
Package ‘sjstats’
May 6, 2020

Type Package

Encoding UTF-8

Title Collection of Convenient Functions for Common Statistical
Computations

Version 0.18.0

Maintainer Daniel Lüdecke <d.luedecke@uke.de>

Description Collection of convenient functions for common statistical computations,
which are not directly provided by R's base or stats packages.
This package aims at providing, first, shortcuts for statistical measures,
which otherwise could only be calculated with additional effort
(like Cramer's V, Phi, or effect size statistics like Eta or Omega squared),
or for which currently no functions available. Second, another focus
lies on weighted variants of common statistical measures and tests
like weighted standard error, mean, t-test, correlation, and more.

License GPL-3

Depends R (>= 3.2), utils

Imports bayestestR (>= 0.4.0), broom, dplyr (>= 0.8.1), effectsize,
emmeans, insight (>= 0.8.0), lme4, magrittr, MASS, modelr,
parameters (>= 0.4.0), performance (>= 0.4.0), purrr, rlang,
sjlabelled (>= 1.1.1), sjmisc (>= 2.8.2), stats, tidyr

Suggests brms, car, coin, ggplot2, graphics, nlme, pscl, pwr, sjPlot,
survey, rstan, rstanarm, testthat

URL https://github.com/strengejacke/sjstats,

https://strengejacke.github.io/sjstats

BugReports https://github.com/strengejacke/sjstats/issues

RoxygenNote 7.1.0

NeedsCompilation no

Author Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>)

Repository CRAN

Date/Publication 2020-05-06 07:50:02 UTC

1

https://github.com/strengejacke/sjstats
https://strengejacke.github.io/sjstats
https://github.com/strengejacke/sjstats/issues

2 sjstats-package

R topics documented:

sjstats-package . 2
anova_stats . 4
auto_prior . 5
bootstrap . 7
boot_ci . 8
chisq_gof . 11
cramer . 12
cv . 15
cv_error . 16
design_effect . 17
efc . 18
find_beta . 18
fish . 20
gmd . 20
inequ_trend . 21
is_prime . 23
means_by_group . 23
mean_n . 25
mediation . 26
mwu . 27
nhanes_sample . 29
odds_to_rr . 29
prop . 31
r2 . 33
samplesize_mixed . 34
scale_weights . 35
se_ybar . 37
survey_median . 38
svyglm.nb . 41
svyglm.zip . 43
table_values . 44
tidy_stan . 45
var_pop . 47
weight . 48

Index 50

sjstats-package Collection of Convenient Functions for Common Statistical Computa-
tions

sjstats-package 3

Description

Collection of convenient functions for common statistical computations, which are not directly
provided by R’s base or stats packages.

This package aims at providing, first, shortcuts for statistical measures, which otherwise could only
be calculated with additional effort (like standard errors or root mean squared errors).

Second, these shortcut functions are generic (if appropriate), and can be applied not only to vectors,
but also to other objects as well (e.g., the Coefficient of Variation can be computed for vectors,
linear models, or linear mixed models; the r2()-function returns the r-squared value for lm, glm,
merMod, glmmTMB, or lme and other objects).

Most functions of this package are designed as summary functions, i.e. they do not transform the
input vector; rather, they return a summary, which is sometimes a vector and sometimes a tidy data
frame. he focus of most functions lies on summary statistics or fit measures for regression models,
including generalized linear models, mixed effects models or Bayesian models. However, some of
the functions deal with other statistical measures, like Cronbach’s Alpha, Cramer’s V, Phi etc.

The comprised tools include:

• For regression and mixed models: Coefficient of Variation, Root Mean Squared Error, Resid-
ual Standard Error, Coefficient of Discrimination, R-squared and pseudo-R-squared values,
standardized beta values

• Especially for mixed models: Design effect, ICC, sample size calculation and convergence
tests

• Especially for Bayesian models: Highest Density Interval, region of practical equivalence
(rope), Monte Carlo Standard Errors, ratio of number of effective samples, mediation analysis,
Test for Practical Equivalence

• Fit and accuracy measures for regression models: Overdispersion tests, accuracy of predic-
tions, test/training-error comparisons, error rate and binned residual plots for logistic regres-
sion models

• For anova-tables: Eta-squared, Partial Eta-squared, Omega-squared and Partial Omega-squared
statistics

Furthermore, sjstats has functions to access information from model objects, which either support
more model objects than their stats counterparts, or provide easy access to model attributes, like:

• model_frame() to get the model frame

• model_family() to get information about the model family, link functions etc.

• link_inverse() to get the link-inverse function

• pred_vars() and resp_var() to get the names of either the dependent or independent vari-
ables, or

• var_names() to get the "cleaned" variables names from a model object (cleaned means, things
like s() or log() are removed from the returned character vector with variable names.)

Other statistics:

• Cramer’s V, Cronbach’s Alpha, Mean Inter-Item-Correlation, Mann-Whitney-U-Test, Item-
scale reliability tests

https://cran.r-project.org/package=broom/vignettes/broom.html
https://cran.r-project.org/package=broom/vignettes/broom.html

4 anova_stats

anova_stats Effect size statistics for anova

Description

Returns the (partial) eta-squared, (partial) omega-squared, epsilon-squared statistic or Cohen’s F
for all terms in an anovas. anova_stats() returns a tidy summary, including all these statistics and
power for each term.

Usage

anova_stats(model, digits = 3)

epsilon_sq(model, partial = FALSE, ci.lvl = NULL)

eta_sq(model, partial = FALSE, ci.lvl = NULL)

omega_sq(model, partial = FALSE, ci.lvl = NULL)

Arguments

model A fitted anova-model of class aov or anova. Other models are coerced to anova.

digits Amount of digits for returned values.

partial Logical, if TRUE, the partial eta-squared is returned.

ci.lvl Scalar between 0 and 1. If not NULL, returns a data frame with effect sizes
including lower and upper confidence intervals.

Details

See details in eta_squared.

Value

A data frame with the term name(s) and effect size statistics; if ci.lvl is not NULL, a data frame
including lower and upper confidence intervals is returned. For anova_stats(), a tidy data frame
with all statistics is returned (excluding confidence intervals).

References

Levine TR, Hullett CR (2002): Eta Squared, Partial Eta Squared, and Misreporting of Effect Size
in Communication Research (pdf)

Tippey K, Longnecker MT (2016): An Ad Hoc Method for Computing Pseudo-Effect Size for
Mixed Model. (pdf)

https://www.msu.edu/~levinet/eta%20squared%20hcr.pdf
http://www.scsug.org/wp-content/uploads/2016/11/Ad-Hoc-Method-for-Computing-Effect-Size-for-Mixed-Models_PROCEEDINGS-UPDATE-1.pdf

auto_prior 5

Examples

load sample data
data(efc)

fit linear model
fit <- aov(

c12hour ~ as.factor(e42dep) + as.factor(c172code) + c160age,
data = efc

)

eta_sq(fit)
omega_sq(fit)
eta_sq(fit, partial = TRUE)
eta_sq(fit, partial = TRUE, ci.lvl = .8)

anova_stats(car::Anova(fit, type = 2))

auto_prior Create default priors for brms-models

Description

This function creates default priors for brms-regression models, based on the same automatic prior-
scale adjustment as in rstanarm.

Usage

auto_prior(formula, data, gaussian, locations = NULL)

Arguments

formula A formula describing the model, which just needs to contain the model terms,
but no notation of interaction, splines etc. Usually, you want only those pre-
dictors in the formula, for which automatic priors should be generated. Add
informative priors afterwards to the returned brmsprior-object.

data The data that will be used to fit the model.

gaussian Logical, if the outcome is gaussian or not.

locations A numeric vector with location values for the priors. If locations = NULL, 0 is
used as location parameter.

Details

auto_prior() is a small, convenient function to create some default priors for brms-models with
automatically adjusted prior scales, in a similar way like rstanarm does. The default scale for
the intercept is 10, for coefficients 2.5. If the outcome is gaussian, both scales are multiplied with
sd(y). Then, for categorical variables, nothing more is changed. For numeric variables, the scales
are divided by the standard deviation of the related variable.

6 auto_prior

All prior distributions are normal distributions. auto_prior() is intended to quickly create de-
fault priors with feasible scales. If more precise definitions of priors is necessary, this needs to be
done directly with brms-functions like set_prior().

Value

A brmsprior-object.

Note

As auto_prior() also sets priors on the intercept, the model formula used in brms::brm() must
be rewritten to something like y ~ 0 + intercept ..., see set_prior.

