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2 get_adjacency

get_adjacency Construct an Adjacency Matrix

Description

Builds a sparse adjacency matrix from a user specified SSN data directory, by extracting and process-
ing the binaryID.db table. The resulting output of this function is required input for fitting spatial
additive network models to SSN objects using the main smnet function.

Usage

get_adjacency(ssn_directory, netID)

Arguments

ssn_directory Required character string indicating the path to the location of the .ssn directory
which contains the binaryID.db table

netID Integer specifying the particular stream network of interest within the SSN ob-
ject. Defaults to 1.

Value

List with two elements.

adjacency Sparse adjacency matrix of class "spam" with row and column dimension equal
to the number of stream segments. If the i^th column has non-zero elements
j1 and j2 then this indicates that j1 and j2 are direct upstream neighbours of
i. If the ith column has sum 1, then this indicates that i has only one upstream
neighbour, and therefore no confluence lies between them; by default the spatial
penalties treat these differently.

bid Character vector of binary identifiers for each stream segment, used only for
automatic calculation of Shreve’s stream order within smnet

Author(s)

Alastair Rushworth

See Also

smnet

Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_1<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
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predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_1",sep = ""),
treeFunction = iterativeTreeLayout
)

# plot the simulated network structure with prediction locations
# plot(example_network, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_1, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_1, "Obs")
prediction_data <- getSSNdata.frame(example_network_1, "preds")

## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred
prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_1,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object

## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]
sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_1", sep = ""),
net = 1
)
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# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)

# not run - plot different summaries of the model
plot(mod_smn, type = "covariates")
plot(mod_smn, type = "segments", weight = 4, shadow = 2)
plot(mod_smn, type = "full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)

# obtain summary of the fitted model
summary(mod_smn)

m Specify Smooth Terms in Formulae

Description

Function used to set up univariate or bivariate smooth terms based on P-splines, for use within a
call to smnet.

Usage

m(..., k = -1, cyclic = F)

Arguments

... one or more variables for creating P-spline smooths

k integer defining the number of uniformly spaced B-spline basis functions for the
smooth, default is 10. For 2d (and higher) smooths, this is the marginal basis
size.

cyclic logical vector indicating whether the smooth should be cyclic. Based on the
harmonic smoother of Eiler and Marx (2004)
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Value

term character vector of the names of the variables involved in the smooth to be set
up

bs.dim number of B-spline basis functions to be used in the smooth

Author(s)

Alastair Rushworth

References

Modified version of s originally from package mgcv, Simon Wood (2014).

See Also

smnet

Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_2<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_2",sep = ""),
treeFunction = iterativeTreeLayout
)

# plot the simulated network structure with prediction locations
# plot(example_network_2, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_2, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_2, "Obs")
prediction_data <- getSSNdata.frame(example_network_2, "preds")

## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred



6 m

prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_2,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object

## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]
sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_2", sep = ""),
net = 1
)

# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)

# not run - plot different summaries of the model
plot(mod_smn, type = "covariates")
plot(mod_smn, type = "segments", weight = 4, shadow = 2)
plot(mod_smn, type = "full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)
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# obtain summary of the fitted model
summary(mod_smn)

network Specify Network Smoother in Formulae

Description

This function specifies all of the information required to smooth parameters over the segments of a
stream network using an adjacency matrix, and a vector of flow weights.

Usage

network(adjacency = NULL, weight = "autoShreve", fixed.df = NULL)

Arguments

adjacency A sparse adjacency matrix of class "spam" that describes the flow connected-
ness of the stream network. adjacency is typically obtained from a call to
get_adjacency.

weight A character string indicating the column name of a numeric vector of flow
weights contained in the data.object that has been passed to smnet. De-
faults to "autoShreve" which automatically constructs a weighting based on
Shreve order, useful if data does not include an appropriate weight. For more
information on choosing appropriate weight inputs from a given data set, see
show_weights.

fixed.df Positive scalar indicating a fixed number of degrees of freedom to allocate to
the stream network component, overriding the criterion minimisation for this
component. Under the default setting, NULL, the degrees of freedom are chosen
automatically.

