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The sommer package was developed to provide R users a powerful and reliable multivariate mixed model solver
for different genetic and non-genetic analysis in diploid and polyploid organisms. This package allows the user
to estimate variance components for a mixed model with the advantage of specifying the variance-covariance
structure of the random effects, specify heterogeneous variances, and obtain other parameters such as BLUPs,
BLUEsS, residuals, fitted values, variances for fixed and random effects, etc. The core algorithms of the
package are coded in C++ using the Armadillo library to opmitime dense matrix operations common in the
derect-inversion algorithms.

The package is focused on problems of the type p > n related to genomic prediction (hybrid prediction
& genomic selection) and GWAS analysis, although any general mixed model can be fitted as well. The
package provides kernels to estimate additive (A.mat), dominance (D.mat), and epistatic (E.mat) relationship
matrices that have been shown to increase prediction accuracy under certain scenarios or simply to estimate
the variance components of such. The package provides flexibility to fit other genetic models such as full and
half diallel models as well.

Vignettes aim to provide several examples in how to use the sommer package under different scenarios. We
will spend the rest of the space providing examples for:

1) Heritability (h?) calculation
2) Specifying heterogeneous variances in mixed models
3) Using the pin calculator
4) Half and full diallel designs (using the overlay)
5) Genomic selection (predicting mendelian sampling)
« GBLUP
o« rrBLUP

) Single cross prediction (hybrid prediction)

) Spatial modeling (using the 2-dimensional splines)
8) Multivariate genetic models and genetic correlations
) Final remarks

Background

The core of the package the mmerfunction which solve the mixed model equations. The functions are an
interface to call the NR Direct-Inversion Newton-Raphson or Average Information (Tunnicliffe 1989; Gilmour
et al. 1995; Lee et al. 2016). Since version 2.0 sommer can handle multivariate models. Following Maier et al.
(2015), the multivariate (and by extension the univariate) mixed model implemented has the form:

1 =X161+Z1ur + €1 Yo = Xofo + Zoug + €2 ... Y = XiBi + Ziu; + €

where y; is a vector of trait phenotypes, §; is a vector of fixed effects, u; is a vector of random effects for
individuals and e; are residuals for trait ‘i’ (i =1, ..., t). The random effects (u; ... u; and e;) are assumed
to be normally distributed with mean zero. X and Z are incidence matrices for fixed and random effects
respectively. The distribution of the multivariate response and the phenotypic variance covariance (V) are:

Y ~ MVN(X8, V)
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where K is the relationship or covariance matrix for the kth random effect (u=1,... k), and R=I is an identity

matrix for the residual term. The terms O'Zi and a?i denote the genetic (or any of the kth random terms) and

residual variance of trait ‘i’, respectively and g, and T, the genetic (or any of the kth random terms) and

residual covariance between traits ‘i’ and ‘j’ (i=1,...,t, and j=1,...,t). The algorithm implemented optimizes
the log likelihood:

logL =1/2*In(|]V|) + In(X'|V|X) + Y'PY

where || is the determinant of a matrix. And the REML estimates are updated using a Newton optimization
algorithm of the form:

9k+1 — 0k 4 (Hk)—l * %wk

Where, 6 is the vector of variance components for random effects and covariance components among traits,

H~' is the inverse of the Hessian matrix of second derivatives for the kth cycle, % is the vector of first

derivatives of the likelihood with respect to the variance-covariance components. The Eigen decomposition
of the relationship matrix proposed by Lee and Van Der Werf (2016) was included in the Newton-Raphson
algorithm to improve time efficiency. Additionally, the popular pin function to estimate standard errors for
linear combinations of variance components (i.e. heritabilities and genetic correlations) was added to the
package as well.

Please refer to the canonical papers listed in the Literature section to check how the algorithms work. We
have tested widely the methods to make sure they provide the same solution when the likelihood behaves
well but for complex problems they might lead to slightly different answers. If you have any concern please
contact me at cova_ ruber@live.com.mx.

In the following section we will go in detail over several examples on how to use mixed models in univariate
and multivariate case and their use in quantitative genetics.

1) Marker and non-marker based heritability calculation

The heritability is one of the most popular parameters among the breeding and genetics community because
of the insight that provides in the inheritance of the trait. The heritability is usually estimated as narrow
sense (h?; only additive variance in the numerator 0%), and broad sense (H?; all genetic variance in the
numerator o).