Examples

library(sjmisc)
data(efc)
efc$c172code <- as.factor(efc$c172code)
efc$c161sex <- to_label(efc$c161sex)

mf <- formula(neg_c_7 ~ c161sex + c160age + c172code)

if (requireNamespace("brms", quietly = TRUE))
auto_prior(mf, efc, TRUE)

compare to
library(rstanarm)
m <- stan_glm(mf, data = efc, chains = 2, iter = 200)
ps <- prior_summary(m)
ps$prior_intercept$adjusted_scale
ps$prior$adjusted_scale

usage
ap <- auto_prior(mf, efc, TRUE)
brm(mf, data = efc, priors = ap)

add informative priors
mf <- formula(neg_c_7 ~ c161sex + c172code)

if (requireNamespace("brms", quietly = TRUE)) {
auto_prior(mf, efc, TRUE) +
brms::prior(normal(.1554, 40), class = "b", coef = "c160age")

}

example with binary response
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
mf <- formula(neg_c_7d ~ c161sex + c160age + c172code + e17age)

if (requireNamespace("brms", quietly = TRUE))
auto_prior(mf, efc, FALSE)

bootstrap 7

bootstrap Generate nonparametric bootstrap replications

Description

Generates n bootstrap samples of data and returns the bootstrapped data frames as list-variable.

Usage

bootstrap(data, n, size)

Arguments

data A data frame.

n Number of bootstraps to be generated.

size Optional, size of the bootstrap samples. May either be a number between 1 and
nrow(data) or a value between 0 and 1 to sample a proportion of observations
from data (see ’Examples’).

Details

By default, each bootstrap sample has the same number of observations as data. To generate
bootstrap samples without resampling same observations (i.e. sampling without replacement), use
size to get bootstrapped data with a specific number of observations. However, specifying the
size-argument is much less memory-efficient than the bootstrap with replacement. Hence, it is
recommended to ignore the size-argument, if it is not really needed.

Value

A data frame with one column: a list-variable strap, which contains resample-objects of class
sj_resample. These resample-objects are lists with three elements:

1. the original data frame, data

2. the rownmumbers id, i.e. rownumbers of data, indicating the resampled rows with replace-
ment

3. the resample.id, indicating the index of the resample (i.e. the position of the sj_resample-
object in the list strap)

Note

This function applies nonparametric bootstrapping, i.e. the function draws samples with replace-
ment.

There is an as.data.frame- and a print-method to get or print the resampled data frames. See
’Examples’. The as.data.frame- method automatically applies whenever coercion is done be-
cause a data frame is required as input. See ’Examples’ in boot_ci.

8 boot_ci

See Also

boot_ci to calculate confidence intervals from bootstrap samples.

Examples

data(efc)
bs <- bootstrap(efc, 5)

now run models for each bootstrapped sample
lapply(bs$strap, function(x) lm(neg_c_7 ~ e42dep + c161sex, data = x))

generate bootstrap samples with 600 observations for each sample
bs <- bootstrap(efc, 5, 600)

generate bootstrap samples with 70% observations of the original sample size
bs <- bootstrap(efc, 5, .7)

compute standard error for a simple vector from bootstraps
use the `as.data.frame()`-method to get the resampled
data frame
bs <- bootstrap(efc, 100)
bs$c12hour <- unlist(lapply(bs$strap, function(x) {

mean(as.data.frame(x)$c12hour, na.rm = TRUE)
}))

or as tidyverse-approach
if (require("dplyr") && require("purrr")) {

bs <- efc %>%
bootstrap(100) %>%
mutate(

c12hour = map_dbl(strap, ~mean(as.data.frame(.x)$c12hour, na.rm = TRUE))
)

bootstrapped standard error
boot_se(bs, c12hour)

}

boot_ci Standard error and confidence intervals for bootstrapped estimates

Description

Compute nonparametric bootstrap estimate, standard error, confidence intervals and p-value for a
vector of bootstrap replicate estimates.

Usage

boot_ci(data, ..., method = c("dist", "quantile"), ci.lvl = 0.95)

boot_ci 9

boot_se(data, ...)

boot_p(data, ...)

boot_est(data, ...)

Arguments

data A data frame that containts the vector with bootstrapped estimates, or directly
the vector (see ’Examples’).

... Optional, unquoted names of variables with bootstrapped estimates. Required,
if either data is a data frame (and no vector), and only selected variables from
data should be processed. You may also use functions like : or tidyselect’s
select_helpers.

method Character vector, indicating if confidence intervals should be based on boot-
strap standard error, multiplied by the value of the quantile function of the t-
distribution (default), or on sample quantiles of the bootstrapped values. See
’Details’ in boot_ci(). May be abbreviated.

ci.lvl Numeric, the level of the confidence intervals.

Details

The methods require one or more vectors of bootstrap replicate estimates as input.

• boot_est() returns the bootstrapped estimate, simply by computing the mean value of all
bootstrap estimates.

• boot_se() computes the nonparametric bootstrap standard error by calculating the standard
deviation of the input vector.

• The mean value of the input vector and its standard error is used by boot_ci() to calculate
the lower and upper confidence interval, assuming a t-distribution of bootstrap estimate repli-
cates (for method = "dist", the default, which is mean(x) +/-qt(.975,df = length(x) -1)
* sd(x)); for method = "quantile", 95% sample quantiles are used to compute the confi-
dence intervals (quantile(x,probs = c(.025,.975))). Use ci.lvl to change the level for
the confidence interval.

• P-values from boot_p() are also based on t-statistics, assuming normal distribution.

Value

A tibble with either bootstrap estimate, standard error, the lower and upper confidence intervals
or the p-value for all bootstrapped estimates.

References

Carpenter J, Bithell J. Bootstrap confdence intervals: when, which, what? A practical guide for
medical statisticians. Statist. Med. 2000; 19:1141-1164

See Also

bootstrap to generate nonparametric bootstrap samples.

10 boot_ci

Examples

library(dplyr)
library(purrr)
data(efc)
bs <- bootstrap(efc, 100)

now run models for each bootstrapped sample
bs$models <- map(bs$strap, ~lm(neg_c_7 ~ e42dep + c161sex, data = .x))

extract coefficient "dependency" and "gender" from each model
bs$dependency <- map_dbl(bs$models, ~coef(.x)[2])
bs$gender <- map_dbl(bs$models, ~coef(.x)[3])

get bootstrapped confidence intervals
boot_ci(bs$dependency)

compare with model fit
fit <- lm(neg_c_7 ~ e42dep + c161sex, data = efc)
confint(fit)[2,]

alternative function calls.
boot_ci(bs$dependency)
boot_ci(bs, dependency)
boot_ci(bs, dependency, gender)
boot_ci(bs, dependency, gender, method = "q")

compare coefficients
mean(bs$dependency)
boot_est(bs$dependency)
coef(fit)[2]

bootstrap() and boot_ci() work fine within pipe-chains
efc %>%

bootstrap(100) %>%
mutate(
models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex, data = .x)),
dependency = map_dbl(models, ~coef(.x)[2])

) %>%
boot_ci(dependency)

check p-value
boot_p(bs$gender)
summary(fit)$coefficients[3,]

Not run:
'spread_coef()' from the 'sjmisc'-package makes it easy to generate
bootstrapped statistics like confidence intervals or p-values
library(dplyr)
library(sjmisc)
efc %>%

chisq_gof 11

generate bootstrap replicates
bootstrap(100) %>%
apply lm to all bootstrapped data sets
mutate(

models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex + c172code, data = .x))
) %>%
spread model coefficient for all 100 models
spread_coef(models) %>%
compute the CI for all bootstrapped model coefficients
boot_ci(e42dep, c161sex, c172code)

or...
efc %>%

generate bootstrap replicates
bootstrap(100) %>%
apply lm to all bootstrapped data sets
mutate(

models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex + c172code, data = .x))
) %>%
spread model coefficient for all 100 models
spread_coef(models, append = FALSE) %>%
compute the CI for all bootstrapped model coefficients
boot_ci()

End(Not run)

chisq_gof Compute model quality

Description

For logistic regression models, performs a Chi-squared goodness-of-fit-test.

Usage

chisq_gof(x, prob = NULL, weights = NULL)

Arguments

x A numeric vector or a glm-object.

prob Vector of probabilities (indicating the population probabilities) of the same length
as x’s amount of categories / factor levels. Use nrow(table(x)) to determine
the amount of necessary values for prob. Only used, when x is a vector, and not
a glm-object.

weights Vector with weights, used to weight x.

12 cramer

Details

For vectors, this function is a convenient function for the chisq.test(), performing goodness-of-
fit test. For glm-objects, this function performs a goodness-of-fit test. A well-fitting model shows
no significant difference between the model and the observed data, i.e. the reported p-values should
be greater than 0.05.

Value

For vectors, returns the object of the computed chisq.test. For glm-objects, an object of class
chisq_gof with following values: p.value, the p-value for the goodness-of-fit test; z.score, the
standardized z-score for the goodness-of-fit test; rss, the residual sums of squares term and chisq,
the pearson chi-squared statistic.

