Package 'simsem'

February 12, 2020
Type Package
Title SIMulated Structural Equation Modeling
Version 0.5-15
Date 2020-02-12
Maintainer Terrence D. Jorgensen TJorgensen314@gmail.com
Depends $\mathrm{R}(>=3.3)$, methods, lavaan($>=0.6 .1$), utils, stats, graphics
Suggests parallel, Amelia, quantreg, splines, foreign, KernSmooth,semTools($>=0.4-15$), OpenMx($>=2.0 .0$), copula
Description Provides an easy framework for Monte Carlo simulation in structural equation model-ing, which can be used for various purposes, such as such as model fit evaluation, power analy-sis, or missing data handling and planning.
License GPL (>=2)
LazyLoad yes
URL http://www.simsem.org
NeedsCompilation no
Author Sunthud Pornprasertmanit [aut],
Patrick Miller [aut],
Alexander Schoemann [aut],
Terrence D. Jorgensen [aut, cre]
(https://orcid.org/0000-0001-5111-6773),
Corbin Quick [ctb]
Repository CRAN
Date/Publication 2020-02-12 16:40:02 UTC
R topics documented:
analyze 3
anova 5
bind 6
bindDist 8
coef 10
combineSim 11
continuousCoverage 12
continuousPower 14
createData 16
draw 19
estmodel 21
exportData 25
findCoverage 27
findFactorIntercept 29
findFactorMean 30
findFactorResidualVar 31
findFactorTotalCov 32
findFactorTotalVar 34
findIndIntercept 35
findIndMean 36
findIndResidualVar 37
findIndTotalVar 38
findPossibleFactorCor 40
findPower 41
findRecursiveSet 42
generate 43
getCIwidth 46
getCoverage 48
getCutoff 50
getCutoffNested 51
getCutoffNonNested 53
getExtraOutput 55
getPopulation 56
getPower 57
getPowerFit 59
getPowerFitNested 61
getPowerFitNonNested 64
imposeMissing 66
inspect 69
likRatioFit 71
miss 73
model 75
model.lavaan 82
multipleAllEqual 84
plotCIwidth 85
plotCoverage 86
plotCutoff 88
plotCutoffNested 90
plotCutoffNonNested 91
plotDist 93
plotLogitMiss 94
plotMisfit 96
plotPower 97

analyze

plotPowerFit 98
plotPowerFitNested 101
plotPowerFitNonNested 103
popDiscrepancy 105
popMisfitMACS 106
pValue 107
pValueNested 109
pValueNonNested 111
rawDraw 113
setPopulation 114
sim 116
SimDataDist-class 124
SimMatrix-class 125
SimMissing-class 126
SimResult-class 128
SimSem-class 131
SimVector-class 132
summaryConverge 133
summaryFit 135
summaryMisspec 136
summaryParam 138
summaryPopulation 141
summarySeed 142
summaryShort 143
summaryTime 144
Index 145
analyze Data analysis using the model specification

Description

Data analysis using the model specification (linkS4class\{SimSem\}) or the mx model object (MxModel).
Data will be multiply imputed if the miss argument is specified.

Usage

analyze(model, data, package="lavaan", miss=NULL, aux=NULL, group = NULL, mxMixture $=$ FALSE, ...)

Arguments

model The simsem model template (linkS4class\{SimSem\}) or the mx model object (MxModel)
data The target dataset
package
The package used in data analysis. Currently, only lavaan package can be used.

miss	The missing object with the specification of auxiliary variable or the specifica- tion for the multiple imputation.
aux	List of auxiliary variables
group	A group variable. This argument is applicable only when the model argument is a MxModel object.
mxMixture	A logical whether to the analysis model is a mixture model. This argument is applicable when MxModel is used in the model argument only.
\ldots	Additional arguments in the lavaan function. See also lavOptions

Value

The lavaan object containing the output

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd. edu>), Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

Note that users can use functions provided by lavaan package (lavaan, cfa, sem, or growth) if they wish to analyze data by lavaan directly.

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
dat <- generate(CFA.Model,200)
out <- analyze(CFA.Model,dat)
```

Provide a comparison of nested models and nonnested models across replications

Description

This function will provide averages of model fit statistics and indices for nested models. It will also provide average differences of fit indices and power for likelihood ratio tests of nested models.

Arguments

object SimResult object being described. Currently at least two objects must be included as arguments
... any additional arguments, such as additional objects or for the function with result object

Value

A data frame that provides the statistics described above from all parameters. For using with linkS4class\{SimResult \}, the result is a list with two or three elements:

- summary: Average of fit indices across all replications
- diff: Average of the differences in fit indices across all replications
- varyParam: The statistical power of chi-square difference test given values of varying parameters (such as sample size or percent missing)

Author(s)

Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu), Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for the object input

Examples

```
## Not run:
loading1 <- matrix(0, 6, 1)
loading1[1:6, 1] <- NA
loading2 <- loading1
loading2[6,1] <- 0
LY1 <- bind(loading1, 0.7)
LY2 <- bind(loading2, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model1 <- model(LY = LY1, RPS = RPS, RTE = RTE, modelType="CFA")
CFA.Model2 <- model(LY = LY2, RPS = RPS, RTE = RTE, modelType="CFA")
```

```
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
# Need to make sure that both simResult calls have the same seed!
Output1 <- sim(5, n=500, model=CFA.Model1, generate=CFA.Model1, seed=123567)
Output2 <- sim(5, n=500, model=CFA.Model2, generate=CFA.Model1, seed=123567)
anova(Output1, Output2)
# The example when the sample size is varying
Output1b <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model1, generate=CFA.Model1, seed=123567)
Output2b <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model2, generate=CFA.Model1, seed=123567)
anova(Output1b, Output2b)
## End(Not run)
```

bind Specify matrices for Monte Carlo simulation of structural equation
models

Description

Create SimMatrix or SimVector object that specifies

1. Pattern of fixed/freed parameters for analysis
2. Population parameter values for data generation
3. Any model misspecification (true population parameter is different than the one specified) for these parameters.

Each matrix in the Lisrel-style notation is specified in this way (e.g. LY, PS, and TE) and is used to create a model analysis template and a data generation template for simulation through the model function.

Usage

bind(free = NULL, popParam = NULL, misspec = NULL, symmetric = FALSE)
binds(free $=$ NULL, popParam $=$ NULL, misspec $=$ NULL, symmetric $=$ TRUE)

Arguments

free \quad Required matrix or vector where each element represents a fixed or freed parameter used for analysis with structural equation models. Parameters can be freed by setting the corresponding element in the matrix to NA, and can be fixed by setting the value of the element to any number (e.g. 0). Parameters can be labeled using any character string. Any labeled parameter is considered to be free, and parameters with identical labels will be constrained to equality for analysis.

popParam	Optional matrix or vector of identical dimension to the free matrix whose ele- ments contain population parameter values for data generation in simulation. For simlutation, each free parameter requires a population parameter value, which is a quoted numeric value. Parameters that don't have population values are left as empty strings. Population parameters can also be drawn from a distri- bution. This is done by wrapping a call to create 1 value from an existing random generation function in quotes: e.g "runif $(1,0,1)$ ", "rnorm $(1,0, .01) "$ Every replication in the simulation will draw a parameter value from this distribution. The function checks that what is quoted is valid R. If a random population parameter is constrained to equality in the free matrix, each drawn population parameter value will be the same. More details on data generation is available in ?generate, ?createData, and ?draw. To simplify the most common case, popParam can take 1 value or distribution and create a matrix or vector that assigns that population parameter or distribu- tion to all freed parameters. These population values are used as starting values for analysis by default. Optional matrix or vector of identical dimension to the free matrix whose ele-
misspecments contain population parameter values for specifying misspecification. El- ements of the misspec matrix contain population parameters that are added to parameters that are fixed or have an existing population value. These parameters are also quoted numeric strings, and can optionally be drawn from distributions as described above. To simplify the most common case, misspec can take 1 value	
or distribution and create a matrix or vector that assigns that value or distribution	
to all previously specified fixed parameters. Details about misspecification are	
included the data generation functions.	

Details

Bind is the first step in the bind $->$ model $->$ sim workflow of simsem, and this document outlines the user interface or language used to describe these simulations. This interface, while complex, enables a wide array of simulation specifications for structural equation models by building on LISREL-style parameter specifications.

In simulations supported by simsem, a given parameter may be either fixed or freed for analysis, but may optionally also have a population value or distribution for data generation, or a value or distribution of misspecification. The purpose of bind is to stack these multiple meanings of a parameter into an object recognized by simsem, a SimMatrix. Each matrix in the Lisrel notation (e.g. LY, PS, TE, BE) becomes a SimMatrix, and is passed to the function model, which builds the data generation template and an analysis template (a lavaan parameter table), collectively forming a SimSem object, which can be passed to the function sim for simulation.

Value

SimMatrix or SimVector object that used for model specification for analysis and data generation in simsem.

Author(s)

Patrick Miller (University of Notre Dame; pmille13@nd.edu), Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- model To combine simMatrix objects into a complete data analysis and data generation template, which is a SimSem object
- generate To generate data using the simsem template.
- analyze To analyze real or generated data using the simsem template.

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
summary(LY)
# Set both factor correlations to . 05
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
# Misspecify all error covarainces
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- NA
RTE <- binds(error.cor,1,"runif(1,-.05,.05)")
```

bindDist Create a data distribution object.

Description

Create a data distribution object. There are two ways to specify nonnormal data-generation model. To create nonnormal data by the copula method, margins and . . . arguments are required. To create data by Vale and Maurelli's method, skewness and/or kurtosis arguments are required.

Usage

bindDist(margins = NULL, ..., p = NULL, keepScale = TRUE, reverse = FALSE, copula $=$ NULL, skewness $=$ NULL, kurtosis $=$ NULL)

Arguments

margins	A character vector specifying all the marginal distributions. The characters in argument margins are used to construct density, distribution, and quantile func- tion names. For example, "norm" can be used to specify marginal distribu- tion, because "dnorm", "pnorm", and "qnorm" are all available. A user-defined distribution or other distributions can be used. For example, "gl" function in the "gld" package can be used to represent the generalized lambda distribution where "dgl", "pgl", and "qgl" are available. See the description of margins attribute of the Mvdc function for further details. A list whose each component is a list of named components, giving the param- eter values of the marginal distributions. See the description of paramMargins attribute of the Mvdc function for further details.
Number of variables. If only one distribution object is listed, the p will make the	
pame distribution objects for all variables.	
keepScale	A vector representing whether each variable is transformed its mean and stan- dard deviation or not. If TRUE, transform back to retain the mean and standard deviation of a variable equal to the model implied mean and standard deviation (with sampling error)
reverse	A vector representing whether each variable is mirrored or not. If TRUE, reverse the distribution of a variable (e.g., from positive skewed to negative skewed. If one logical value is specified, it will apply to all variables.
copula	A copula class that represents the multivariate distribution, such as ellipCopula, normalCopula, or archmCopula. When this copula argument is specified, the
data-transformation method from Mair, Satorra, and Bentler (2012) is used. If	

Value

SimDataDist that saves analysis result from simulate data.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Mair, P., Satorra, A., \& Bentler, P. M. (2012). Generating nonnormal multivariate data using copulas: Applications to SEM. Multivariate Behavioral Research, 47, 547-565.
Vale, C. D. \& Maurelli, V. A. (1983) Simulating multivariate nonormal distributions. Psychometrika, 48, 465-471.

See Also

- SimResult for the type of resulting object

Examples

```
# Create data based on Vale and Maurelli's method by specifying skewness and kurtosis
dist <- bindDist(skewness = c(0, -2, 2), kurtosis = c(0, 8, 4))
## Not run:
library(copula)
# Create three-dimensional distribution by gaussian copula with
# the following marginal distributions
# 1. t-distribution with df = 2
# 2. chi-square distribution with df = 3
# 3. normal distribution with mean = 0 and sd = 1
# Setting the attribute of each marginal distribution
d1 <- list(df=2)
d2 <- list(df=3)
d3 <- list(mean=0, sd=1)
# Create a data distribution object by setting the names of each distribution
# and their arguments
dist <- bindDist(c("t", "chisq", "norm"), d1, d2, d3)
# Create data by using Gumbel Copula as the multivariate distribution
dist <- bindDist(c("t", "chisq", "norm"), d1, d2, d3, copula = gumbelCopula(2, dim = 3))
# Reverse the direction of chi-square distribution from positively skew to negatively skew
dist <- bindDist(c("t", "chisq", "norm"), d1, d2, d3, copula = gumbelCopula(2, dim = 3),
reverse = c(FALSE, TRUE, FALSE))
## End(Not run)
```

coef Extract parameter estimates from a simulation result

Description

Extract parameter estimates from a simulation result. This function is similar to the inspect method with what = "coef".

Arguments

object The target SimResult object
improper Specify whether to include the information from the replications with improper solutions
nonconverged Specify whether to include the information from the nonconvergent replications

Value

Parameter estimates of each replication

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for the object input

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
coef(Output)
coef(Output, improper = TRUE)
## End(Not run)
```

combineSim Combine result objects

Description

Combine result objects into a single result object

Usage

combineSim(...)

Arguments

$\ldots \quad$ Result objects, SimResult

Value

A combined result object

Author(s)

Terry Jorgensen (University of Kansas; <TJorgensen314@gmail .com>), Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

Result object (SimResult)

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
Output1 <- sim(5, CFA.Model, n=200, seed=123321)
Output2 <- sim(4, CFA.Model, n=200, seed=324567)
Output3 <- sim(3, CFA.Model, n=200, seed=789987)
Output <- combineSim(Output1, Output2, Output3)
summary(Output)
```

continuousCoverage Find coverage rate of model parameters when simulations have ran-
domly varying parameters

Description

A function to find the coverage rate of confidence intervals in a model when one or more of the simulations parameters vary randomly across replications.

Usage

continuousCoverage (simResult, coverValue = NULL, contN = TRUE, contMCAR = FALSE, contMAR $=$ FALSE, contParam $=$ NULL, coverParam $=$ NULL, pred $=$ NULL)

Arguments

simResult	SimResult that includes at least one randomly varying parameter (e.g. sample size, percent missing, model parameters)
coverValue	A target value used that users wish to find the coverage rate of that value (e.g., 0). If NULL, the parameter values will be used.
contN	Logical indicating if N varies over replications.
contMCAR	Logical indicating if the percentage of missing data that is MCAR varies over replications.
contMAR	Logical indicating if the percentage of missing data that is MAR varies over replications.
contParam	Vector of parameters names that vary over replications. coverParam
	Vector of parameters names that the user wishes to find coverage rate for. This can be a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not spec- ified, coverage rates for all parameters in the model will be returned.
pred	A list of varying parameter values that users wish to find statistical power from.

Details

In this function, the coverage (which can be 0 or 1) is regressed on randomly varying simulation parameters (e.g., sample size, percentage of missing data, or model parameters) using logistic regression. For a set of independent variables values, the predicted probability from the logistic regression equation is the predicted coverage rate.

Value

Data frame containing columns representing values of the randomly varying simulation parameters, and coverage rates for model parameters of interest.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu)

See Also

- SimResult to see how to create a simResult object with randomly varying parameters.

Examples

```
## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
```

```
# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary(Output)
# Find the coverage rates of all combinations of different sample size and percent MCAR missing
Ccover <- continuousCoverage(Output, contN = TRUE, contMCAR = TRUE)
Ccover
# Find the coverage rates of parameter estimates when sample size is 200
# and percent MCAR missing is 0.3
Ccover2 <- continuousCoverage(Output, coverValue=0, contN = TRUE, contMCAR = TRUE,
    pred=list(N = 200, pmMCAR = 0.3))
Ccover2
## End(Not run)
```

continuousPower Find power of model parameters when simulations have randomly varying parameters

Description

A function to find the power of parameters in a model when one or more of the simulations parameters vary randomly across replications.

Usage

continuousPower(simResult, contN = TRUE, contMCAR = FALSE, contMAR = FALSE, contParam $=$ NULL, alpha $=.05$, powerParam $=$ NULL, pred $=$ NULL)

Arguments

simResult	SimResult that includes at least one randomly varying parameter (e.g. sample size, percent missing, model parameters)
contN	Logical indicating if N varies over replications.
contMCAR	Logical indicating if the percentage of missing data that is MCAR varies over replications. Logical indicating if the percentage of missing data that is MAR varies over replications.
contMAR	Vector of parameters names that vary over replications.
contParam	Alpha level to use for power analysis.
powerParam	Vector of parameters names that the user wishes to find power for. This can be a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not specified, power for all parameters in the model will be returned.
pred	A list of varying parameter values that users wish to find statistical power from.

Details

A common use of simulations is to conduct power analyses, especially when using SEM (Muthen \& Muthen, 2002). Here, researchers select values for each parameter and a sample size and run a simulation to determine power in those conditions (the proportion of generated datasets in which a particular parameter of interest is significantly different from zero). To evaluate power at multiple sample sizes, one simulation for each sample size must be run. By continuously varying sample size across replications, only a single simulation is needed. In this simulation, the sample size for each replication varies randomly across plausible sample sizes (e.g., sample sizes between 200 and 500). For each replication, the sample size and significance of each parameter $(0=$ not significant, $1=$ significant) are recorded. When the simulation is complete, parameter significance is regressed on sample size using logistic regression. For a given sample size, the predicted probability from the logistic regression equation is the power to detect an effect at that sample size. This approach can be extended to other randomly varying simulation parameters such as the percentage of missing data, and model parameters.

Value

Data frame containing columns representing values of the randomly varying simulation parameters, and power for model parameters of interest.

Author(s)

Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu), Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Muthen, L. K., \& Muthen, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599-620.

See Also

- SimResult to see how to create a simResult object with randomly varying parameters.

Examples

```
## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
dat <- generate(CFA.Model, 50)
out <- analyze(CFA.Model, dat)
# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
```

```
Output <- sim(NULL, CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary(Output)
# Find the power of all combinations of different sample size and percent MCAR missing
Cpow <- continuousPower(Output, contN = TRUE, contMCAR = TRUE)
Cpow
# Find the power of parameter estimates when sample size is 200 and percent MCAR missing is 0.3
Cpow2 <- continuousPower(Output, contN = TRUE, contMCAR = TRUE, pred=list(N = 200, pmMCAR = 0.3))
Cpow2
## End(Not run)
```

createData
Create data from a set of drawn parameters.

Description

This function can be used to create data from a set of parameters created from draw, called a codeparamSet. This function is used internally to create data, and is available publicly for accessibility and debugging.

Usage

createData(paramSet, n, indDist=NULL, sequential=FALSE, facDist=NULL, errorDist=NULL, saveLatentVar = FALSE, indLab=NULL, facLab = NULL, modelBoot=FALSE, realData=NULL, covData=NULL, empirical = FALSE)

Arguments

paramSet	Set of drawn parameters from draw.
n	Integer of desired sample size.
indDist	A SimDataDist object or list of objects for a distribution of indicators. If one object is passed, each indicator will have the same distribution. Use when sequential is FALSE.
sequential	If TRUE, use a sequential method to create data such that the data from factor are generated first and apply to a set of equations to obtain the data of indica- tors. If FALSE, create data directly from model-implied mean and covariance of indicators.
facDist	A SimDataDist object or list of objects for the distribution of factors. If one ob- ject is passed, all factors will have the same distribution. Use when sequential is TRUE.
errorDist	An object or list of objects of type SimDataDist indicating the distribution of errors. If a single SimDataDist is specified, each error will be genrated with that distribution.

saveLatentVar If TRUE, the total latent variable scores, residual latent variable scores, and measurement error scores are also provided as the "latentVar" attribute of the generated data by the following line: attr(generatedData,"latentVar"). The sequential argument must be TRUE in order to use this option.
indLab A vector of indicator labels. When not specified, the variable names are $\times 1, x 2, \ldots$ xN .
facLab A vector of factor labels. When not specified, the variable names are $f 1, f 2, \ldots$ fN.
modelBoot When specified, a model-based bootstrap is used for data generation. See details for further information. This argument requires real data to be passed to readData.
realData A data.frame containing real data. The data generated will follow the distribution of this data set.
covData A data.frame containing covariate data, which can have any distributions. This argument is required when users specify GA or KA matrices in the model template (SimSem).
empirical Logical. If TRUE, the specified parameters are treated as sample statistics and data are created to get the specified sample statistics. This argument is applicable when multivariate normal distribution is specified only.

Details

This function will use the modified mvrnorm function (from the MASS package) by Paul E. Johnson to create data from model implied covariance matrix if the data distribution object (SimDataDist) is not specified. The modified function is just a small modification from the original mvrnorm function such that the data generated with the sample sizes of n and $n+k$ (where $k>0$) will be replicable in the first n rows.
It the data distribution object is specified, either the copula model or the Vale and Maurelli's method is used. For the copula approach, if the copula argument is not specified in the data distribution object, the naive Gaussian copula is used. The correlation matrix is direct applied to the multivariate Gaussian copula. The correlation matrix will be equivalent to the Spearman's correlation (rank correlation) of the resulting data. If the copula argument is specified, such as ellipCopula, normalCopula, or archmCopula, the data-transformation method from Mair, Satorra, and Bentler (2012) is used. In brief, the data (X) are created from the multivariate copula. The covariance from the generated data is used as the starting point (S). Then, the target data (Y) with the target covariance as model-implied covariance matrix $\left(\Sigma_{0}\right)$ can be created:

$$
Y=X S^{-1 / 2} \Sigma_{0}^{1 / 2}
$$

See bindDist for further details. For the Vale and Maurelli's (1983) method, the code is brought from the lavaan package.
For the model-based bootstrap, the transformation proposed by Yung \& Bentler (1996) is used. This procedure is the expansion from the Bollen and Stine (1992) bootstrap including a mean structure. The model-implied mean vector and covariance matrix with trivial misspecification will be used in the model-based bootstrap if misspec is specified. See page 133 of Bollen and Stine (1992) for a reference.

Internally, parameters are first drawn, and data is then created from these parameters. Both of these steps are available via the draw and createData functions respectively.

Value

A data.frame containing simulated data from the data generation template. A variable "group" is appended indicating group membership.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Patrick Miller (University of Notre Dame; pmille13@nd.edu). The original code of mvrnorm function is based on the MASS package slightly modified by Paul E. Johnson. The code for data-transformation in multivariate copula is based on Mair et al. (2012) article. The code for Vale and Maurelli (1983) is slightly modified from the function provided in the lavaan package.

References

Bollen, K. A., \& Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods and Research, 21, 205-229.
Mair, P., Satorra, A., \& Bentler, P. M. (2012). Generating nonnormal multivariate data using copulas: Applications to SEM. Multivariate Behavioral Research, 47, 547-565.

Vale, C. D. \& Maurelli, V. A. (1983) Simulating multivariate nonormal distributions. Psychometrika, 48, 465-471.
Yung, Y.-F., \& Bentler, P. M. (1996). Bootstrapping techniques in analysis of mean and covariance structures. In G. A. Marcoulides \& R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 195-226). Mahwah, NJ: Erlbaum.