In a classical breeding experiment with no molecular markers, special designs are performed to estimate and
disect the additive (¢%) and non-additive (i.e. dominance %) variance along with environmental variability.
Designs such as generation analysis, North Carolina designs are used to disect 04 and ¢% to estimate the
narrow sense heritability (h?). When no special design is available we can still disect the genetic variance
(02) and estimate the broad sense heritability. In this first example we will show the broad sense estimation
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which doesn’t use covariance structures for the genotipic effect (i.e. genomic or additive relationship matrices).
For big models with no covariance structures, sommer’s direct inversion is a bad idea to use but we will show
anyways how to do it, but keep in mind that for very sparse models we recommend using the lmer function
from the lme4 package or any other package using MME-based algorithms (i.e. asreml-R).

The following dataset has 41 potato lines evaluated in 5 locations across 3 years in an RCBD design. We
show how to fit the model and extract the variance components to calculate the h2.

library (sommer)
data(DT_example)
DT <- DT_example
A <- A_example

ansl <- mmer(Yield-~1,

random= ~ Name + Env + Env:Name + Env:Block,
rcov= ~ units,
data=DT)
## iteration LogLik wall cpu(sec) restrained
## 1 -40.765 7:58:31 0 0
#t 2 -30.2657 7:58:31 0 0
#i# 3 -25.8227 7:58:31 0 1
# 4 -24.7277 7:58:31 0 1
## 5 -24.7203  7:58:31 0 1
## 6 -24.7202 7:58:31 0 1

summary (ans1) $varcomp

## VarComp VarCompSE Zratio Constraint
## Name.Yield-Yield 3.718279 1.6959834 2.1924029 Positive
## Env.Yield-Yield 12.008450 12.2771178 0.9781164  Positive

## Env:Name.Yield-Yield 5.152643
## Env:Block.Yield-Yield 0.000000
## units.Yield-Yield 4.366189

(n.env <- length(levels(DT$Env)))

.4923912 3.4526091  Positive
.1156675 0.0000000 Positive
.6573086 6.6425245  Positive

O O =

## [1] 3
pin(ansl, h2 ~ V1 / ( V1 + (V3/n.env) + (V5/(2%n.env)) ) )

## Estimate SE
## h2 0.6032715 0.1344582

Recently with markers becoming cheaper, thousand of markers can be run in the breeding materials. When
markers are available, an special design is not neccesary to disect the additive genetic variance. The availability
of the additive, dominance and epistatic relationship matrices allow us to estimate 0%, 0% and 0%, although
given that A, D and E are not orthogonal the interpretation of models that fit more than A and D become
cumbersome.

Assume you have a population (even unreplicated) in the field but in addition we have genetic markers. Now
we can fit the model and estimate the genomic heritability that explains a portion of the additive genetic
variance (with high marker density 0 = o2)

g
data(DT_cpdata)

DT <- DT_cpdata

GT <- GT_cpdata

MP <- MP_cpdata

DT$idd <-DT$id; DT$ide <-DT$id



### look at the data
A <- A.mat(GT) # additive relationship matriz
D <- D.mat(GT) # dominance relationship matriz
E <- E.mat(GT) # epistatic relationship matric
ans.ADE <- mmer(color-~1,
random=~vs(id,Gu=A) + vs(idd,Gu=D),
rcov=~units,

data=DT)
## iteration LogLik wall cpu(sec) restrained
#i# 1 -123 7:58:34 0 0
## 2 -107.864  7:58:35 1 0
## 3 -103.867  7:58:35 1 0
## 4 -103.315 7:58:35 1 0
## 5 -103.294  7:58:36 2 0
## 6 -103.293 7:58:36 2 0
(summary (ans . ADE) $varcomp)
## VarComp VarCompSE  Zratio Constraint

## u:id.color-color 0.003662202 0.0012194130 3.003250 Positive
## u:idd.color-color 0.001820079 0.0007406216 2.457502 Positive
## units.color-color 0.002106929 0.0002864724 7.354736 Positive

pin(ans.ADE, h2 ~ (V1) / ( V1+V3) )

## Estimate SE
## h2 0.6347926 0.08840488

pin(ans.ADE, h2 ~ (V1+V2) / ( V1+V2+V3) )

## Estimate SE
## h2 0.7223783 0.05563774

In the previous example we showed how to estimate the additive (¢%), dominance (0%), and epistatic (o%)
variance components based on markers and estimate broad (H?) and narrow sense heritability (h?). Notice
that we used the vs() function which indicates that the random effect inside the parenthesis (i.e. id, idd or
ide) has a covariance matrix (A, D, or E), that will be specified in the Gu argument of the vs() function.
Please DO NOT provide the inverse but the original covariance matrix.