References

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. Hoboken, NJ, USA: John
Wiley & Sons, Inc. doi: 10.1002/0471722146

Examples

data(efc)
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
m <- glm(

neg_c_7d ~ c161sex + barthtot + c172code,
data = efc,
family = binomial(link = "logit")

)

goodness-of-fit test for logistic regression
chisq_gof(m)

goodness-of-fit test for vectors against probabilities
differing from population
chisq_gof(efc$e42dep, c(0.3,0.2,0.22,0.28))

equal to population
chisq_gof(efc$e42dep, prop.table(table(efc$e42dep)))

cramer Measures of association for contingency tables

Description

This function calculates various measure of association for contingency tables and returns the statis-
tic and p-value. Supported measures are Cramer’s V, Phi, Spearman’s rho, Kendall’s tau and Pear-
son’s r.

https://doi.org/10.1002/0471722146

cramer 13

Usage

cramer(tab, ...)

S3 method for class 'formula'
cramer(
formula,
data,
ci.lvl = NULL,
n = 1000,
method = c("dist", "quantile"),
...

)

phi(tab, ...)

crosstable_statistics(
data,
x1 = NULL,
x2 = NULL,
statistics = c("auto", "cramer", "phi", "spearman", "kendall", "pearson", "fisher"),
weights = NULL,
...

)

xtab_statistics(
data,
x1 = NULL,
x2 = NULL,
statistics = c("auto", "cramer", "phi", "spearman", "kendall", "pearson", "fisher"),
weights = NULL,
...

)

Arguments

tab A table or ftable. Tables of class xtabs and other will be coerced to ftable
objects.

... Other arguments, passed down to the statistic functions chisq.test, fisher.test
or cor.test.

formula A formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs a factor giving the corresponding groups.

data A data frame or a table object. If a table object, x1 and x2 will be ignored. For
Kendall’s tau, Spearman’s rho or Pearson’s product moment correlation coeffi-
cient, data needs to be a data frame. If x1 and x2 are not specified, the first two
columns of the data frames are used as variables to compute the crosstab.

ci.lvl Scalar between 0 and 1. If not NULL, returns a data frame including lower and
upper confidence intervals.

14 cramer

n Number of bootstraps to be generated.

method Character vector, indicating if confidence intervals should be based on boot-
strap standard error, multiplied by the value of the quantile function of the t-
distribution (default), or on sample quantiles of the bootstrapped values. See
’Details’ in boot_ci(). May be abbreviated.

x1 Name of first variable that should be used to compute the contingency table. If
data is a table object, this argument will be irgnored.

x2 Name of second variable that should be used to compute the contingency table.
If data is a table object, this argument will be irgnored.

statistics Name of measure of association that should be computed. May be one of
"auto", "cramer", "phi", "spearman", "kendall", "pearson" or "fisher".
See ’Details’.

weights Name of variable in x that indicated the vector of weights that will be applied to
weight all observations. Default is NULL, so no weights are used.

Details

The p-value for Cramer’s V and the Phi coefficient are based on chisq.test(). If any expected
value of a table cell is smaller than 5, or smaller than 10 and the df is 1, then fisher.test() is used
to compute the p-value, unless statistics = "fisher"; in this case, the use of fisher.test() is
forced to compute the p-value. The test statistic is calculated with cramer() resp. phi().

Both test statistic and p-value for Spearman’s rho, Kendall’s tau and Pearson’s r are calculated
with cor.test().

When statistics = "auto", only Cramer’s V or Phi are calculated, based on the dimension of
the table (i.e. if the table has more than two rows or columns, Cramer’s V is calculated, else Phi).

Value

For phi(), the table’s Phi value. For cramer(), the table’s Cramer’s V.

For crosstable_statistics(), a list with following components:

estimate the value of the estimated measure of association.

p.value the p-value for the test.

statistic the value of the test statistic.

stat.name the name of the test statistic.

stat.html if applicable, the name of the test statistic, in HTML-format.

df the degrees of freedom for the contingency table.

method character string indicating the name of the measure of association.

method.html if applicable, the name of the measure of association, in HTML-format.

method.short the short form of association measure, equals the statistics-argument.

fisher logical, if Fisher’s exact test was used to calculate the p-value.

cv 15

Examples

Phi coefficient for 2x2 tables
tab <- table(sample(1:2, 30, TRUE), sample(1:2, 30, TRUE))
phi(tab)

Cramer's V for nominal variables with more than 2 categories
tab <- table(sample(1:2, 30, TRUE), sample(1:3, 30, TRUE))
cramer(tab)

formula notation
data(efc)
cramer(e16sex ~ c161sex, data = efc)

bootstrapped confidence intervals
cramer(e16sex ~ c161sex, data = efc, ci.lvl = .95, n = 100)

2x2 table, compute Phi automatically
crosstable_statistics(efc, e16sex, c161sex)

more dimensions than 2x2, compute Cramer's V automatically
crosstable_statistics(efc, c172code, c161sex)

ordinal data, use Kendall's tau
crosstable_statistics(efc, e42dep, quol_5, statistics = "kendall")

calcilate Spearman's rho, with continuity correction
crosstable_statistics(efc,

e42dep,
quol_5,
statistics = "spearman",
exact = FALSE,
continuity = TRUE

)

cv Compute model quality

Description

Compute the coefficient of variation.

Usage

cv(x, ...)

Arguments

x Fitted linear model of class lm, merMod (lme4) or lme (nlme).

... More fitted model objects, to compute multiple coefficients of variation at once.

16 cv_error

Details

The advantage of the cv is that it is unitless. This allows coefficient of variation to be compared
to each other in ways that other measures, like standard deviations or root mean squared residuals,
cannot be.

Value

Numeric, the coefficient of variation.

Examples

data(efc)
fit <- lm(barthtot ~ c160age + c12hour, data = efc)
cv(fit)

cv_error Test and training error from model cross-validation

Description

cv_error() computes the root mean squared error from a model fitted to kfold cross-validated test-
training-data. cv_compare() does the same, for multiple formulas at once (by calling cv_error()
for each formula).

Usage

cv_error(data, formula, k = 5)

cv_compare(data, formulas, k = 5)

Arguments

data A data frame.

formula The formula to fit the linear model for the test and training data.

k The number of folds for the kfold-crossvalidation.

formulas A list of formulas, to fit linear models for the test and training data.

Details

cv_error() first generates cross-validated test-training pairs, using crossv_kfold and then fits a
linear model, which is described in formula, to the training data. Then, predictions for the test data
are computed, based on the trained models. The training error is the mean value of the rmse for all
trained models; the test error is the rmse based on all residuals from the test data.

Value

A data frame with the root mean squared errors for the training and test data.

design_effect 17

Examples

data(efc)
cv_error(efc, neg_c_7 ~ barthtot + c161sex)

cv_compare(efc, formulas = list(
neg_c_7 ~ barthtot + c161sex,
neg_c_7 ~ barthtot + c161sex + e42dep,
neg_c_7 ~ barthtot + c12hour

))

design_effect Design effects for two-level mixed models

Description

Compute the design effect (also called Variance Inflation Factor) for mixed models with two-level
design.

Usage

design_effect(n, icc = 0.05)

Arguments

n Average number of observations per grouping cluster (i.e. level-2 unit).

icc Assumed intraclass correlation coefficient for multilevel-model.

Details

The formula for the design effect is simply (1 + (n -1) * icc).

Value

The design effect (Variance Inflation Factor) for the two-level model.

References

Bland JM. 2000. Sample size in guidelines trials. Fam Pract. (17), 17-20.

Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. 2003. An Overview of Variance Inflation Factors
for Sample-Size Calculation. Evaluation and the Health Professions 26: 239-257. doi: 10.1177/
0163278703255230

Snijders TAB. 2005. Power and Sample Size in Multilevel Linear Models. In: Everitt BS, Howell
DC (Hrsg.). Encyclopedia of Statistics in Behavioral Science. Chichester, UK: John Wiley and
Sons, Ltd. doi: 10.1002/0470013192.bsa492

https://doi.org/10.1177/0163278703255230
https://doi.org/10.1177/0163278703255230
https://doi.org/10.1002/0470013192.bsa492

18 find_beta

Thompson DM, Fernald DH, Mold JW. 2012. Intraclass Correlation Coefficients Typical of Cluster-
Randomized Studies: Estimates From the Robert Wood Johnson Prescription for Health Projects.
The Annals of Family Medicine;10(3):235-40. doi: 10.1370/afm.1347

Examples

Design effect for two-level model with 30 observations per
cluster group (level-2 unit) and an assumed intraclass
correlation coefficient of 0.05.
design_effect(n = 30)

Design effect for two-level model with 24 observation per cluster
group and an assumed intraclass correlation coefficient of 0.2.
design_effect(n = 24, icc = 0.2)

efc Sample dataset from the EUROFAMCARE project

Description

German data set from the European study on family care of older people.

References

Lamura G, Döhner H, Kofahl C, editors. Family carers of older people in Europe: a six-country
comparative study. Münster: LIT, 2008.

find_beta Determining distribution parameters

Description

find_beta(), find_normal() and find_cauchy() find the shape, mean and standard deviation
resp. the location and scale parameters to describe the beta, normal or cauchy distribution, based
on two percentiles. find_beta2() finds the shape parameters for a Beta distribution, based on a
probability value and its standard error or confidence intervals.