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# Draw a parameter set for data generation.
param <- draw(CFA.Model)
# Generate data from the first group in the paramList.
dat <- createData(param[[1]], n = 200)
```

draw Draw parameters from a SimSem object.

Description

This function draws parameters from a SimSem template, for debugging or other use. Used internally to create data. Data can be created in one step from a SimSem object using generate.

Usage

```
draw(model, maxDraw=50, misfitBounds=NULL, averageNumMisspec=FALSE,
optMisfit = NULL, optDraws = 50, misfitType = "f0", createOrder = c(1, 2, 3),
covData = NULL)
```


Arguments

model A SimSem object.
maxDraw Integer specifying the maximum number of attempts to draw a valid set of parameters (no negative error variance, standardized coefficients over 1).
misfitBounds Vector that contains upper and lower bounds of the misfit measure. Sets of parameters drawn that are not within these bounds are rejected.
averageNumMisspec
If TRUE, the provided fit will be divided by the number of misspecified parameters.
optMisfit Character vector of either "min" or "max" indicating either maximum or minimum optimized misfit. If not null, the set of parameters out of the number of draws in "optDraws" that has either the maximum or minimum misfit of the given misfit type will be returned.
optDraws Number of parameter sets to draw if optMisfit is not null. The set of parameters with the maximum or minimum misfit will be returned.
misfittype Character vector indicating the fit measure used to assess the misfit of a set of parameters. Can be "f0", "rmsea", "srmr", or "all".
createOrder The order of 1) applying equality/inequality constraints, 2) applying misspecification, and 3) fill unspecified parameters (e.g., residual variances when total variances are specified). The specification of this argument is a vector of different orders of 1 (constraint), 2 (misspecification), and 3 (filling parameters). For example, $c(1,2,3)$ is to apply constraints first, then add the misspecification, and finally fill all parameters.
covData A data.frame containing covariate data, which can have any distributions. This argument is required when users specify GA or KA matrices in the model template (SimSem).

Value

Nested list of drawn parameters in the form [[Group]][[param, misspec, misOnly]][[SimMatrix]]. E.g. The LY parameter matrix of the first group would be indexed as obj[[1]]\$param\$LY. The values in \$param are the raw parameter values with no misspecification. The values in \$misspec are raw parameter values + misspecification. The values in $\$$ misOnly are only the misspecification values.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Patrick Miller (University of Notre Dame; pmille13@nd.edu)

See Also

createData To generate random data using a set of parameters from draw

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# Draw a parameter set for data generation.
param <- draw(CFA.Model)
# Example of Multiple Group Model with Weak Invariance
loading.in <- matrix(0, 6, 2)
loading.in[1:3, 1] <- c("load1", "load2", "load3")
loading.in[4:6, 2] <- c("load4", "load5", "load6")
mis <- matrix(0,6,2)
mis[loading.in == "0"] <- "runif(1, -0.1, 0.1)"
LY.in <- bind(loading.in, "runif(1, 0.7, 0.8)", mis)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
```

```
VTE <- bind(rep(NA, 6), 0.51)
VPS1 <- bind(rep(1, 2))
VPS2 <- bind(rep(NA, 2), c(1.1, 1.2))
# Inequality constraint
script <- "
sth := load1 + load2 + load3
load4 == (load5 + load6) / 2
load4 > 0
load5 > 0
sth2 := load1 - load2
"
# Model Template
weak <- model(LY = LY.in, RPS = RPS, VPS=list(VPS1, VPS2), RTE = RTE, VTE=VTE, ngroups=2,
    modelType = "CFA", con=script)
# Constraint --> Misspecification --> Fill Parameters
draw(weak, createOrder=c(1, 2, 3))
# Constraint --> Fill Parameters --> Misspecification
draw(weak, createOrder=c(1, 3, 2))
# Misspecification --> Constraint --> Fill Parameters
draw(weak, createOrder=c(2, 1, 3))
# Misspecification --> Fill Parameters --> Constraint
draw(weak, createOrder=c(2, 3, 1))
# Fill Parameters --> Constraint --> Misspecification
draw(weak, createOrder=c(3, 1, 2))
# Fill Parameters --> Misspecification --> Constraint
draw(weak, createOrder=c(3, 2, 1))
```

estmodel Shortcut for data analysis template for simulation.

Description

Creates a data analysis template (lavaan parameter table) for simulations with structural equation models based on Y-side LISREL design matrices. Each corresponds to a LISREL matrix, but must be a matrix or a vector. In addition to the usual Y-side matrices in LISREL, both PS and TE can be specified using correlations (RPS, RTE) and scaled by a vector of residual variances (VTE, VPS) or total variances (VY, VE). Multiple groups are supported by passing lists of matrices or vectors to arguments, or by specifying the number of groups.

Usage

$$
\begin{aligned}
& \text { estmodel(LY = NULL, PS = NULL, RPS = NULL, TE = NULL, RTE = NULL, BE = NULL, } \\
& \text { VTE = NULL, VY = NULL, VPS = NULL, VE = NULL, TY = NULL, AL = NULL, } \\
& \text { MY = NULL, ME }=\text { NULL, KA }=\text { NULL, GA }=\text { NULL, modelType, indLab }=\text { NULL, } \\
& \text { facLab = NULL, covLab = NULL, groupLab = "group", ngroups = 1, con = NULL) } \\
& \text { estmodel.cfa(LY }=\text { NULL, PS }=\text { NULL, RPS }=\text { NULL, TE }=\text { NULL, RTE }=\text { NULL, VTE }=\text { NULL, } \\
& \mathrm{VY}=\mathrm{NULL}, \mathrm{VPS}=\mathrm{NULL}, \mathrm{VE}=\mathrm{NULL}, \mathrm{TY}=\mathrm{NULL}, \mathrm{AL}=\mathrm{NULL}, \mathrm{MY}=\mathrm{NULL}, \mathrm{ME}=\mathrm{NULL} \text {, } \\
& \text { KA }=\text { NULL, } G A=N U L L, \text { indLab }=\text { NULL, facLab }=\text { NULL, covLab }=\text { NULL, } \\
& \text { groupLab = "group", ngroups = 1, con = NULL) } \\
& \text { estmodel. path (PS }=\text { NULL, RPS }=\text { NULL, BE }=\text { NULL, VPS }=\text { NULL, VE }=\text { NULL, } A L=N U L L \text {, } \\
& \text { ME = NULL, KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL, } \\
& \text { groupLab = "group", ngroups = 1,con = NULL) } \\
& \text { estmodel.sem(LY = NULL, PS = NULL,RPS = NULL, TE = NULL,RTE = NULL, BE = NULL, } \\
& \text { VTE = NULL, } V Y=\text { NULL, } V P S=\text { NULL, } V E=N U L L, ~ T Y ~=~ N U L L, ~ A L ~=~ N U L L, ~ M Y ~=~ N U L L, ~, ~ \\
& \text { ME = NULL, KA }=\text { NULL, } G A=\text { NULL, } i n d L a b=N U L L, ~ f a c L a b=N U L L, ~ c o v L a b ~=~ N U L L, ~ \\
& \text { groupLab = "group", ngroups = 1, con = NULL) }
\end{aligned}
$$

Arguments

LY

PS Residual covariance matrix among endogenous factors (need to be a symmetric matrix or a list of symmetric matrices).

RPS Residual correlation matrix among endogenous factors (need to be a symmetric matrix or a list of symmetric matrices).
Factor loading matrix from endogenous factors to Y indicators (need to be a matrix or a list of matrices).

RTE Measurement error correlation matrix among Y indicators (need to be a symmetric matrix or a list of symmetric matrices).
BE Regression coefficient matrix among endogenous factors (need to be a matrix or a list of matrices).
VTE Measurement error variance of indicators (need to be a vector or a list of vectors).
VY Total variance of indicators (need to be a vector or a list of vectors). NOTE: Either measurement error variance or indicator variance is specified. Both cannot be simultaneously specified.
VPS \quad Residual variance of factors (need to be a vector or a list of vectors).
VE
Total variance of of factors (need to be a vector or a list of vectors). NOTE: Either residual variance of factors or total variance of factors is specified. Both cannot be simulatneously specified.
TY Measurement intercepts of Y indicators. (need to be a vector or a list of vectors).
AL
Endogenous factor intercept (need to be a vector or a list of vectors).
MY
Measurement error covariance matrix among Y indicators (need to be a symmetric matrix or a list of symmetric matrices).

Overall Y indicator means. (need to be a vector or a list of vectors). NOTE: Either measurement intercept of indicator mean can be specified. Both cannot be specified simultaneously.

ME	Total mean of endogenous factors (need to be a vector or a list of vectors). NOTE: Either endogenous factor intercept or total mean of endogenous factor is specified. Both cannot be simultaneously specified.
KA	Regression coefficient matrix from covariates to indicators (need to be a matrix or a list of matrices). KA is needed when (fixed) exogenous covariates are needed only.
GA	Regression coefficient matrix from covariates to factors (need to be a matrix or a list of matrices). GA is needed when (fixed) exogenous covariates are needed only.
modelType	"CFA", "Sem", or "Path". This is specified to ensure that the analysis and data generation template created based on specified matrices in model correspond to what the user intends.
indLab	Character vector of indicator labels. If left blank, automatic labels will be generated as $\mathrm{y} 1, \mathrm{y} 2, \ldots \mathrm{yy}$.
facLab	Character vector of factor labels. If left blank, automatic labels will be generated as $\mathrm{f} 1, \mathrm{f} 2, \ldots \mathrm{ff}$
covLab	Character vector of covariate labels. If left blank, automatic labels will be generated as $\mathbf{z 1}, \mathrm{z} 2, \ldots \mathrm{zz}$
groupLab	Character of group-variable label (not the names of each group). If left blank, automatic labels will be generated as group
ngroups	Integer. Number of groups for data generation, defaults to 1. If larger than one, all specified matrices will be repeated for each additional group. If any matrix argument is a list, the length of this list will be the number of groups and ngroups is ignored.
con	Additional parameters (phantom variables), equality constraints, and inequality constraints that users wish to specify in the model. The additional parameters are specified in lavaan syntax. The allowed operator are " $:=$ " (is defined as), "==" (is equal to), "<" (is less than), and ">" (is greater than). Names used in the syntax are the labels defined on free parameters in the model except that the left-handed-side name of " $:=$ " is a new parameter name. On the right hand side of all operators, any mathematical expressions are allowed, e.g., "newparam := (load1 + load $2+$ load 3)/3". For the " $<$ " and " $>$ " operators in data generation, if the parameters relation is not hold (e.g., the left hand side is less than the right hand side in the " $>$ " operator), the left hand side parameters will be changed such that the relation holds with a very small difference (i.e., 0.000001). For example, in "load1 > load2", if load1 is 0.5 and load2 is 0.6 , load1 will be changed to 0.6 $+0.000001=0.600001$.

Details

This function contains default settings:
For modelType="CFA", LY is required. As the default, the on-diagonal elements of PS are fixed as 1 and the off-diagonal elements of PS are freely estimated. The off-diagonal elements of TE are freely estimated and the off-diagonal elements of TE are fixed to 0 . The AL elements are fixed to 0 . The TY elements are freely estimated.

For modelType="Path", BE is required. As the default, the on-diagonal elements of PS are freely estimated, the off-diagonal elements between exogenous variables (covariance between exogenous variables) are freely estimated, and the other off-diagonal elements are fixed to 0 . The AL elements are freely estimated.
For modelType="SEM", LY and BE are required. As the default, the on-diagonal elements of PS are fixed to 1, the off-diagonal elements between exogenous factors (covariance between exogenous factors) are freely estimated, and the other off-diagonal elements are fixed to 0 . The off-diagonal elements of TE are freely estimated and the off-diagonal elements of TE are fixed to 0 . The AL elements are fixed to 0 . The TY elements are freely estimated.
The estmodel.cfa, estmodel. path, and estmodel. sem are the shortcuts for the estmodel function when modelType are "CFA", "Path", and "SEM", respectively.

Value

SimSem object that contains the data generation template (@dgen) and analysis template (@pt).

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- model To build data generation and data analysis template for simulation.
- sim For simulations using the SimSem template.
- generate To generate data using the SimSem template.
- analyze To analyze real or generated data using the SimSem template.
- draw To draw parameters using the SimSem template.

Examples

```
loading <- matrix(0, 12, 4)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
loading[10:12, 4] <- NA
CFA.Model <- estmodel(LY = loading, modelType = "CFA")
path <- matrix(0, 4, 4)
path[3, 1:2] <- NA
path[4, 3] <- NA
Path.Model <- estmodel(BE = path, modelType = "Path")
SEM.Model <- estmodel(BE = path, LY = loading, modelType="SEM")
# Shortcut
CFA.Model <- estmodel.cfa(LY = loading)
Path.Model <- estmodel.path(BE = path)
SEM.Model <- estmodel.sem(BE = path, LY = loading)
```


Description

This function can be used to export data created from a set of parameters created from draw, called a codeparamSet. This function can export data to be analyzed with either Mplus or LISREL.

Usage

```
exportData(nRep, model, n, program = "Mplus", fileStem = "sim", miss = NULL,
missCode = -999, datafun=NULL, pmMCAR = NULL, pmMAR = NULL, facDist = NULL,
indDist = NULL, errorDist = NULL, sequential = FALSE, modelBoot = FALSE,
realData = NULL, maxDraw = 50, misfitType = "f0", misfitBounds = NULL,
averageNumMisspec = NULL, optMisfit=NULL, optDraws = 50, seed = 123321,
silent = FALSE, multicore = FALSE, numProc = NULL, params = FALSE)
```


Arguments

nRep	Number of replications. Users can specify as NULL and specify n, pmMCAR, and pmMAR
model	SimSem object created by model. Will be used to generate data and analyze it.
n	Sample size. This argument is not necessary except the user wish to vary sample size across replications. The sample size here is a vector of sample size in integers. For the random distribution object, if the resulting value has decimal, the value will be rounded.
program	Statistical program that will be used to analyze data. Currently only Mplys and LISREL are supported.
fileStem	The stem of the filename(s) for file(s) output. For example, a fileStem of "sim" will result in files named sim1.dat, sim2.dat, etc.
miss	Missing data handling template, created by the function miss.
missCode	Missing data code, NA will be replaced by this value for all missing values in exported data.
datafun	Function to be applied to generated data set at each replication.
pmMCAR	The percent completely missing at random. This argument is not necessary except the user wish to vary percent missing completely at random across replications. The pmMCAR here is a vector of percent missing, which the values can be in between 0 and 1 only. The specification of objMissing is not needed (but is needed if users wish to specify complex missing value data generation or wish to use multiple imputation).
pmMAR	The percent missing at random. This argument is not necessary except the user wish to vary percent missing at random across replications. The pmMAR here is a vector of percent missing, which the values can be in between 0 and 1 only. The specification of objMissing is not needed (but is needed if users wish to specify complex missing value data generation or wish to use multiple imputation).

facDist	A SimDataDist object or list of objects for the distribution of factors. If one object is passed, all factors will have the same distribution. Use when sequential is TRUE.
indDist	A SimDataDist object or list of objects for a distribution of indicators. If one object is passed, each indicator will have the same distribution. Use when sequential is FALSE.
errorDist	An object or list of objects of type SimDataDist indicating the distribution of errors. If a single SimDataDist is specified, each error will be genrated with that distribution.
sequential	If TRUE, use a sequential method to create data such that the data from factor are generated first and apply to a set of equations to obtain the data of indicators. If FALSE, create data directly from model-implied mean and covariance of indicators.
modelBoot	When specified, a model-based bootstrap is used for data generation. See draw for further information. This argument requires real data to be passed to realData
realData	A data.frame containing real data. The data generated will follow the distribution of this data set.
maxDraw	Integer specifying the maximum number of attempts to draw a valid set of parameters (no negative error variance, standardized coefficients over 1).
misfitType	Character vector indicating the fit measure used to assess the misfit of a set of parameters. Can be "f0", "rmsea", "srmr", or "all".
misfitBounds	Vector that contains upper and lower bounds of the misfit measure. Sets of parameters drawn that are not within these bounds are rejected.
averageNumMisspec	
	If TRUE, the provided fit will be divided by the number of misspecified parameters.
optMisfit	Character vector of either "min" or "max" indicating either maximum or minimum optimized misfit. If not null, the set of parameters out of the number of draws in "optDraws" that has either the maximum or minimum misfit of the given misfit type will be returned.
optDraws	Number of parameter sets to draw if optMisfit is not null. The set of parameters with the maximum or minimum misfit will be returned.
seed	Random number seed. Reproducibility across multiple cores or clusters is ensured using R'Lecuyer package.
silent	If TRUE, suppress warnings.
multicore	Use multiple processors within a computer. Specify as TRUE to use it.
numProc	Number of processors for using multiple processors. If it is NULL, the package will find the maximum number of processors.
params	If TRUE, the parameters from each replication will be returned.

Value

Text files saved to the current working directory. If program = "Mplus" one file is output for each replication, and an extra file is output with the names of all saved data sets (this file can be used
with the MONTECARLO command in Mplus). If program = "LISREL" one file is output with each replication stacked on top of the next (this file can be used with the RP command in LISREL). If program = TRUE, a list of parameter values for each replication is returned.

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu. edu>)

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
## Export 20 replications to an external data file (not run).
#exportData(20, CFA.Model, 200)
```

findCoverage

Find a value of independent variables that provides a given value of coverage rate

Description

Find a value of independent variable that provides a given value of coverage rate. If there are more than one varying parameters, this function will find the value of the target varying parameters given the values of the other varying parameters.

Usage

findCoverage(coverTable, iv, target)

Arguments

coverTable A data.frame providing varying parameters and coverage rates of each parameter. This table is obtained by getPower or continuousPower function.
iv The target varying parameter that users would like to find the value providing a given power from. This argument can be specified as the index of the target column or the name of target column (i.e., "iv. N" or "N")
target The target coverage rate

Value

There are five possible types of values provided:

- Value The varying parameter value that provides the coverage rate just under the specified coverage rate (the adjacent value of varying parameter provides over power than the specified power value).
- Minimum value The minimum value has already provided the low coverage rate (way under the specified coverage rate). The value of varying parameters that provides exact coverage rate may be lower than the minimum value. The example of varying parameter that can provides the minimum value is sample size.
- Maximum value The maximum value has already provided the low coverage rate (way under the specified coverage rate). The value of varying parameters that provides exact desired power may be higher than the maximum value. The example of varying parameter that can provides the maximum value is percent missing.
- NA There is no value in the domain of varying parameters that provides the coverage rate lower than the desired coverage rate.
- Inf The coverage rate of all values in the varying parameters is 0 (specifically more than 0.0001) and any values of the varying parameters can be picked and still provide enough power.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- getCoverage to find the coverage rate of parameter estimates
- continuousCoverage to find the coverage rate of parameter estimates for the result object (linkS4class\{SimResult\}) with varying parameters.

Examples

```
## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
# Find the power of all possible combination of N and pmMCAR
cover <- getCoverage(Output, coverValue = 0)
# Find the sample size that provides the power of 0.8
```

findCoverage(cover, "N", 0.20)
\#\# End(Not run)
findFactorIntercept Find factor intercept from regression coefficient matrix and factor total means

Description

Find factor intercept from regression coefficient matrix and factor total means for latent variable models. In the path analysis model, this function will find indicator intercept from regression coefficient and indicator total means.

Usage

findFactorIntercept(beta, factorMean = NULL, gamma = NULL, covmean = NULL)

Arguments

beta	Regression coefficient matrix among factors
factorMean	A vector of total (model-implied) factor (indicator) means. The default is that all total factor means are 0 .
gamma	Regression coefficient matrix from covariates (column) to factors (rows)
covmean	A vector of covariate means.

Value

A vector of factor (indicator) intercepts

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndMean to find indicator (measurement) total means
- findIndResidualVar to find indicator (measurement) residual variances
- findIndTotalVar to find indicator (measurement) total variances
- findFactorMean to find factor means
- findFactorResidualVar to find factor residual variances
- findFactorTotalVar to find factor total variances
- findFactorTotalCov to find factor covariances

Examples

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
factorMean <- c(5, 2, 3, 0, 0, 0, 0, 0, 0)
findFactorIntercept(path, factorMean)
```

findFactorMean
Find factor total means from regression coefficient matrix and factor intercept

Description

Find factor total means from regression coefficient matrix and factor intercepts for latent variable models. In the path analysis model, this function will find indicator total means from regression coefficient and indicator intercept.

Usage

findFactorMean(beta, alpha = NULL, gamma = NULL, covmean = NULL)

Arguments

beta Regression coefficient matrix among factors
alpha Factor (indicator) intercept. The default is that all factor intercepts are 0.
gamma Regression coefficient matrix from covariates (column) to factors (rows)
covmean A vector of covariate means.

Value

A vector of factor (indicator) total means

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndMean to find indicator (measurement) total means
- findIndResidualVar to find indicator (measurement) residual variances
- findIndTotalVar to find indicator (measurement) total variances
- findFactorIntercept to find factor intercepts
- findFactorResidualVar to find factor residual variances
- findFactorTotalVar to find factor total variances
- findFactorTotalCov to find factor covariances

Examples

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
intcept <- c(5, 2, 3, 0, 0, 0, 0, 0, 0)
findFactorMean(path, intcept)
```

```
findFactorResidualVar Find factor residual variances from regression coefficient matrix, fac-
    tor (residual) correlations, and total factor variances
```


Description

Find factor residual variances from regression coefficient matrix, factor (residual) correlation matrix, and total factor variances for latent variable models. In the path analysis model, this function will find indicator residual variances from regression coefficient, indicator (residual) correlation matrix, and total indicator variances.

Usage

findFactorResidualVar(beta, corPsi, totalVarPsi = NULL, gamma $=$ NULL, covcov $=$ NULL)

Arguments

beta	Regression coefficient matrix among factors
corPsi	Factor or indicator residual correlations.
totalVarPsi	Factor or indicator total variances. The default is that all factor or indicator total variances are 1.
gamma	Regression coefficient matrix from covariates (column) to factors (rows) covcov
A covariance matrix among covariates	

Value

A vector of factor (indicator) residual variances

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndMean to find indicator (measurement) total means
- findIndResidualVar to find indicator (measurement) residual variances
- findIndTotalVar to find indicator (measurement) total variances
- findFactorIntercept to find factor intercepts
- findFactorMean to find factor means
- findFactorTotalVar to find factor total variances
- findFactorTotalCov to find factor covariances

Examples

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
facCor <- diag(9)
facCor[1, 2] <- facCor[2, 1] <- 0.4
facCor[1, 3] <- facCor[3, 1] <- 0.4
facCor[2, 3] <- facCor[3, 2] <- 0.4
totalVar <- rep(1, 9)
findFactorResidualVar(path, facCor, totalVar)
```


findFactorTotalCov Find factor total covariance from regression coefficient matrix, factor

 residual covariance
Description

Find factor total covariances from regression coefficient matrix, factor residual covariance matrix. The residual covaraince matrix might be derived from factor residual correlation, total variance, and error variance. This function can be applied for path analysis model as well.

