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Abstract

snowfall is an R package for easier parallel programming using clus-
ters. Basically it is build upon the package snow [4] using it’s network
and cluter abilities and therefore offering use of Socket, MPI, PVM and
NetWorkSpaces support and can be seen as an ”usability wrapper”.

snow functions can used from within snowfall as well.
snowfall offers additional support for implicit sequential execution

(e.g. for distributing packages using optional parallel support), additional
calculation functions, extended error handling, and many functions for
more comfortable programming.

Also, snowfall can be configured via command line arguments, mak-
ing the change of cluster settings easier without program change. This
can be used to connect to batch- and workloadmanagers.

Finally snowfall can be directly connected to the R-specific cluster
manager sfCluster.

snowfall does not add an technical layer of abstraction to snow. But
beside from the connector to sfCluster, it builds an extra layer of usabil-
ity on the top of snow.

It is not thought as an replacement for snow, but an addition for inex-
perienced users or those who seek more comfort using parallel computing
and R.

A further introduction to snowfall is published in the R-Journal [2].
For additional documentation, help and examples please visit our web-

site: http://www.imbi.uni-freiburg.de/parallel
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1 snowfall

1.1 Getting started

1.1.1 Requirements for sequential execution

Basically, snowfall is able to run without any external library. In this case,

it is not possible to use parallel execution of commands. All potential calls to

parallel functions will be executed sequentially.

Programs written in sequential use with snowfall calls can be running in par-

allel without any code change.

1.1.2 Requirements for parallel execution: Basics

If you just want to use parallel computing on your local PC or laptop you are

just fine with basically installation of snowfall and snow. You can use then a

so called socket cluster, for which no additional software needs to be installed.

If you are just wanting to use parallel programming on your local workstation,

PC or laptop, you are fine.

1.1.3 Requirements for parallel execution: MPI

You have a running MPI cluster (OpenMPI or any other kind of MPI cluster)

available.

Although snowfall is useable with OpenMPI as well, the management software

sfCluster can currently only used with LAM/MPI.

1.1.4 Requirements for parallel execution: LAM/MPI

For using sfCluster with snowfall, currently LAM/MPI is needed.

If you are using Debian/Ubuntu Linux, just call

aptitude install xmpi lam4-dev1

Further you need to install the R-packages snow and Rmpi.

If your program uses libraries, ensure that these are available on all nodes. If

they are not present in R-default path (on given machine), ensure that they are

accessible in the same location on all machines (for example /home/xy/R.libs).

1On other Linux distributions there are similar packages with probably different name.
It is important that you install the development version of the LAM package, as the Rmpi

package need these files for installation.



If you want to run programs only on your (multi core) computer without any

cluster of many machines, you do not have to setup the cluster yourself, it will

be started implicitly in snowfalls initialisation.

Using two or more machines for cluster calculations, you need to setup a LAM/MPI

cluster and start cluster explicitely.

This is no big thing at all. For example, edit a small textfile like this one:

machine1.yourdomain.com cpu=4 sched=yes

machine2.yourdomain.com cpu=2 sched=yes

Just enter the machines for your cluster and the amount of CPUs. You start a

LAM/MPI cluster using

lamboot hostfile

where hostfile is the little configuration file edited above.

To shutdown just call lamhalt.

For further details upon LAM/MPI setup, see [1].

Note: All parallel programs you start are running in this cluster. If your program

requests 100 CPUs on your private dual-core machine, you get that amount and

100 R processes are spawn, independent or available ressources (memory, cpus).

For workgroups or larger clusters, management solutions like sfCluster are

strongly recommended.

1.1.5 Requirements for parallel execution: PVM/NWS

PVM and NetWorkSpaces/Sleight are supported in snowfall as these are useable

with snow. But both are less supported by sfCluster (but at least a managed

start can be done using sfCluster), so there is no further documentation about

their usage here.

1.2 (Short) introduction to parallel programming

The general goal of paralleling your R program is to vectorize the data or cal-

culation loops (probably with wrapper functions), as all calculation functions of

snowfall are kind of reimplementations of R-list/vector functions.

A good introduction to parallel programming for statistical purposes can be

found in [3] and [5].