Usage

find_beta(x1, p1, x2, p2)

find_beta2(x, se, ci, n)

find_cauchy(x1, p1, x2, p2)

find_normal(x1, p1, x2, p2)

https://doi.org/10.1370/afm.1347

find_beta 19

Arguments

x1 Value for the first percentile.

p1 Probability of the first percentile.

x2 Value for the second percentile.

p2 Probability of the second percentile.

x Numeric, a probability value between 0 and 1. Typically indicates a prevalence
rate of an outcome of interest; Or an integer value with the number of observed
events. In this case, specify n to indicate the toral number of observations.

se The standard error of x. Either se or ci must be specified.

ci The upper limit of the confidence interval of x. Either se or ci must be specified.

n Numeric, number of total observations. Needs to be specified, if x is an integer
(number of observed events), and no probability. See ’Examples’.

Details

These functions can be used to find parameter for various distributions, to define prior probabilities
for Bayesian analyses. x1, p1, x2 and p2 are parameters that describe two quantiles. Given this
knowledge, the distribution parameters are returned.

Use find_beta2(), if the known parameters are, e.g. a prevalence rate or similar probability,
and its standard deviation or confidence interval. In this case. x should be a probability, for example
a prevalence rate of a certain event. se then needs to be the standard error for this probability. Al-
ternatively, ci can be specified, which should indicate the upper limit of the confidence interval od
the probability (prevalence rate) x. If the number of events out of a total number of trials is known
(e.g. 12 heads out of 30 coin tosses), x can also be the number of observed events, while n indicates
the total amount of trials (in the above example, the function call would be: find_beta2(x = 12,n
= 30)).

Value

A list of length two, with the two distribution parameters than can be used to define the distribution,
which (best) describes the shape for the given input parameters.

References

Cook JD. Determining distribution parameters from quantiles. 2010: Department of Biostatistics,
Texas (PDF)

Examples

example from blogpost:
https://www.johndcook.com/blog/2010/01/31/parameters-from-percentiles/
10% of patients respond within 30 days of treatment
and 80% respond within 90 days of treatment
find_normal(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
find_cauchy(x1 = 30, p1 = .1, x2 = 90, p2 = .8)

https://www.johndcook.com/quantiles_parameters.pdf

20 gmd

parms <- find_normal(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
curve(

dnorm(x, mean = parms$mean, sd = parms$sd),
from = 0, to = 200

)

parms <- find_cauchy(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
curve(

dcauchy(x, location = parms$location, scale = parms$scale),
from = 0, to = 200

)

find_beta2(x = .25, ci = .5)

shapes <- find_beta2(x = .25, ci = .5)
curve(dbeta(x, shapes[[1]], shapes[[2]]))

find Beta distribution for 3 events out of 20 observations
find_beta2(x = 3, n = 20)

shapes <- find_beta2(x = 3, n = 20)
curve(dbeta(x, shapes[[1]], shapes[[2]]))

fish Sample dataset

Description

Sample data from the UCLA idre website.

References

https://stats.idre.ucla.edu/r/dae/zip/

gmd Gini’s Mean Difference

Description

gmd() computes Gini’s mean difference for a numeric vector or for all numeric vectors in a data
frame.

Usage

gmd(x, ...)

inequ_trend 21

Arguments

x A vector or data frame.

... Optional, unquoted names of variables that should be selected for further pro-
cessing. Required, if x is a data frame (and no vector) and only selected variables
from x should be processed. You may also use functions like : or tidyselect’s
select_helpers.

Value

For numeric vectors, Gini’s mean difference. For non-numeric vectors or vectors of length < 2,
returns NA.

Note

Gini’s mean difference is defined as the mean absolute difference between any two distinct elements
of a vector. Missing values from x are silently removed.

References

David HA. Gini’s mean difference rediscovered. Biometrika 1968(55): 573-575

Examples

data(efc)
gmd(efc$e17age)
gmd(efc, e17age, c160age, c12hour)

inequ_trend Compute trends in status inequalities

Description

This method computes the proportional change of absolute (rate differences) and relative (rate ra-
tios) inequalities of prevalence rates for two different status groups, as proposed by Mackenbach et
al. (2015).

Usage

inequ_trend(data, prev.low, prev.hi)

Arguments

data A data frame that contains the variables with prevalence rates for both low and
high status groups (see ’Examples’).

prev.low The name of the variable with the prevalence rates for the low status groups.

prev.hi The name of the variable with the prevalence rates for the hi status groups.

22 inequ_trend

Details

Given the time trend of prevalence rates of an outcome for two status groups (e.g. the mortality rates
for people with lower and higher socioeconomic status over 40 years), this function computes the
proportional change of absolute and relative inequalities, expressed in changes in rate differences
and rate ratios. The function implements the algorithm proposed by Mackenbach et al. 2015.

Value

A data frame with the prevalence rates as well as the values for the proportional change in absolute
(rd) and relative (rr) ineqqualities.

References

Mackenbach JP, Martikainen P, Menvielle G, de Gelder R. 2015. The Arithmetic of Reducing
Relative and Absolute Inequalities in Health: A Theoretical Analysis Illustrated with European
Mortality Data. Journal of Epidemiology and Community Health 70(7): 730-36. doi: 10.1136/
jech2015207018

Examples

This example reproduces Fig. 1 of Mackenbach et al. 2015, p.5

40 simulated time points, with an initial rate ratio of 2 and
a rate difference of 100 (i.e. low status group starts with a
prevalence rate of 200, the high status group with 100)

annual decline of prevalence is 1% for the low, and 3% for the
high status group

n <- 40
time <- seq(1, n, by = 1)
lo <- rep(200, times = n)
for (i in 2:n) lo[i] <- lo[i - 1] * .99

hi <- rep(100, times = n)
for (i in 2:n) hi[i] <- hi[i - 1] * .97

prev.data <- data.frame(lo, hi)

print values
inequ_trend(prev.data, lo, hi)

plot trends - here we see that the relative inequalities
are increasing over time, while the absolute inequalities
are first increasing as well, but later are decreasing
(while rel. inequ. are still increasing)
plot(inequ_trend(prev.data, lo, hi))

https://doi.org/10.1136/jech-2015-207018
https://doi.org/10.1136/jech-2015-207018

is_prime 23

is_prime Find prime numbers

Description

This functions checks whether a number is, or numbers in a vector are prime numbers.

Usage

is_prime(x)

Arguments

x An integer, or a vector of integers.

Value

TRUE for each prime number in x, FALSE otherwise.

Examples

is_prime(89)
is_prime(15)
is_prime(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))

means_by_group Summary of mean values by group

Description

Computes mean, sd and se for each sub-group (indicated by grp) of dv.

Usage

means_by_group(
x,
dv,
grp,
weights = NULL,
digits = 2,
out = c("txt", "viewer", "browser"),
encoding = "UTF-8",
file = NULL

)

24 means_by_group

grpmean(
x,
dv,
grp,
weights = NULL,
digits = 2,
out = c("txt", "viewer", "browser"),
encoding = "UTF-8",
file = NULL

)

Arguments

x A (grouped) data frame.

dv Name of the dependent variable, for which the mean value, grouped by grp, is
computed.

grp Factor with the cross-classifying variable, where dv is grouped into the cate-
gories represented by grp. Numeric vectors are coerced to factors.

weights Name of variable in x that indicated the vector of weights that will be applied to
weight all observations. Default is NULL, so no weights are used.

digits Numeric, amount of digits after decimal point when rounding estimates and
values.

out Character vector, indicating whether the results should be printed to console
(out = "txt") or as HTML-table in the viewer-pane (out = "viewer") or browser
(out = "browser"), of if the results should be plotted (out = "plot", only ap-
plies to certain functions). May be abbreviated.

encoding Character vector, indicating the charset encoding used for variable and value
labels. Default is "UTF-8". Only used when out is not "txt".

file Destination file, if the output should be saved as file. Only used when out is not
"txt".

Details

This function performs a One-Way-Anova with dv as dependent and grp as independent variable,
by calling lm(count ~ as.factor(grp)). Then contrast is called to get p-values for each sub-
group. P-values indicate whether each group-mean is significantly different from the total mean.

Value

For non-grouped data frames, means_by_group() returns a data frame with following columns:
term, mean, N, std.dev, std.error and p.value. For grouped data frames, returns a list of such
data frames.

Examples

data(efc)
means_by_group(efc, c12hour, e42dep)

mean_n 25

data(iris)
means_by_group(iris, Sepal.Width, Species)

also works for grouped data frames
if (require("dplyr")) {

efc %>%
group_by(c172code) %>%
means_by_group(c12hour, e42dep)

}

weighting
efc$weight <- abs(rnorm(n = nrow(efc), mean = 1, sd = .5))
means_by_group(efc, c12hour, e42dep, weights = weight)

mean_n Row means with min amount of valid values

Description

This function is similar to the SPSS MEAN.n function and computes row means from a data.frame
or matrix if at least n values of a row are valid (and not NA).