Usage

findFactorTotalCov(beta, psi = NULL, corPsi = NULL, totalVarPsi = NULL, errorVarPsi $=$ NULL, gamma $=$ NULL, covcov $=$ NULL)

Arguments

beta	Regression coefficient matrix among factors
psi	Factor or indicator residual covariances. This argument can be skipped if factor residual correlation and either total variances or error variances are specified.
corPsi	Factor or indicator residual correlation. This argument must be specified with total variances or error variances.
totalVarPsi	Factor or indicator total variances.
errorVarPsi	Factor or indicator residual variances.
gamma	Regression coefficient matrix from covariates (column) to factors (rows)
covcov	A covariance matrix among covariates

Value

A matrix of factor (model-implied) total covariance

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndMean to find indicator (measurement) total means
- findIndResidualVar to find indicator (measurement) residual variances
- findIndTotalVar to find indicator (measurement) total variances
- findFactorIntercept to find factor intercepts
- findFactorMean to find factor means
- findFactorResidualVar to find factor residual variances
- findFactorTotalVar to find factor total variances

Examples

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
facCor <- diag(9)
facCor[1, 2] <- facCor[2, 1] <- 0.4
facCor[1, 3] <- facCor[3, 1] <- 0.4
facCor[2, 3] <- facCor[3, 2] <- 0.4
residualVar <- c(1, 1, 1, 0.64, 0.288, 0.288, 0.64, 0.29568, 0.21888)
findFactorTotalCov(path, corPsi=facCor, errorVarPsi=residualVar)
```

findFactorTotalVar Find factor total variances from regression coefficient matrix, factor (residual) correlations, and factor residual variances

Description

Find factor total variances from regression coefficient matrix, factor (residual) correlation matrix, and factor residual variances for latent variable models. In the path analysis model, this function will find indicator total variances from regression coefficient, indicator (residual) correlation matrix, and indicator residual variances.

Usage

findFactorTotalVar(beta, corPsi, residualVarPsi, gamma $=$ NULL, covcov $=$ NULL)

Arguments

beta Regression coefficient matrix among factors
corPsi Factor or indicator residual correlations.
residualVarPsi Factor or indicator residual variances.
gamma Regression coefficient matrix from covariates (column) to factors (rows)
covcov A covariance matrix among covariates

Value

A vector of factor (indicator) total variances

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndMean to find indicator (measurement) total means
- findIndResidualVar to find indicator (measurement) residual variances
- findIndTotalVar to find indicator (measurement) total variances
- findFactorIntercept to find factor intercepts
- findFactorMean to find factor means
- findFactorResidualVar to find factor residual variances
- findFactorTotalCov to find factor covariances

Examples

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
facCor <- diag(9)
facCor[1, 2] <- facCor[2, 1] <- 0.4
facCor[1, 3] <- facCor[3, 1] <- 0.4
facCor[2, 3] <- facCor[3, 2] <- 0.4
residualVar <- c(1, 1, 1, 0.64, 0.288, 0.288, 0.64, 0.29568, 0.21888)
findFactorTotalVar(path, facCor, residualVar)
```

findIndIntercept Find indicator intercepts from factor loading matrix, total factor
mean, and indicator mean.

Description

Find indicator (measurement) intercepts from a factor loading matrix, total factor mean, and indicator mean.

Usage

findIndIntercept(lambda, factorMean $=$ NULL, indicatorMean $=$ NULL, kappa $=$ NULL, covmean $=$ NULL)

Arguments

lambda Factor loading matrix
factorMean Total (model-implied) mean of factors. As a default, all total factor means are 0.
indicatorMean Total indicator means. As a default, all total indicator means are 0.
kappa Regression coefficient matrix from covariates (column) to indicators (rows)
covmean A vector of covariate means.

Value

A vector of indicator (measurement) intercepts.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndMean to find indicator (measurement) total means
- findIndResidualVar to find indicator (measurement) residual variances
- findIndTotalVar to find indicator (measurement) total variances
- findFactorIntercept to find factor intercepts
- findFactorMean to find factor means
- findFactorResidualVar to find factor residual variances
- findFactorTotalVar to find factor total variances
- findFactorTotalCov to find factor covariances

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facMean <- c(0.5, 0.2)
indMean <- rep(1, 6)
findIndIntercept(loading, facMean, indMean)
```

findIndMean Find indicator total means from factor loading matrix, total factor mean, and indicator intercept.

Description

Find indicator total means from a factor loading matrix, total factor means, and indicator (measurement) intercepts.

Usage

findIndMean(lambda, factorMean $=$ NULL, tau $=$ NULL, kappa $=$ NULL, covmean = NULL)

Arguments

lambda	Factor loading matrix
factorMean	Total (model-implied) mean of factors. As a default, all total factor means are 0.
tau	Indicator (measurement) intercepts. As a default, all intercepts are 0.
kappa	Regression coefficient matrix from covariates (column) to indicators (rows)
covmean	A vector of covariate means.

Value

A vector of indicator total means.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndResidualVar to find indicator (measurement) residual variances
- findIndTotalVar to find indicator (measurement) total variances
- findFactorIntercept to find factor intercepts
- findFactorMean to find factor means
- findFactorResidualVar to find factor residual variances
- findFactorTotalVar to find factor total variances
- findFactorTotalCov to find factor covariances

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facMean <- c(0.5, 0.2)
intcept <- rep(0, 6)
findIndMean(loading, facMean, intcept)
```

findIndResidualVar Find indicator residual variances from factor loading matrix, total factor covariance, and total indicator variances.

Description

Find indicator (measurement) residual variances from a factor loading matrix, total factor covariance matrix, and total indicator variances.

Usage

findIndResidualVar(lambda, totalFactorCov, totalVarTheta $=$ NULL, kappa $=$ NULL, covcov $=$ NULL)

Arguments

lambda Factor loading matrix
totalFactorCov Total (model-implied) covariance matrix among factors.
totalVarTheta Indicator total variances. As a default, all total variances are 1.
kappa Regression coefficient matrix from covariates (column) to indicators (rows)
covcov A covariance matrix among covariates

Value

A vector of indicator residual variances.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndMean to find indicator (measurement) total means
- findIndTotalVar to find indicator (measurement) total variances
- findFactorIntercept to find factor intercepts
- findFactorMean to find factor means
- findFactorResidualVar to find factor residual variances
- findFactorTotalVar to find factor total variances
- findFactorTotalCov to find factor covariances

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facCov <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
totalVar <- rep(1, 6)
findIndResidualVar(loading, facCov, totalVar)
```

findIndTotalVar Find indicator total variances from factor loading matrix, total factor covariance, and indicator residual variances.

Description

Find indicator total variances from a factor loading matrix, total factor covariance matrix, and indicator (measurement) residual variances.

Usage

findIndTotalVar(lambda, totalFactorCov, residualVarTheta, kappa = NULL, covcov = NULL)

Arguments

lambda Factor loading matrix
totalFactorCov Total (model-implied) covariance matrix among factors.
residualVarTheta
Indicator (measurement) residual variances.
kappa Regression coefficient matrix from covariates (column) to indicators (rows)
covcov A covariance matrix among covariates

Value

A vector of indicator total variances.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findIndIntercept to find indicator (measurement) intercepts
- findIndMean to find indicator (measurement) total means
- findIndResidualVar to find indicator (measurement) residual variances
- findFactorIntercept to find factor intercepts
- findFactorMean to find factor means
- findFactorResidualVar to find factor residual variances
- findFactorTotalVar to find factor total variances
- findFactorTotalCov to find factor covariances

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facCov <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
resVar <- c(0.64, 0.51, 0.36, 0.64, 0.51, 0.36)
findIndTotalVar(loading, facCov, resVar)
```


Description

Find the appropriate position for freely estimated correlation (or covariance) given a regression coefficient matrix. The appropriate position is the pair of variables that are not causally related.

Usage

findPossibleFactorCor(beta)

Arguments

beta The regression coefficient in path analysis.

Value

The symmetric matrix containing the appropriate position for freely estimated correlation.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findRecursiveSet to group variables regarding the position in mediation chain.

Examples

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- NA
path[5, 2] <- path[8, 5] <- NA
path[6, 3] <- path[9, 6] <- NA
path[5, 1] <- path[8, 4] <- NA
path[6, 2] <- path[9, 5] <- NA
findPossibleFactorCor(path)
```

Find a value of independent variables that provides a given value of power.

Description

Find a value of independent variable that provides a given value of power. If there are more than one varying parameters, this function will find the value of the target varying parameters given the values of the other varying parameters.

Usage

findPower(powerTable, iv, power)

Arguments

powerTable A data.frame providing varying parameters and powers of each parameter. This table is obtained by getPower or continuousPower function.
iv The target varying parameter that users would like to find the value providing a given power from. This argument can be specified as the index of the target column or the name of target column (i.e., "iv.N" or "N")
power A desired power.

Value

There are five possible types of values provided:

- Value The varying parameter value that provides the power just over the specified power value (the adjacent value of varying parameter provides lower power than the specified power value).
- Minimum value The minimum value has already provided enough power (way over the specified power value). The value of varying parameters that provides exact desired power may be lower than the minimum value. The example of varying parameter that can provides the minimum value is sample size.
- Maximum value The maximum value has already provided enough power (way over the specified power value). The value of varying parameters that provides exact desired power may be higher than the maximum value. The example of varying parameter that can provides the maximum value is percent missing.
- NA There is no value in the domain of varying parameters that provides the power greater than the desired power.
- Inf The power of all values in the varying parameters is 1 (specifically more than 0.9999) and any values of the varying parameters can be picked and still provide enough power.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- getPower to find the power of parameter estimates
- continuousPower to find the power of parameter estimates for the result object (linkS4class\{SimResult \}) with varying parameters.

Examples

```
## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
# Find the power of all possible combination of N and pmMCAR
pow <- getPower(Output)
# Find the sample size that provides the power of 0.8
findPower(pow, "N", 0.80)
## End(Not run)
```

findRecursiveSet Group variables regarding the position in mediation chain

Description

In mediation analysis, variables affects other variables as a chain. This function will group variables regarding the chain of mediation analysis.

Usage

findRecursiveSet(beta)

Arguments

beta The regression coefficient in path analysis.

Value

The list of set of variables in the mediation chain. The variables in position 1 will be the independent variables. The variables in the last variables will be the end of the chain.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- findPossibleFactorCor to find the possible position for latent correlation given a regression coefficient matrix

Examples

```
path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- NA
path[5, 2] <- path[8, 5] <- NA
path[6, 3] <- path[9, 6] <- NA
path[5, 1] <- path[8, 4] <- NA
path[6, 2] <- path[9, 5] <- NA
findRecursiveSet(path)
```

generate Generate data using SimSem template

Description

This function can be used to generate random data based on the 1 . SimSem objects created with the model function, 2. lavaan script or parameter tables, or 3. an MxModel object from the OpenMx package. Some notable features include fine control of misspecification and misspecification optimization (for SimSem only), as well as the ability to generate non-normal data. When using simsem for simulations, this function is used internally to generate data in the function sim, and can be helpful for debugging, or in creating data for use with other analysis programs.

Usage

generate(model, n, maxDraw=50, misfitBounds=NULL, misfitType="f0", averageNumMisspec=FALSE, optMisfit=NULL, optDraws=50, createOrder $=c(1,2,3)$, indDist=NULL, sequential=FALSE, facDist=NULL, errorDist=NULL, saveLatentVar = FALSE, indLab=NULL, modelBoot=FALSE, realData=NULL, covData=NULL, params=FALSE, group = NULL, empirical = FALSE, ...)

Arguments

$$
\begin{array}{ll}
\text { model } & \begin{array}{l}
\text { A SimSem object, a lavaan script or parameter tables, or an MxModel object from } \\
\text { the OpenMx package }
\end{array} \\
\mathrm{n} & \text { Integer of sample size. } \\
\text { maxDraw } & \begin{array}{l}
\text { Integer specifying the maximum number of attempts to draw a valid set of pa- } \\
\text { rameters (no negative error variance, standardized coefficients over 1). }
\end{array}
\end{array}
$$

misfitBounds	Vector that contains upper and lower bounds of the misfit measure. Sets of parameters drawn that are not within these bounds are rejected.
misfitType	Character vector indicating the fit measure used to assess the misfit of a set of parameters. Can be "f0", "rmsea", "srmr", or "all".
averageNumMisspec	
	If TRUE, the provided fit will be divided by the number of misspecified parameters.
optMisfit	Character vector of either "min" or "max" indicating either maximum or minimum optimized misfit. If not null, the set of parameters out of the number of draws in "optDraws" that has either the maximum or minimum misfit of the given misfit type will be returned.
optDraws	Number of parameter sets to draw if optMisfit is not null. The set of parameters with the maximum or minimum misfit will be returned.
createOrder	The order of 1) applying equality/inequality constraints, 2) applying misspecification, and 3) fill unspecified parameters (e.g., residual variances when total variances are specified). The specification of this argument is a vector of different orders of 1 (constraint), 2 (misspecification), and 3 (filling parameters). For example, $c(1,2,3)$ is to apply constraints first, then add the misspecification, and finally fill all parameters. See the example of how to use it in the draw function.
indDist	A SimDataDist object or list of objects for a distribution of indicators. If one object is passed, each indicator will have the same distribution. Use when sequential is FALSE.
sequential	If TRUE, use a sequential method to create data such that the data from factor are generated first and apply to a set of equations to obtain the data of indicators. If FALSE, create data directly from model-implied mean and covariance of indicators.
facDist	A SimDataDist object or list of objects for the distribution of factors. If one object is passed, all factors will have the same distribution. Use when sequential is TRUE.
errorDist	An object or list of objects of type SimDataDist indicating the distribution of errors. If a single SimDataDist is specified, each error will be genrated with that distribution.
saveLatentVar	If TRUE, the total latent variable scores, residual latent variable scores, and measurement error scores are also provided as the "latentVar" attribute of the generated data by the following line: attr(generatedData,"latentVar"). The sequential argument must be TRUE in order to use this option.
indLab	A vector of indicator labels. When not specified, the variable names are $\mathrm{x} 1, \mathrm{x} 2$, xN .
modelBoot	When specified, a model-based bootstrap is used for data generation. See details for further information. This argument requires real data to be passed to realData.
realData	A data.frame containing real data. The data generated will follow the distribution of this data set.

covData	A data.frame containing covariate data, which can have any distributions. This argument is required when users specify GA or KA matrices in the model template (SimSem).
params	If TRUE, return the parameters drawn along with the generated data set. Default is FALSE.
group	The label of the grouping variable
empirical	Logical. If TRUE, the specified parameters are treated as sample statistics and data are created to get the specified sample statistics. This argument is applicable when multivariate normal distribution is specified only.
\ldots	Additional arguments for the simulateData function.

Details

If the lavaan script or the MxModel are provided, the model-implied covariance matrix will be computed and internally use createData function to generate data. The data-generation method is based on whether the indDist argument is specified. For the lavaan script, the code for data generation is modified from the simulateData function.

If the SimSem object is specified, it will check whether there are any random parameters or trivial misspecification in the model. If so, real or misspecified parameters are drawn via the draw function. Next, there are two methods to generate data. First, the function will calculate the model-implied covariance matrix (including model misspecification) and generate data similar to the lavaan script or the MxModel object. The second method is referred to as the sequential method, which can be used by specifying the sequential argument as TRUE. This function will create data based on the chain of equations in structural equation modeling such that independent variables and errors are generated and added as dependent variables and the dependent variables will be treated as independent variables in the next equation. For example, in the model with factor A and B are independent variables, factor C are dependent variables, factors A and B are generated first. Then, residual in factor C are created and added with factors A and B. This current step has all factor scores. Then, measurement errors are created and added with factor scores to create indicator scores. During each step, independent variables and errors can be nonnormal by setting facDist or errorDist arguments. The data generation in each step is based on the createData function.
For the model-based bootstrap (providing the realData argument), the transformation proposed by Yung \& Bentler (1996) is used. This procedure is the expansion from the Bollen and Stine (1992) bootstrap including a mean structure. The model-implied mean vector and covariance matrix with trivial misspecification will be used in the model-based bootstrap if misspec is specified. See page 133 of Bollen and Stine (1992) for a reference.

Value

A data.frame containing simulated data from the data generation template. A variable "group" is appended indicating group membership.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Patrick Miller (University of Notre Dame; <pmille13@nd. edu>), the data generation code for lavaan script is modifed from the simulateData function in lavaan written by Yves Rosseel

References

Bollen, K. A., \& Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods and Research, 21, 205-229.
Yung, Y.-F., \& Bentler, P. M. (1996). Bootstrapping techniques in analysis of mean and covariance structures. In G. A. Marcoulides \& R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 195-226). Mahwah, NJ: Erlbaum.

See Also

- draw To draw parameters using the SimSem template.
- createData To generate random data using a set of parameters from draw

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
    latent.cor <- matrix(NA, 2, 2)
    diag(latent.cor) <- 1
    RPS <- binds(latent.cor, 0.5)
    RTE <- binds(diag(6))
    VY <- bind(rep(NA,6),2)
    CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
    dat <- generate(CFA.Model, 200)
    # Get the latent variable scores
    dat2 <- generate(CFA.Model, 20, sequential = TRUE, saveLatentVar = TRUE)
    dat2
    attr(dat2, "latentVar")
```

 getCIwidth Find confidence interval width

Description

Find the median of confidence interval width or a confidence interval value given a degree of assurance (Lai \& Kelley, 2011)

Usage

getCIwidth(object, assurance $=0.50$, nVal $=$ NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, $d f=0$)

Arguments

$$
\begin{array}{ll}
\text { object } & \begin{array}{l}
\text { SimResult that saves the analysis results from multiple replications } \\
\text { assurance }
\end{array} \begin{array}{l}
\text { The percentile of the resulting confidence interval width. When assurance is } \\
\text { 0.50, the median of the widths is provided. See Lai \& Kelley (2011) for more } \\
\text { details. }
\end{array} \\
\text { nVal } & \begin{array}{l}
\text { The sample size value that researchers wish to find the confidence interval width } \\
\text { from. This argument is applicable for SimResult with varying sample sizes or } \\
\text { percent missing across replications }
\end{array} \\
\text { pmMCARval } & \begin{array}{l}
\text { The percent missing completely at random value that researchers wish to find } \\
\text { the confidence interval width from. This argument is applicable for SimResult } \\
\text { with varying sample sizes or percent missing across replications }
\end{array} \\
\text { pmMARval } & \begin{array}{l}
\text { The percent missing at random value that researchers wish to find the confidence } \\
\text { interval width from. This argument is applicable for SimResult with varying }
\end{array} \\
\text { sample sizes or percent missing across replications }
\end{array}
$$

Value

The median of confidence interval width or a confidence interval given a degree of assurance

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Lai, K., \& Kelley, K. (2011). Accuracy in parameter estimation for targeted effects in structural equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods, 16, 127-148.

See Also

SimResult for a detail of simResult

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
```

```
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n = 200, model=CFA.Model)
# Get the cutoff (critical value) when alpha is 0.05
getCIwidth(Output, assurance=0.80)
# Finding the cutoff when the sample size is varied. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, model=CFA.Model, n=seq(50, 100, 10))
# Get the fit index cutoff when sample size is 75.
getCIwidth(Output2, assurance=0.80, nVal = 75)
## End(Not run)
```

getCoverage Find coverage rate of model parameters

Description

A function to find the coverage rate of confidence intervals in a model when none, one, or more of the simulations parameters vary randomly across replications.

Usage
 getCoverage(simResult, coverValue = NULL, contParam = NULL, coverParam = NULL, nVal $=$ NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, paramVal $=$ NULL)

Arguments

simResult	SimResult that may include randomly varying parameters (e.g. sample size, percent missing, model parameters)
coverValue	A target value used that users wish to find the coverage rate of that value (e.g., $0)$. If NULL, the parameter values will be used.
contParam	Vector of parameters names that vary over replications.
coverParam	Vector of parameters names that the user wishes to find coverage rate for. This can be a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not spec- ified, coverage rates for all parameters in the model will be returned.
$n \vee a l$	The sample size values that users wish to find power from.

pmMCARval The percent completely missing at random values that users wish to find power from.
pmMARval The percent missing at random values that users wish to find power from.
paramVal A list of varying parameter values that users wish to find power from.

Details

In this function, the coverage (which can be 0 or 1) is regressed on randomly varying simulation parameters (e.g., sample size, percentage of missing data, or model parameters) using logistic regression. For a set of independent variables values, the predicted probability from the logistic regression equation is the predicted coverage rate.

Value

Data frame containing columns representing values of the randomly varying simulation parameters, and coverage rates for model parameters of interest.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu)

See Also

- SimResult to see how to create a simResult object with randomly varying parameters.

Examples

```
## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary (Output)
# Get the coverage rates of all possible combinations of n and pmMCAR
getCoverage(Output)
# Get the coverage rates of the combinations of n of 100 and 200 and pmMCAR of 0, 0.1, and 0.2
getCoverage(Output, coverValue = 0, nVal=c(100, 200), pmMCARval=c(0, 0.1, 0.2))
## End(Not run)
```


Description

Extract fit indices information from the SimResult and get the cutoffs of fit indices given a priori alpha level

Usage

getCutoff(object, alpha, revDirec = FALSE, usedFit = NULL, nVal = NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, $d f=0$)

Arguments

object	
alpha	
revDirec	SimResult that saves the analysis results from multiple replications A priori alpha level
The default is to find criticl point on the side that indicates worse fit (the right	
side of RMSEA or the left side of CFI). If specifying as TRUE, the directions are	
reversed.	
Vector of names of fit indices that researchers wish to getCutoffs from. The	
default is to getCutoffs of all fit indices.	

Value

One-tailed cutoffs of several fit indices with a priori alpha level

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for a detail of simResult

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n = 200, model=CFA.Model)
# Get the cutoff (critical value) when alpha is 0.05
getCutoff(Output, 0.05)
# Finding the cutoff when the sample size is varied. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, model=CFA.Model, n=seq(50, 100, 10))
# Get the fit index cutoff when sample size is 75.
getCutoff(Output2, 0.05, nVal = 75)
## End(Not run)
```

getCutoffNested

Find fit indices cutoff for nested model comparison given a priori alpha level

Description

Extract fit indices information from the simulation of parent and nested models and getCutoff of fit indices given a priori alpha level

Usage

getCutoffNested(nested, parent, alpha $=0.05$, usedFit $=$ NULL, nVal $=$ NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, $d f=0$)

Arguments

\(\left.\left.$$
\begin{array}{ll}\text { nested } & \begin{array}{l}\text { SimResult that saves the analysis results of nested model from multiple repli- } \\
\text { cations }\end{array} \\
\text { parent } & \begin{array}{l}\text { SimResult that saves the analysis results of parent model from multiple repli- } \\
\text { cations }\end{array} \\
\text { alpha } & \begin{array}{l}\text { A priori alpha level } \\
\text { usedFit }\end{array} \\
\text { Vector of names of fit indices that researchers wish to getCutoffs from. The } \\
\text { default is to getCutoffs of all fit indices. }\end{array}
$$\right] $$
\begin{array}{l}\text { The sample size value that researchers wish to find the fit indices cutoffs from. } \\
\text { pmMCARval }\end{array}
$$ \begin{array}{l}The percent missing completely at random value that researchers wish to find

the fit indices cutoffs from.\end{array}\right]\)| The percent missing at random value that researchers wish to find the fit indices |
| :--- |
| cutoffs from. |

Value

One-tailed cutoffs of several fit indices with a priori alpha level

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for a detail of simResult getCutoff for a detail of finding cutoffs for absolute fit

Examples

```
## Not run:
# Nested Model
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
error.cor.mis <- matrix("rnorm(1, 0, 0.1)", 6, 6)
diag(error.cor.mis) <- 1
RTE <- binds(diag(6), misspec=error.cor.mis)
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
# Parent Model
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
```

```
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, "runif(1, 0.7, 0.9)")
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
# The actual number of replications should be greater than 10.
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)
# Find the fix index cutoff from the sampling distribution of the difference
# in fit index of nested models where the alpha is 0.05.
getCutoffNested(Output.NULL.NULL, Output.NULL.ALT, alpha=0.05)
## End(Not run)
```

 getCutoffNonNested Find fit indices cutoff for non-nested model comparison given a priori
 alpha level

Description

Extract fit indices information from the simulation of two models fitting on the datasets created from both models and getCutoff of fit indices given a priori alpha level

Usage

getCutoffNonNested(dat1Mod1, dat1Mod2, dat2Mod1=NULL, dat2Mod2=NULL, alpha=.05, usedFit=NULL, onetailed=FALSE, nVal = NULL, pmMCARval = NULL, pmMARval $=$ NULL, $d f=0$)

Arguments

\(\left.$$
\begin{array}{ll}\text { dat1Mod1 } & \begin{array}{l}\text { SimResult that saves the simulation of analyzing Model } 1 \text { by datasets created } \\
\text { from Model 1 }\end{array} \\
\text { dat1Mod2 } & \begin{array}{l}\text { SimResult that saves the simulation of analyzing Model } 2 \text { by datasets created } \\
\text { from Model 1 }\end{array} \\
\text { dat2Mod1 } & \begin{array}{l}\text { SimResult that saves the simulation of analyzing Model } 1 \text { by datasets created } \\
\text { from Model 2 }\end{array} \\
\text { dat2Mod2 } & \begin{array}{l}\text { SimResult that saves the simulation of analyzing Model } 2 \text { by datasets created } \\
\text { from Model 2 }\end{array} \\
\text { alpha } & \begin{array}{l}\text { A priori alpha level } \\
\text { usedFit }\end{array}
$$

Vector of names of fit indices that researchers wish to get cutoffs from. The

default is to get cutoffs of all fit indices.\end{array}\right]\)| If TRUE, the function will find the cutoff from one-tail test. If FALSE, the funciton |
| :--- |
| will find the cutoff from two-tailed test. |

$$
\begin{array}{ll}
\text { pmMCARval } & \begin{array}{l}
\text { The percent missing completely at random value that researchers wish to find } \\
\text { the fit indices cutoffs from. }
\end{array} \\
\text { pmMARval } & \begin{array}{l}
\text { The percent missing at random value that researchers wish to find the fit indices } \\
\text { cutoffs from. }
\end{array} \\
\text { df } & \begin{array}{l}
\text { The degree of freedom used in spline method in predicting the fit indices by the } \\
\text { predictors. If df is } 0, \text { the spline method will not be applied. }
\end{array}
\end{array}
$$

Value

One- or two-tailed cutoffs of several fit indices with a priori alpha level. The cutoff is based on the fit indices from Model 1 subtracted by the fit indices from Model 2.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for a detail of simResult getCutoff for a detail of finding cutoffs for absolute fit getCutoffNested for a detail of finding cutoffs for nested model comparison plotCutoffNonNested Plot cutoffs for non-nested model comparison

Examples

```
## Not run:
# Model A: Factor 1 with items 1-3 and Factor 2 with items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")
# Model B: Factor 1 with items 1-4 and Factor 2 with items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")
# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)
# Find the cutoffs from the sampling distribution to reject model A (model 1)
# and to reject model B (model 2)
```

```
getCutoffNonNested(Output.A.A, Output.A.B, Output.B.A, Output.B.B)
# Find the cutoffs from the sampling distribution to reject model A (model 1)
getCutoffNonNested(Output.A.A, Output.A.B)
# Find the cutoffs from the sampling distribution to reject model B (model 1)
getCutoffNonNested(Output.B.B, Output.B.A)
## End(Not run)
```

 getExtraOutput Get extra outputs from the result of simulation

Description

Get extra outputs from a simulation result object (SimResult). Users can ask this package to extra output from the lavaan object in each iteration by setting the outfun argument (in the sim function). See the example below.