1.3 Introduction to usage of snowfall

Basically, usage of snowfall always works with the following scheme:



1. Initialization using sfInit(). Set up the cluster (if needed) and the in-

ternal functions. sfInit must be called before using any function of the

snowfall package.2

2. Export needed variables/objects to all slaves.

3. Do some parallel calculations using snowfall calculation functions. Re-

peat as many times as needed.

4. End parallel execution using sfStop().

The initialisation differs if you use snowfall alone or with the management tool

sfCluster. In this chapter we only cover a standalone usage of snowfall. For

usage with sfCluster, see chapter 2.

If you are firm on using the R package snow, starting with or porting your

program to snowfall is easy.

The complete initialisation is done with a single call to sfInit(). The main

arguments are parallel, cpus and type, giving the running mode (parallel

execution or sequential execution), the amount of CPUs if executing in parallel

mode and the type of the underlying cluster. If running in sequential mode,

cpus is ignored (and set to one). Without a given type a socket cluster is

started, which does not need any further software installed and therefore most

likely runs anywhere immidiately. This is the desired choice for executing on

a laptop or single multicore machine, too. Please note, that on Windows an

installed Personal Firewall may alert the network access, please allow this.

Sequential mode can be useful for developing the program, probably on a single

core laptop without installed cluster or running Windows operating system.

Also sequential mode is needed to deploy a package using snowfall safely,

where you cannot assume a user have an useable cluster installed.

Other arguments for sfCluster are restore, socketHosts, slaveOutfile and

nostart. See package help for description.

If the initialisation fails, probably because of missing base libraries Rmpi and

snow, snowfall falls back to sequential mode with a warning message.

In sequential and parallel execution, all functions are useable in both modes in

the same way and returning the same results.

sfInit( parallel=FALSE )

sfLapply( 1:10, exp )

2The only exception is the function sfSetMaxCPUs(), which raises or limits the configured
maximum CPU count.



sfStop()

sfInit( parallel=TRUE, cpus=5 )

## Now, index 1 is calculated on CPU1, 2 on CPU2 and so on.

## Index 6 is again on CPU1.

## So the whole call is done in two steps on the 5 CPUs.

sfLapply( 1:10, exp )

sfStop()

Please note: Most of the snowfall functions are stopping the program on failure

by default (by calling stop()). This is much safer for unexperienced users.

If you want own failure handling, install your own handler options(error =

...) to prevent snowfall from stopping in general. Also most of the functions

feature an argument stopOnError which set to FALSE prevents the functions

from stopping. Do not forget to handle potential errors in your program if using

this feature.

The given behavior is not only better for unexperienced users, any other behavior

would be very nasty on package deployment.

1.4 Writing parallel programs with snowfall

1.4.1 General notes and simple example

If you detected parts of your program which can be parallelised (loops etc) it is

in most cases a fast step to give them a parallel run.

First, rewrite them using Rs list operators (lapply, apply) instead of loops (if

they are not yet calculated by list operators).

Then write a wrapper function to be called by the list operators and manage a

single parallel step. Note there are no local variables, only the data from the

list index will be given as argument.

If you need more than one variable argument, you need to make the required

variables global (assign to global environment) and export them to all slaves.

snowfall provides some functions to make this process easier (take a look at

the package help).

sfInit( parallel=TRUE, cpus=4 )

b <- c( 3.4, 5.7, 10.8, 8, 7 )

## Export a and b in their current state to all slaves.



sfExport( ''b'' )

parWrapper <- function( datastep, add1, add2 ) {

cat( ''Data: '', datastep, ''ADD1:'', add1, ''ADD2:'', add2, ''\n'' )

## Only possible as ''b'' is exported!

cat( ''b:'', b[datastep] )

## Do something

return( datastep )

}

## Calls parWrapper with each value of a and additional

## arguments 2 and 3.

result <- sfLapply( 1:5, parWrapper, 2, 3 )

sfStop()

1.4.2 Basic load balancing using sfClusterApplyLB

All parallel wrappers around the R-list operators are executed in blocks: On

one step the first n indices are calculated, then the next n indices, where n is

the number of CPUs in the cluster.