2) Specifying heterogeneous variances in univariate models

Very often in multi-environment trials, the assumption that genetic variance is the same across locations may
be too naive. Because of that, specifying a general genetic component and a location specific genetic variance
is the way to go.

We estimate variance components for GC'As and SC' A specifying the variance structure.

data(DT_cornhybrids)

DT <- DT_cornhybrids

DTi <- DTi_cornhybrids

GT <- GT_cornhybrids

### fit the model

modFD <- mmer(Yield~1,
random=~ vs(at(Location,c("3","4")),GCA2),
rcov= ~ vs(ds(Location) ,units),
data=DT)



## iteration LogLik wall cpu(sec)  restrained

#i# 1 -190.104  7:58:37 1 0

## 2 -171.543  7:58:37 1 0

## 3 -165.319  7:58:38 2 0

## 4 -164.691  7:58:38 2 0

## 5 -164.684  7:58:39 3 0

#i# 6 -164.684  7:58:39 3 0
summary (modFD)

##

## Multivariate Linear Mixed Model fit by REML

## rlokokkookokookokkkokokkk sommer 4.0 kkskskokkokskskokokokskskokok ok sk sk k ok
##

#i# logLik AIC BIC Method Converge

## Value -164.6839 331.3677 335.3592 NR TRUE

##

## Variance-Covariance components:

## VarComp VarCompSE Zratio Constraint
## 3:GCA2.Yield-Yield 62.48 53.45 1.169 Positive
## 4:GCA2.Yield-Yield 97.99 79.56 1.232 Positive
## 1:units.Yield-Yield 216.82 30.77 T7.047 Positive
## 2:units.Yield-Yield 216.82 30.77 T7.047 Positive
## 3:units.Yield-Yield 493.05 77.27 6.381 Positive
## 4:units.Yield-Yield 711.98 111.63 6.378 Positive
##

## Fixed effects:

##  Trait Effect Estimate Std.Error t.value

## 1 Yield (Intercept) 138.1 0.9442 146.3

##

## Groups and observations:

## Yield

## 3:GCA2 20
## 4:GCA2 20
##
## Use the '$' sign to access results and parameters

In the previous example we showed how the at () function is used in the mmer solver. By using the at function
you can specify that i.e. the GCA2 has a different variance in different Locations, in this case locations 3 and
4, but also a main GCA variance. This is considered a CS + DIAG (compound symmetry + diagonal) model.

In addition, other functions can be added on top to fit models with covariance structures, i.e. the Gu argument
from the vs() function to indicate a covariance matrix (A, pedigree or genomic relationship matrix)

data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- GT_cornhybrids
GT[1:4,1:4]

## A258 A634 A641 A680
## A258 2.23285528 -0.3504778 -0.04756856 -0.32239362
## A634 -0.35047780 1.4529169 0.45203869 -0.02293680
## A641 -0.04756856 0.4520387 1.96940221 -0.09896791
## A680 -0.32239362 -0.0229368 -0.09896791 1.65221984



### fit the model
modFD <- mmer(Yield~1,
random=~ vs(at(Location,c("3","4")),GCA2,Gu=GT),

rcov= ~ vs(ds(Location),units),

data=DT)
## iteration LogLik wall cpu(sec) restrained
## 1 -191.286  7:58:40 1 0
#i# 2 -172.247  7:58:40 1 0
## 3 -165.948  7:58:41 2 0
## 4 -165.248  7:58:41 2 0
## 5 -165.23  7:58:42 3 0
## 6 -165.229  7:58:42 3 0
## 7 -165.229  7:58:43 4 0
summary (modFD)
##
## Multivariate Linear Mixed Model fit by REML
## erlokokkookkookkkkokokkk sommer 4.0 kkskokokokokskoskokokokskskokok ok ksk ok k ok
#i#
it logLik AIC BIC Method Converge
## Value -165.2286 332.4571 336.4486 NR TRUE
##
## Variance-Covariance components:
## VarComp VarCompSE Zratio Constraint
## 3:GCA2.Yield-Yield 26.64 26.16 1.0185 Positive
## 4:GCA2.Yield-Yield 37.51 37.78 0.9927  Positive
## 1:units.Yield-Yield 216.77 30.75 7.0489 Positive
## 2:units.Yield-Yield 216.77 30.75 7.0489 Positive
## 3:units.Yield-Yield 503.62 77.87 6.4673 Positive
## 4:units.Yield-Yield 738.86 114.17 6.4715  Positive
##
## Fixed effects:
##  Trait Effect Estimate Std.Error t.value
## 1 Yield (Intercept) 138.1 0.9147 151
#i#
## Groups and observations:
## Yield

