Package 'snipEM'

March 29, 2019

Type Package
Title Snipping Methods for Robust Estimation and Clustering
Version 1.0.1
Date 2019-03-29
Author Alessio Farcomeni, Andy Leung
Maintainer Alessio Farcomeni <alessio.farcomeni@uniroma1.it></alessio.farcomeni@uniroma1.it>
Description Snipping methods optimally removing scattered cells for robust estimation and cluster analysis.
License GPL (>= 2)
Depends R (>= 3.0.0), Rcpp (>= 0.10.0), mvtnorm, MASS
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Denositowy CDAN

Repository CRAN

Date/Publication 2019-03-29 21:40:03 UTC

R topics documented:

ldmvnorm	2
sclust	2
skmeans	4
snipEM	6
stEM	8
sumlog	9
	11

Index

ldmvnorm

Description

This function provides the log-density function for the multivariate normal distribution with mean equal to mu and covariance matrix Sigma. Marginal distributions will be used when the vector (or matrix) of quantiles is incomplete. That is, when the vector (or matrix) of quantiles contain NA.

Usage

ldmvnorm(x, mu, Sigma, onNA=0)

Arguments

х	Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
mu	Mean vector, default is $rep(0, length = ncol(x))$
Sigma	Covariance matrix, default is diag(ncol(x)).
onNA	Action for a row on NAs. Default is to return 0.

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>, Andy Leung <andy.leung@stat.ubc.ca>

Examples

```
x <- matrix(rnorm(1000),100, 10)
u <- matrix(rbinom(1000, 1, 0.1), 100, 10)
x[ u == 1 ] <- NA
mu <- rep(0,10)
Sigma <- diag(10)
ldmvnorm(x, mu, Sigma)
```

sclust	Snipping for robust model based clustering analysis with cellwise out-
	liers

Description

Estimates a finite Gaussian mixture model optimized over a snipping set.

Usage

```
sclust(X, k, V, R, restr.fact=12, tol = 1e-04, maxiters = 100,
maxiters.S = 1000, print.it = FALSE)
```

sclust

Arguments

Х	Data.
k	Number of clusters
V	Binary matrix of the same size as X. Zeros correspond to initial snipped entries.
R	Initial guess for cluster labels, 1 to k.
restr.fact	Restriction factor, i.e., constraint on the condition number of all covariance ma- trices for each cluster. Default is 12.
tol	Tolerance for convergence. Default is 1e-4.
maxiters	Maximum number of iterations for the SM algorithm. Default is 100.
maxiters.S	Maximum number of iterations of the inner greedy snipping algorithm. Default is 1000.
print.it	Logical; if TRUE, partial results are print. Default is FALSE.

Details

This function computes the sclust estimator of Farcomeni (2014). It leads to robust mixture modeling in presence of entry-wise outliers. It is based on a classification-expectation-snip-maximize (CESM) algorithm. At the S step, the likelihood is optimized over the set of snipped entries, at the M step the location and scatter estimates are updated. The S step is based on a greedy algorithm, unlike the one proposed in Farcomeni (2014,2014a). The number of snipped entries sum(1-V) is kept fixed throughout. Note that initializing with labels arising from classical (non-robust) clustering methods may be detrimental for the final performance of sclust and may even yield an error due to empty clusters.

Value

A list with the following elements:

- R Final cluster labels.
- mu Estimated location matrix.
- S Array of estimated scatter matrices.
- V Final (optimal) V matrix.
- 1ik Gaussian log-likelihood at convergence.
- iter Number of outer iterations before convergence.

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>, Andy Leung <andy.leung@stat.ubc.ca>

References

Farcomeni, A. (2014) Snipping for robust k-means clustering under component-wise contamination, *Statistics and Computing*, **24**, 909-917

Farcomeni, A. (2014) Robust constrained clustering in presence of entry-wise outliers, *Technometrics*, **56**, 102-111

skmeans

See Also

snipEM, stEM, sumlog, ldmvnorm

Examples

```
set.seed(1234)
X <- matrix(NA,200,5)
# two clusters
k <- 2
X[1:100,] <- rnorm(100*5)
X[101:200,] <- rnorm(100*5,15)
R <- rep(c(1,2), each=100)
# 5% cellwise outliers
s <- sample(200*5,200*5*0.05)</pre>
X[s] <- runif(200*5*0.05,-100,100)</pre>
V <- X
V[s] <- 0
V[-s] <- 1
# Initial V and R
Vinit <- matrix(1, nrow(X), ncol(X))</pre>
Vinit[which(X > quantile(X,0.975) | X < quantile(X,0.025))] <- 0</pre>
Rinit <- kmeans(X,2)$clust</pre>
# Snipped robust clustering
sc <- sclust(X,2,Vinit,Rinit)</pre>
table(R,Rinit)
table(R,sc$R)
```

```
skmeans
```

Snipped k-means clustering with cellwise outliers

Description

Perform k-means clustering on a data matrix with cellwise outliers using a snipping algorithm.