Usage

getExtraOutput(object, improper = TRUE, nonconverged = FALSE)

Arguments

object	SimResult that have the extra output extracted by the function defined in the outfun argument (in the sim function)
improper	Specify whether to include the information from the replications with improper solutions
nonconverged	Specify whether to include the information from the nonconvergent replications

Value

A list of extra outputs

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- sim A function to run a Monte Carlo simulation

Examples

```
## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# Write a function to extract the modification index from lavaan object
outfun <- function(out) {
result <- inspect(out, "mi")
}
# We will use only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=200, model=CFA.Model, outfun=outfun)
# Get the modification index of each replication
getExtraOutput(Output)
## End(Not run)
```

getPopulation Extract the data generation population model underlying a result ob-
ject

Description

This function will extract the data generation population model underlying a result object (linkS4class\{SimResult \}).

Usage

getPopulation(object, std = FALSE, improper = TRUE, nonconverged = FALSE)

Arguments

object	The result object that you wish to extract the data generation population model from (linkS4class\{SimResult $).$
std	If TRUE, standardized parameters are returned.
improper	Specify whether to include the information from the replications with improper solutions
nonconverged	Specify whether to include the information from the nonconvergent replications

Value

A data frame contained the population of each replication

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for result object

Examples

```
## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, "runif(1, 0.4, 0.9)")
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We will use only 10 replications to save time.
# In reality, more replications are needed.
Output <- sim(10, n=200, model=CFA.Model)
# Get the population parameters
getPopulation(Output)
## End(Not run)
```

```
getPower Find power of model parameters
```


Description

A function to find the power of parameters in a model when none, one, or more of the simulations parameters vary randomly across replications.

Usage

getPower (simResult, alpha $=0.05$, contParam $=$ NULL, powerParam $=$ NULL, nVal $=$ NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, paramVal $=$ NULL)

Arguments

simResult SimResult that may include randomly varying parameters (e.g. sample size, percent missing, model parameters)
alpha Alpha level to use for power analysis.
contParam Vector of parameters names that vary over replications.
powerParam Vector of parameters names that the user wishes to find power for. This can be a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not specified, power for all parameters in the model will be returned.

nVal	The sample size values that users wish to find power from.
pmMCARval	The percent completely missing at random values that users wish to find power from.
pmMARval	The percent missing at random values that users wish to find power from.
paramVal	A list of varying parameter values that users wish to find power from.

Details

A common use of simulations is to conduct power analyses, especially when using SEM (Muthen \& Muthen, 2002). Here, researchers could select values for each parameter and a sample size and run a simulation to determine power in those conditions (the proportion of generated datasets in which a particular parameter of interest is significantly different from zero). To evaluate power at multiple sample sizes, one simulation for each sample size must be run. This function not only calculate power for each sample size but also calculate power for multiple sample sizes varying continuously. By continuously varying sample size across replications, only a single simulation is needed. In this simulation, the sample size for each replication varies randomly across plausible sample sizes (e.g., sample sizes between 200 and 500). For each replication, the sample size and significance of each parameter $(0=$ not significant, $1=$ significant $)$ are recorded. When the simulation is complete, parameter significance is regressed on sample size using logistic regression. For a given sample size, the predicted probability from the logistic regression equation is the power to detect an effect at that sample size. This approach can be extended to other randomly varying simulation parameters such as the percentage of missing data, and model parameters.

Value

Data frame containing columns representing values of the randomly varying simulation parameters, and power for model parameters of interest.

Author(s)

Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu), Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Muthen, L. K., \& Muthen, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599-620.

See Also

- SimResult to see how to create a simResult object with randomly varying parameters.

Examples

```
## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
```

```
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary(Output)
# Get the power of all possible combinations of }n\mathrm{ and pmMCAR
getPower(Output)
# Get the power of the combinations of n of 100 and 200 and pmMCAR of 0, 0.1, and 0.2
getPower(Output, nVal=c(100, 200), pmMCARval=c(0, 0.1, 0.2))
## End(Not run)
```

getPowerFit

Find power in rejecting alternative models based on fit indices criteria

Description

Find the proportion of fit indices that indicate worse fit than a specified cutoffs. The cutoffs may be calculated from getCutoff of the null model.

Usage

getPowerFit(altObject, cutoff = NULL, nullObject $=$ NULL, revDirec = FALSE, usedFit = NULL, alpha = 0.05, nVal = NULL, pmMCARval = NULL, pmMARval = NULL, condCutoff $=$ TRUE, $d f=0$)

Arguments

altObject	SimResult that indicates alternative model that users wish to reject cutoff Fit indices cutoffs from null model or users. This should be a vector with a specified fit indices names as the name of vector elements. The cutoff cannot be specified if the nullObject is specified.
nullobject	The SimResult that contains the simulation result from fitting the null model by the data from the null model. The nullobject cannot be specified if the cutoff is specified.
revDirec	Reverse the direction of deciding a power by fit indices (e.g., less than \rightarrow greater than). The default is to count the proportion of fit indices that indicates lower fit to the model, such as how many RMSEA in the alternative model that is worse than cutoffs. The direction can be reversed by setting as TRUE. usedFit\quadThe vector of names of fit indices that researchers wish to get powers from. The default is to get powers of all fit indices
alpha	The alpha level used to find the cutoff if the nullobject is specified. This argument is not applicable if the cutoff is specified.

$$
\begin{array}{ll}
\text { nVal } & \begin{array}{l}
\text { The sample size value that researchers wish to find the power from. This argu- } \\
\text { ment is applicable when altObject has a random sample size. }
\end{array} \\
\text { pmMCARval } & \begin{array}{l}
\text { The percent missing completely at random value that researchers wish to find } \\
\text { the power from. This argument is applicable when altObject has a random } \\
\text { percent missing completely at random. }
\end{array} \\
\text { pmMARval } & \begin{array}{l}
\text { The percent missing at random value that researchers wish to find the power } \\
\text { from. This argument is applicable when altObject has a random percent miss- } \\
\text { ing at random. }
\end{array} \\
\text { condCutoff } \quad \begin{array}{l}
\text { A logical value to use a conditional quantile method (if TRUE) or logistic re- } \\
\text { gression method (if FALSE) to find the power. The conditional quantile method } \\
\text { use quantile regression to find the quantile of the cutoff on the alternative sam- } \\
\text { pling distribution that varies nVal, pmMCARval, or pmMARval. The value of } 1 \text { - } \\
\text { quantile will be reported as the power given the set of nVal, pmMCARval, and } \\
\text { pmMARval. The logistic regression method is based on transforming the fit in- } \\
\text { dices value to reject/retain decision first. Then, the logistic regression is used to } \\
\text { predict reject/retain decision given the set of nVal, pmMCARval, and pmMARval. } \\
\text { The predicted probability is reported as a power. This argument is applicable for }
\end{array} \\
\text { specification of cutoff only. } \\
\text { dfe degree of freedom used in spline method in quantile regression (condCutoff } \\
& =\text { TRUE). If df is 0, which is the default, the spline method will not be applied. }
\end{array}
$$

Value

List of power given different fit indices. The TraditionalChi means the proportion of replications that are rejected by the traditional chi-square test.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- getCutoff to find the cutoffs from null model.
- SimResult to see how to create simResult

Examples

```
## Not run:
# Null model with one factor
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output.NULL <- sim(5, n=500, model=CFA.Model.NULL)
```

```
# Get the fit index cutoff from the null model
Cut.NULL <- getCutoff(Output.NULL, 0.05)
# Alternative model with two factor
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, "runif(1, 0.7, 0.9)")
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output.ALT <- sim(5, n=500, model=CFA.Model.NULL, generate=CFA.Model.ALT)
# Get the power based on the derived cutoff
getPowerFit(Output.ALT, cutoff=Cut.NULL)
# Get the power based on the rule of thumb proposed by Hu & Bentler (1999)
Rule.of.thumb <- c(RMSEA=0.05, CFI=0.95, TLI=0.95, SRMR=0.06)
getPowerFit(Output.ALT, cutoff=Rule.of.thumb, usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.ALT)
# Get the power based on the derived cutoff from the null model at the sample size of 250
getPowerFit(Output.ALT2, nullObject=Output.NULL2, nVal=250)
## End(Not run)
```

getPowerFitNested Find power in rejecting nested models based on the differences in fit indices

Description

Find the proportion of the difference in fit indices that indicate worse fit than a specified (or internally derived) cutoffs.

Usage

getPowerFitNested(altNested, altParent, cutoff = NULL, nullNested = NULL, nullParent $=$ NULL, revDirec $=$ FALSE, usedFit $=$ NULL, alpha $=0.05, \mathrm{nVal}=$ NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, condCutoff $=$ TRUE, $d f=0$)

Arguments

altNested	SimResult that saves the simulation result of the nested model when the nested model is FALSE.
altParent	SimResult that saves the simulation result of the parent model when the nested model is FALSE.
cutoff	A vector of priori cutoffs for fit indices. The cutoff cannot be specified if the nullNested and nullParent are specified.
nullNested	The SimResult that saves the simulation result of the nested model when the nested model is TRUE. This argument must be specified with nullParent. The nullNested cannot be specified if the cutoff is specified.
nullParent	The SimResult that saves the simulation result of the parent model when the nested model is TRUE. This argument must be specified with nullNested. The nullNested cannot be specified if the cutoff is specified.
revDirec	Reverse the direction of deciding a power by fit indices (e.g., less than \rightarrow greater than). The default is to count the proportion of fit indices that indicates lower fit to the model, such as how many RMSEA in the alternative model that is worse than cutoffs. The direction can be reversed by setting as TRUE.
usedFit	The vector of names of fit indices that researchers wish to get powers from. The default is to get powers of all fit indices
alpha	The alpha level used to find the cutoff if the nullobject is specified. This argument is not applicable if the cutoff is specified.
$n \mathrm{al}$	The sample size value that researchers wish to find the power from. This argument is applicable when altObject has a random sample size.
pmMCARval	The percent missing completely at random value that researchers wish to find the power from. This argument is applicable when altObject has a random percent missing completely at random.
pmMARval	The percent missing at random value that researchers wish to find the power from. This argument is applicable when altObject has a random percent missing at random.
condCutoff	A logical value to use a conditional quantile method (if TRUE) or logistic regression method (if FALSE) to find the power. The conditional quantile method use quantile regression to find the quantile of the cutoff on the alternative sampling distribution that varies nVal, pmMCARval, or pmMARval. The value of 1 quantile will be reported as the power given the set of $n V a l$, pmMCARval, and pmMARval. The logistic regression method is based on transforming the fit indices value to reject/retain decision first. Then, the logistic regression is used to predict reject/retain decision given the set of nVal, pmMCARval, and pmMARval. The predicted probability is reported as a power. This argument is applicable for specification of cutoff only.
df	The degree of freedom used in spline method in quantile regression (condCutoff $=$ TRUE). If df is 0 , which is the default, the spline method will not be applied.

Value

List of power given different fit indices. The TraditionalChi means the proportion of replications that are rejected by the traditional chi-square difference test.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- getCutoff to find the cutoffs from null model.
- SimResult to see how to create simResult

Examples

\#\# Not run:
\# Null model (Nested model) with one factor
loading.null <- matrix (0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
\# Alternative model (Parent model) with two factors
loading.alt <- matrix (0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix (NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, 0.7)
CFA.Model.ALT <- model (LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
\# We make the examples running only 10 replications to save time.
\# In reality, more replications are needed.
Output.NULL.NULL <- sim(10, $n=500$, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL <- sim(10, $n=500$, model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT <- sim(10, $\mathrm{n}=500$, model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT <- sim(10, $\mathrm{n}=500$, model=CFA.Model.ALT, generate=CFA.Model.ALT)
\# Find the power based on the derived cutoff from the models analyzed on the null datasets getPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, nullNested=Output.NULL.NULL, nullParent=Output.NULL.ALT)
\# Find the power based on the chi-square value at $d f=1$ and the CFI change (intentionally \# use a cutoff from Cheung and Rensvold (2002) in an appropriate situation).
getPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, cutoff=c(Chi=3.84, CFI=-0.10))
\# The example of continous varying sample size. Note that more fine-grained \# values of n is needed, e.g., $n=\operatorname{seq}(50,500,1)$
Output.NULL.NULL2 <- $\operatorname{sim}(N U L L, ~ n=\operatorname{seq}(50,500,50)$, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL2 <- sim(NULL, $\mathrm{n}=\operatorname{seq}(50,500,50)$, model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT2 <- sim(NULL, $\mathrm{n}=\operatorname{seq}(50,500,50)$, model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT2 <- sim(NULL, $\mathrm{n}=\operatorname{seq}(50,500,50)$, model=CFA.Model.ALT, generate=CFA.Model.ALT)
\# Get the power based on the derived cutoff from the null model at the sample size of 250

```
getPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, nullNested=Output.NULL.NULL2,
nullParent=Output.NULL.ALT2, nVal = 250)
# Get the power based on the rule of thumb from the null model at the sample size of 250
getPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, cutoff=c(Chi=3.84, CFI=-0.10), nVal = 250)
## End(Not run)
```

```
getPowerFitNonNested Find power in rejecting non-nested models based on the differences in
fit indices
```


Description

Find the proportion of the difference in fit indices from one model that does not in the range of sampling distribution from another model (reject that the dataset comes from the second model) or indicates worse fit than a specified cutoff.

```
Usage
getPowerFitNonNested(dat2Mod1, dat2Mod2, cutoff = NULL, dat1Mod1 = NULL, dat1Mod2 = NULL, revDirec = FALSE, usedFit = NULL, alpha = 0.05, nVal = NULL, pmMCARval \(=\) NULL, pmMARval \(=\) NULL, condCutoff \(=\) TRUE, \(\mathrm{df}=0\), onetailed \(=\) FALSE)
```


Arguments

\(\left.$$
\begin{array}{ll}\text { dat2Mod1 } & \begin{array}{l}\text { SimResult that saves the simulation of analyzing Model } 1 \text { by datasets created } \\
\text { from Model } 2\end{array} \\
\text { dat2Mod2 } & \begin{array}{l}\text { SimResult that saves the simulation of analyzing Model } 2 \text { by datasets created } \\
\text { from Model } 2\end{array} \\
\text { cutoff } & \begin{array}{l}\text { A vector of priori cutoffs for fit indices. The cutoff cannot be specified if the } \\
\text { dat1Mod1 and dat1Mod2 are specified. }\end{array}
$$

The SimResult that saves the simulation of analyzing Model 1 by datasets

created from Model 1. This argument must be specified with dat1Mod2. The

dat1Mod1 cannot be specified if the cutoff is specified.\end{array}\right\}\)| The SimResult that saves the simulation of analyzing Model 2 by datasets |
| :--- |
| created from Model 1. This argument must be specified with dat1Mod1. The |
| dat1Mod2 cannot be specified if the cutoff is specified. |

nVal	The sample size value that researchers wish to find the power from. This argu- ment is applicable when altObject has a random sample size.
pmMCARval	
The percent missing completely at random value that researchers wish to find	
the power from. This argument is applicable when altObject has a random	
percent missing completely at random.	
The percent missing at random value that researchers wish to find the power	
from. This argument is applicable when altObject has a random percent miss-	
ing at random.	

Value

List of power given different fit indices.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- getCutoffNonNested to find the cutoffs for non-nested model comparison
- SimResult to see how to create simResult

Examples

```
## Not run:
# Model A: Factor 1 on Items 1-3 and Factor 2 on Items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
```

```
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")
# Model B: Factor 1 on Items 1-4 and Factor 2 on Items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")
# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)
# Find the power based on the derived cutoff for both models
getPowerFitNonNested(Output.B.A, Output.B.B, dat1Mod1=Output.A.A, dat1Mod2=Output.A.B)
# Find the power based on the AIC and BIC of 0 (select model B if Output.B.B has lower AIC or BIC)
getPowerFitNonNested(Output.B.A, Output.B.B, cutoff=c(AIC=0, BIC=0))
## End(Not run)
```

imposeMissing

Description

Function imposes missing values on a data based on the known missing data types, including MCAR, MAR, planned, and attrition.

Usage

impose(miss, data.mat, pmMCAR = NULL, pmMAR = NULL)
imposeMissing(data.mat, $\operatorname{cov}=0, \operatorname{pmMCAR}=0, \operatorname{pmMAR}=0, n f o r m s=0$, itemGroups $=$ list(), twoMethod $=0, \operatorname{prAttr}=0$, timePoints $=1$, ignoreCols $=0$, threshold $=0$, logit $=" "$, logical $=$ NULL)

Arguments

miss Missing data object (SimMissing) used as the template for impose missing values
data.mat Data to impose missing upon. Can be either a matrix or a data frame.
cov Column indices of a covariate to be used to impose MAR missing, or MAR attrition. Will not be included in any removal procedure. See details.
pmMCAR Decimal percent of missingness to introduce completely at random on all variables.
$\begin{array}{ll}\text { pmMAR } & \begin{array}{l}\text { Decimal percent of missingness to introduce using the listed covariate as pre- } \\ \text { dictor. See details. }\end{array} \\ \text { nforms } & \text { The number of forms for planned missing data designs, not including the shared } \\ \text { form. }\end{array}$ itemGroups $\left.\begin{array}{l}\text { List of lists of item groupings for planned missing data forms. Unless specified, } \\ \text { items will be divided into groups sequentially (e.g. 1-3,4-6,7-9,10-12) } \\ \text { twoMethod } \\ \text { With missing on one variable: vector of (column index, percent missing). Will } \\ \text { put a given percent missing on that column in the matrix to simulate a two } \\ \text { method planned missing data research design. With missing on two or more } \\ \text { variables: list of (column indices, percent missing). } \\ \text { Probability (or vector of probabilities) of an entire case being removed due to } \\ \text { prAttr } \\ \text { attrition at a given time point. When a covariate is specified along with this ar- } \\ \text { gument, attrition will be predicted by the covariate (MAR attrition). See details. }\end{array}\right\}$

Details

Without specifying any arguments, no missing values will be introduced.
A single covariate is required to specify MAR missing - this covariate can be distributed in any way. This covariate can be either continuous or categorical, as long as it is numerical. If the covariate is categorical, the threshold should be specified to one of the levels.
MAR missingness is specified using the threshold method - any value on the covariate that is above the specified threshold indicates a row eligible for deletion. If the specified total amount of MAR missingness is not possible given the total rows eligible based on the threshold, the function iteratively lowers the threshold until the total percent missing is possible.

Planned missingness is parameterized by the number of forms (n). This is used to divide the cases into n groups. If the column groupings are not specified, a naive method will be used that divides
the columns into $n+1$ equal forms sequentially ($1-4,5-9,10-13 .$.), where the first group is the shared form. The first list of column indices given will be used as the shared group. If this is not desired, this list can be left empty.
For attrition, the probability can be specified as a single value or as a vector. For a single value, the probability of attrition will be the same across time points, and affects only cases not previously lost due to attrition. If this argument is a vector, this specifies different probabilities of attrition for each time point. Values will be recycled if this vector is smaller than the specified number of time points.
An MNAR processes can be generated by specifying MAR missingness and then dropping the covariate from the subsequent analysis.
Currently, if MAR missing is imposed along with attrition, both processes will use the same covariate and threshold.
Currently, all types of missingness (MCAR, MAR, planned, and attrition) are imposed independently. This means that specified global values of percent missing will not be additive (10 percent MCAR +10 percent MAR does not equal 20 percent total missing).

Value

A data matrix with NAs introduced in the way specified by the arguments.

Author(s)

Patrick Miller (University of Kansas; patr1ckm@ku.edu), Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu)

See Also

- SimMissing for the alternative way to save missing data feature for using in the sim function.

Examples

```
data <- matrix(rep(rnorm(10,1,1),19),ncol=19)
datac <- cbind(data,rnorm(10,0,1),rnorm(10,5,5))
# Imposing Missing with the following arguments produces no missing values
imposeMissing(data)
imposeMissing(data, cov=c(1,2))
imposeMissing(data,pmMCAR=0)
imposeMissing(data,pmMAR=0)
imposeMissing(data,nforms=0)
#Some more usage examples
# No missing at variables 1 and 2
imposeMissing(data, cov=c(1, 2),pmMCAR=.1)
# 3-Form design
imposeMissing(data,nforms=3)
# 3-Form design with specified groups of items (XABC)
```

```
imposeMissing(data, nforms = 3, itemGroups =
list(c(1, 2,3,4,5), c(6,7,8,9,10), c(11,12,13,14,15), c(16,17,18,19)))
# 3-Form design when variables 20 and 21 are not missing
imposeMissing(datac, cov=c(20, 21),nforms=3)
# 2 method design where the expensive measure is on Variable 19
imposeMissing(data, twoMethod=c(19,.8))
# Impose missing data with percent attrition of 0.1 in 5 time points
imposeMissing(datac, cov=21,prAttr=.1,timePoints=5)
# Logistic-regression MAR
colnames(data) <- paste("y", 1:ncol(data), sep="")
script <- 'y1 ~ 0.05 + 0.1*y2 + 0.3*y3
y4 ~ -2 + 0.1*y4
y5 ~ -0.5'
imposeMissing(data, logit=script)
```

inspect Extract information from a simulation result

Description

Extract information from a simulation result

Arguments

object The target SimResult object
what The target component to be extracted. Please see details below.
improper Specify whether to include the information from the replications with improper solutions
nonconverged Specify whether to include the information from the nonconvergent replications

Details

Here are the list of information that can be specified in the what argument. The items starting with * are the information that the improper and nonconverged arguments are not applicable.