## 3:GCA2 20
## 4:GCA2 20
##
## Use the '$' sign to access results and parameters

3) Using the pin calculator

Sometimes the user needs to calculate ratios or functions of specific variance-covariance components and
obtain the standard error for such parameters. Examples of these are the genetic correlations, heritabilities,
etc. Using the CPdata we will show how to estimate the heritability and the standard error using the pin
function that uses the delta method to come up with these parameters. This can be extended for any linear
combination of the variance components.

data(DT_cpdata)
DT <- DT_cpdata



GT <- GT_cpdata
MP <- MP_cpdata
### look at the data
A <- A.mat(GT) # additive relationship matriz
ans <- mmer(color-~1,
random=~vs (id,Gu=A),
rcov=~units,

data=DT)
## iteration LogLik wall cpu(sec) restrained
#i# 1 -137.304 7:58:44 0 0
## 2 -115.507 7:58:44 0 0
## 3 -111.236  7:58:45 1 0
## 4 -110.755  7:58:45 1 0
#i# 5 -110.741  7:58:45 1 0
#i# 6 -110.741  7:58:45 1 0
(summary (ans . ADE) $varcomp)
## VarComp VarCompSE  Zratio Constraint

## u:id.color-color 0.003662202 0.0012194130 3.003250 Positive
## u:idd.color-color 0.001820079 0.0007406216 2.457502 Positive
## units.color-color 0.002106929 0.0002864724 7.354736 Positive

pin(ans, h2 ~ (V1) / ( V1+V2) )

## Estimate SE
## h2 0.6512157 0.06107574

The same can be used for multivariate models. Please check the documentation of the pin function to see
more examples.

4) Half and full diallel designs (use of the overlay)

When breeders are looking for the best single cross combinations, diallel designs have been by far the most
used design in crops like maize. There are 4 types of diallel designs depending if reciprocate and self cross
(omission of parents) are performed (full diallel with parents n”2; full diallel without parents n(n-1); half
diallel with parents 1/2 * n(n+1); half diallel without parents 1/2 * n(n-1) ). In this example we will show a
full dialle design (reciprocate crosses are performed) and half diallel designs (only one of the directions is
performed).

In the first data set we show a full diallel among 40 lines from 2 heterotic groups, 20 in each. Therefore 400
possible hybrids are possible. We have pehnotypic data for 100 of them across 4 locations. We use the data
available to fit a model of the form:

y=XB+ Zuy + Zug + Zug + ¢

We estimate variance components for GCA;, GCAs and SCA and use them to estimate heritability. Addi-
tionally BLUPs for GCA and SCA effects can be used to predict crosses.

data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- GT_cornhybrids

modFD <- mmer (Yield~Location,
random=~GCA1+GCA2+SCA,



rcov=~units,

data=DT)

## iteration LogLik wall cpu(sec)  restrained
#i# 1 -149.436  7:58:46 0 0

#i# 2 -136.475  7:58:47 1 1

#it 3 -132.852  7:58:47 1 1

#it 4 -132.625  7:58:47 1 1

## 5 -132.596  7:58:48 2 1

#i#t 6 -132.59  7:58:48 2 1

## 7 -132.589  7:58:49 3 1

#i#t 8 -132.589  7:58:49 3 1

(suma <- summary(modFD) $varcomp)

## VarComp VarCompSE Zratio Constraint
## GCAl.Yield-Yield 0.000000 16.50337 0.0000000 Positive
## GCA2.Yield-Yield 7.412226 18.94200 0.3913116 Positive
## SCA.Yield-Yield 187.560303 41.59428 4.5092817 Positive
## units.Yield-Yield 221.142463 18.14716 12.1860656 Positive

Vgca <- sum(suma[1:2,1])
Vsca <- sumal[3,1]

Ve <- sumal4,1]

Va = 4+Vgca

Vd = 4#Vsca

Vg <- Va + Vd

(H2 <- Vg / (Vg + (Ve)) )

## [1] 0.7790856
(h2 <- Va / (Vg + (Ve)) )

## [1] 0.02961832

Don’t worry too much about the small h2 value, the data was simulated to be mainly dominance variance,
therefore the Va was simulated extremely small leading to such value of narrow sense h2.

