110
permittedValues, 85
pitch_app, 9, 13, 15, 18, 20, 51, 87
pitchContour, 85

121

122 INDEX

pitchManual, 86
pitchSmoothPraat, 86
play, 21, 32, 42, 89, 105
playme, 88, 89
plot, 95, 98
png, 11, 19, 71, 75, 95, 98, 113
presets, 90

reportTime, 90
rnorm, 51

schwa, 28, 91
segment, 13, 20, 93, 98, 99, 115
segmentFolder, 81, 87, 96, 96
segmentManual, 99
semitonesToHz, 64, 100
setenv, 116, 117
soundgen, 3, 5, 7, 21, 28, 31, 32, 41, 42, 57,

58, 67, 76, 100, 107, 110, 118
soundgen_app, 107
specToMS, 107
spectro, 108
spectrogram, 11, 19, 47, 66, 69, 71, 75, 105,

108, 113, 115
spectrogramFolder, 112
spline, 52
ssm, 13, 96, 110, 114

transplantEnv, 116, 118
transplantFormants, 5, 38, 39, 117

	addFormants
	addVectors
	analyze
	analyzeFolder
	beat
	compareSounds
	crossFade
	defaults
	defaults_analyze
	defaults_analyze_pitchCand
	estimateVTL
	fade
	fart
	filterMS
	filterSoundByMS
	flatEnv
	flatSpectrum
	gaussianSmooth2D
	generateNoise
	getEntropy
	getIntegerRandomWalk
	getLoudness
	getLoudnessFolder
	getPrior
	getRandomWalk
	getRMS
	getRMSFolder
	getRolloff
	getSmoothContour
	getSpectralEnvelope
	HzToSemitones
	invertSpectrogram
	matchPars
	modulationSpectrum
	modulationSpectrumFolder
	morph
	msToSpec
	normalizeFolder
	notesDict
	optimizePars
	osc_dB
	permittedValues
	pitchContour
	pitchManual
	pitchSmoothPraat
	pitch_app
	playme
	presets
	reportTime
	schwa
	segment
	segmentFolder
	segmentManual
	semitonesToHz
	soundgen
	soundgen_app
	specToMS
	spectrogram
	spectrogramFolder
	ssm
	transplantEnv
	transplantFormants
	Index