This behavior is quite ok in a homogenous cluster, where all or mostly all ma-

chines are built with equal hardware and therefore offer the same speed. In

heterogenous infrastructures, speed is depending on the slowest machine in the

cluster, as the faster machines have to wait for it to finish its calculation.

If your parallel algorithm is using different time for different problems, load

balancing will reduce overall time in homogenous clusters greatly.

snow and so snowfall feature a simple load balanced method to avoid waiting

times in such environments. If calling sfClusterApplyLB the faster machines

get further indices to calculate without waiting for the slowest to finish its step.

sfClusterApplyLB is called like lapply.

If your local infrastructure is such an heterogenous structure, this function is

the way to go. It can also be handy in homogenous clusters where other users

spawn processes, too, so sometimes load differs temporarily.

A visualisation of basic load balacing can be found in [3].

sfInit( parallel=TRUE, cpus=2 )

calcPar <- function( x ) {



x1 <- matrix( 0, x, x )

x2 <- matrix( 0, x, x )

for( var in 1:nrow( x1 ) ) x1[var,] = runif( ncol( x1 ) )

for( var in 1:nrow( x2 ) ) x2[var,] = runif( ncol( x1 ) )

b <- sum( diag( ( x1 %*% x2 ) %*% x1 ) )

return( b )

}

result <- sfClusterApplyLB( 50:100, calcPar )

sfStop()

1.4.3 Intermediate result saving and restoring using sfClusterApplySR

Another helpful function for long running clusters is sfClusterApplySR, which

saves intermediate results after processing n-indices (where n is the amount of

CPUs). If it is likely you have to interrupt your program (probably because of

server maintenance) you can start using sfClusterApplySR and restart your

program without the results produced up to the shutdown time.

Please note: Only complete n-blocks are saved, as the function sfLapply is used

internally.3

The result files are saved in the temporary folder ~/.sfCluster/RESTORE/x,

where x is a string with a given name and the name of the input R-file.

sfClusterApplySR is called like sfClusterApplyLB and therefore like lapply.

If using the function sfClusterApplySR result are always saved in the interme-

diate result file. But, if cluster stopped and results could be restored, restore

itself is only done if explicitly stated. This aims to prevent false results if a pro-

gram was interrupted by intend and restarted with different internal parameters

(where with automatical restore probably results from previous runs would be

inserted). So handle with care if you want to restore!

If you only use one call to sfClusterApplySR in your program, the parameter

name does not need to be changed, it only is important if you use more than

one call to sfClusterApplySR.

sfInit( parallel=TRUE, cpus=2 )

# Saves under Name default

3This function is an addition to snow and therefore could not be integrated in the load
balanced version.



resultA <- sfClusterApplySR( somelist, somefunc )

# Must be another name.

resultB <- sfClusterApplySR( someotherlist, someotherfunc, name="CALC_TWO" )

sfStop()

If cluster stops probably during run of someotherfunc and restarted with

restore-Option, the complete result of resultA is loaded and therefore no cal-

culation on somefunc is done. resultB is restored with all the data available

at shutdown and calculation begins with the first undefined result.

Note on restoring errors: If restoration of data fails (probably because list size

is different in saving and current run), sfClusterApplySR stops. For securely

reason it does not delete the RESTORE-files itself, but prompt the user the

complete path to delete manually and explicitly.

1.5 Fault tolerance

Differing from snowFT, the fault tolerance extension for snow, snowfall does

not feature fault tolerance (see [6]).

This is due to the lack of an MPI implementation of snowFT.

1.6 Controlling snowfall using the command line

snowfall can be widely controlled via command line arguments.

This is useful for fast changing of cluster parameters (e.g. changing the host

names in a Socket cluster) on a raw installation and it serves as connection to

sfCluster. Of course it can be used as connection to any other workload- or
batch managing software, too.