In this second data set we show a small half diallel with 7 parents crossed in one direction. n(n-1)/2 crosses
are possible 7(6)/2 = 21 unique crosses. Parents appear as males or females indistictly. Each with two
replications in a CRD. For a half diallel design a single GCA variance component for both males and females
can be estimated and an SCA as well (¢2CA and 0%C A respectively), and BLUPs for GCA and SCA of the
parents can be extracted. We would show first how to use it with the mmer function using the overlay()
function. The specific model here is:

y=XB+ Zuy + Zu, + €

data("DT_halfdiallel")
DT <- DT_halfdiallel

head (DT)

##  rep geno male female sugar
# 1 1 12 1 2 13.950509
# 2 2 12 1 2 9.756918
# 3 1 13 1 3 13.906355
## 4 2 13 1 3 9.119455
## 5 1 14 1 4 5.174483
# 6 2 14 1 4 8.452221



DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)
#### model using overlay
modh <- mmer(sugar-1,
random=~vs (overlay(femalef ,malef))

+ genof,

data=DT)
## iteration LogLik wall cpu(sec) restrained
## 1 -10.425  7:58:49 0 0
## 2 -6.487  7:58:49 0 0
## 3 -5.732  7:58:49 0 0
#i# 4 -5.67494  7:58:49 0 0
#i# 5 -5.67441  7:58:49 0 0
summary (modh) $varcomp
## VarComp VarCompSE  Zratio Constraint
## u:femalef.sugar-sugar 5.507899 3.5741151 1.541052 Positive
## genof.sugar-sugar 1.815784 1.3629575 1.332238 Positive
## units.sugar-sugar 3.117538 0.9626094 3.238632 Positive

Notice how the overlay() argument makes the overlap of incidence matrices possible making sure that male
and female are joint into a single random effect.

5) Genomic selection

In this section we will use wheat data from CIMMYT to show how is genomic selection performed. This is
the case of prediction of specific individuals within a population. It basically uses a similar model of the form:

y=Xp+Zu+e

and takes advantage of the variance covariance matrix for the genotype effect known as the additive relationship
matrix (A) and calculated using the A.mat function to establish connections among all individuals and predict
the BLUPs for individuals that were not measured. The prediction accuracy depends on several factors such
as the heritability (h?), training population used (TP), size of TP, etc.

data (DT _wheat)

DT <- DT_wheat

GT <- GT_wheat

colnames(DT) <- paste0("X",1:ncol(DT))

DT <- as.data.frame(DT) ;DT$id <- as.factor(rownames(DT))
# select environment 1

rownames (GT) <- rownames (DT)

K <- A.mat(GT) # additive relationship matric
colnames(K) <- rownames(K) <- rownames(DT)

# GBLUP pedigree-based approach
set.seed(12345)

y.trn <- DT

vv <- sample(rownames(DT),round(nrow(DT)/5))
y.trnlvv,"X1"] <- NA

head(y.trn)

## X1 X2 X3 X4 id
## 775 NA -1.72746986 -1.89028479 0.0509159 775



## 2166 -0.2527028 0.40952243 0.30938553 -1.7387588 2166
## 2167 0.3418151 -0.64862633 -0.79955921 -1.0535691 2167

## 2465 NA 0.09394919 0.57046773 0.5517574 2465
## 3881 NA -0.28248062 1.61868192 -0.1142848 3881
## 3889 2.3360969 0.62647587 0.07353311 0.7195856 3889
## GBLUP

ans <- mmer (X1~1,
random=~vs (id, Gu=K) ,
rcov=~units,
data=y.trn) # kinship based

## iteration LogLik wall cpu(sec) restrained

## 1 -202.344 7:58:51 1 0

## 2 -198.717 7:58:51 1 0

#it 3 -197.634  7:58:52 2 0

## 4 -197.51 7:58:52 2 0

## 5 -197.508 7:58:53 3 0

## 6 -197.508 7:58:54 4 0

ans$U$ u:id $X1 <- as.data.frame(ans$U$ u:id” $X1)

rownames (ans$U$ u:id $X1) <- gsub("id","",rownames(ans$U$ u:id $X1))

cor (ans$U$ u:id  $X1[vv,],DT[vv,"X1"], use="complete")