- *"modeltype": The type of the simulation result
- *"nrep": The number of overall replications, including converged and nonconverged replications
- "param": Parameter values (equivalent to the getPopulation function)
- "stdparam": Standardized parameter values (equivalent to the getPopulation function with std = TRUE)
- "coef": Parameter estimates (equivalent to the coef method)
- "se": Standard errors
- "fit": Fit indices
- "misspec": Misspecified parameter values
- "popfit": Population misfit
- "fmi1": Fraction missings type 1
- "fmi2": Fraction missings type 2
- "std": Standardized Parameter Estimates
- "stdse": Standard Errors of Standardized Values
- "cilower": Lower bounds of confidence intervals
- "ciupper": Upper bounds of confidence intervals
- "ciwidth": Widths of confidence intervals
- *"seed": Seed number (equivalent to the summarySeed function)
- "ngroup": Sample size of each group
- "ntotal": Total sample size
- "mcar": Percent missing completely at random
- "mar": Percent missing at random
- "extra": Extra output from the outfun argument from the sim function)
- *"time": Time elapsed in running the simulation (equivalent to the summaryTime function)
- *"converged": Convergence of each replication

Value

The target information depending on the what argument

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for the object input

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
```

```
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
inspect(Output, "coef")
inspect(Output, "param")
inspect(Output, "se", improper = TRUE, nonconverged = TRUE)
## End(Not run)
```

Find the likelihood ratio (or Bayes factor) based on the bivariate distribution of fit indices

Description

Find the log-likelihood of the observed fit indices on Model 1 and 2 from the real data on the bivariate sampling distribution of fit indices fitting Model 1 and Model 2 by the datasets from the Model 1 and Model 2. Then, the likelihood ratio is computed (which may be interpreted as posterior odd). If the prior odd is 1 (by default), the likelihood ratio is equivalent to Bayes Factor.

Usage

likRatioFit(outMod1, outMod2, dat1Mod1, dat1Mod2, dat2Mod1, dat2Mod2, usedFit=NULL, prior=1)

Arguments

outMod1	lavaan that saves the analysis result of the first model from the target dataset
outMod2	lavaan that saves the analysis result of the second model from the target dataset dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 1
dat1Mod2	SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 1
dat2Mod1	SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 2
dat2Mod2	SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 2
usedFit	Vector of names of fit indices that researchers wish to getCutoffs from. The default is to getCutoffs of all fit indices.
prior	The prior odds. The prior probability that Model 1 is correct over the prior probability that Model 2 is correct.

Value

The likelihood ratio (Bayes Factor) in preference of Model 1 to Model 2. If the value is greater than 1 , Model 1 is preferred. If the value is less than 1 , Model 2 is preferred.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for a detail of simResult pValu 位ested for a nested model comparison by the difference in fit indices pValu unonNested for a nonnested model comparison by the difference in fit indices

Examples

```
## Not run:
# Model A; Factor 1 --> Factor 2; Factor 2 --> Factor 3
library(lavaan)
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
path.A <- matrix(0, 3, 3)
path.A[2, 1] <- NA
path.A[3, 2] <- NA
model.A <- estmodel(LY=loading, BE=path.A, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.A <- analyze(model.A, PoliticalDemocracy)
# Model A; Factor 1 --> Factor 3; Factor 3 --> Factor 2
path.B <- matrix(0, 3, 3)
path.B[3, 1] <- NA
path.B[2, 3] <- NA
model.B <- estmodel(LY=loading, BE=path.B, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.B <- analyze(model.B, PoliticalDemocracy)
loading.mis <- matrix("runif(1, -0.2, 0.2)", 11, 3)
loading.mis[is.na(loading)] <- 0
# Create SimSem object for data generation and data analysis template
datamodel.A <- model.lavaan(out.A, std=TRUE, LY=loading.mis)
datamodel.B <- model.lavaan(out.B, std=TRUE, LY=loading.mis)
# Get sample size
n <- nrow(PoliticalDemocracy)
# The actual number of replications should be greater than 20.
output.A.A <- sim(20, n=n, model.A, generate=datamodel.A)
output.A.B <- sim(20, n=n, model.B, generate=datamodel.A)
```

```
output.B.A <- sim(20, n=n, model.A, generate=datamodel.B)
output.B.B <- sim(20, n=n, model.B, generate=datamodel.B)
# Find the likelihood ratio ;The output may contain some warnings here.
# When the number of replications increases (e.g., 1000), the warnings should disappear.
likRatioFit(out.A, out.B, output.A.A, output.A.B, output.B.A, output.B.B)
## End(Not run)
```

miss
Specifying the missing template to impose on a dataset

Description

Specifying the missing template (SimMissing) to impose on a dataset. The template will be used in Monte Carlo simulation such that, in the sim function, datasets are created and imposed by missing values created by this template. See imposeMissing for further details of each argument.

Usage

```
    miss(cov = 0, pmMCAR = 0, pmMAR = 0, logit = "", nforms = 0, itemGroups = list(),
            timePoints = 1, twoMethod = 0, prAttr = 0, m = 0,
        package = "default", convergentCutoff = 0.8, ignoreCols = 0,
            threshold = 0, covAsAux = TRUE, logical = NULL, ...)
```


Arguments

cov Column indices of any normally distributed covariates used in the data set.
pmMCAR Decimal percent of missingness to introduce completely at random on all variables.
pmMAR Decimal percent of missingness to introduce using the listed covariates as predictors.
logit The script used for imposing missing values by logistic regression. The script is similar to the specification of regression in lavaan such that each line begins with a dependent variable, then ' \sim ' is used as regression sign, and the formula of a linear combination of independent variable plus constant, such as y1 ~ 0.5 $+0.2{ }^{*} \mathrm{y} 2$. '\#' and '!' can be used as a comment (like lavaan). For the intercept, users may use ' $p($)' to specify the average proportion of missing, such as y1 $\sim \mathrm{p}(0.2)+0.3^{*} \mathrm{y} 2$, which the average missing proportion of y 1 is 0.2 and the missing of $y 1$ depends on $y 2$. Users may visualize the missing proportion from the logistic specification by the plotLogitMiss function.
nforms The number of forms for planned missing data designs, not including the shared form.
itemGroups List of lists of item groupings for planned missing data forms. Without this, items will be divided into groups sequentially (e.g. 1-3,4-6,7-9,10-12)

timePoints	Number of timepoints items were measured over. For longitudinal data, planned missing designs will be implemented within each timepoint.
twoMethod	With missing on one variable: vector of (column index, percent missing). Will put a given percent missing on that column in the matrix to simulate a two method planned missing data research design. With missing on two or more variables: list of (column indices, percent missing).
prAttr	Probability (or vector of probabilities) of an entire case being removed due to attrition at a given time point. See imposeMissing for further details.
m	The number of imputations. The default is 0 such that the full information maximum likelihood is used.
package	The package to be used in multiple imputation. The default value of this function is "default". For the default option, if m is 0 , the full information maximum likelihood is used. If m is greater than 0 , the "mice" package is used. The possible inputs are "default", "Amelia", or "mice".
convergentCutoff	
	If the proportion of convergent results across imputations are greater than the specified value (the default is 80%), the analysis on the dataset is considered as convergent. Otherwise, the analysis is considered as nonconvergent. This attribute is applied for multiple imputation only.
ignoreCols	The columns not imposed any missing values for any missing data patterns
threshold	The threshold of covariates that divide between the area to impose missing and the area not to impose missing. The default threshold is the mean of the covariate.
covAsAux	If TRUE, the covariate listed in the object will be used as auxiliary variables when putting in the model object. If FALSE, the covariate will be included in the analysis.
logical	A matrix of logical values (TRUE/FALSE). If a value in the dataset is corresponding to the TRUE in the logical matrix, the value will be missing.
	Additional arguments used in multiple imputation function.

Value

A missing object that contains missing-data template (SimMissing)

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu. edu>), Patrick Miller (University of Notre Dame; <pmille13@nd. edu>), Sunthud Pornprasertmanit (<psunthud@gmail. com>)

See Also

- SimMissing The resulting missing object

Examples

```
#Example of imposing 10% MCAR missing in all variables with no imputations (FIML method)
Missing <- miss(pmMCAR=0.1, ignoreCols="group")
summary(Missing)
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
#Create data
dat <- generate(CFA.Model, n = 20)
#Impose missing
datmiss <- impose(Missing, dat)
#Analyze data
out <- analyze(CFA.Model, datmiss)
summary(out)
#Missing using logistic regression
script <- 'y1 ~ 0.05 + 0.1*y2 + 0.3*y3
y4 ~ -2 + 0.1*y4
y5 ~ -0.5'
Missing2 <- miss(logit=script, pmMCAR=0.1, ignoreCols="group")
summary(Missing2)
datmiss2 <- impose(Missing2, dat)
#Missing using logistic regression (2)
script <- 'y1 ~ 0.05 + 0.5*y3
y2 ~ p(0.2)
y3 ~ p(0.1) + -1*y1
y4 ~ p(0.3) + 0.2*y1 + -0.3*y2
y5 ~ -0.5'
Missing2 <- miss(logit=script)
summary(Missing2)
datmiss2 <- impose(Missing2, dat)
\#Example to create simMissing object for 3 forms design at 3 timepoints with 10 imputations
Missing <- miss(nforms=3, timePoints=3, numImps=10)
#Missing template for data analysis with multiple imputation
Missing <- miss(package="mice", m=10, convergentCutoff=0.6)
```


Description

This function creates a model template (lavaan parameter table), which can be used for data generation and/or analysis for simulated structural equation modeling using simsem. Models are specified using Y-side parameter matrices with LISREL syntax notation. Each parameter matrix must be a SimMatrix or SimVector built using bind. In addition to the usual Y-side matrices in LISREL, both PS and TE can be specified using correlation matrices (RPS, RTE) and scaled by a vector of residual variances (VTE, VPS) or total variances (VY, VE). Multiple group models can be created by passing lists of SimMatrix or SimVector to arguments, or by simply specifying the number of groups when all group models are identical.

Usage

```
model(LY = NULL, PS = NULL, RPS = NULL, TE = NULL, RTE = NULL, BE = NULL,
VTE = NULL, VY = NULL, VPS = NULL, VE = NULL, TY = NULL, AL = NULL, MY = NULL,
ME = NULL, KA = NULL, GA = NULL, modelType, indLab = NULL, facLab = NULL,
covLab = NULL, groupLab = "group", ngroups = 1, con = NULL)
model.cfa(LY = NULL,PS = NULL,RPS = NULL, TE = NULL,RTE = NULL, VTE = NULL,
VY = NULL, VPS = NULL, VE=NULL, TY = NULL, AL = NULL, MY = NULL, ME = NULL,
KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)
model.path(PS = NULL, RPS = NULL, BE = NULL, VPS = NULL, VE=NULL, AL = NULL,
ME = NULL, KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)
model.sem(LY = NULL,PS = NULL,RPS = NULL, TE = NULL,RTE = NULL, BE = NULL,
VTE = NULL, VY = NULL, VPS = NULL, VE=NULL, TY = NULL, AL = NULL, MY = NULL,
ME = NULL, KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)
```


Arguments

LY

PS

RPS

TE

RTE

BE

Factor loading matrix from endogenous factors to Y indicators (must be SimMatrix object).
Residual variance-covariance matrix among endogenous factors (must be SimMatrix object). Either RPS or PS (but not both) must be specified in SEM and CFA models.
Residual correlation matrix among endogenous factors (must be SimMatrix object). Either RPS or PS (but not both) must be specified in SEM and CFA models.
Measurement error variance-covariance matrix among Y indicators (must be SimMatrix object). Either RTE or TE (but not both) must be specified in SEM and CFA models.

Measurement error correlation matrix among Y indicators (must be SimMatrix object). Either RTE or TE (but not both) must be specified in SEM and CFA models.
Regression coefficient matrix among endogenous factors (must be SimMatrix object). BE must be specified in path analysis and SEM models.

VTE	Measurement error variance of indicators (must be SimVector object). Either VTE or VY (but not both) can be specified when RTE (instead of TE) is specified.
VY	Total variance of indicators (must be SimVector object). Either VTE or VY (but not both) can be specified when RTE (instead of TE) is specified.
VPS	Residual variance of factors (must be SimVector object). Either VPS or VE (but not both) can be specified when RPS (instead of PS) is specified.
VE	Total variance of of factors (must be SimVector object). Either VPS or VE (but not both) can be specified when RPS (instead of PS) is specified.
TY	Measurement intercepts of Y indicators (must be SimVector object). Either TY or MY (but not both) can be specified.
AL	Endogenous factor intercepts (must be SimVector object). Either AL or ME (but not both) can be specified.
MY	Y indicator means (must be SimVector object). Either TY or MY (but not both) can be specified.
ME	Total mean of endogenous factors (must be SimVector object). NOTE: Either endogenous factor intercept or total mean of endogenous factor is specified. Both cannot be simultaneously specified.
KA	Regression coefficient matrix from covariates to indicators (must be SimMatrix object). KA is needed when (fixed) exogenous covariates are needed only.
GA	Regression coefficient matrix from covariates to factors (must be SimMatrix object). GA is needed when (fixed) exogenous covariates are needed only.
modelType	"CFA", "Sem", or "Path". Model type must be specified to ensure that the matrices specified in model templates for data generation and analysis correspond to what the user intends.
indLab	Character vector of indicator labels. If left blank, automatic labels will be generated as $\mathrm{y} 1, \mathrm{y} 2, \ldots \mathrm{yy}$.
facLab	Character vector of factor labels. If left blank, automatic labels will be generated as $f 1, f 2, \ldots f f$
covLab	Character vector of covariate labels. If left blank, automatic labels will be generated as $z 1, z 2, \ldots z z$
groupLab	Character of group-variable label (not the names of each group). If left blank, automatic labels will be generated as group
ngroups	Number of groups for data generation (defaults to 1). Should only be specified for multiple group models in which all parameter matrices are identical across groups (when ngroups >1, specified matrices are replicated for all groups). For multiple group models in which parameter matrices differ among groups, parameter matrices should instead be specified as a list (if any matrix argument is a list, the number of groups will be equal to the list's length, and the ngroups argument will be ignored).
con	Additional parameters (phantom variables), equality constraints, and inequality constraints. Additional parameters must be specified using lavaan syntax. Allowed operators are $":="$ (is defined as), " $===$ (is equal to), " $<$ " (is less than),

and " $>$ " (is greater than). Names used in syntax must correspond to labels defined on free parameters in the model (with the exception that the name to the left of ":=" is a new parameter name). On the right hand side of all operators, any mathematical expressions are allowed, e.g., "newparam := (load1 + load2 + load3)/3". For the " $<$ " and " $>$ " operators in data generation, if the specified relation is at odds with parameter specifications (e.g., the parameter to the left of the " $>$ " operator is less that the parameter to the right), the left hand side parameter will be changed so that the relation holds with a very small difference (i.e., 0.000001). For example, in "load1 > load2", if load1 is 0.5 and load2 is 0.6 , load1 will be changed to $0.6+0.000001=0.600001$.

Details

The simsem package is intricately tied to the lavaan package for analysis of structural equation models. The analysis template that is generated by model is a lavaan parameter table, a low-level access point to lavaan that allows repeated analyses to happen more rapidly. If desired, the parameter table generated can be used directly with lavaan for many analyses.
The data generation template is simply a list of SimMatrix or SimVector objects. The SimSem object can be passed to the function generate to generate data, or can be passed to the function sim to generate and/or analyze data.

To simulate multiple group data, users can either specify a integer in the ngroups argument (which creates a list of identical model arguments for each group), or pass a list of SimMatrix or SimVector to any of the matrix arguments with length(s) equal to the number of groups desired (this approach will cause the ngroups argument to be ignored). If only one argument is a list, all other arguments will be replicated across groups (with the same parameter identification, population parameter values/distributions, and misspecification). If equality constraints are specified, these parameters will be constrained to be equal across groups.
The model.cfa, model. path, and model. sem are the shortcuts for the model function when modelType are "CFA", "Path", and "SEM", respectively.

Value

SimSem object that contains the data generation template (@dgen) and analysis template (@pt).

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd. edu>), Sunthud Pornprasertmanit (<psunthud@gmail. com>)

See Also

- sim for simulations using the SimSem template.
- generate To generate data using the SimSem template.
- analyze To analyze real or generated data using the SimSem template.
- draw To draw parameters using the SimSem template.

Examples

```
# Example 1: Confirmatory factor analysis
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# Example 2: Multiple-group CFA with weak invariance
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- paste0("con", 1:3)
loading[4:6, 2] <- paste0("con", 4:6)
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VTE <- bind(rep(NA, 6), 0.51)
CFA.Model <- model(LY = LY, RPS = list(RPS, RPS), RTE = list(RTE, RTE), VTE=list(VTE, VTE),
ngroups=2, modelType = "CFA")
# Example 3: Linear growth curve model with model misspecification
factor.loading <- matrix(NA, 4, 2)
factor.loading[,1] <- 1
factor.loading[,2] <- 0:3
LY <- bind(factor.loading)
factor.mean <- rep(NA, 2)
factor.mean.starting <- c(5, 2)
AL <- bind(factor.mean, factor.mean.starting)
factor.var <- rep(NA, 2)
factor.var.starting <- c(1, 0.25)
VPS <- bind(factor.var, factor.var.starting)
factor.cor <- matrix(NA, 2, 2)
diag(factor.cor) <- 1
RPS <- binds(factor.cor, 0.5)
```

```
VTE <- bind(rep(NA, 4), 1.2)
RTE <- binds(diag(4))
TY <- bind(rep(0, 4))
LCA.Model <- model(LY=LY, RPS=RPS, VPS=VPS, AL=AL, VTE=VTE, RTE=RTE, TY=TY, modelType="CFA")
# Example 4: Path analysis model with misspecified direct effect
path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path. BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "runif(1, 0.3, 0.5)"
starting.BE[4, 3] <- "runif(1,0.5,0.7)"
mis.path.BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- "runif(1,-0.1,0.1)"
BE <- bind(path.BE, starting.BE, misspec=mis.path.BE)
residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1,0.3,0.1)")
ME <- bind(rep(NA, 4), 0)
Path.Model <- model(RPS = RPS, BE = BE, ME = ME, modelType="Path")
# Example 5: Full SEM model
loading <- matrix(0, 8, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:8, 3] <- "con1"
loading.start <- matrix("", 8, 3)
loading.start[1:3, 1] <- 0.7
loading.start[4:6, 2] <- 0.7
loading.start[7:8, 3] <- "rnorm(1,0.6,0.05)"
LY <- bind(loading, loading.start)
RTE <- binds(diag(8))
factor.cor <- diag(3)
factor.cor[1, 2] <- factor.cor[2, 1] <- NA
RPS <- binds(factor.cor, 0.5)
path <- matrix(0, 3, 3)
path[3, 1:2] <- NA
path.start <- matrix(0, 3, 3)
path.start[3, 1] <- "rnorm(1,0.6,0.05)"
path.start[3, 2] <- "runif(1,0.3,0.5)"
BE <- bind(path, path.start)
SEM.model <- model(BE=BE, LY=LY, RPS=RPS, RTE=RTE, modelType="SEM")
```

model

```
# Shortcut example
SEM.model <- model.sem(BE=BE, LY=LY, RPS=RPS, RTE=RTE)
# Example 6: Multiple Group Model
loading1 <- matrix(NA, 6, 1)
LY1 <- bind(loading1, 0.7)
loading2 <- matrix(0, 6, 2)
loading2[1:3, 1] <- NA
loading2[4:6, 2] <- NA
LY2 <- bind(loading2, 0.7)
latent.cor2 <- matrix(NA, 2, 2)
diag(latent.cor2) <- 1
RPS1 <- binds(as.matrix(1))
RPS2 <- binds(latent.cor2, 0.5)
RTE <- binds(diag(6))
VTE <- bind(rep(NA, 6), 0.51)
noninvariance <- model(LY = list(LY1, LY2), RPS = list(RPS1, RPS2), RTE = list(RTE, RTE),
VTE=list(VTE, VTE), ngroups=2, modelType = "CFA")
# Example 7: Inequality Constraints
loading.in <- matrix(0, 6, 2)
loading.in[1:3, 1] <- c("load1", "load2", "load3")
loading.in[4:6, 2] <- c("load4", "load5", "load6")
mis <- matrix(0,6,2)
mis[loading.in == "0"] <- "runif(1, -0.1, 0.1)"
LY.in <- bind(loading.in, "runif(1, 0.7, 0.8)", mis)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VTE <- bind(rep(NA, 6), 0.51)
VPS1 <- bind(rep(1, 2))
VPS2 <- bind(rep(NA, 2), c(1.1, 1.2))
# Inequality constraint
script <- "
sth := load1 + load2 + load3
load4 == (load5 + load6) / 2
load4 > 0
load5 > 0
sth2 := load1 - load2
"
```

```
# Model Template
weak <- model(LY = LY.in, RPS = RPS, VPS=list(VPS1, VPS2), RTE = RTE, VTE=VTE, ngroups=2,
modelType = "CFA", con=script)
```

model.lavaan
Build the data generation template and analysis template from the lavaan result

Description

Creates a data generation and analysis template (lavaan parameter table) for simulations with the lavaan result. Model misspecification may be added into the template by a vector, a matrix, or a list of vectors or matrices (for multiple groups).

Usage

model.lavaan(object, std = FALSE, LY = NULL, PS = NULL, RPS = NULL,
TE = NULL, RTE = NULL, BE = NULL, VTE = NULL, VY = NULL, VPS = NULL,
VE=NULL, $T Y=$ NULL, $A L=N U L L, ~ M Y ~=~ N U L L, ~ M E ~=~ N U L L, ~ K A ~=~ N U L L, ~$
$G A=N U L L$)

Arguments

object A lavaan object to be used to build the data generation and analysis template.
std If TRUE, use the resulting standardized parameters for data generation. If FALSE, use the unstandardized parameters for data generation.
LY Model misspecification in factor loading matrix from endogenous factors to Y indicators (need to be a matrix or a list of matrices).
PS Model misspecification in residual covariance matrix among endogenous factors (need to be a symmetric matrix or a list of symmetric matrices).
RPS Model misspecification in residual correlation matrix among endogenous factors (need to be a symmetric matrix or a list of symmetric matrices).
TE Model misspecification in measurement error covariance matrix among Y indicators (need to be a symmetric matrix or a list of symmetric matrices).
RTE Model misspecification in measurement error correlation matrix among Y indicators (need to be a symmetric matrix or a list of symmetric matrices).
BE Model misspecification in regression coefficient matrix among endogenous factors (need to be a symmetric matrix or a list of symmetric matrices).
VTE Model misspecification in measurement error variance of indicators (need to be a vector or a list of vectors).
VY Model misspecification in total variance of indicators (need to be a vector or a list of vectors). NOTE: Either measurement error variance or indicator variance is specified. Both cannot be simultaneously specified.
VPS Model misspecification in residual variance of factors (need to be a vector or a list of vectors).

VE Model misspecification in total variance of of factors (need to be a vector or a list of vectors). NOTE: Either residual variance of factors or total variance of factors is specified. Both cannot be simulatneously specified.
TY Model misspecification in measurement intercepts of Y indicators. (need to be a vector or a list of vectors).

AL Model misspecification in endogenous factor intercept (need to be a vector or a list of vectors).
MY Model misspecification in overall Y indicator means. (need to be a vector or a list of vectors). NOTE: Either measurement intercept of indicator mean can be specified. Both cannot be specified simultaneously.
ME Model misspecification in total mean of endogenous factors (need to be a vector or a list of vectors). NOTE: Either endogenous factor intercept or total mean of endogenous factor is specified. Both cannot be simultaneously specified.
KA Model misspecification in regression coefficient matrix from covariates to indicators (need to be a matrix or a list of matrices). KA is applicable when exogenous covariates are specified only.
GA Model misspecification in regression coefficient matrix from covariates to factors (need to be a matrix or a list of matrices). KA is applicable when exogenous covariates are specified only.

Value

SimSem object that contains the data generation template (@dgen) and analysis template (@pt).

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- model To build data generation and data analysis template for simulation.
- sim for simulations using the SimSem template.
- generate To generate data using the SimSem template.
- analyze To analyze real or generated data using the SimSem template.
- draw To draw parameters using the SimSem template.

Examples