Usage

mean_n(dat, n, digits = 2)

Arguments

dat A data frame with at least two columns, where row means are applied.
n May either be

• a numeric value that indicates the amount of valid values per row to calcu-
late the row mean;

• or a value between 0 and 1, indicating a proportion of valid values per row
to calculate the row mean (see ’Details’).

If a row’s sum of valid values is less than n, NA will be returned as row mean
value.

digits Numeric value indicating the number of decimal places to be used for rounding
mean value. Negative values are allowed (see ’Details’).

Details

Rounding to a negative number of digits means rounding to a power of ten, so for example
mean_n(df, 3, digits = -2) rounds to the nearest hundred.

For n, must be a numeric value from 0 to ncol(dat). If a row in dat has at least n non-missing
values, the row mean is returned. If n is a non-integer value from 0 to 1, n is considered to indicate
the proportion of necessary non-missing values per row. E.g., if n = .75, a row must have at least
ncol(dat) * n non-missing values for the row mean to be calculated. See ’Examples’.

26 mediation

Value

A vector with row mean values of df for those rows with at least n valid values. Else, NA is returned.

References

r4stats.com

Examples

dat <- data.frame(c1 = c(1,2,NA,4),
c2 = c(NA,2,NA,5),
c3 = c(NA,4,NA,NA),
c4 = c(2,3,7,8))

needs at least 4 non-missing values per row
mean_n(dat, 4) # 1 valid return value

needs at least 3 non-missing values per row
mean_n(dat, 3) # 2 valid return values

needs at least 2 non-missing values per row
mean_n(dat, 2)

needs at least 1 non-missing value per row
mean_n(dat, 1) # all means are shown

needs at least 50% of non-missing values per row
mean_n(dat, .5) # 3 valid return values

needs at least 75% of non-missing values per row
mean_n(dat, .75) # 2 valid return values

mediation Summary of Bayesian multivariate-response mediation-models

Description

mediation() is a short summary for multivariate-response mediation-models.

Usage

mediation(x, ...)

S3 method for class 'brmsfit'
mediation(x, treatment, mediator, prob = 0.9, typical = "median", ...)

http://r4stats.com/2014/09/03/adding-the-spss-mean-n-function-to-r/

mwu 27

Arguments

x A stanreg, stanfit, or brmsfit object.

... Not used.

treatment Character, name of the treatment variable (or direct effect) in a (multivariate
response) mediator-model. If missing, mediation() tries to find the treatment
variable automatically, however, this may fail.

mediator Character, name of the mediator variable in a (multivariate response) mediator-
model. If missing, mediation() tries to find the treatment variable automati-
cally, however, this may fail.

prob Vector of scalars between 0 and 1, indicating the mass within the credible inter-
val that is to be estimated.

typical The typical value that will represent the Bayesian point estimate. By default,
the posterior median is returned. See typical_value for possible values for
this argument.

Details

mediation() returns a data frame with information on the direct effect (mean value of posterior
samples from treatment of the outcome model), mediator effect (mean value of posterior samples
from mediator of the outcome model), indirect effect (mean value of the multiplication of the pos-
terior samples from mediator of the outcome model and the posterior samples from treatment
of the mediation model) and the total effect (mean value of sums of posterior samples used for the
direct and indirect effect). The proportion mediated is the indirect effect divided by the total effect.

For all values, the 90% HDIs are calculated by default. Use prob to calculate a different inter-
val.

The arguments treatment and mediator do not necessarily need to be specified. If missing,
mediation() tries to find the treatment and mediator variable automatically. If this does not work,
specify these variables.

Value

A data frame with direct, indirect, mediator and total effect of a multivariate-response mediation-
model, as well as the proportion mediated. The effect sizes are mean values of the posterior samples.

mwu Mann-Whitney-U-Test

Description

This function performs a Mann-Whitney-U-Test (or Wilcoxon rank sum test, see wilcox.test and
wilcox_test) for x, for each group indicated by grp. If grp has more than two categories, a com-
parison between each combination of two groups is performed.

The function reports U, p and Z-values as well as effect size r and group-rank-means.

28 mwu

Usage

mwu(
data,
x,
grp,
distribution = "asymptotic",
out = c("txt", "viewer", "browser"),
encoding = "UTF-8",
file = NULL

)

mannwhitney(
data,
x,
grp,
distribution = "asymptotic",
out = c("txt", "viewer", "browser"),
encoding = "UTF-8",
file = NULL

)

Arguments

data A data frame.
x Bare (unquoted) variable name, or a character vector with the variable name.
grp Bare (unquoted) name of the cross-classifying variable, where x is grouped into

the categories represented by grp, or a character vector with the variable name.
distribution Indicates how the null distribution of the test statistic should be computed. May

be one of "exact", "approximate" or "asymptotic" (default). See wilcox_test
for details.

out Character vector, indicating whether the results should be printed to console
(out = "txt") or as HTML-table in the viewer-pane (out = "viewer") or browser
(out = "browser"), of if the results should be plotted (out = "plot", only ap-
plies to certain functions). May be abbreviated.

encoding Character vector, indicating the charset encoding used for variable and value
labels. Default is "UTF-8". Only used when out is not "txt".

file Destination file, if the output should be saved as file. Only used when out is not
"txt".

Value

(Invisibly) returns a data frame with U, p and Z-values for each group-comparison as well as effect-
size r; additionally, group-labels and groups’ n’s are also included.

Note

This function calls the wilcox_test with formula. If grp has more than two groups, additionally a
Kruskal-Wallis-Test (see kruskal.test) is performed.

nhanes_sample 29

Interpretation of effect sizes, as a rule-of-thumb:

• small effect >= 0.1

• medium effect >= 0.3

• large effect >= 0.5

Examples

data(efc)
Mann-Whitney-U-Tests for elder's age by elder's dependency.
mwu(efc, e17age, e42dep)

nhanes_sample Sample dataset from the National Health and Nutrition Examination
Survey

Description

Selected variables from the National Health and Nutrition Examination Survey that are used in the
example from Lumley (2010), Appendix E. See svyglm.nb for examples.

References

Lumley T (2010). Complex Surveys: a guide to analysis using R. Wiley

odds_to_rr Get relative risks estimates from logistic regressions or odds ratio val-
ues

Description

odds_to_rr() converts odds ratios from a logistic regression model (including mixed models) into
relative risks; or_to_rr() converts a single odds ratio estimate into a relative risk estimate.

Usage

odds_to_rr(fit)

or_to_rr(or, p0)

30 odds_to_rr

Arguments

fit A fitted binomial generalized linear (mixed) model with logit-link function (lo-
gistic (multilevel) regression model).

or Numeric, an odds ratio estimate.

p0 Numeric, the risk of having a positive outcome in the control or unexposed group
(reference group), i.e. the number of outcome or "successes" in the control
divided by the total number of observations in the control group.

Details

This function extracts the odds ratios (exponentiated model coefficients) from logistic regressions
(fitted with glm or glmer) and their related confidence intervals, and transforms these values into
relative risks (and their related confidence intervals).

The formula for transformation is based on Zhang and Yu (1998), Wang (2013) and Grant (2014):
RR <-OR / (1 -P0 + (P0 * OR)), where OR is the odds ratio and P0 indicates the proportion of the
incidence in the outcome variable for the control group (reference group).

Value

A data frame with relative risks and lower/upper confidence interval for the relative risks estimates;
for or_to_rr(), the risk ratio estimate.

References

Grant RL. 2014. Converting an odds ratio to a range of plausible relative risks for better communi-
cation of research findings. BMJ 348:f7450. doi: 10.1136/bmj.f7450

Wang Z. 2013. Converting Odds Ratio to Relative Risk in Cohort Studies with Partial Data In-
formation. J Stat Soft 2013;55. doi: 10.18637/jss.v055.i05

Zhang J, Yu KF. 1998. What’s the Relative Risk? A Method of Correcting the Odds Ratio in
Cohort Studies of Common Outcomes. JAMA; 280(19): 1690-1. doi: 10.1001/jama.280.19.1690

Examples

library(sjmisc)
library(lme4)
create binary response
sleepstudy$Reaction.dicho <- dicho(sleepstudy$Reaction, dich.by = "median")
fit model
fit <- glmer(Reaction.dicho ~ Days + (Days | Subject),

data = sleepstudy, family = binomial("logit"))
convert to relative risks
odds_to_rr(fit)

data(efc)
create binary response

https://doi.org/10.1136/bmj.f7450
https://doi.org/10.18637/jss.v055.i05
https://doi.org/10.1001/jama.280.19.1690

prop 31

y <- ifelse(efc$neg_c_7 < median(na.omit(efc$neg_c_7)), 0, 1)
create data frame for fitted model
mydf <- data.frame(

y = as.factor(y),
sex = to_factor(efc$c161sex),
dep = to_factor(efc$e42dep),
barthel = efc$barthtot,
education = to_factor(efc$c172code)

)
fit model
fit <- glm(y ~., data = mydf, family = binomial(link = "logit"))
convert to relative risks
odds_to_rr(fit)

replicate OR/RR for coefficient "sex" from above regression
p0 ~ .44, or ~ 1.914
prop.table(table(mydf$y, mydf$sex))
or_to_rr(1.914, 0.1055 / (.1324 + .1055))

prop Proportions of values in a vector

Description

prop() calculates the proportion of a value or category in a variable. props() does the same,
but allows for multiple logical conditions in one statement. It is similar to mean() with logical
predicates, however, both prop() and props() work with grouped data frames.