## [1] 0.4885674

## rrBLUP

ans2 <- mmer (X1~1,
random=~vs (1ist (GT)),
rcov=~units,
data=y.trn) # kinship based

## iteration LogLik wall cpu(sec) restrained
## 1 -343.082 7:58:56 2 0
#it 2 -243.965  7:58:57 3 0
#it 3 -208.257  7:58:57 3 0
## 4 -197.982 7:58:58 4 0
## 5 -197.519 7:58:58 4 0
## 6 -197.508 7:58:59 5 0
#it 7 -197.508  7:58:59 5 0

u <- GT %x% as.matrix(ans2$U$ u:GT $X1) # BLUPs for individuals
rownames (u) <- rownames (GT)
cor(ulvv,],DT[vv,"X1"]) # same correlation

## [1] 0.4885716

# the same can be applied in multi-response models in GBLUP or rrBLUP

6) Single cross prediction

When doing prediction of single cross performance the phenotype can be dissected in three main components,
the general combining abilities (GCA) and specific combining abilities (SCA). This can be expressed with the
same model analyzed in the diallel experiment mentioned before:

y=XB+ Zuy + Zus + Zug + ¢
with:
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Uy ~ N(O, KlO'zl)
U9 ~ N(O, K20‘32)
us ~ N(0, Kz02s)

And we can specify the K matrices. The main difference between this model and the full and half diallel
designs is the fact that this model will include variance covariance structures in each of the three random
effects (GCA1, GCA2 and SCA) to be able to predict the crosses that have not ocurred yet. We will use the
data published by Technow et al. (2015) to show how to do prediction of single crosses.

data(DT_technow)

DT <- DT_technow

Md <- Md_technow

Mf <- Mf_technow

Ad <- Ad_technow

Af <- Af_ technow

# RUN THE PREDICTION MODEL

y.trn <- DT

vvl <- which(!is.na(DT$GY))

vv2 <- sample(vvl, 100)

y.trnlvv2,"GY"] <- NA

anss2 <- mmer(GY-~1,
random=~vs (dent,Gu=Ad) + vs(flint,Gu=Af),
rcov=~units,
data=y.trn)

## iteration LogLik wall cpu(sec) restrained
#i#t 1 93.142  7:59:10 8 0

#i# 2 135.18  7:59:18 16 0

#it 3 145.517  7:59:26 24 0

#it 4 147.085  7:59:34 32 0

## 5 147.178  7:59:42 40 0

#i# 6 147.184  7:59:50 48 0

#it 7 147.184  7:59:58 56 0

summary (anss2) $varcomp

## VarComp VarCompSE Zratio Constraint
## u:dent.GY-GY 16.93639 2.6917284 6.292012 Positive
## u:flint.GY-GY 12.47174 2.3248074 5.364634 Positive
## units.GY-GY 16.75020 0.7662471 21.860045 Positive

zul <- model.matrix(~dent-1,y.trn) %+*J, anss2$U$ u:dent $GY
zu2 <- model.matrix(~flint-1,y.trn) %*’% anss2$U$ u:flint $GY
u <- zul+zu2+anss2$Betal[l,"Estimate"]

cor(ulvv2,], DT$GY[vv2])

## [1] 0.8234584

In the previous model we only used the GCA effects (GCA1 and GCA2) for practicity, altough it’s been
shown that the SCA effect doesn’t actually help that much in increasing prediction accuracy and increase a
lot the computation intensity required since the variance covariance matrix for SCA is the kronecker product
of the variance covariance matrices for the GCA effects, resulting in a 10578x10578 matrix that increases in a
very intensive manner the computation required.

A model without covariance structures would show that the SCA variance component is insignificant compared
to the GCA effects. This is why including the third random effect doesn’t increase the prediction accuracy.
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7) Spatial modeling (using the 2-dimensional spline)

We will use the CPdata to show the use of 2-dimensional splines for accomodating spatial effects in field
experiments. In early generation variety trials the availability of seed is low, which makes the use of
unreplicated design a neccesity more than anything else. Experimental designs such as augmented designs
and partially-replicated (p-rep) designs become every day more common this days.