```
library(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3
    textual =~ x4 + x5 + x6
    speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939)
# Create data generation and data analysis model from lavaan
# Data generation is based on standardized parameters
```

```
datamodel1 <- model.lavaan(fit, std=TRUE)
# Data generation is based on unstandardized parameters
datamodel2 <- model.lavaan(fit, std=FALSE)
# Data generation model with misspecification on cross-loadings
crossload <- matrix("runif(1, -0.1, 0.1)", 9, 3)
crossload[1:3, 1] <- 0
crossload[4:6, 2] <- 0
crossload[7:9, 3] <- 0
datamodel3 <- model.lavaan(fit, std=TRUE, LY=crossload)
```

multipleAllEqual Test whether all objects are equal

Description

Test whether all objects are equal. The test is based on the all. equal function.

Usage

multipleAllEqual(...)

Arguments

$$
\ldots \quad \text { The target objects }
$$

Value

TRUE if all objects are equal.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

Examples

```
multipleAllEqual(1:5, 1:5, seq(2, 10, 2)/2) # Should be TRUE
multipleAllEqual(1:5, 1:6, seq(2, 10, 2)/2) # Should be FALSE
```


Description

Plot a confidence interval width of a target parameter

Usage

plotCIwidth(object, targetParam, assurance $=0.50$, useContour $=$ TRUE)

Arguments

object The target (SimResult
targetParam One or more target parameters to be plotted
assurance The percentile of the resulting width. When assurance is 0.50 , the median of the widths is provided. See Lai \& Kelley (2011) for more details.
useContour If there are two things from varying sample size, varying percent completely at random, or varying percent missing at random, the plotCutoff function will provide 3D graph. A contour graph is a default. However, if this is specified as FALSE, perspective plot is used.

Value

NONE. The plot the confidence interval width is provided.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Lai, K., \& Kelley, K. (2011). Accuracy in parameter estimation for targeted effects in structural equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods, 16, 127-148.

See Also

- SimResult for simResult that used in this function.
- getCIwidth to get confidence interval widths

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=200, model=CFA.Model)
# Plot the widths of factor correlation
plotCIwidth(Output, "f1~~f2", assurance = 0.80)
# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, n=seq(450, 500, 10), model=CFA.Model)
# Plot the widths along sample size value
plotCIwidth(Output2, "f1~~f2", assurance = 0.80)
# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output3 <- sim(NULL, n=seq(450, 500, 10), pmMCAR=c(0, 0.05, 0.1, 0.15), model=CFA.Model)
# Plot the contours that each contour represents the value of widths at each level
# of sample size and percent missing completely at random
plotCIwidth(Output3, "f1~~f2", assurance = 0.80)
## End(Not run)
```

plotCoverage Make a plot of confidence interval coverage rates

Description

Make a plot of confidence interval coverage rates given varying parameters (e.g., sample size, percent missing completely at random, or random parameters in the model)

Usage

plotCoverage (object, coverParam, coverValue $=$ NULL, contParam $=$ NULL, contN $=$ TRUE, contMCAR $=$ TRUE, contMAR $=$ TRUE, useContour $=$ TRUE)

Arguments

object
SimResult that includes at least one randomly varying parameter (e.g. sample size, percent missing, model parameters)
coverParam Vector of parameters names that the user wishes to find coverage rate for. This can be a vector of names (e.g., "f1=~y2", "f1~~f2").
coverValue A target value used that users wish to find the coverage rate of that value (e.g., 0). If NULL, the parameter values will be used.
contParam Vector of parameters names that vary over replications that users wish to use in the plot.
contN Include the varying sample size in the coverage rate plot if available
contMCAR Include the varying MCAR (missing completely at random percentage) in the coverage rate plot if available
contMAR Include the varying MAR (missing at random percentage) in the coverage rate plot if available
useContour This argument is used when users specify to plot two varying parameters. If TRUE, the contour plot is used. If FALSE, perspective plot is used.

Details

Predicting whether the confidence interval of each replication covers target value (or parameter) or not by varying parameters using logistic regression (without interaction). Then, plot the logistic curves predicting the probability of significance against the target varying parameters.

Value

Not return any value. This function will plot a graph only.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu)

See Also

- SimResult to see how to create a simResult object with randomly varying parameters.
- getCoverage to obtain a coverage rate given varying parameters values.

Examples

```
## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2), model=CFA.Model)
# Plot the power of the first factor loading along the sample size value
plotCoverage(Output, "f1=~y1", contMCAR=FALSE)
plotCoverage(Output, "f1=~y1", coverValue = 0, contMCAR=FALSE)
# Plot the power of the correlation along the sample size and percent missing completely at random
plotCoverage(Output, "f1=~y1")
## End(Not run)
```

plotCutoff Plot sampling distributions of fit indices with fit indices cutoffs

Description

This function will plot sampling distributions of fit indices. The users may add cutoffs by specifying the alpha level.

Usage

plotCutoff(object, alpha $=$ NULL, revDirec $=$ FALSE, usedFit $=$ NULL, useContour = TRUE)

Arguments

object
alpha
revDirec The default is to find critical point on the side that indicates worse fit (the right side of RMSEA or the left side of CFI). If specifying as TRUE, the directions are reversed.
usedFit The name of fit indices that researchers wish to plot
useContour If there are two things from varying sample size, varying percent completely at random, or varying percent missing at random, the plotCutoff function will provide 3D graph. A contour graph is a default. However, if this is specified as FALSE, perspective plot is used.

Value

NONE. The plot the fit indices distributions is provided.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for simResult that used in this function.
- getCutoff to find values of cutoffs based on null hypothesis sampling distributions only

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=200, model=CFA.Model)
# Plot the cutoffs with desired fit indices
plotCutoff(Output, 0.05, usedFit=c("RMSEA", "SRMR", "CFI", "TLI"))
# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, n=seq(450, 500, 10), model=CFA.Model)
# Plot the cutoffs along sample size value
plotCutoff(Output2, 0.05)
# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output3 <- sim(NULL, n=seq(450, 500, 10), pmMCAR=c(0, 0.05, 0.1, 0.15), model=CFA.Model)
# Plot the contours that each contour represents the value of cutoff at each level
# of sample size and percent missing completely at random
```

```
plotCutoff(Output3, 0.05)
## End(Not run)
```

```
plotCutoffNested Plot sampling distributions of the differences in fit indices between
    nested models with fit indices cutoffs
```


Description

This function will plot sampling distributions of the differences in fit indices between nested models if the nested model is true. The users may add cutoffs by specifying the alpha level.

Usage

plotCutoffNested(nested, parent, alpha $=0.05$, cutoff $=$ NULL, usedFit = NULL, useContour = T)

Arguments

nested SimResult that saves the analysis results of nested model from multiple replications
parent SimResult that saves the analysis results of parent model from multiple replications
alpha A priori alpha level
cutoff A priori cutoffs for fit indices, saved in a vector
usedFit Vector of names of fit indices that researchers wish to plot the sampling distribution.
useContour If there are two of sample size, percent completely at random, and percent missing at random are varying, the plotCutoff function will provide 3D graph. Contour graph is a default. However, if this is specified as FALSE, perspective plot is used.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for simResult that used in this function.
- getCutoffNested to find the difference in fit indices cutoffs

Examples

```
## Not run:
# Nested model: One factor
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
# Parent model: two factors
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, "runif(1, 0.7, 0.9)")
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
# The actual number of replications should be greater than 10.
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)
# Plot the cutoffs in nested model comparison
plotCutoffNested(Output.NULL.NULL, Output.NULL.ALT, alpha=0.05)
## End(Not run)
```

plotCutoffNonNested Plot sampling distributions of the differences in fit indices between
non-nested models with fit indices cutoffs

Description

This function will plot sampling distributions of the differences in fit indices between non-nested models. The users may add cutoffs by specifying the alpha level.

Usage

plotCutoffNonNested(dat1Mod1, dat1Mod2, dat2Mod1=NULL, dat2Mod2=NULL, alpha=0.05, cutoff = NULL, usedFit = NULL, useContour = T, onetailed=FALSE)

Arguments

dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 1
dat1Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 1

dat2Mod1	SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 2
dat2Mod2	SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 2
alpha	A priori alpha level
cutoff	A priori cutoffs for fit indices, saved in a vector usedFitVector of names of fit indices that researchers wish to plot the sampling distri- bution.
useContour	If there are two of sample size, percent completely at random, and percent miss- ing at random are varying, the plotCutoff function will provide 3D graph. Contour graph is a default. However, if this is specified as FALSE, perspective
plot is used.	

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for simResult that used in this function.
- getCutoffNonNested to find the difference in fit indices cutoffs for non-nested model comparison

Examples

```
## Not run:
# Model A: Factor 1 on Items 1-3 and Factor 2 on Items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")
# Model B: Factor 1 on Items 1-4 and Factor 2 on Items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")
```

```
plotDist
```

```
# The actual number of replications should be greater than 10.
```


The actual number of replications should be greater than 10.

Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)

Plot cutoffs for both model A and model B

Plot cutoffs for both model A and model B

plotCutoffNonNested(Output.A.A, Output.A.B, Output.B.A, Output.B.B)
plotCutoffNonNested(Output.A.A, Output.A.B, Output.B.A, Output.B.B)

Plot cutoffs for the model A only

Plot cutoffs for the model A only

plotCutoffNonNested(Output.A.A, Output.A.B)
plotCutoffNonNested(Output.A.A, Output.A.B)

Plot cutoffs for the model A with one-tailed test

Plot cutoffs for the model A with one-tailed test

plotCutoffNonNested(Output.A.A, Output.A.B, onetailed=TRUE)
plotCutoffNonNested(Output.A.A, Output.A.B, onetailed=TRUE)

End(Not run)

```
## End(Not run)
```

plotDist Plot a distribution of a data distribution object

Description

Plot a distribution of a data distribution object

Usage

plotDist(object, xlim = NULL, ylim = NULL, r = 0, var = NULL, contour = TRUE)

Arguments

object	The data distribution object (SimDataDist) to plot a distribution A numeric vector with two elements specifying the lower and upper limit of the x-axis to be plotted.
ylim	A numeric vector with two elements specifying the lower and upper limit of the y-axis to be plotted. This argument is applicable for the joint distribution of two dimensions only
r var	The correlation of two dimensions in the joint distribution
A vector of the index of variables to be plotted. The length of vector cannot be	
greater than 2.	
contour	Applicable if two variables are used only. If TRUE, the contour plot is provided. If FALSE, the perspective plot is provided.

Value

No return value. This function will plot a graph only.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimDataDist for plotting a data distribution object

Examples

```
datadist <- bindDist(skewness = c(0, -2, 2), kurtosis = c(2, 4, 4))
# Plot the joint distribution of Variables 1 and 2 with correlation of 0.5
plotDist(datadist, r=0.5, var=1:2)
# Plot the marginal distribution of the variable 3
plotDist(datadist, var=3)
## Not run:
datadist2 <- bindDist(c("chisq", "t", "f"), list(df=5), list(df=3), list(df1=3, df2=5))
# Plot the joint distribution of Variables 1 and 2 with correlation of 0.5
plotDist(datadist2, r=0.5, var=1:2)
# Plot the marginal distribution of the variable 3
plotDist(datadist2, var=3)
## End(Not run)
```

plotLogitMiss Visualize the missing proportion when the logistic regression method is used.

Description

Visualize the missing proportion when the logistic regression method is used. The maximum number of independent variables is 2 . The extra independent variables will be fixed as a value (the default is 0).

Usage

plotLogitMiss(script, ylim=c $(0,1), x 1 \lim =c(-3,3), x 2 \lim =c(-3,3)$, otherx=0, useContour=TRUE)

Arguments

script The script used in specifying missing data using the logistic regression. See further details in the logit argument of the miss function
ylim The range of missing proportion to be plotted.
$x 11 \mathrm{l} \quad$ The range of the first independent variable to be plotted
$x 21 \mathrm{im} \quad$ The range of the second independent variable to be plotted
otherx The value of the extra independent variables to be fixed as.
useContour If there are two or more independent variables, the function will provide 3D graph. Contour graph is a default. However, if this is specified as FALSE, perspective plot is used.

Value

Not return any value. This function will plot a graph only. If the number of independent variable is 0 , the bar graph is provided. If the number of independent variables is 1 , the logistic curve is provided. If the number of independent variables is 2 , contour or perspective plot is provided.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu)

See Also

- miss to create the missing data template
- impose to impose missing data

Examples

```
script <- 'y1 ~ 0.05 + 0.1*y2 + 0.3*y3
y4 ~ -2 + 0.1*y4
y5 ~ -0.5'
plotLogitMiss(script)
script2 <- 'y1 ~ 0.05 + 0.5*y3
y2 ~ p(0.2)
y3 ~ p(0.1) + -1*y1
y4 ~ p(0.3) + 0.2*y1 + -0.3*y2
y5 ~ -0.5'
plotLogitMiss(script2)
```


Description

Plot a histogram of the amount of population misfit in parameter result object or the scatter plot of the relationship between misspecified parameter and the population misfit or the fit indices

Usage

plotMisfit(object, usedFit="default", misParam=NULL)

Arguments

object The result object, SimResult
usedFit The sample fit indices or population misfit used to plot. All sample fit indices are available. The available population misfit are "pop.f0", "pop.rmsea", and "pop.srmr". If the misParam is not specified, all population misfit are used. If the misParam is specified, the "pop.rmsea" is used in the plot.
misParam The index or the name of misspecified parameters used to plot.

Value

None. This function will plot only.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

Examples

```
path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "runif(1, 0.3, 0.5)"
starting.BE[4, 3] <- "runif(1, 0.5, 0.7)"
mis.path.BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- "runif(1, -0.1, 0.1)"
BE <- bind(path.BE, starting.BE, misspec=mis.path.BE)
residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1, 0.3, 0.1)")
ME <- bind(rep(NA, 4), 0)
Path.Model <- model(RPS = RPS, BE = BE, ME = ME, modelType="Path")
```

```
# The number of replications in actual analysis should be much more than 20
Output <- sim(20, n=500, Path.Model)
# Plot the distribution of population misfit
plotMisfit(Output)
# Plot the relationship between population RMSEA and all misspecified direct effects
plotMisfit(Output, misParam=1:2)
# Plot the relationship between sample CFI and all misspecified direct effects
plotMisfit(Output, usedFit="CFI", misParam=1:2)
```

plotPower \quad Make a power plot of a parameter given varying parameters

Description

Make a power plot of a parameter given varying parameters (e.g., sample size, percent missing completely at random, or random parameters in the model)

Usage

plotPower (object, powerParam, alpha = 0.05, contParam = NULL, contN = TRUE, contMCAR $=$ TRUE, contMAR $=$ TRUE, useContour=TRUE)

Arguments

object	SimResult that includes at least one randomly varying parameter (e.g. sample size, percent missing, model parameters) Vector of parameters names that the user wishes to find power for. This can be a vector of names (e.g., "f1二~y2", "f1~~f2").
powerParam	Alpha level to use for power analysis. Vector of parameters names that vary over replications that users wish to use in the plot.
contParam	Include the varying sample size in the power plot if available
conts	Include the varying MCAR (missing completely at random percentage) in the contMCAR
power plot if available	

Details

Predicting whether each replication is significant or not by varying parameters using logistic regression (without interaction). Then, plot the logistic curves predicting the probability of significance against the target varying parameters.

Value

Not return any value. This function will plot a graph only.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com), Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu)

See Also

- SimResult to see how to create a simResult object with randomly varying parameters.
- getPower to obtain a statistical power given varying parameters values.

Examples

```
## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2), model=CFA.Model)
# Plot the power of the first factor loading along the sample size value
plotPower(Output, "f1=~y1", contMCAR=FALSE)
# Plot the power of the correlation along the sample size and percent missing completely at random
plotPower(Output, "f1=~y1")
## End(Not run)
```

```
plotPowerFit
```

Plot sampling distributions of fit indices that visualize power of rejecting datasets underlying misspecified models

Description

This function will plot sampling distributions of fit indices that visualize power in rejecting the misspecified models

Usage

```
plotPowerFit(altObject, nullObject = NULL, cutoff = NULL, usedFit = NULL,
alpha = 0.05, contN = TRUE, contMCAR = TRUE, contMAR = TRUE,
useContour = TRUE, logistic = TRUE)
```


Arguments

altObject The result object (SimResult) saves the simulation result of fitting the hypothesized model when the hypothesized model is FALSE.
nullObject The result object (SimResult) saves the simulation result of fitting the hypothesized model when the hypothesized model is TRUE. This argument may be not specified if the cutoff is specified.
cutoff A vector of priori cutoffs for fit indices.
usedFit Vector of names of fit indices that researchers wish to plot.
alpha A priori alpha level
contN Include the varying sample size in the power plot if available
contMCAR Include the varying MCAR (missing completely at random percentage) in the power plot if available
contMAR Include the varying MAR (missing at random percentage) in the power plot if available
useContour If there are two of sample size, percent completely at random, and percent missing at random are varying, the plotCutoff function will provide 3D graph. Contour graph is a default. However, if this is specified as FALSE, perspective plot is used.
logistic If logistic is TRUE and the varying parameter exists (e.g., sample size or percent missing), the plot based on logistic regression predicting the significance by the varying parameters is preferred. If FALSE, the overlaying scatterplot with a line of cutoff is plotted.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for simResult that used in this function.
- getCutoff to find values of cutoffs based on null hypothesis sampling distributions only
- getPowerFit to find power of rejecting the hypothesized model when the hypothesized model is FALSE.

Examples

```
## Not run:
# Null model: One factor model
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output.NULL <- sim(50, n=50, model=CFA.Model.NULL, generate=CFA.Model.NULL)
# Alternative model: Two-factor model
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, 0.5)
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
Output.ALT <- sim(50, n=50, model=CFA.Model.NULL, generate=CFA.Model.ALT)
# Plot the power based on derived cutoff from the null model using four fit indices
plotPowerFit(Output.ALT, nullObject=Output.NULL, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
# Plot the power of rejecting null model when the rule of thumb from Hu & Bentler (1999) is used
Rule.of.thumb <- c(RMSEA=0.05, CFI=0.95, TLI=0.95, SRMR=0.06)
plotPowerFit(Output.ALT, cutoff=Rule.of.thumb, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL2 <- sim(NULL, n=seq(50, 250, 25), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT2 <- sim(NULL, n=seq(50, 250, 25), model=CFA.Model.NULL, generate=CFA.Model.ALT)
# Plot the power based on derived cutoff from the null model using four fit indices
# along sample size
plotPowerFit(Output.ALT2, nullObject=Output.NULL2, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
# Plot the power based on rule of thumb along sample size
plotPowerFit(Output.ALT2, cutoff=Rule.of.thumb, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))
## End(Not run)
```

Plot power of rejecting a nested model in a nested model comparison by each fit index

Description

This function will plot sampling distributions of the differences in fit indices between parent and nested models. Two sampling distributions will be compared: nested model is FALSE (alternative model) and nested model is TRUE (null model).