Usage

```
skmeans(X, k, V, clust, s, itersmax = 10^{5}, D = 1e^{-1})
```

Arguments

Х	Data.
k	Integer; number of clusters, k>1.
V	Binary matrix of the same size as X. Zeros correspond to initial snipped entries.
clust	Vector of size n containing values from 1 to k. Starting solution for class labels.
itersmax	Max number of iterations of the algorithm. Default is 3*10^5.

4

skmeans

S	Binary vector of size n for trimming, starting solution. Number of zeros will
	be preserved and correspond to trimmed rows. If the vector is rep(1,n), it
	performs no trimming. Default is rep(1,n).
D	Tuning parameter for the fitting algorithm. Corresponds approximately to the
	maximal change in loss by switching two non outlying entries. Comparing dif-
	ferent choices is recommended. Default is 1e-1.

Details

This function computes the skmeans estimator of Farcomeni (2014). It leads to robust k-means in presence of entry-wise and cellwise outliers. The number of snipped entries sum(1-V) and trimmed rows sum(1-s) is kept fixed throughout. Initial estimates for V, s and clust should be provided. Note that initializing with labels arising from classical (non-robust) clustering methods may be detrimental for the final performance of skmeans and may even yield an error due to empty clusters.

Value

A list with the following elements:

loss	Loss function (the total sum of squares) at convergence.
mu	Estimated locations.
S	Final (optimal) trimmed rows in vector of size n.
V	Final (optimal) V matrix.
clust	Final (optimal) class labels as vector of size n.

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>, Andy Leung <andy.leung@stat.ubc.ca>

References

Farcomeni, A. (2014) Snipping for robust k-means clustering under component-wise contamination, *Statistics and Computing*, **24**, 909-917

See Also

sclust, stEM, snipEM,

Examples

```
set.seed(1234)
X <- matrix(NA,200,5)
# two clusters
k <- 2
X[1:100,] <- rnorm(100*5)
X[101:200,] <- rnorm(100*5,15)
clust <- rep(c(1,2), each=100)</pre>
```

```
# 5% cellwise outliers
s <- sample(200*5,200*5*0.05)
X[s] <- runif(200*5*0.05,-100,100)
V <- X
V[s] <- 0
V[-s] <- 1
# Initial V and R
Vinit <- matrix(1, nrow(X), ncol(X))
Vinit[which(X > quantile(X,0.975) | X < quantile(X,0.025))] <- 0
km <- kmeans(X,k)
clustinit <- km$clust
# Snipped robust clustering
skm <- skmeans(X, k, Vinit, clustinit)
table(clust,km$clust)
table(clust,skm$clust)
```

```
snipEM
```

Snipping for location and scatter estimation with cellwise outliers

Description

Computes an estimator optimizing the Gaussian likelihood over a snipping set. The function snipEM.initialV can be used to perform some iterations to initialize V.

Usage

```
snipEM(X, V, tol = 1e-04, maxiters = 500, maxiters.S = 1000, print.it = FALSE)
snipEM.initialV(X, V, mu0, S0, maxiters.S = 100, greedy = TRUE)
```

Arguments

Х	Data.
V	Binary matrix of the same size as X. Zeros correspond to initial snipped entries.
tol	Tolerance for convergence. Default is 1e-4.
maxiters	Maximum number of iterations for the SM algorithm. Default is 500.
maxiters.S	Maximum number of iterations of the inner greedy snipping algorithm. Default is 1000.
print.it	Logical; if TRUE, partial results are print. Default is FALSE.
mu0	Initial estimate for the mean vector that is used in the initialization stage.
S0	Initial estimate for the covariance matrix that is used in the initialization stage.
greedy	Logical; if TRUE, perform the greedy snipping algorithm in search for the binary matrix that gives the largest likelihood value throughout maxiters.S iterations. If FALSE, stop right after the snipping algorithm finds a binary matrix that gives a larger likelihood value than the initial one. Default is TRUE.

6

snipEM

Details

This function computes the sclust estimator of Farcomeni (2014) with k = 1. It therefore provides a robust estimate of location and scatter in presence of entry-wise outliers. It is based on a snipmaximize (SM) algorithm. At the S step, the likelihood is optimized over the set of snipped entries, at the M step the location and scatter estimates are updated. The S step is based on a greedy algorithm, unlike the one proposed in Farcomeni (2014,2014a). The number of snipped entries sum(1-V) is kept fixed throughout.

Results depend on good initialization of the V matrix. A boxplot rule (see examples) usually works well. The function snipEM.initialV can be used to improve the initial choice through some iterations updating only V from initial (robust) estimates mu0 and S0. In the example, the EMVE is used to obtain mu0 and S0.

Value

A list with the following elements:

- mu Estimated location.
- S Estimated scatter matrix.
- V Final (optimal) V matrix.
- lik Gaussian log-likelihood at convergence.
- iter Number of outer iterations before convergence.