In order to do a good job modeling the spatial trends happening in the field special covariance structures
have been proposed to accomodate such spatial trends (i.e. autoregressive residuals; arl). Unfortunately,
some of these covariance structures make the modeling rather unstable. More recently other research groups
have proposed the use of 2-dimensional splines to overcome such issues and have a more robust modeling of
the spatial terms (Lee et al. 2013; Rodriguez-Alvarez et al. 2018).

In this example we assume an unreplicated population where row and range information is available which
allows us to fit a 2 dimensional spline model.

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
### mimic two fields
A <- A.mat(GT)
mix <- mmer(Yield~1,
random=~vs(id, Gu=A) +
vs (Rowf) +
vs(Colf) +
vs (spl2D(Row,Col)),
rcov=~vs(units),

data=DT)
## iteration LogLik wall cpu(sec) restrained
## 1 -154.198 8:0:1 0 0
## 2 -152.064 8:0:2 1 0
## 3 -151.265 8:0:2 1 0
## 4 -151.202 8:0:2 1 0
## 5 -1561.201  8:0:3 2 0
summary (mix)
##
## Multivariate Linear Mixed Model fit by REML
## rkokokkolokkksookokkskokokokk  sommer 4.0 kkskokokokokskoskokokokskskoskokkksk sk k ok
##
## logLik AIC BIC Method Converge
## Value -151.2011 304.4021 308.2938 NR TRUE
##
## Variance-Covariance components:
## VarComp VarCompSE Zratio Constraint
## u:id.Yield-Yield 783.4 319.3 2.4536 Positive
## u:Rowf.Yield-Yield 814.7 390.5 2.0863 Positive
## u:Colf.Yield-Yield 182.2 129.7 1.4053  Positive
## u:Row.Yield-Yield 513.6 694.7 0.7393 Positive
## u:units.Yield-Yield 2922.6 294.1 9.9368 Positive
##
## Fixed effects:
##  Trait Effect Estimate Std.Error t.value
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## 1 Yield (Intercept) 132.1 8.791 15.03

#i#

## Groups and observations:
#i# Yield

## u:id 363

## u:Rowf 13

## u:Colf 36

## u:Row 168

#i#

## Use the '$' sign to access results and parameters

Notice that the job is done by the sp12D() function that takes the Row and Col information to fit a spatial
kernel.

8) Multivariate genetic models and genetic correlations

Sometimes is important to estimate genetic variance-covariance among traits, multi-reponse models are very
useful for such task. Let see an example with 3 traits (color, Yield, and Firmness) and a single random
effect (genotype; id) although multiple effects can be modeled as well. We need to use a variance covariance
structure for the random effect to be able to obtain the genetic covariance among traits.

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
A <- A.mat(GT)
ans.m <- mmer (cbind(Yield,color)~1,
random=~ vs(id, Gu=A, Gtc=unsm(2))
+ vs(Rowf,Gtc=diag(2))
+ vs(Colf,Gtc=diag(2)),
rcov=~ vs(units, Gtc=unsm(2)),

data=DT)

## iteration LogLik wall cpu(sec)  restrained
## 1 -375.872  8:0:9 5 0

## 2 -291.932 8:0:13 9 0

#i# 3 -2568.273 8:0:18 14 0

#it 4 -253.459  8:0:23 19 0

## 5 -2563.291 8:0:27 23 0

## 6 -253.278  8:0:32 28 0

#it 7 -253.277 8:0:36 32 0

#i#t 8 -2563.277  8:0:40 36 0

Now you can extract the BLUPs using the ‘randef’ function or simple accesing with the ‘$’ sign and pick
‘u.hat’. Also, genetic correlations and heritabilities can be calculated easily.

cov2cor (ans.m$sigma$ - u:id")

## Yield color
## Yield 1.0000000 0.1234441
## color 0.1234441 1.0000000
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9) Final remarks

Keep in mind that sommer uses direct inversion (DI) algorithm which can be very slow for large datasets.
The package is focused in problems of the type p > n (more random effect levels than observations) and
models with dense covariance structures. For example, for experiment with dense covariance structures
with low-replication (i.e. 2000 records from 1000 individuals replicated twice with a covariance structure of
1000x1000) sommer will be faster than MME-based software. Also for genomic problems with large number
of random effect levels, i.e. 300 individuals (n) with 100,000 genetic markers (p). For highly replicated
trials with small covariance structures or n > p (i.e. 2000 records from 200 individuals replicated 10 times
with covariance structure of 200x200) asreml or other MME-based algorithms will be much faster and we
recommend you to opt for those software.
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