Value

A list combining the processed input components above. For internal use within smnet.

adjacency Sparse adjacency matrix

weight Numeric vector of flow weights

netID Integer identifying network of interest

Author(s)

Alastair Rushworth

See Also

smnet, get_adjacency, show_weights
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Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_3<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_3",sep = ""),
treeFunction = iterativeTreeLayout
)

# plot the simulated network structure with prediction locations
# plot(example_network_3, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_3, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_3, "Obs")
prediction_data <- getSSNdata.frame(example_network_3, "preds")

## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred
prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_3,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object

## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]
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sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_3", sep = ""),
net = 1
)

# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)

# not run - plot different summaries of the model
plot(mod_smn, type = "covariates")
plot(mod_smn, type = "segments", weight = 4, shadow = 2)
plot(mod_smn, type = "full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)

# obtain summary of the fitted model
summary(mod_smn)

plot.smnet Plot a Stream Network Model

Description

Plot linear, univariate and bivariate smooth effects and network smooth terms that resulting from a
call to smnet.

Usage

## S3 method for class 'smnet'
plot(x, type = "covariates", se = FALSE, res = FALSE, weight = NULL,
sites = FALSE, sites.col = NULL, sites.cex = 1, network.col = NULL,
shadow = 0, key = TRUE, legend.text = NULL, legend.range = NULL, ...)
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Arguments

x An object of class smnet

type Character string identifying the type of plot to be produced. The default, "covariates",
produces plots of all linear and smooth components (the latter corresponding to
each appearance of m in the model formula). "full" plots the stream network
fitted mean using the full set of spatial points contained in the associated SSN ob-
ject. "segments" plots the stream network fitted mean using a set of connnected
line segments to represent the spatial network, this can be faster for large net-
works than "full".

se Logical. When TRUE and type = "covariates", standard errors are shown on
plots of linear and smooth terms. When type = "segment" or "full" spatial
standard errors are plotted.

res Logical. When TRUE, partial residuals are shown on plots of linear and smooth
component. Ignored when type = "full" or "segments"

weight Positive real number that scales stream segment widths (as determined using
Shreve order) to indicate relative size of stream segments. Ignored when type = "covariate".
Currently only "autoShreve" is supported, defaults to NULL in which all streams
segments are plotted with lines with identical widths.

sites Logical indicating whether locations of observation sites should be added to
spatial plots. Ignored when type = "covariate" and defaults to FALSE.

sites.col Single colour to plot observation locations. If not provided, points will be
coloured according to the default legend and average observation at each lo-
cation.

sites.cex Expansion factor for the size of plotted observation points

network.col Single colour to represent all stream segments. By default, network is coloured
according to fitted values from model. Ignored when type = "covariate".

shadow Positive scalar that adds a black outline to spatial stream segment plots, useful
if the colour scale has many light colours. Ignored when type = "covariate"
and defaults to 0 (no shadow is drawn).

key Logical. Plots a colour legend for network plots. Ignored when type = "covariates".

legend.text Character annotation to add to color scale. Ignored if key = FALSE or type = "covariates".

legend.range Range of values represented by the color scale. Ignored if key = FALSE or
type = "covariates".

... Other arguments passed to plot

Author(s)

Alastair Rushworth

See Also

predict.smnet, summary.smnet
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Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_4<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_4",sep = ""),
treeFunction = iterativeTreeLayout
)

# plot the simulated network structure with prediction locations
# plot(example_network_4, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_4, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_4, "Obs")
prediction_data <- getSSNdata.frame(example_network_4, "preds")

## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred
prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_4,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object

## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]



12 predict.smnet

sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_4", sep = ""),
net = 1
)

# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)

# not run - plot different summaries of the model
plot(mod_smn, type = "covariates")
plot(mod_smn, type = "segments", weight = 4, shadow = 2)
plot(mod_smn, type = "full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)

# obtain summary of the fitted model
summary(mod_smn)

predict.smnet Predict From a Stream Network Model.

Description

Get predictions and standard errors for a new set of spatial locations and associated covariate values
from a model fitted by smnet.

Usage

## S3 method for class 'smnet'
predict(object, newdata = NULL, ...)
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Arguments

object Object of class smnet, usually the result of a call to smnet.

newdata New design matrix at which to make predictions

... other arguments passed to predict.smnet

Value

predictions vector of predictions corresponding to prediction points in the original SpatialStreamNetwork
input object

predictions.se vector of prediction standard errors

Author(s)

Alastair Rushworth

See Also

smnet

Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_5<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_5",sep = ""),
treeFunction = iterativeTreeLayout
)

# plot the simulated network structure with prediction locations
# plot(example_network_5, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_5, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_5, "Obs")
prediction_data <- getSSNdata.frame(example_network_5, "preds")

## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
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# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred
prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_5,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object

## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]
sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_5", sep = ""),
net = 1
)

# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)

# not run - plot different summaries of the model
plot(mod_smn, type = "network-covariates")
plot(mod_smn, type = "network-segments", weight = 4, shadow = 2)
plot(mod_smn, type = "network-full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
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preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)

# obtain summary of the fitted model
summary(mod_smn)

show_weights Search for and Validate Weights in an SSN Object

Description

Explore SSN objects for valid stream weights for use in fitting stream network models.