Usage

prop(data, ..., weights = NULL, na.rm = TRUE, digits = 4)

props(data, ..., na.rm = TRUE, digits = 4)

Arguments

data A data frame. May also be a grouped data frame (see ’Examples’).

... One or more value pairs of comparisons (logical predicates). Put variable names
the left-hand-side and values to match on the right hand side. Expressions may
be quoted or unquoted. See ’Examples’.

weights Vector of weights that will be applied to weight all observations. Must be a
vector of same length as the input vector. Default is NULL, so no weights are
used.

na.rm Logical, whether to remove NA values from the vector when the proportion is
calculated. na.rm = FALSE gives you the raw percentage of a value in a vector,
na.rm = TRUE the valid percentage.

digits Amount of digits for returned values.

32 prop

Details

prop() only allows one logical statement per comparison, while props() allows multiple logical
statements per comparison. However, prop() supports weighting of variables before calculating
proportions, and comparisons may also be quoted. Hence, prop() also processes comparisons,
which are passed as character vector (see ’Examples’).

Value

For one condition, a numeric value with the proportion of the values inside a vector. For more
than one condition, a tibble with one column of conditions and one column with proportions. For
grouped data frames, returns a tibble with one column per group with grouping categories, followed
by one column with proportions per condition.

Examples

data(efc)

proportion of value 1 in e42dep
prop(efc, e42dep == 1)

expression may also be completely quoted
prop(efc, "e42dep == 1")

use "props()" for multiple logical statements
props(efc, e17age > 70 & e17age < 80)

proportion of value 1 in e42dep, and all values greater
than 2 in e42dep, including missing values. will return a tibble
prop(efc, e42dep == 1, e42dep > 2, na.rm = FALSE)

for factors or character vectors, use quoted or unquoted values
library(sjmisc)
convert numeric to factor, using labels as factor levels
efc$e16sex <- to_label(efc$e16sex)
efc$n4pstu <- to_label(efc$n4pstu)

get proportion of female older persons
prop(efc, e16sex == female)

get proportion of male older persons
prop(efc, e16sex == "male")

"props()" needs quotes around non-numeric factor levels
props(efc,

e17age > 70 & e17age < 80,
n4pstu == 'Care Level 1' | n4pstu == 'Care Level 3'

)

also works with pipe-chains
library(dplyr)
efc %>% prop(e17age > 70)

r2 33

efc %>% prop(e17age > 70, e16sex == 1)

and with group_by
efc %>%

group_by(e16sex) %>%
prop(e42dep > 2)

efc %>%
select(e42dep, c161sex, c172code, e16sex) %>%
group_by(c161sex, c172code) %>%
prop(e42dep > 2, e16sex == 1)

same for "props()"
efc %>%

select(e42dep, c161sex, c172code, c12hour, n4pstu) %>%
group_by(c161sex, c172code) %>%
props(
e42dep > 2,
c12hour > 20 & c12hour < 40,
n4pstu == 'Care Level 1' | n4pstu == 'Care Level 3'

)

r2 Deprecated functions

Description

A list of deprecated functions.

Usage

r2(x)

icc(x)

p_value(x, ...)

se(x, ...)

cohens_f(x, ...)

std_beta(x, ...)

robust(x, ...)

Arguments

x An object.
... Currently not used.

34 samplesize_mixed

Value

Nothing.

samplesize_mixed Sample size for linear mixed models

Description

Compute an approximated sample size for linear mixed models (two-level-designs), based on power-
calculation for standard design and adjusted for design effect for 2-level-designs.

Usage

samplesize_mixed(
eff.size,
df.n = NULL,
power = 0.8,
sig.level = 0.05,
k,
n,
icc = 0.05

)

smpsize_lmm(
eff.size,
df.n = NULL,
power = 0.8,
sig.level = 0.05,
k,
n,
icc = 0.05

)

Arguments

eff.size Effect size.

df.n Optional argument for the degrees of freedom for numerator. See ’Details’.

power Power of test (1 minus Type II error probability).

sig.level Significance level (Type I error probability).

k Number of cluster groups (level-2-unit) in multilevel-design.

n Optional, number of observations per cluster groups (level-2-unit) in multilevel-
design.

icc Expected intraclass correlation coefficient for multilevel-model.

scale_weights 35

Details

The sample size calculation is based on a power-calculation for the standard design. If df.n
is not specified, a power-calculation for an unpaired two-sample t-test will be computed (using
pwr.t.test of the pwr-package). If df.n is given, a power-calculation for general linear mod-
els will be computed (using pwr.f2.test of the pwr-package). The sample size of the standard
design is then adjusted for the design effect of two-level-designs (see design_effect). Thus, the
sample size calculation is appropriate in particular for two-level-designs (see Snijders 2005). Mod-
els that additionally include repeated measures (three-level-designs) may work as well, however,
the computed sample size may be less accurate.

Value

A list with two values: The number of subjects per cluster, and the total sample size for the linear
mixed model.

References

Cohen J. 1988. Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ:
Lawrence Erlbaum.

Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. 2003. An Overview of Variance Inflation Factors
for Sample-Size Calculation. Evaluation and the Health Professions 26: 239-257. doi: 10.1177/
0163278703255230

Snijders TAB. 2005. Power and Sample Size in Multilevel Linear Models. In: Everitt BS, Howell
DC (Hrsg.). Encyclopedia of Statistics in Behavioral Science. Chichester, UK: John Wiley and
Sons, Ltd. doi: 10.1002/0470013192.bsa492

Examples

Sample size for multilevel model with 30 cluster groups and a small to
medium effect size (Cohen's d) of 0.3. 27 subjects per cluster and
hence a total sample size of about 802 observations is needed.
samplesize_mixed(eff.size = .3, k = 30)

Sample size for multilevel model with 20 cluster groups and a medium
to large effect size for linear models of 0.2. Five subjects per cluster and
hence a total sample size of about 107 observations is needed.
samplesize_mixed(eff.size = .2, df.n = 5, k = 20, power = .9)

scale_weights Rescale design weights for multilevel analysis

https://CRAN.R-project.org/package=pwr
https://doi.org/10.1177/0163278703255230
https://doi.org/10.1177/0163278703255230
https://doi.org/10.1002/0470013192.bsa492

36 scale_weights

Description

Most functions to fit multilevel and mixed effects models only allow to specify frequency weights,
but not design (i.e. sampling or probability) weights, which should be used when analyzing complex
samples and survey data. scale_weights() implements an algorithm proposed by Aaparouhov
(2006) and Carle (2009) to rescale design weights in survey data to account for the grouping struc-
ture of multilevel models, which then can be used for multilevel modelling.

Usage

scale_weights(x, cluster.id, pweight)

Arguments

x A data frame.

cluster.id Variable indicating the grouping structure (strata) of the survey data (level-2-
cluster variable).

pweight Variable indicating the probability (design or sampling) weights of the survey
data (level-1-weight).

Details

Rescaling is based on two methods: For svywght_a, the sample weights pweight are adjusted by a
factor that represents the proportion of cluster size divided by the sum of sampling weights within
each cluster. The adjustment factor for svywght_b is the sum of sample weights within each cluster
devided by the sum of squared sample weights within each cluster (see Carle (2009), Appendix B).

Regarding the choice between scaling methods A and B, Carle suggests that "analysts who wish
to discuss point estimates should report results based on weighting method A. For analysts more
interested in residual between-cluster variance, method B may generally provide the least biased
estimates". In general, it is recommended to fit a non-weighted model and weighted models with
both scaling methods and when comparing the models, see whether the "inferential decisions con-
verge", to gain confidence in the results.

Though the bias of scaled weights decreases with increasing cluster size, method A is preferred
when insufficient or low cluster size is a concern.

The cluster ID and probably PSU may be used as random effects (e.g. nested design, or cluster
and PSU as varying intercepts), depending on the survey design that should be mimicked.

Value

x, with two new variables: svywght_a and svywght_b, which represent the rescaled design weights
to use in multilevel models (use these variables for the weights argument).