On the commandline there are the following parameters:



parallel Switch to parallel execution. Default is sequential execution
cpus=X Amount of CPUs wanted. Without --parallel, a value X > 1

switch to parallel execution.
type=X Type of cluster. Allowed values are SOCK, MPI, PVM and NWS.
session=X Session number. snowfall logfiles contain number, but only needed

with sfCluster.
restoreSR Enables restoring of previously saved results from

sfClusterApplySR calls.
hosts=X List of hosts for Socket (SOCK) or NetWorkSpaces (NWS) clus-

ters. Entries are comma seperated. Any entry may contain colon
seperated value for the amount of processors on this machine. Ex-
ample: --hosts=machine1:4,machine2,123.123.12.13:2 (this
spawns 4 workers on machine1, one on machine2 and two on
123.123.12.13).

tmpdir=X Specify temporary directory for logfiles and R-output.

For using these arguments, just add these after an -args on the commandline

(which forces R not to treat these arguments as R ones).

R -no-save -args -parallel -cpus=2 < program.R

Starts R and forces snowfall to start in parallel mode with 2 CPUs (in this case:

using a Socket-cluster, as this is the default).

Note: arguments on the command line have lower priority as settings from the

sfInit call. That means that the above example only works if initialisation is

done via sfInit(), but not with sfInit( parallel=FALSE ), as then sequen-

tial execution is forced.

Further examples should explan the feature:

• R -no-save -args -parallel -type=MPI -cpus=4 < program.R (start

using 4 workers in an existing MPI cluster. If no MPI cluster exists, a plain

one is started on your local machine only. Beware of this, as you have to

shutdown this cluster afterwards manually.).

• R -no-save -args -parallel -type=SOCK -hosts=localhost:3,singlema,othmach:4

< program.R (Starts a socket cluster with two machines and 7 CPUs: 3

on localhost, 4 on othmach and one worker on singlema).

1.7 Traps, Internals

snowfall limits the amount of CPUs by default (to 40). If you need more CPUs,

call sfSetMaxCPUs() before calling sfInit(). Beware of requesting more CPUs

as you have ressources: there are as many R processes spawned as CPUs wanted.

They are distributed across your cluster like in the given scheme of the LAM



host configuration. You can easily kill all machines in your cluster by requesting

huge amounts of CPUs or running very memory consuming functions across the

cluster. To avoid such common problems use sfCluster.

For some functions of snowfall it is needed to create global variables on the

master. All these variables start with prefix “.sf”, please do not delete them.

The internal control structure of snowfall is saved in the variable .sfOptions,

which should be accessed through the wrapper functions as the structure may

change in the future.

2 Using sfCluster with snowfall

2.1 About sfCluster

sfCluster is a small management tool, helping to run parallel R-programs using

snowfall. Mainly, it exculpates the user from setting up a LAM/MPI cluster

on his own. Further, it allows multiple clusters per user and therefore executes

any parallel R program in a single cluster. These clusters are built according to

the current load and usage of your cluster (this means: only machines are taken

with free ressources).

Also, execution is observed and if problems arise, the cluster is shut down.

sfCluster can be used with R-interactive shell or batch mode and also feature a

special batch mode with visual logfile and process-displaying.

For further details about installation, administration and configuration of sf-

Cluster, please visit http://www.imbi.uni-freiburg.de/parallel or run sfCluster

--help if you installed it yet.

2.2 Starting R using sfCluster

An sfCluster execution is following these steps:

1. Test memory usage of program if not explicitly given. This is done via a

default temporary (10 minutes) sequential run to determinate the maxi-

mum usage of RAM on a slave. This is important for allocating ressources

on slaves.

2. Detect free ressources in cluster universe.4 Take machines with free ressources

matching users request.

3. Start LAM/MPI cluster with previous built setting.

4Which are all potentially useable machines.



4. Run R with parameters for snowfall control.

5. LOOP: Observe execution (check processes, memory usage, and machine

state). In monitoring mode: Display state of cluster and logfiles on screen.

6. On interruption or regular end: shutdown cluster.

2.3 Using sfCluster

The most common parameters of sfCluster are --cpus, with which you request

a certain amount of CPUs among the cluster (default is 2 in parallel and 1 in

sequential mode). There is a builtin limit for the amount of CPUs, which is

changeable using the sfCluster configuration.

There are four execution modes:

-b Batchmode (De-
fault)

Run silent on terminal.