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>, Andy Leung <andy.leung@stat.ubc.ca>

References

Farcomeni, A. (2014) Snipping for robust k-means clustering under component-wise contamination, *Statistics and Computing*, **24**, 909-917

Farcomeni, A. (2014) Robust constrained clustering in presence of entry-wise outliers, *Technometrics*, **56**, 102-111

See Also

sclust, stEM, sumlog, ldmvnorm

Examples

```
n=100
p=5
Xc <- matrix(rnorm(100*10),100,5)
# initial V
V <- matrix(1,n,p)
V[!is.na(match(as.vector(Xc),boxplot(as.vector(Xc),plot=FALSE)$out))] <- 0
Xna <- Xc
Xna[ which( V == 0) ] <- NA</pre>
```

```
resSEM <- snipEM(Xc, V)</pre>
```

stEM	Snipping and trimming for location and scatter estimation with case-
	wise and cellwise outliers

Description

Computes an estimator optimizing the Gaussian likelihood over a snipping and trimming set.

Usage

stEM(X, V, tol = 1e-4, maxiters = 500, maxiters.S = 1000, print.it = FALSE)

Arguments

Х	Data.
V	Binary matrix of the same size as X. Zeros correspond to initial snipped entries, rows of zeros correspond to initial trimmed entries.
tol	Tolerance for convergence. Default is 1e-4.
maxiters	Maximum number of iterations for the SM algorithm. Default is 500.
maxiters.S	Maximum number of iterations of the inner greedy snipping algorithm. Default is 1000.
print.it	Logical; if TRUE, partial results are print. Default is FALSE.

Details

This function combines computes the snipEM estimator of Farcomeni (2014) with trimming. Optimization over a trimming set is performed via usual concentration steps (Rousseeuw and van Driessen, 1999). It therefore provides a robust estimate of location and scatter in presence of entrywise and case-wise outliers. The number of snipped entries and trimmed rows is kept fixed throughout. V must contain at least one row of zeros (otherwise use snipEM).

Value

A list with the following elements:

- S Estimated scatter matrix.
- V Final (optimal) V matrix.
- lik Gaussian log-likelihood at convergence.
- iter Number of outer iterations before convergence.

sumlog

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>, Andy Leung <andy.leung@stat.ubc.ca>

References

Farcomeni, A. (2014) Snipping for robust k-means clustering under component-wise contamination, *Statistics and Computing*, **24**, 909-917

Farcomeni, A. (2014) Robust constrained clustering in presence of entry-wise outliers, *Technometrics*, **56**, 102-111

Rousseeuw, P. J. and Van Driessen, K. (1999) A fast algorithm for the minimum covariance determinant estimator, *Technometrics*, **41**, 212-223.

See Also

sclust, snipEM, sumlog, ldmvnorm

Examples

```
set.seed(1234)
X=matrix(rnorm(100*10),100,5)
X[1:5,]=50
X[6,1]=150
# initial V
V <- matrix(1, 100, 5)
V[1:5,]=0
Vtmp <- V[-c(1:5),]
# identify cells to be snipped
Vtmp[!is.na(match(as.vector(X[-c(1:5),]),plot=FALSE)$out))] <- 0
V[-c(1:5),] <- Vtmp</pre>
```

resSTEM <- stEM(X, V)</pre>

sumlog

Log-sum from log data

Description

Obtain log(sum(x)) from log(x), without passing to exponentials. It is based on the fact that log(a + b) = log(a) + log (1 + exp(log(b) - log(a))).

Usage

sumlog(x,lower=-745,upper=709)

sumlog

Arguments

х	Vector of log-values
lower	Value such that exp(lower-epsilon)=0
upper	Value such that exp(upper+epsilon)=Inf

Details

This function computes the logarithm of the sum of exp(x), without passing through exponentials. It shall be used to avoid under/over flow. It has proven useful in computing the likelihood of finite mixture models, normalization constants, importance sampling, etc. It is described in the appendix of Farcomeni (2012).

Value

A scalar equal to log(sum(exp(x))).

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>, Andy Leung <andy.leung@stat.ubc.ca>

References

Farcomeni, A. (2012) Quantile Regression for longitudinal data based on latent Markov subject-specific parameters. *Statistics and Computing*, **22**, 141-152

Examples

```
# complete underflow without sumlog
x <- c(-750,-752)
log(sum(exp(x)))
sumlog(x)
# imprecise sum
x <- c(-745,-752)
log(sum(exp(x)))
sumlog(x)
# no issues
x <- c(log(3),log(2))
log(5)
log(sum(exp(x)))
sumlog(x)
```

Index

ldmvnorm, 2, 4, 7, 9 sclust, 2, 5, 7, 9 skmeans, 4 snipEM, 4, 5, 6, 8, 9 stEM, 4, 5, 7, 8 sumlog, 4, 7, 9, 9