References

Carle AC. Fitting multilevel models in complex survey data with design weights: Recommendations
BMC Medical Research Methodology 2009, 9(49): 1-13

se_ybar 37

Asparouhov T. General Multi-Level Modeling with Sampling Weights Communications in Statis-
tics - Theory and Methods 2006, 35: 439-460

Examples

data(nhanes_sample)
scale_weights(nhanes_sample, SDMVSTRA, WTINT2YR)

if (require("lme4")) {
nhanes_sample <- scale_weights(nhanes_sample, SDMVSTRA, WTINT2YR)
glmer(
total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)) + (1 | SDMVPSU),
family = poisson(),
data = nhanes_sample,
weights = svywght_a

)
}

se_ybar Standard error of sample mean for mixed models

Description

Compute the standard error for the sample mean for mixed models, regarding the extent to which
clustering affects the standard errors. May be used as part of the multilevel power calculation for
cluster sampling (see Gelman and Hill 2007, 447ff).

Usage

se_ybar(fit)

Arguments

fit Fitted mixed effects model (merMod-class).

Value

The standard error of the sample mean of fit.

References

Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models. Cam-
bridge, New York: Cambridge University Press

38 survey_median

Examples

if (require("lme4")) {
fit <- lmer(Reaction ~ 1 + (1 | Subject), sleepstudy)
se_ybar(fit)

}

survey_median Weighted statistics for tests and variables

Description

Weighted statistics for variables

weighted_sd(), weighted_se(), weighted_mean() and weighted_median() compute weighted
standard deviation, standard error, mean or median for a variable or for all variables of a data
frame. survey_median() computes the median for a variable in a survey-design (see svydesign).
weighted_correlation() computes a weighted correlation for a two-sided alternative hypothesis.

Weighted tests

weighted_ttest() computes a weighted t-test, while weighted_mannwhitney() computes a weighted
Mann-Whitney-U test or a Kruskal-Wallis test (for more than two groups). weighted_chisqtest()
computes a weighted Chi-squared test for contigency tables.

Usage

survey_median(x, design)

weighted_chisqtest(data, ...)

Default S3 method:
weighted_chisqtest(data, x, y, weights, ...)

S3 method for class 'formula'
weighted_chisqtest(formula, data, ...)

weighted_correlation(data, ...)

Default S3 method:
weighted_correlation(data, x, y, weights, ci.lvl = 0.95, ...)

S3 method for class 'formula'
weighted_correlation(formula, data, ci.lvl = 0.95, ...)

weighted_mean(x, weights = NULL)

weighted_median(x, weights = NULL)

survey_median 39

weighted_mannwhitney(data, ...)

Default S3 method:
weighted_mannwhitney(data, x, grp, weights, ...)

S3 method for class 'formula'
weighted_mannwhitney(formula, data, ...)

weighted_sd(x, weights = NULL)

wtd_sd(x, weights = NULL)

weighted_se(x, weights = NULL)

weighted_ttest(data, ...)

Default S3 method:
weighted_ttest(
data,
x,
y = NULL,
weights,
mu = 0,
paired = FALSE,
ci.lvl = 0.95,
alternative = c("two.sided", "less", "greater"),
...

)

S3 method for class 'formula'
weighted_ttest(
formula,
data,
mu = 0,
paired = FALSE,
ci.lvl = 0.95,
alternative = c("two.sided", "less", "greater"),
...

)

Arguments

x (Numeric) vector or a data frame. For survey_median(), weighted_ttest(),
weighted_mannwhitney() and weighted_chisqtest() the bare (unquoted)
variable name, or a character vector with the variable name.

design An object of class svydesign, providing a specification of the survey design.

data A data frame.

40 survey_median

... For weighted_ttest() and weighted_mannwhitney(), currently not used. For
weighted_chisqtest(), further arguments passed down to chisq.test.

y Optional, bare (unquoted) variable name, or a character vector with the variable
name.

weights Bare (unquoted) variable name, or a character vector with the variable name
of the numeric vector of weights. If weights = NULL, unweighted statistic is
reported.

formula A formula of the form lhs ~ rhs1 + rhs2 where lhs is a numeric variable giv-
ing the data values and rhs1 a factor with two levels giving the corresponding
groups and rhs2 a variable with weights.

ci.lvl Confidence level of the interval.

grp Bare (unquoted) name of the cross-classifying variable, where x is grouped into
the categories represented by grp, or a character vector with the variable name.

mu A number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

paired Logical, whether to compute a paired t-test.

alternative A character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

Value

The weighted (test) statistic.

Note

weighted_chisq() is a convenient wrapper for crosstable_statistics. For a weighted one-
way Anova, use means_by_group() with weights-argument.

weighted_ttest() assumes unequal variance between the two groups.

Examples

weighted sd and se ----

weighted_sd(rnorm(n = 100, mean = 3), runif(n = 100))

data(efc)
weighted_sd(efc[, 1:3], runif(n = nrow(efc)))
weighted_se(efc[, 1:3], runif(n = nrow(efc)))

survey_median ----

median for variables from weighted survey designs
if (require("survey")) {

data(nhanes_sample)

des <- svydesign(
id = ~SDMVPSU,

svyglm.nb 41

strat = ~SDMVSTRA,
weights = ~WTINT2YR,
nest = TRUE,
data = nhanes_sample

)

survey_median(total, des)
survey_median("total", des)

}

weighted t-test ----

efc$weight <- abs(rnorm(nrow(efc), 1, .3))
weighted_ttest(efc, e17age, weights = weight)
weighted_ttest(efc, e17age, c160age, weights = weight)
weighted_ttest(e17age ~ e16sex + weight, efc)

weighted Mann-Whitney-U-test ----

weighted_mannwhitney(c12hour ~ c161sex + weight, efc)

weighted Chi-squared-test ----

weighted_chisqtest(efc, c161sex, e16sex, weights = weight, correct = FALSE)
weighted_chisqtest(c172code ~ c161sex + weight, efc)

svyglm.nb Survey-weighted negative binomial generalised linear model

Description

svyglm.nb() is an extension to the survey-package to fit survey-weighted negative binomial mod-
els. It uses svymle to fit sampling-weighted maximum likelihood estimates, based on starting values
provided by glm.nb, as proposed by Lumley (2010, pp249).

Usage

svyglm.nb(formula, design, ...)

Arguments

formula An object of class formula, i.e. a symbolic description of the model to be fitted.
See ’Details’ in glm.

design An object of class svydesign, providing a specification of the survey design.

... Other arguments passed down to glm.nb.

https://CRAN.R-project.org/package=survey

42 svyglm.nb

Details

For details on the computation method, see Lumley (2010), Appendix E (especially 254ff.)

sjstats implements following S3-methods for svyglm.nb-objects: family(), model.frame(), formula(),
print(), predict() and residuals(). However, these functions have some limitations:

• family() simply returns the family-object from the underlying glm.nb-model.

• The predict()-method just re-fits the svyglm.nb-model with glm.nb, overwrites the $coefficients
from this model-object with the coefficients from the returned svymle-object and finally calls
predict.glm to compute the predicted values.

• residuals() re-fits the svyglm.nb-model with glm.nb and then computes the Pearson-residuals
from the glm.nb-object.

Value

An object of class svymle and svyglm.nb, with some additional information about the model.

References

Lumley T (2010). Complex Surveys: a guide to analysis using R. Wiley

Examples

--
This example reproduces the results from
Lumley 2010, figure E.7 (Appendix E, p256)
--
if (require("survey")) {

data(nhanes_sample)

create survey design
des <- svydesign(
id = ~SDMVPSU,
strat = ~SDMVSTRA,
weights = ~WTINT2YR,
nest = TRUE,
data = nhanes_sample

)

fit negative binomial regression
fit <- svyglm.nb(total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)), des)

print coefficients and standard errors
fit

}

svyglm.zip 43

svyglm.zip Survey-weighted zero-inflated Poisson model

Description

svyglm.zip() is an extension to the survey-package to fit survey-weighted zero-inflated Poisson
models. It uses svymle to fit sampling-weighted maximum likelihood estimates, based on starting
values provided by zeroinfl.

Usage

svyglm.zip(formula, design, ...)

Arguments

formula An object of class formula, i.e. a symbolic description of the model to be fitted.
See ’Details’ in zeroinfl.

design An object of class svydesign, providing a specification of the survey design.

... Other arguments passed down to zeroinfl.

Details

Code modified from https://notstatschat.rbind.io/2015/05/26/zero-inflated-poisson-from-complex-
samples/.

Value

An object of class svymle and svyglm.zip, with some additional information about the model.

Examples

if (require("survey")) {
data(nhanes_sample)
set.seed(123)
nhanes_sample$malepartners <- rpois(nrow(nhanes_sample), 2)
nhanes_sample$malepartners[sample(1:2992, 400)] <- 0

create survey design
des <- svydesign(
id = ~SDMVPSU,
strat = ~SDMVSTRA,
weights = ~WTINT2YR,
nest = TRUE,
data = nhanes_sample

)

fit negative binomial regression
fit <- svyglm.zip(

https://CRAN.R-project.org/package=survey

44 table_values

malepartners ~ age + factor(RIDRETH1) | age + factor(RIDRETH1),
des

)

print coefficients and standard errors
fit

}

table_values Expected and relative table values

Description

This function calculates a table’s cell, row and column percentages as well as expected values and
returns all results as lists of tables.