```
Usage
plotPowerFitNested(altNested, altParent, nullNested = NULL,
nullParent = NULL, cutoff = NULL, usedFit = NULL, alpha = 0.05,
contN = TRUE, contMCAR = TRUE, contMAR = TRUE, useContour = TRUE,
logistic = TRUE)
```


Arguments

altNested	SimResult that saves the simulation result of the nested model when the nested model is FALSE.
altParent	SimResult that saves the simulation result of the parent model when the nested model is FALSE.
nullNested	SimResult that saves the simulation result of the nested model when the nested model is TRUE. This argument may not be specified if the cutoff is specified.
nullParent	SimResult that saves the simulation result of the parent model when the nested model is TRUE. This argument may not be specified if the cutoff is specified.
cutoff	A vector of priori cutoffs for the differences in fit indices.
usedFit	Vector of names of fit indices that researchers wish to plot.
alpha	A priori alpha level
contN	Include the varying sample size in the power plot if available
contMCAR	Include the varying MCAR (missing completely at random percentage) in the power plot if available
contMAR	Include the varying MAR (missing at random percentage) in the power plot if available
useContour	If there are two of sample size, percent completely at random, and percent missing at random are varying, the plotCutoff function will provide 3D graph. Contour graph is a default. However, if this is specified as FALSE, perspective plot is used.
logistic	If logistic is TRUE and the varying parameter exists (e.g., sample size or percent missing), the plot based on logistic regression predicting the significance by the varying parameters is preferred. If FALSE, the overlaying scatterplot with a line of cutoff is plotted.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for simResult that used in this function.
- getCutoffNested to find the cutoffs of the differences in fit indices
- plotCutoffNested to visualize the cutoffs of the differences in fit indices
- getPowerFitNested to find the power in rejecting the nested model by the difference in fit indices cutoffs

Examples

```
## Not run:
# Null model: One-factor model
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
# Alternative model: Two-factor model
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, 0.7)
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
# In reality, more than 10 replications are needed
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.ALT)
# Plot the power based on the derived cutoff from the models analyzed on the null datasets
plotPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, nullNested=Output.NULL.NULL,
nullParent=Output.NULL.ALT)
# Plot the power by only CFI
plotPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, nullNested=Output.NULL.NULL,
nullParent=Output.NULL.ALT, usedFit="CFI")
```

```
# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL.NULL2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.ALT, generate=CFA.Model.ALT)
# Plot logistic line for the power based on the derived cutoff from the null model
# along sample size values
plotPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, nullNested=Output.NULL.NULL2,
nullParent=Output.NULL.ALT2)
# Plot scatterplot for the power based on the derived cutoff from the null model
# along sample size values
plotPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, nullNested=Output.NULL.NULL2,
nullParent=Output.NULL.ALT2, logistic=FALSE)
# Plot scatterplot for the power based on the advanced CFI value
plotPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, cutoff=c(CFI=-0.1), logistic=FALSE)
## End(Not run)
```


plotPowerFitNonNested Plot power of rejecting a non-nested model based on a difference in fit

 index
Description

Plot the proportion of the difference in fit indices from one model that does not in the range of sampling distribution from another model (reject that the dataset comes from the second model) or indicates worse fit than a specified cutoff. This plot can show the proportion in the second model that does not in the range of sampling distribution from the first model too.

Usage

plotPowerFitNonNested(dat2Mod1, dat2Mod2, dat1Mod1=NULL, dat1Mod2=NULL, cutoff $=$ NULL, usedFit $=$ NULL, alpha $=0.05$, contN $=$ TRUE, contMCAR $=$ TRUE, contMAR = TRUE, useContour = TRUE, logistic = TRUE, onetailed = FALSE)

Arguments

dat2Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 2
dat2Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 2
dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 1

dat1Mod2	SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 1
cutoff	A vector of priori cutoffs for the differences in fit indices.
usedFit	Vector of names of fit indices that researchers wish to plot.
alpha	A priori alpha level
contN	Include the varying sample size in the power plot if available
contMCAR	Include the varying MCAR (missing completely at random percentage) in the power plot if available
contMAR	Include the varying MAR (missing at random percentage) in the power plot if available
useContour	If there are two of sample size, percent completely at random, and percent missing at random are varying, the plotCutoff function will provide 3D graph. Contour graph is a default. However, if this is specified as FALSE, perspective plot is used.
logistic	If logistic is TRUE and the varying parameter exists (e.g., sample size or percent missing), the plot based on logistic regression predicting the significance by the varying parameters is preferred. If FALSE, the overlaying scatterplot with a line of cutoff is plotted.
onetailed	If TRUE, the function will use the cutoff from one-tail test. If FALSE, the funciton will use the cutoff from two-tailed test.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for simResult that used in this function.
- getCutoffNonNested to find the cutoffs of the differences in fit indices for non-nested model comparison
- plotCutoffNonNested to visualize the cutoffs of the differences in fit indices for non-nested model comparison
- getPowerFitNonNested to find the power in rejecting the non-nested model by the difference in fit indices cutoffs

Examples

```
## Not run:
# Model A: Factor 1 on Items 1-3 and Factor 2 on Items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
```

```
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")
# Model B: Factor 1 on Items 1-4 and Factor 2 on Items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")
# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)
# Plot the power based on the derived cutoff for both models
plotPowerFitNonNested(Output.B.A, Output.B.B, dat1Mod1=Output.A.A, dat1Mod2=Output.A.B)
# Plot the power based on AIC and BIC cutoffs
plotPowerFitNonNested(Output.B.A, Output.B.B, cutoff=c(AIC=0, BIC=0))
## End(Not run)
```

popDiscrepancy \quad Find the discrepancy value between two means and covariance matri-
ces

Description

Find the discrepancy value between two means and covariance matrices. See the definition of each index at summaryMisspec.

Usage

popDiscrepancy(paramM, paramCM, misspecM, misspecCM)

Arguments

paramM The model-implied mean from the real parameters
paramCM The model-implied covariance matrix from the real parameters
misspecM The model-implied mean from the real and misspecified parameters
misspecCM The model-implied covariance matrix from the real and misspecified parameters

Value

The discrepancy between two means and covariance matrices

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Browne, M. W., \& Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods \& Research, 21, 230-258.

Examples

```
m1 <- rep(0, 3)
m2 <- c(0.1, -0.1, 0.05)
S1 <- matrix(c(1, 0.6, 0.5, 0.6, 1, 0.4, 0.5, 0.4, 1), 3, 3)
S2 <- matrix(c(1, 0.55, 0.55, 0.55, 1, 0.55, 0.55, 0.55, 1), 3, 3)
popDiscrepancy(m1, S1, m2, S2)
```

popMisfitMACS Find population misfit by sufficient statistics

Description

Find the value quantifying the amount of population misfit: F_{0}, RMSEA, and SRMR. See the definition of each index at summaryMisspec.

Usage

popMisfitMACS(paramM, paramCM, misspecM, misspecCM, dfParam=NULL, fit.measures="all")

Arguments

paramM The model-implied mean from the real parameters
paramCM The model-implied covariance matrix from the real parameters
misspecM The model-implied mean from the real and misspecified parameters
misspecCM The model-implied covariance matrix from the real and misspecified parameters
dfParam The degree of freedom of the real model
fit.measures The names of indices used to calculate population misfit. There are three types of misfit: 1) discrepancy function ("f0"; see popDiscrepancy), 2) root mean squared error of approximation ("rmsea"; Equation 12 in Browne \& Cudeck, 1992), and 3) standardized root mean squared residual ("srmr")

Value

The vector of the misfit indices

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Browne, M. W., \& Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods \& Research, 21, 230-258.

Examples

```
m1 <- rep(0, 3)
m2 <- c(0.1, -0.1, 0.05)
S1 <- matrix(c(1, 0.6, 0.5, 0.6, 1, 0.4, 0.5, 0.4, 1), 3, 3)
S2 <- matrix(c(1, 0.55, 0.55, 0.55, 1, 0.55, 0.55, 0.55, 1), 3, 3)
popMisfitMACS(m1, S1, m2, S2)
```

pValue \quad Find p-values (1 - percentile) by comparing a single analysis output from the result object

Description

This function will provide p value from comparing a lavaan) or a OpenMx result from the simulation result (in SimResult).

Usage

pValue(target, dist, usedFit $=$ NULL, nVal $=$ NULL, pmMCARval $=$ NULL,
pmMARval $=$ NULL, $d f=0$)

Arguments

target A value, multiple values, a lavaan object, or an OpenMx object used to find p values. This argument could be a cutoff of a fit index.
dist The comparison distribution, which can be a vector of numbers, a data frame, or a result object.
usedFit The vector of names of fit indices that researchers wish to find the p value from.
$\mathrm{nVal} \quad$ The sample size value that researchers wish to find the fit indices cutoffs from
pmMCARval The percent missing completely at random value that researchers wish to find the fit indices cutoffs from.
pmMARval The percent missing at random value that researchers wish to find the fit indices cutoffs from.
df The degree of freedom used in spline method in predicting the fit indices by the predictors. If df is 0 , the spline method will not be applied.

Details

In comparing fit indices, the p value is the proportion of the number of replications that provide poorer fit (e.g., less CFI value or greater RMSEA value) than the analysis result from the observed data.

Value

The p values of fit indices are provided, as well as two additional values: andRule and orRule. The andRule is based on the principle that the model is retained only when all fit indices provide good fit. The proportion is calculated from the number of replications that have all fit indices indicating a better model than the observed data. The proportion from the andRule is the most stringent rule in retaining a hypothesized model. The orRule is based on the principle that the model is retained only when at least one fit index provides good fit. The proportion is calculated from the number of replications that have at least one fit index indicating a better model than the observed data. The proportion from the orRule is the most lenient rule in retaining a hypothesized model.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult to run a simulation study

Examples

```
## Not run:
# Compare an analysis result with a result of simulation study
library(lavaan)
loading <- matrix(0, 9, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
targetmodel <- estmodel(LY=loading, modelType="CFA", indLab=paste("x", 1:9, sep=""))
out <- analyze(targetmodel, HolzingerSwineford1939)
loading.trivial <- matrix("runif(1, -0.2, 0.2)", 9, 3)
loading.trivial[is.na(loading)] <- 0
mismodel <- model.lavaan(out, std=TRUE, LY=loading.trivial)
# The actual number of replications should be much greater than 20.
simout <- sim(20, n=nrow(HolzingerSwineford1939), mismodel)
# Find the p-value comparing the observed fit indices against the simulated
# sampling distribution of fit indices
pValue(out, simout)
## End(Not run)
```


Description

This function will provide p value from comparing the differences in fit indices between nested models with the simulation results of both parent and nested models when the nested model is true.

Usage

pValueNested(outNested, outParent, simNested, simParent, usedFit = NULL, nVal $=$ NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, $d f=0$)

Arguments

outNested	lavaan that saves the analysis result of the nested model from the target dataset
outParent	lavaan that saves the analysis result of the parent model from the target dataset
simNested	SimResult that saves the analysis results of nested model from multiple replications
simParent	SimResult that saves the analysis results of parent model from multiple replications
usedFit	Vector of names of fit indices that researchers wish to getCutoffs from. The default is to getCutoffs of all fit indices.
$n \mathrm{al}$	The sample size value that researchers wish to find the p value from.
pmMCARval	The percent missing completely at random value that researchers wish to find the p value from.
pmMARval	The percent missing at random value that researchers wish to find the the p value from.
df	The degree of freedom used in spline method in predicting the fit indices by the predictors. If df is 0 , the spline method will not be applied.

Details

In comparing fit indices, the p value is the proportion of the number of replications that provide less preference for nested model (e.g., larger negative difference in CFI values or larger positive difference in RMSEA values) than the analysis result from the observed data.

Value

This function provides a vector of p values based on the comparison of the difference in fit indices from the real data with the simulation result. The p values of fit indices are provided, as well as two additional values: andRule and orRule. The andRule is based on the principle that the model is retained only when all fit indices provide good fit. The proportion is calculated from the number of replications that have all fit indices indicating a better model than the observed data. The proportion from the andRule is the most stringent rule in retaining a hypothesized model. The orRule is based
on the principle that the model is retained only when at least one fit index provides good fit. The proportion is calculated from the number of replications that have at least one fit index indicating a better model than the observed data. The proportion from the orRule is the most lenient rule in retaining a hypothesized model.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult to run a simulation study

Examples

```
## Not run:
library(lavaan)
# Nested Model: Linear growth curve model
LY <- matrix(1, 4, 2)
LY[,2] <- 0:3
PS <- matrix(NA, 2, 2)
TY <- rep(0, 4)
AL <- rep(NA, 2)
TE <- diag(NA, 4)
nested <- estmodel(LY=LY, PS=PS, TY=TY, AL=AL, TE=TE, modelType="CFA",
indLab=paste("t", 1:4, sep=""))
# Parent Model: Unconditional growth curve model
LY2 <- matrix(1, 4, 2)
LY2[,2] <- c(0, NA, NA, 3)
parent <- estmodel(LY=LY2, PS=PS, TY=TY, AL=AL, TE=TE, modelType="CFA",
indLab=paste("t", 1:4, sep=""))
# Analyze the output
outNested <- analyze(nested, Demo.growth)
outParent <- analyze(parent, Demo.growth)
# Create data template from the nested model with small misfit on the linear curve
loadingMis <- matrix(0, 4, 2)
loadingMis[2:3, 2] <- "runif(1, -0.1, 0.1)"
datamodel <- model.lavaan(outNested, LY=loadingMis)
# Get the sample size
n <- nrow(Demo.growth)
# The actual replications should be much greater than 30.
simNestedNested <- sim(30, n=n, nested, generate=datamodel)
simNestedParent <- sim(30, n=n, parent, generate=datamodel)
# Find the p-value comparing the observed fit indices against the simulated
# sampling distribution of fit indices
```

pValueNested(outNested, outParent, simNestedNested, simNestedParent)
\#\# End(Not run)
pValueNonNested Find p-values (1-percentile) for a non-nested model comparison

Description

This function will provide p value from comparing the results of fitting real data into two models against the simulation from fitting the simulated data from both models into both models. The p values from both sampling distribution under the datasets from the first and the second models are reported.

Usage

pValueNonNested(outMod1, outMod2, dat1Mod1, dat1Mod2, dat2Mod1, dat2Mod2, usedFit $=$ NULL, nVal $=$ NULL, pmMCARval $=$ NULL, pmMARval $=$ NULL, $d f=0$, onetailed=FALSE)

Arguments

outMod1	lavaan that saves the analysis result of the first model from the target dataset
outMod2	
dat1Mod1	lavaan that saves the analysis result of the second model from the target dataset SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 1
dat1Mod2	SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 1
dat2Mod1	SimResult that saves the simulation of analyzing Model 1 by datasets created from Model 2
dat2Mod2	SimResult that saves the simulation of analyzing Model 2 by datasets created from Model 2
usedFit	Vector of names of fit indices that researchers wish to getCutoffs from. The default is to getCutoffs of all fit indices.
nVal	The sample size value that researchers wish to find the p value from.
pmMCARval	The percent missing completely at random value that researchers wish to find the p value from.
pmMARval	The percent missing at random value that researchers wish to find the the p value from.
df	The degree of freedom used in spline method in predicting the fit indices by the predictors. If df is 0, the spline method will not be applied.
onetailed	If TRUE, the function will convert the p value based on two-tailed test.

Details

In comparing fit indices, the p value is the proportion of the number of replications that provide less preference for either model 1 or model 2 than the analysis result from the observed data. In two-tailed test, the function will report the proportion of values under the sampling distribution that are more extreme that one obtained from real data. If the resulting p value is high ($>.05$) on one model and low ($<.05$) in the other model, the model with high p value is preferred. If the p values are both high or both low, the decision is undetermined.

Value

This function provides a vector of p values based on the comparison of the difference in fit indices from the real data with the simulation results. The p values of fit indices are provided, as well as two additional values: andRule and orRule. The andRule is based on the principle that the model is retained only when all fit indices provide good fit. The proportion is calculated from the number of replications that have all fit indices indicating a better model than the observed data. The proportion from the andRule is the most stringent rule in retaining a hypothesized model. The orRule is based on the principle that the model is retained only when at least one fit index provides good fit. The proportion is calculated from the number of replications that have at least one fit index indicating a better model than the observed data. The proportion from the orRule is the most lenient rule in retaining a hypothesized model.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult to run a simulation study

Examples

```
## Not run:
# Model A; Factor 1 --> Factor 2; Factor 2 --> Factor 3
library(lavaan)
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
path.A <- matrix(0, 3, 3)
path.A[2, 1] <- NA
path.A[3, 2] <- NA
model.A <- estmodel(LY=loading, BE=path.A, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.A <- analyze(model.A, PoliticalDemocracy)
# Model A; Factor 1 --> Factor 3; Factor 3 --> Factor 2
path. B <- matrix(0, 3, 3)
path.B[3, 1] <- NA
path.B[2, 3] <- NA
```

```
model.B <- estmodel(LY=loading, BE=path.B, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.B <- analyze(model.B, PoliticalDemocracy)
loading.mis <- matrix("runif(1, -0.2, 0.2)", 11, 3)
loading.mis[is.na(loading)] <- 0
# Create SimSem object for data generation and data analysis template
datamodel.A <- model.lavaan(out.A, std=TRUE, LY=loading.mis)
datamodel.B <- model.lavaan(out.B, std=TRUE, LY=loading.mis)
# Get sample size
n <- nrow(PoliticalDemocracy)
# The actual number of replications should be greater than 20.
output.A.A <- sim(20, n=n, model.A, generate=datamodel.A)
output.A.B <- sim(20, n=n, model.B, generate=datamodel.A)
output.B.A <- sim(20, n=n, model.A, generate=datamodel.B)
output.B.B <- sim(20, n=n, model.B, generate=datamodel.B)
# Find the p-value comparing the observed fit indices against the simulated
# sampling distribution of fit indices
pValueNonNested(out.A, out.B, output.A.A, output.A.B, output.B.A, output.B.B)
# If the p-value for model A is significant but the p-value for model B is not
# significant, model B is preferred.
## End(Not run)
```

rawDraw Draw values from vector or matrix objects

Description

Takes one matrix or vector object (SimMatrix or SimVector) and returns a matrix or a vector with numerical values for population parameters. If a matrix is symmetric, it is arbitrarily chosen that parameters on the upper triangular elements are set equal to the parameters on the lower triangular elements.

Usage

rawDraw(simDat, constraint $=$ TRUE, misSpec $=$ TRUE, parMisOnly = FALSE, misOnly = FALSE)

Arguments

simDat A matrix or vector object (SimMatrix or SimVector)

constraint	If TRUE, then constraints are applied simultaneously
misSpec	If TRUE, then a list is returned with [[1]] parameters with no misspec and [[2]]
	same parameters + misspec (if any)
parMisOnly	If TRUE, then only the parameters + misspecification is returned
misOnly	If TRUE, then only the misspecification is returned

Value

A matrix (or vector) or a list of matrices (or vectors) which contains the draw result.

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd. edu>)

Examples

```
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[1:7, 3] <- NA
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- "runif(1, 0.5, 0.7)"
loadingVal[4:6, 2] <- "runif(1, 0.5, 0.7)"
loadingVal[1:6, 3] <- "runif(1, 0.3, 0.5)"
loadingVal[7, 3] <- 1
loading.mis <- matrix("runif(1, -0.2, 0.2)", 7, 3)
loading.mis[is.na(loading)] <- 0
loading.mis[,3] <- 0
loading.mis[7,] <- 0
loading[1:3, 1] <- "con1"
LY <- bind(loading, loadingVal, misspec=loading.mis)
# Draw values
rawDraw(LY)
# Draw only model parameters containing misspecification
rawDraw(LY, parMisOnly=TRUE)
# Draw only misspecification.
rawDraw(LY, misOnly=TRUE)
```

setPopulation Set the data generation population model underlying an object

Description

This function will set the data generation population model to be an appropriate one. If the appropriate data generation model is specified, the additional features can be seen in summary or summaryParam functions on the target object, such as bias in parameter estimates or percentage coverage.

Usage

setPopulation(target, population)

Arguments

target	The result object that you wish to set the data generation population model (linkS4class\{SimResult $).$
population	The population parameters specified in the linkS4class\{SimSem\} object

Value

The target object that is changed the parameter.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for result object

Examples

```
# See each class for an example.
## Not run:
# Data generation model
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[1:7, 3] <- NA
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- "runif(1, 0.5, 0.7)"
loadingVal[4:6, 2] <- "runif(1, 0.5, 0.7)"
loadingVal[1:6, 3] <- "runif(1, 0.3, 0.5)"
loadingVal[7, 3] <- 1
loading.mis <- matrix("runif(1, -0.2, 0.2)", 7, 3)
loading.mis[is.na(loading)] <- 0
loading.mis[,3] <- 0
loading.mis[7,] <- 0
LY <- bind(loading, loadingVal, misspec=loading.mis)
RPS <- binds(diag(3))
path <- matrix(0, 3, 3)
path[2, 1] <- NA
BE <- bind(path, "runif(1, 0.3, 0.5)")
RTE <- binds(diag(7))
VY <- bind(c(rep(NA, 6), 0), c(rep(1, 6), ""))
```

```
datamodel <- model(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY, modelType="SEM")
# Data analysis model
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7, 3] <- NA
path <- matrix(0, 3, 3)
path[2, 1] <- NA
path[1, 3] <- NA
path[2, 3] <- NA
errorCov <- diag(NA, 7)
errorCov[7, 7] <- 0
facCov <- diag(3)
analysis <- estmodel(LY=loading, BE=path, TE=errorCov, PS=facCov, modelType="SEM",
indLab=paste("y", 1:7, sep=""))
# In reality, more than 10 replications are needed.
Output <- sim(10, n=200, analysis, generate=datamodel)
# Population
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- 0.6
loadingVal[4:6, 2] <- 0.6
loadingVal[7, 3] <- 1
LY <- bind(loading, loadingVal)
pathVal <- matrix(0, 3, 3)
pathVal[2, 1] <- 0.4
pathVal[1, 3] <- 0.4
pathVal[2, 3] <- 0.4
BE <- bind(path, pathVal)
PS <- binds(facCov)
errorCovVal <- diag(0.64, 7)
errorCovVal[7, 7] <- 0
TE <- binds(errorCov, errorCovVal)
population <- model(LY=LY, PS=PS, BE=BE, TE=TE, modelType="SEM")
# Set up the new population
Output2 <- setPopulation(Output, population)
# This summary will contain the bias information
summary(Output2)
## End(Not run)
```


Description

This function can be used to generate data, analyze the generated data, and summarized into a result object where parameter estimates, standard errors, fit indices, and other characteristics of each replications are saved.

Usage

```
sim(nRep, model, n, generate = NULL, ..., rawData = NULL, miss = NULL, datafun=NULL,
lavaanfun = "lavaan", outfun=NULL, outfundata = NULL, pmMCAR = NULL,
pmMAR = NULL, facDist = NULL, indDist = NULL, errorDist = NULL,
sequential = FALSE, saveLatentVar = FALSE, modelBoot = FALSE, realData = NULL,
covData = NULL, maxDraw = 50, misfitType = "f0", misfitBounds = NULL,
averageNumMisspec = FALSE, optMisfit=NULL, optDraws = 50,
createOrder = c(1, 2, 3), aux = NULL, group = NULL, mxFit = FALSE,
mxMixture = FALSE, citype = NULL, cilevel = 0.95, seed = 123321, silent = FALSE,
multicore = options('simsem.multicore')[[1]], cluster = FALSE,
numProc = NULL, paramOnly = FALSE, dataOnly=FALSE, smartStart=FALSE,
previousSim = NULL, completeRep = FALSE, stopOnError = FALSE)
```


Arguments

nRep	Number of replications. If any of the n, pmMCAR, or pmMAR arguments are specified as lists, the number of replications will default to the length of the list(s), and nRep need not be specified.
model	There are three options for this argument: 1. SimSem object created by model, 2. lavaan script, lavaan parameter table, fitted lavaan object matching the analysis model, or a list that contains all argument that users use to run lavaan (including cfa, sem, lavaan), 3. MxModel object from the OpenMx package, or 4. a function that takes a data set and return a list of coef, se, and converged (see details below). For the SimSem object, if the generate argument is not specified, then the object in the model argument will be used for both data generation and analysis. If generate is specified, then the model argument will be used for data analysis only.
n	Sample size. Either a single value, or a list of values to vary sample size across replications. The n argument can also be specified as a random distribution object; if any resulting values are non-integers, the decimal will be rounded.
generate	There are four options for this argument: 1 . SimSem object created by model, 2 . lavaan script, lavaan parameter table (for data generation; see simulateData), fitted lavaan object that estimated all nonzero population parameters, or a list that contains all argument that users use to run simulateData, 3. MxModel object with population parameters specified in the starting values of all matrices in the model, 4. a function that take only one sample size argument (by integer for single-group model or by a vector of integers for multiple-group model). The generate argument cannot be specified the same time as the rawData argument.
rawData	There are two options for this argument: 1. a list of data frames to be used in simulations or 2. a population data. If a list of data frames is specified, the nRep and n arguments must not be specified. If a population data frame is specified, the $n R e p$ and n arguments are required.

miss	A missing data template created using the miss function.
datafun	A function to be applied to each generated data set across replications.
lavaanfun	The character of the function name used in running lavaan model ("cfa", "sem",
"growth", "lavaan"). This argument is required only when lavaan script or a	
list of arguments is specified in the model argument.	
outfun	A function to be applied to the lavaan output at each replication. Output from this function in each replication will be saved in the simulation output (SimResult), and can be obtained using the getExtraOutput function.
outfundata	A function to be applied to the lavaan output and the generated data at each replication. Users can get the characteristics of the generated data and also com- pare the characteristics with the generated output. The output from this function
in each replication will be saved in the simulation output (SimResult), and can	
be obtained using the getExtraOutput function.	

covData	A data.frame containing covariate data, which can have any distributions. This argument is required when users specify GA or KA matrices in the model template (SimSem).
maxDraw	The maximum number of attempts to draw a valid set of parameters (no negative
error variance, standardized coefficients over 1).	
misfitType	Character vector indicating the fit measure used to assess the misfit of a set of
parameters. Can be "f0", "rmsea", "srmr", or "all".	
Vector that contains upper and lower bounds of the misfit measure. Sets of	
misfitBounds	
parameters drawn that are not within these bounds are rejected.	

multicore	Users may put TRUE or FALSE. If TRUE, multiple processors within a computer will be utilized. The default value is FALSE. Users may permanently change the default value by assigning the following line: options('simsem.multicore ' = TRUE)
cluster	Not applicable now. Used to specify nodes in hpc in order to be parallelizable. numProc Number of processors for using multiple processors. If it is NULL, the package will find the maximum number of processors.
paramOnly	If TRUE, only the parameters from each replication will be returned. dataOnly
If TRUE, only the raw data generated from each replication will be returned.	

Details

This function is executed as follows: 1. parameters are drawn from the specified data-generation model (applicable only simsem model template, SimSem, only), 2. the drawn (or the specified) parameters are used to create data, 3. data can be transformed using the datafun argument, 4. specified missingness (if any) is imposed, 5. data are analyzed using the specified analysis model, 6. parameter estimates, standard errors, fit indices, and other characteristics of a replication are extracted, 7. additional outputs (if any) are extracted using the outfun argument, and 8. results across replications are summarized in a result object, SimResult).

There are six ways to provide or generate data in this function:

1. SimSem can be used as a template to generate data, which can be created by the model function. The SimSem can be specified in the generate argument.
2. lavaan script, parameter table for the lavaan package, or a list of arguments for the simulateData function. The lavaan script can be specified in the generate argument.
3. MxModel object from the OpenMx package. The MxModel object can be specified in the generate argument.
4. A list of raw data for each replication can be provided for the rawData argument. The sim function will analyze each data and summarize the result. Note that the generate, n and $n R e p$ could not be specified if the list of raw data is provided.
5. Population data can be provided for the rawData argument. The sim function will randomly draw sample data sets and analyze data. Note that the n and $n R e p$ must be specified if the population data are provided. The generate argument must not be specified.
6. A function can be used to generate data. The function must take sample size in a numeric format (or a vector of numerics for multiple groups) and return a data frame of the generated data set. Note that parameter values and their standardized values can be provided by using the attributes of the resulting data set. That is, users can assign parameter values and standardized parameter values to attr(data, "param") and attr(data,"stdparam").

Note that all generated or provided data can be transformed based on Bollen-Stine approach by providing a real data in the realData argument if any of the first three methods are used.

There are four ways to analyze the data sets for each replication by setting the model argument as

1. SimSem can be used as a template for data analysis.
2. lavaan script, parameter table for the lavaan package, or a list of arguments for the lavaan, sem, cfa, or growth function. Note that if the desired function to analyze data can be specified in the lavaanfun argument, which the default is the lavaan function
3. MxModel object from the OpenMx package. The object does not need to have data inside. Note that if users need an extensive fit indices, the mxFit argument should be specified as TRUE. If users wish to analyze by mixture model, the mxMixture argument should be TRUE such that the sim function knows how to handle the data.
4. A function that takes a data set and returns a list. The list must contain at least three objects: a vector of parameter estimates (coef), a vector of standard error (se), and the convergence status as TRUE or FALSE (converged). There are seven optional objects in the list: a vector of fit indices (fit), a vector of standardized estimates (std), a vector of standard errors of standardized estimates (stdse), fraction missing type I (FMI1), fraction missing type II (FMI2), lower bounds of confidence intervals (cilower), and upper bounds of confidence intervals (ciupper). Note that the coef, se, std, stdse, FMI1, FMI2, cilower, and ciupper must be a vector with names. The name of those vectors across different objects must be the same. Users may optionally specify other objects in the list; however, the results of the other objects will not be automatically combined. Users need to specify the outfun argument to get the extra objects. For example, researchers may specify residuals in the list. The outfun argument should have the function as follows: function(obj) obj\$residuals.

Any combination of data-generation methods and data-analysis methods are valid. For example, data can be simulated using lavaan script and analyzed by MxModel. Paralleled processing can be enabled using the multicore argument.

Value

A result object (SimResult)

Author(s)

Patrick Miller (University of Notre Dame; pmille13@nd.edu) Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for the resulting output description

Examples