Usage

show_weights(SSNobject, adjacency, netID = 1)

Arguments

SSNobject SpatialStreamNetwork containing data to be searched for valid network weights

adjacency adjacency object corresponding to SSNobject, resulting from a call to get_adjacency

netID Positive integer indicating the network number to investigate, if multiple net-
works are contained inSSNobject. Default is 1.

Value

Prints the names of valid weight variables to the console.

Author(s)

Alastair Rushworth

See Also

get_adjacency, network

Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_6<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_6",sep = ""),
treeFunction = iterativeTreeLayout
)
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# plot the simulated network structure with prediction locations
# plot(example_network_6, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_6, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_6, "Obs")
prediction_data <- getSSNdata.frame(example_network_6, "preds")

## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred
prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_6,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object

## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]
sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_6", sep = ""),
net = 1
)

# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
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# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)

# not run - plot different summaries of the model
plot(mod_smn, type = "covariates")
plot(mod_smn, type = "segments", weight = 4, shadow = 2)
plot(mod_smn, type = "full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)

# obtain summary of the fitted model
summary(mod_smn)

smnet Additive Modelling for Stream Networks

Description

Fits (Gaussian) additive models to river network data based on the flexible modelling framework
described in O’Donnell et al. (2014). Data must be in the form of a SpatialStreamNetwork object
as used by the SSN package (Ver Hoef et al., 2012). Smoothness of covariate effects is represented
via a penalised B-spline basis (P-splines) and parameter estimates are obtained using penalised
least-squares. Optimal smoothness is achieved by optimization of AIC, GCV or AICC.

The formula interpreter used for penalised additive components is modelled on the code found in
the package mgcv.

Usage

smnet(formula, data.object, netID = 1, method = "AICC", control = NULL)

Arguments

formula A formula statement similar to those used by lm and mgcv:::gam. Smooth func-
tions are represented with m(..., k = 20) function, up to 2d smooth interac-
tions are currently supported. Spatial network components are specified using
network(...) function. Further details can be found in m and network and the
examples below.
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data.object An object of class "SpatialStreamNetwork"
netID Integer indicating the particular stream network to model, generally only user-

specified when multiple networks are contained within data.object, default is
1.

method Character string determining the performance criterion for choosing optimal
smoothness, options are "AICC", "AIC" or "GCV".

control A list of options that control smoothness selection via optimisation. See ’De-
tails’.

Details

control is a list whose elements control smoothness selection:maxit limits the number of iterations
made by the optimiser (default = 500). approx, positive integer, if specified indicates the number
of Monte-Carlo samples to collect using an approximate version of performance criterion when
direct evaluation is slow - this may be much faster if the network has a large number of segments
or the data is large, for example approx = 100 often works well (defaults to NULL). checks,
logical, specifies whether additivity checks should be performed on the input weights default =
TRUE. trace, default = 0, if set to 1, optim will print progress. tol, the relative tolerance of optim.
optim.method, the optimiser - default is "Nelder-Mead" see ?optim for details.

Value

Object of class smnet with components

fitted.values vector of fitted values
residuals vector of residuals: response minus fitted values
coefficients vector of parameter estimates
R2 R^2 statistic
R2.adj adjusted R^2 statistic
df.residual residual degrees of freedom
ssn.object unchanged SSN input data object
internals model objects for internal use by other functions

Author(s)

Alastair Rushworth

References

Ver Hoef, J.M., Peterson, E.E., Clifford, D., Shah, R. (2012) SSN: An R Package for Spatial Statis-
tical Modeling on Stream Networks

O’ Donnell, D., Rushworth, A.M., Bowman, A.W., Scott, E.M., Hallard, M. (2014) Flexible re-
gression models over river networks. Journal of the Royal Statistical Society: Series C (Applied
Statistics). 63(1) 47–63.