Usage

table_values(tab, digits = 2)

Arguments

tab Simple table or ftable of which cell, row and column percentages as well as
expected values are calculated. Tables of class xtabs and other will be coerced
to ftable objects.

digits Amount of digits for the table percentage values.

Value

(Invisibly) returns a list with four tables:

1. cell a table with cell percentages of tab

2. row a table with row percentages of tab

3. col a table with column percentages of tab

4. expected a table with expected values of tab

Examples

tab <- table(sample(1:2, 30, TRUE), sample(1:3, 30, TRUE))
show expected values
table_values(tab)$expected
show cell percentages
table_values(tab)$cell

tidy_stan 45

tidy_stan Tidy summary output for stan models

Description

Returns a tidy summary output for stan models.

Usage

tidy_stan(
x,
prob = 0.89,
typical = "median",
trans = NULL,
effects = c("all", "fixed", "random"),
component = c("all", "conditional", "zero_inflated", "zi"),
digits = 2

)

Arguments

x A stanreg, stanfit or brmsfit object.

prob Vector of scalars between 0 and 1, indicating the mass within the credible inter-
val that is to be estimated.

typical The typical value that will represent the Bayesian point estimate. By default,
the posterior median is returned. See typical_value for possible values for
this argument.

trans Name of a function or character vector naming a function, used to apply trans-
formations on the estimates and uncertainty intervals. The values for standard
errors are not transformed! If trans is not NULL, credible intervals instead of
HDI are computed, due to the possible asymmetry of the HDI.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

digits Amount of digits to round numerical values in the output.

Details

The returned data frame has an additonal class-attribute, tidy_stan, to pass the result to its own
print()-method. The print()-method creates a cleaner output, especially for multilevel, zero-
inflated or multivariate response models, where - for instance - the conditional part of a model is
printed separately from the zero-inflated part, or random and fixed effects are printed separately.

The returned data frame gives information on:

46 tidy_stan

• The Bayesian point estimate (column estimate, which is by default the posterior median; other
statistics are also possible, see argument typical).

• The standard error (which is actually the median absolute deviation).

• The HDI. Computation for HDI is based on the code from Kruschke 2015, pp. 727f.

• The Probability of Direction (pd), which is an index for "effect significance" (see Makowski
et al. 2019). A value of 95% or higher indicates a "significant" (i.e. statistically clear) effect.

• The effective numbers of samples, ESS.

• The Rhat statistics. When Rhat is above 1, it usually indicates that the chain has not yet con-
verged, indicating that the drawn samples might not be trustworthy. Drawing more iteration
may solve this issue.

• The Monte Carlo standard error (see mcse). It is defined as standard deviation of the chains
divided by their effective sample size and “provides a quantitative suggestion of how big the
estimation noise is” (Kruschke 2015, p.187).

Value

A data frame, summarizing x, with consistent column names. To distinguish multiple HDI values,
column names for the HDI get a suffix when prob has more than one element.

References

Kruschke JK. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan 2nd edition. Aca-
demic Press, 2015

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis 3rd
ed. Boca Raton: Chapman and Hall/CRC, 2013

Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences Statistical Sci-
ence 1992;7: 457-511

Makowski D, Ben-Shachar MS, Lüdecke D. bayestestR: Describing Effects and their Uncertainty,
Existence and Significance within the Bayesian Framework. Journal of Open Source Software
2019;4:1541. doi: 10.21105/joss.01541

McElreath R. Statistical Rethinking. A Bayesian Course with Examples in R and Stan Chapman
and Hall, 2015

Examples

Not run:
if (require("rstanarm")) {

fit <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1)
tidy_stan(fit)
tidy_stan(fit, prob = c(.89, .5))

}
End(Not run)

https://doi.org/10.21105/joss.01541

var_pop 47

var_pop Calculate population variance and standard deviation

Description

Calculate the population variance or standard deviation of a vector.

Usage

var_pop(x)

sd_pop(x)

Arguments

x (Numeric) vector.

Details

Unlike var, which returns the sample variance, var_pop() returns the population variance. sd_pop()
returns the standard deviation based on the population variance.

Value

The population variance or standard deviation of x.

Examples

data(efc)

sampling variance
var(efc$c12hour, na.rm = TRUE)
population variance
var_pop(efc$c12hour)

sampling sd
sd(efc$c12hour, na.rm = TRUE)
population sd
sd_pop(efc$c12hour)

48 weight

weight Weight a variable

Description

These functions weight the variable x by a specific vector of weights.

Usage

weight(x, weights, digits = 0)

weight2(x, weights)

Arguments

x (Unweighted) variable.

weights Vector with same length as x, which contains weight factors. Each value of x
has a specific assigned weight in weights.

digits Numeric value indicating the number of decimal places to be used for rounding
the weighted values. By default, this value is 0, i.e. the returned values are
integer values.

Details

weight2() sums up all weights values of the associated categories of x, whereas weight() uses a
xtabs formula to weight cases. Thus, weight() may return a vector of different length than x.

Value

The weighted x.

Note

The values of the returned vector are in sorted order, whereas the values’ order of the original x may
be spread randomly. Hence, x can’t be used, for instance, for further cross tabulation. In case you
want to have weighted contingency tables or (grouped) box plots etc., use the weightBy argument
of most functions.

Examples

v <- sample(1:4, 20, TRUE)
table(v)
w <- abs(rnorm(20))
table(weight(v, w))
table(weight2(v, w))

set.seed(1)
x <- sample(letters[1:5], size = 20, replace = TRUE)

weight 49

w <- runif(n = 20)

table(x)
table(weight(x, w))

Index

∗Topic data
efc, 18
fish, 20
nhanes_sample, 29

anova, 4
anova_stats, 4
auto_prior, 5

boot_ci, 7, 8, 8
boot_est (boot_ci), 8
boot_p (boot_ci), 8
boot_se (boot_ci), 8
bootstrap, 7, 9

chisq.test, 12, 13, 40
chisq_gof, 11
cohens_f (r2), 33
contrast, 24
cor.test, 13
cramer, 12
crosstable_statistics, 40
crosstable_statistics (cramer), 12
crossv_kfold, 16
cv, 15
cv_compare (cv_error), 16
cv_error, 16

design_effect, 17, 35

efc, 18
epsilon_sq (anova_stats), 4
eta_sq (anova_stats), 4
eta_squared, 4

find_beta, 18
find_beta2 (find_beta), 18
find_cauchy (find_beta), 18
find_normal (find_beta), 18
fish, 20
fisher.test, 13

ftable, 13, 44

glm, 41
glm.nb, 41, 42
gmd, 20
grpmean (means_by_group), 23

icc (r2), 33
inequ_trend, 21
is_prime, 23

kruskal.test, 28

mannwhitney (mwu), 27
mcse, 46
mean_n, 25
means_by_group, 23
mediation, 26
merMod, 37
mwu, 27

nhanes_sample, 29

odds_to_rr, 29
omega_sq (anova_stats), 4
or_to_rr (odds_to_rr), 29

p_value (r2), 33
phi (cramer), 12
predict.glm, 42
prop, 31
props (prop), 31
pwr.f2.test, 35
pwr.t.test, 35

r2, 33
rmse, 16
robust (r2), 33

samplesize_mixed, 34
scale_weights, 35

50

INDEX 51

sd_pop (var_pop), 47
se (r2), 33
se_ybar, 37
select_helpers, 9, 21
set_prior, 6
sjstats (sjstats-package), 2
sjstats-package, 2
smpsize_lmm (samplesize_mixed), 34
std_beta (r2), 33
survey_median, 38
svydesign, 38, 39, 41, 43
svyglm.nb, 29, 41
svyglm.zip, 43
svymle, 41–43

table, 13, 44
table_values, 44
tibble, 9
tidy_stan, 45
typical_value, 27, 45

var, 47
var_pop, 47

weight, 48
weight2 (weight), 48
weighted_chisqtest (survey_median), 38
weighted_correlation (survey_median), 38
weighted_mannwhitney (survey_median), 38
weighted_mean (survey_median), 38
weighted_median (survey_median), 38
weighted_sd (survey_median), 38
weighted_se (survey_median), 38
weighted_ttest (survey_median), 38
wilcox.test, 27
wilcox_test, 27, 28
wtd_sd (survey_median), 38

xtab_statistics (cramer), 12
xtabs, 13, 44, 48

zeroinfl, 43

	sjstats-package
	anova_stats
	auto_prior
	bootstrap
	boot_ci
	chisq_gof
	cramer
	cv
	cv_error
	design_effect
	efc
	find_beta
	fish
	gmd
	inequ_trend
	is_prime
	means_by_group
	mean_n
	mediation
	mwu
	nhanes_sample
	odds_to_rr
	prop
	r2
	samplesize_mixed
	scale_weights
	se_ybar
	survey_median
	svyglm.nb
	svyglm.zip
	table_values
	tidy_stan
	var_pop
	weight
	Index