-i Interactive R-shell Ability to use interactive R-shell with cluster.
-m Monitoring mode Visual processmonitor and logfile viewer.
-s Sequential execu-

tion (no cluster
usage)

Run without cluster on single CPU.

To avoid the (time consuming) memory test, you can specify a maximum amount

of memory usable per slave via option --mem. The behavior on excessing this

memory usage is configurable (default: cluster stop).

The memory usage limit is very important for not getting your machines into

swapping (means: shortage of physical RAM), which would hurt performance

badly.

So, simple calls to sfCluster could be

## Run a given R program with 8 cpus and max. 500MB (0.5 gigabytes) in monitoring mode

sfCluster -m --cpus=8 --mem=0.5G myRprogram.R

## Run nonstopping cluster with real quiet output.

nohup sfCluster -b --cpus=8 --mem=500M myRprogram.R --quiet

## Start R interactive shell with 4 cores. With 300MB memory (MB is default unit)

## No R-file is given for interactive mode.

sfCluster -i --cpus=4 --mem=300

For all possible options and further examples for sfCluster usage, see sfCluster

--help.



2.4 The snowfall-side of sfCluster

If you start an R program using snowfall with sfCluster, the latter waits until

sfInit() is called and then starts the observation of the execution.

The default behavior if using sfCluster is just to call sfInit() without any

argument. Use arguments only if you want to explicitly overwrite given settings

by sfCluster.

2.5 Proposed development cycle

The following development cycle is of course a proposal. You can skip or replace

any step depending on your own needs.

1. Develop program in sequential mode (start using option -s).

2. Test in parallel mode using interactive mode to detect directly problems

on parallelisation (start using option -i).

3. Try larger test runs using monitoring mode, observing the cluster and

probably side effects during parallel execution (start using option -m).

Problems arise on single nodes will be visible (like non correct working

libraries).

4. Do real runs using silent batch mode (start using options -b --quiet).

Probably you want to run these runs in the background of your Unix shell

using nohup.

2.6 Future sfCluster

These additions are planned for the future:

• Port to OpenMPI

• Faster SSH connections for observing

• Extended scheduler for system ressources

3 History of snowfall changes

You can also call: RShowDoc(”NEWS”, package=”snowfall”)

• 1.83 (API changes: minor additions)



– sfIsRunning: new function giving a logical is sfInit() was called or

not. Needed, as all other snowfall functions implicitely call sfInit() if

it was not called.

• 1.82

– Internal refactorings.

• 1.81

– Change in sfInit() MPI startup so sfCluster can run with snow > 0.3

now.

– sfExport now also works in sequential mode (writing to global envi-

ronment). This prevented sequential execution in some cases.

• 1.80 (API changes: minor additions)

– snowfall passes packages checks of R 2.10.1 without warning or error.

Internal state is now only saved in the namespace itself (thanks to

Uwe Ligges for the tipp).

– sfExport can now also export objects in a specific namespace (argu-

ment ’namespace’)

– sfExport: behavior in error case manageable (stopOnError)

– sfExport: smaller bugfixes.

– sfRemoveAll can now also remove hidden names (argument ’hidden’)

– sfRemoveAll is more robust now (some minor bugfixes, more checks)

– sfRemoveAll bugfix for multiple removals (thanks to Greggory Jef-

feris)

– Bugfix on exception list on sfExportAll

– Refactorings in sfTest()

– snowfall now has a NEWS doc ;)

– No warning on Mac OS because of default Mac-R command line arg

’gui’ (thanks to Michael Siegel).

• 1.71 (API changes: none)

– Exporting of objects using sfExport is speed up (round 30

– Fixed a bug on Windows in sfSource

• 1.70 (API changes: minor additions, BEHAVIOR CHANGES: logging)

– Behavior change: new default: no logging of slave/worker output.

– API change: new argument slaveOutfile on sfInit().



– API change: new argument restore on sfInit().

– API change: new argument master on sfCat.

– Windows startup fixed.

– NWS startup fixed.

– sfSapply is working as intended.

– Changing CPU amount during runtime (with multiple sfInit() calls

with different settings in a single program) is now possible using

socket and NWS clusters.

– Dozens of small glitches inside snowfall fixed (also messages are made

more precisly).

– Package vignette slightly extended.
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