Reinhard Furrer, Stephan R. Sain (2010). spam: A Sparse Matrix R Package with Emphasis on
MCMC Methods for Gaussian Markov Random Fields. Journal of Statistical Software, 36(10),
1-25. URL: http://www.jstatsoft.org/v36/i10/
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See Also

get_adjacency, plot.smnet

Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_8<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_8",sep = ""),
treeFunction = iterativeTreeLayout
)

# plot the simulated network structure with prediction locations
# plot(example_network_8, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_8, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_8, "Obs")
prediction_data <- getSSNdata.frame(example_network_8, "preds")

## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred
prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_8,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object
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## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]
sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_8", sep = ""),
net = 1
)

# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)

# not run - plot different summaries of the model
plot(mod_smn, type = "network-covariates")
plot(mod_smn, type = "network-segments", weight = 4, shadow = 2)
plot(mod_smn, type = "network-full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)

# obtain summary of the fitted model
summary(mod_smn)

summary.smnet Summarise Stream Network Model

Description

Generate summaries of linear and smooth components of an smnet object.
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Usage

## S3 method for class 'smnet'
summary(object, ...)

Arguments

object An object of class smnet.

... other arguments passed to summary

Value

List object with components

1 linear.terms: the linear components of the fitted model

2 smooth.terms: the values of the smoothing parameters on the log scale, and
the partial degrees of freedom associated with each smooth component. Note:
Network components always have two smoothing parameters, where the second
is a (usually small) ridge parameter.

Author(s)

Alastair Rushworth

See Also

smnet

Examples

# Set up an SSN object - this part taken
# from the SSN:::SimulateOnSSN help file
example_network_9<- createSSN(

n = 50,
obsDesign = binomialDesign(200),
predDesign = binomialDesign(50),
importToR = TRUE,
path = paste(tempdir(),"/example_network_9",sep = ""),
treeFunction = iterativeTreeLayout
)

# plot the simulated network structure with prediction locations
# plot(example_network_9, bty = "n", xlab = "x-coord", ylab = "y-coord")

## create distance matrices, including between predicted and observed
createDistMat(example_network_9, "preds", o.write=TRUE, amongpred = TRUE)

## extract the observed and predicted data frames
observed_data <- getSSNdata.frame(example_network_9, "Obs")
prediction_data <- getSSNdata.frame(example_network_9, "preds")
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## associate continuous covariates with the observation locations
# data generated from a normal distribution
obs <- rnorm(200)
observed_data[,"X"] <- obs
observed_data[,"X2"] <- obs^2

## associate continuous covariates with the prediction locations
# data generated from a normal distribution
pred <- rnorm(50)
prediction_data[,"X"] <- pred
prediction_data[,"X2"] <- pred^2

## simulate some Gaussian data that follows a 'tail-up' spatial process
sims <- SimulateOnSSN(

ssn.object = example_network_9,
ObsSimDF = observed_data,
PredSimDF = prediction_data,
PredID = "preds",
formula = ~ 1 + X,
coefficients = c(1, 10),
CorModels = c("Exponential.tailup"),
use.nugget = TRUE,
CorParms = c(10, 5, 0.1),
addfunccol = "addfunccol")$ssn.object

## extract the observed and predicted data frames, now with simulated values
sim1DFpred <- getSSNdata.frame(sims, "preds")
sim1preds <- sim1DFpred[,"Sim_Values"]
sim1DFpred[,"Sim_Values"] <- NA
sims <- putSSNdata.frame(sim1DFpred, sims, "preds")

# create the adjacency matrix for use with smnet
adjacency <- get_adjacency(

paste(tempdir(), "/example_network_9", sep = ""),
net = 1
)

# not run - plot the adjacency matrix
# display(adjacency[[1]])

# sometimes it is useful to see which varaibles are valid network weights
# in the data contained within the SSN object
show_weights(sims, adjacency)

# fit a penalised spatial model to the stream network data
# Sim_Values are quadratic in the X covariate. To highlight
# the fitting of smooth terms, this is treated as non-linear
# and unknown using m().
mod_smn <- smnet(formula = Sim_Values ~ m(X) + m(X2) +
network(adjacency = adjacency, weight = "shreve"),

data.object = sims, netID = 1)
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# not run - plot different summaries of the model
plot(mod_smn, type = "covariates")
plot(mod_smn, type = "segments", weight = 4, shadow = 2)
plot(mod_smn, type = "full", weight = 4, shadow = 2)

# obtain predictions at the prediction locations and plot
# against true values
preds <- predict(mod_smn, newdata = getSSNdata.frame(sims, "preds"))
plot(preds$predictions, sim1preds)

# obtain summary of the fitted model
summary(mod_smn)
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