```
# Please go to www.simsem.org for more examples.
# Example of using simsem model template
library(lavaan)
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
summary (Output)
# Example of using simsem model template
popModel <- "
f1 =~ 0.7*y1 + 0.7*y2 + 0.7*y3
f2 =~ 0.7*y4 + 0.7*y5 + 0.7*y6
f1 ~~ 1*f1
f2 ~~ 1*f2
f1 ~~ 0.5*f2
y1 ~~ 0.49*y1
y2 ~~ 0.49*y2
y3 ~~ 0.49*y3
y4 ~~ 0.49*y4
y5 ~~ 0.49*y5
y6 ~~ 0.49*y6
analysisModel <- "
f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
"
Output <- sim(5, model=analysisModel, n=200, generate=popModel, std.lv=TRUE, lavaanfun = "cfa")
summary (Output)
# Example of using population data
pop <- data.frame(y1 = rnorm(100000, 0, 1), y2 = rnorm(100000, 0, 1))
```

```
covModel <- "
y1 ~~ y2
Output <- sim(5, model=covModel, n=200, rawData=pop, lavaanfun = "cfa")
summary(Output)
# Example of data transformation: Transforming to standard score
fun1 <- function(data) {
temp <- scale(data)
as.data.frame(temp)
}
# Example of additional output: Extract modification indices from lavaan
fun2 <- function(out) {
inspect(out, "mi")
}
# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model,n=200, datafun=fun1, outfun=fun2)
summary(Output)
# Get modification indices
getExtraOutput(Output)
# Example of additional output: Comparing latent variable correlation
outfundata <- function(out, data) {
predictcor <- inspect(out, "coef")$psi[2, 1]
latentvar <- attr(data, "latentVar")[,c("f1", "f2")]
latentcor <- cor(latentvar)[2,1]
latentcor - predictcor
}
Output <- sim(5, CFA.Model, n=200, sequential = TRUE, saveLatentVar = TRUE,
outfundata = outfundata)
getExtraOutput(Output)
# Example of analyze using a function
analyzeFUN <- function(data) {
out <- lm(y2 ~ y1, data=data)
coef <- coef(out)
se <- sqrt(diag(vcov(out)))
fit <- c(loglik = as.numeric(logLik(out)))
converged <- TRUE # Assume to be convergent all the time
return(list(coef = coef, se = se, fit = fit, converged = converged))
}
Output <- sim(5, model=analyzeFUN, n=200, rawData=pop, lavaanfun = "cfa")
summary(Output)
```

SimDataDist-class Class "SimDataDist": Data distribution object

Description

This class will provide the distribution of a dataset.

Objects from the Class

Objects can be created by bindDist function. It can also be called from the form new("SimDataDist", ...).

Slots

p : Number of variables
margins: A character vector specifying all the marginal distributions
paramMargins: A list whose each component is a list of named components, giving the parameter values of the marginal distributions.
keepScale: Transform back to retain the mean and standard deviation of a variable equal to the model implied mean and standard deviation (with sampling error)
reverse: To mirror each variable or not. If TRUE, reverse the distribution of a variable (e.g., from positive skewed to negative skewed).
copula: The multivariate copula template for data generation. See bindDist
skewness: The target skewness values of each variable
kurtosis: The target (excessive) kurtosis values of each variable

Methods

- summaryTo summarize the object
- plotDistTo plot a density distribution (for one variable) or a contour plot (for two variables).

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- bindDist The constructor of this class.

Examples

```
showClass("SimDataDist")
```

d1 <- list(df=2)
d2 <- list(df=3)
d3 <- list(df=4)
d4 <- list(df=5)

```
d5 <- list(df=3)
d6 <- list(df=4)
d7 <- list(df=5)
d8 <- list(df=6)
dist <- bindDist(c(rep("t", 4), rep("chisq", 8)), d1, d2, d3, d4, d5, d6, d7, d8, d5, d6, d7, d8)
summary(dist)
dist2 <- bindDist(skewness = seq(-3, 3, length.out=12), kurtosis = seq(2, 5, length.out=12))
summary(dist2)
```

SimMatrix-class Matrix object: Random parameters matrix

Description

This object can be used to represent a matrix in SEM model. It contains free parameters, fixed values, starting values, and model misspecification. This object can be represented mean, intercept, or variance vectors.

Objects from the Class

This object is created by bind or binds function.

Slots

free: The free-parameter vector. Any NA elements or character elements are free. Any numeric elements are fixed as the specified number. If any free elements have the same characters (except NA), the elements are equally constrained.
popParam: Real population parameters of the free elements.
misspec: Model misspecification that will be added on top of the fixed and real parameters.
symmetric: If TRUE, the specified matrix is symmetric.

Methods

rawDraw Draws data-generation parameters.
summaryShort Provides a short summary of all information in the object
summary Provides a thorough description of all information in the object

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimVector for random parameter vector.

Examples

```
showClass("SimMatrix")
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
summary(LY)
rawDraw(LY)
LY <- bind(loading, "rnorm(1, 0.6, 0.05)")
summary(LY)
rawDraw(LY)
mis <- matrix("runif(1, -0.1, 0.1)", 6, 2)
mis[is.na(loading)] <- 0
LY <- bind(loading, "rnorm(1, 0.6, 0.05)", mis)
summary(LY)
rawDraw(LY)
```

SimMissing-class Class "SimMissing"

Description

Missing information imposing on the complete dataset

Objects from the Class

Objects can be created by miss function.

Slots

cov: Column indices of any normally distributed covariates used in the data set.
pmMCAR: Decimal percent of missingness to introduce completely at random on all variables.
pmMAR: Decimal percent of missingness to introduce using the listed covariates as predictors.
logit: The script used for imposing missing values by logistic regression. See miss for further details.
nforms: The number of forms for planned missing data designs, not including the shared form.
itemGroups: List of lists of item groupings for planned missing data forms. Without this, items will be divided into groups sequentially (e.g. 1-3,4-6,7-9,10-12)
twoMethod: Vector of (percent missing, column index). Will put a given percent missing on that column in the matrix to simulate a two method planned missing data research design.
prAttr: Probability (or vector of probabilities) of an entire case being removed due to attrition at a given time point. See imposeMissing for further details.
m : The number of imputations. The default is 0 such that the full information maximum likelihood is used.
package: The package to be used in multiple imputation. The default value of this function is "default". For the default option, if m is 0 , the full information maximum likelihood is used. If m is greater than 0 , the mice package is used.
convergentCutoff: If the proportion of convergent results across imputations are greater than the specified value (the default is 80%), the analysis on the dataset is considered as convergent. Otherwise, the analysis is considered as nonconvergent. This attribute is applied for multiple imputation only.
timePoints: Number of timepoints items were measured over. For longitudinal data, planned missing designs will be implemented within each timepoint.
ignoreCols: The columns not imposed any missing values for any missing data patterns
threshold: The threshold of covariates that divide between the area to impose missing and the area not to impose missing. The default threshold is the mean of the covariate.
covAsAux: If TRUE, the covariate listed in the object will be used as auxiliary variables when putting in the model object. If FALSE, the covariate will be included in the analysis.
logical: A matrix of logical values (TRUE/FALSE). If a value in the dataset is corresponding to the TRUE in the logical matrix, the value will be missing.
args: A list of additional options to be passed to the multiple impuatation function in each package.

Methods

- summary To summarize the object
- impose To impose missing information into data

Author(s)

Patrick Miller (University of Notre Dame; pmille13@nd.edu) Alexander M. Schoemann (East Carolina University; schoemanna@ecu.edu) Kyle Lang (University of Kansas; <kylelang@ku. edu>) Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- imposeMissing for directly imposing missingness into a dataset.

Examples

```
misstemplate <- miss(pmMCAR=0.2)
summary(misstemplate)
```

SimResult-class Class "SimResult": Simulation Result Object

Description

This class will save data analysis results from multiple replications, such as fit indices cutoffs or power, parameter values, model misspecification, etc.

Objects from the Class

Objects can be created by sim.

Slots

modelType: Analysis model type (CFA, Path, or SEM)
nRep: Number of replications have been created and run simulated data.
coef: Parameter estimates from each replication
se: Standard errors of parameter estimates from each replication
fit: Fit Indices values from each replication
converged: The convergence status of each replication: $0=$ convergent, $1=$ not convergent, 2 $=$ nonconvergent in multiple imputed results, $3=$ improper solutions for SE (less than 0 or NA), $4=$ improper solution for latent covariance matrix (Heywood case), $5=$ improper solution for observed covariance matrix (Heywood case). For multiple imputations, these codes are applied when the proporion of imputed data sets with that characteristic is below the convergentCutoff threshold (see linkS4class\{SimMissing\}).
seed: Seed number.
paramValue: Population model underlying each simulated dataset.
stdParamValue: Standardized parameters of the population model underlying each simulated dataset.
paramOnly: If TRUE, the result object saves only population characteristics and do not save sample characteristics (e.g., parameter estimates and standard errors.
misspecValue: Misspecified-parameter values that are imposed on the population model in each replication.
popFit: The amount of population misfit. See details at summaryMisspec
FMI1: Fraction Missing Method 1.
FMI2: Fraction Missing Method 2.
cilower: Lower bounds of confidence interval.
ciupper: Upper bounds of confidence interval.
stdCoef: Standardized coefficients from each replication
stdSe: Standard Errors of Standardized coefficients from each replication
n : The total sample size of the analyzed data.
nobs: The sample size within each group.
pmMCAR: Percent missing completely at random.
pmMAR: Percent missing at random.
extraOut: Extra outputs obtained from running the function specified in outfun argument in the sim function.
timing: Time elapsed in each phase of the simulation.

Methods

The following methods are listed alphabetically. More details can be found by following the link of each method.

- anova to find the averages of model fit statistics and indices for nested models, as well as the differences of model fit indices among models. This function requires at least two SimResult objects.
- coef to extract parameter estimates of each replication
- findCoverage to find a value of independent variables (e.g., sample size) that provides a given value of coverage rate.
- findPower to find a value of independent variables (e.g., sample size) that provides a given value of power of a parameter estimate.
- getCoverage to get the coverage rate of the confidence interval of each parameter estimate
- getCIwidth to get a median or percentile rank (assurance) of confidence interval widths of parameters estimates
- getCutoff to get the cutoff of fit indices based on a priori alpha level.
- getCutoffNested to get the cutoff of the difference in fit indices of nested models based on a priori alpha level.
- getCutoffNonNested to get the cutoff of the difference in fit indices of nonnested models based on a priori alpha level.
- getExtraOutput to get extra outputs that users requested before running a simulation
- getPopulation to get population parameter values underlying each dataset
- getPower to get the power of each parameter estimate
- getPowerFit to get the power in rejecting alternative models based on absolute model fit cutoff.
- getPowerFitNested to get the power in rejecting alternative models based on the difference between model fit cutoffs of nested models.
- getPowerFitNonNested to get the power in rejecting alternative models based on the difference between model fit cutoffs of nonnested models.
- inspect Extract target information from the simulation result. The available information is listed in this link
- likRatioFit to find the likelihood ratio (or Bayes factor) based on the bivariate distribution of fit indices
- plotCoverage to plot the coverage rate of confidence interval of parameter estimates
- plotCIwidth to plot confidence interval widths with a line of a median or percentile rank (assurance)
- plotCutoff to plot sampling distributions of fit indices with an option to draw fit indices cutoffs by specifying a priori alpha level.
- plotCutoffNested to plot sampling distributions of the difference in fit indices between nested models with an option to draw fit indices cutoffs by specifying a priori alpha level.
- plotCutoffNonNested to plot sampling distributions of the difference in fit indices between nonnested models with an option to draw fit indices cutoffs by specifying a priori alpha level.
- plotMisfit to visualize the population misfit and misspecified parameter values
- plotPower to plot power of parameter estimates
- plotPowerFit to plot the power in rejecting alternative models based on absolute model fit cutoff.
- plotPowerFitNested to plot the power in rejecting alternative models based on the difference between model fit cutoffs of nested models.
- plotPowerFitNonNested to plot the power in rejecting alternative models based on the difference between model fit cutoffs of nonnested models.
- pValue to find a p-value in comparing sample fit indices with the null sampling distribution of fit indices
- pValueNested to find a p-value in comparing the difference in sample fit indices between nested models with the null sampling distribution of the difference in fit indices
- pValueNonNested to find a p-value in comparing the difference in sample fit indices between nonnested models with the null sampling distribution of the difference in fit indices
- setPopulation to set population model for computing bias
- summary to summarize the result output
- summaryConverge to provide a head-to-head comparison between the characteristics of convergent and nonconvergent replications
- summaryMisspec to provide a summary of model misfit
- summaryParam to summarize all parameter estimates
- summaryPopulation to summarize the data generation population underlying the simulation study.
- summarySeed to provide a summary of the seed number in the simulation
- summaryShort to provide a short summary of the result output
- summaryTime to provide a summary of time elapsed in the simulation

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- sim for the constructor of this class

Examples

```
showClass("SimResult")
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=500, CFA.Model)
# Summary the simulation result
summary(Output)
# Short summary of the simulation result
summaryShort(Output)
# Find the fit index cutoff
getCutoff(Output, 0.05)
# Summary of parameter estimates
summaryParam(Output)
# Summary of population parameters
summaryPopulation(Output)
```

SimSem-class Class "SimSem"

Description

The template containing data-generation and data-analysis specification

Objects from the Class

Objects can be created by model.

Slots

pt: Parameter table used in data analysis
dgen: Data generation template
modelType: Type of models (CFA, Path, or SEM) contained in this object
groupLab: The label of grouping variable
con: The list of defined parameters, equality constraints, or inequality constraints specified in the model

Methods

summary Get the summary of model specification

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd. edu>), Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- Create an object this class by CFA, Path Analysis, or SEM model by model.

Examples

```
showClass("SimSem")
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
summary(LY)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
# Error Correlation Object
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
summary (CFA.Model)
```

SimVector-class Vector object: Random parameters vector

Description

This object can be used to represent a vector in SEM model. It contains free parameters, fixed values, starting values, and model misspecification. This object can be represented mean, intercept, or variance vectors.

Objects from the Class

This object is created by bind function.

Slots

free: The free-parameter vector. Any NA elements or character elements are free. Any numeric elements are fixed as the specified number. If any free elements have the same characters (except NA), the elements are equally constrained.
popParam: Real population parameters of the free elements.
misspec: Model misspecification that will be added on top of the fixed and real parameters.

Methods

rawDraw Draws data-generation parameters.
summaryShort Provides a short summary of all information in the object
summary Provides a thorough description of all information in the object

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd. edu>) Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimMatrix for random parameter matrix

Examples

```
showClass("SimVector")
factor.mean <- rep(NA, 2)
factor.mean.starting <- c(5, 2)
AL <- bind(factor.mean, factor.mean.starting)
rawDraw(AL)
summary(AL)
summaryShort(AL)
```

summaryConverge \quad| Provide a comparison between the characteristics of convergent repli- |
| :--- |
| cations and nonconvergent replications |

Description

This function provides a comparison between the characteristics of convergent replications and nonconvergent replications. The comparison includes sample size (if varying), percent missing completely at random (if varying), percent missing at random (if varying), parameter values, misspecifiedparameter values (if applicable), and population misfit (if applicable).

Usage

summaryConverge(object, std = FALSE, improper = TRUE)

Arguments

object
std
SimResult object being described
If TRUE, the standardized parameter values are used instead of unstandardized parameter values.
improper If TRUE, include the replications that provided improper solutions

Value

A list with the following elements:

- Converged The number of convergent and nonconvergent replications
- n Sample size
- pmMCAR Percent missing completely at random
- pmMAR Percent missing at random
- paramValue Parameter values
- misspecValue Misspecified-parameter values
- popFit Population misfit. See details of each element at summaryMisspec.

Each element will provide the head-to-head comparison between convergent and nonconvergent replications properties.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

Examples

```
## Not run:
path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "runif(1, 0.3, 0.5)"
starting.BE[4, 3] <- "runif(1, 0.5, 0.7)"
mis.path. BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- "runif(1, -0.1, 0.1)"
BE <- bind(path.BE, starting.BE, misspec=mis.path.BE)
residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1, 0.3, 0.1)")
loading <- matrix(0, 12, 4)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
loading[10:12, 4] <- NA
mis.loading <- matrix("runif(1, -0.3, 0.3)", 12, 4)
mis.loading[is.na(loading)] <- 0
```

```
LY <- bind(loading, "runif(1, 0.7, 0.9)", misspec=mis.loading)
mis.error.cor <- matrix("rnorm(1, 0, 0.1)", 12, 12)
diag(mis.error.cor) <- 0
RTE <- binds(diag(12), misspec=mis.error.cor)
SEM.Model <- model(RPS = RPS, BE = BE, LY=LY, RTE=RTE, modelType="SEM")
n1 <- list(mean = 0, sd = 0.1)
chi5 <- list(df = 5)
facDist <- bindDist(c("chisq", "chisq", "norm", "norm"), chi5, chi5, n1, n1)
# In reality, more than 50 replications are needed.
simOut <- sim(50, n=500, SEM.Model, sequential=TRUE, facDist=facDist, estimator="mlr")
# Summary the convergent and nonconvergent replications
summaryConverge(simOut)
## End(Not run)
```

```
summaryFit
```

Provide summary of model fit across replications

Description

This function will provide fit index cutoffs for values of alpha, and mean fit index values across all replications.

Usage

summaryFit(object, alpha = NULL, improper = TRUE, usedFit = NULL)

Arguments

object SimResult to be summarized
alpha The alpha level used to find the fit indices cutoff. If there is no varying condition, a vector of different alpha levels can be provided.
improper If TRUE, include the replications that provided improper solutions
usedFit Vector of names of fit indices that researchers wish to summarize.

Value

A data frame that provides fit statistics cutoffs and means
When linkS4class\{SimResult\} has fixed simulation parameters the first colmns are fit index cutoffs for values of alpha and the last column is the mean fit across all replications. Rows are

- Chi Chi-square fit statistic
- AIC Akaike Information Criterion
- BIC Baysian Information Criterion
- RMSEA Root Mean Square Error of Approximation
- CFI Comparative Fit Index
- TLI Tucker-Lewis Index
- SRMR Standardized Root Mean Residual

When linkS4class\{SimResult $\}$ has random simulation parameters (sample size or percent missing), columns are the fit indices listed above and rows are values of the random parameter.

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu. edu>) Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

SimResult for the result object input

Examples

```
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=500, CFA.Model)
# Summarize the sample fit indices
summaryFit(Output)
```

summaryMisspec Provide summary of the population misfit and misspecified-parameter
values across replications

Description

This function provides the summary of the population misfit and misspecified-parameter values across replications. The summary will be summarized for the convergent replications only.

Usage

summaryMisspec(object, improper = TRUE)

Arguments

object SimResult object being described
improper If TRUE, include the replications that provided improper solutions

Value

A data frame that provides the summary of population misfit and misspecified-parameter values imposed on the real parameters.

The discrepancy value (f_{0}; Browne \& Cudeck, 1992) is calculated by

$$
F_{0}=\operatorname{tr}\left(\tilde{\Sigma} \Sigma^{-1}\right)-\log \left|\tilde{\Sigma} \Sigma^{-1}\right|-p+(\tilde{\mu}-\mu)^{\prime} \Sigma^{-1}(\tilde{\mu}-\mu)
$$

where μ is the model-implied mean from the real parameters, Σ is the model-implied covariance matrix from the real parameters, $\tilde{\mu}$ is the model-implied mean from the real and misspecified parameters, $\tilde{\Sigma}$ is the model-implied covariance matrix from the real and misspecified parameter, p is the number of indicators. For the multiple groups, the resulting f_{0} value is the sum of this value across groups.
The root mean squared error of approximation (rmsea) is calculated by

$$
r m s e a=\sqrt{\frac{f_{0}}{d f}}
$$

where $d f$ is the degree of freedom in the real model.
The standardized root mean squared residual (srmr) can be calculated by

$$
s r m r=\sqrt{\frac{2 \sum_{g} \sum_{i} \sum_{j \leq i}\left(\frac{s_{g i j}}{\sqrt{S_{g i i}} \sqrt{s_{g j j}}}-\frac{\hat{\sigma}_{g i j}}{\sqrt{\hat{\sigma}_{g i i}} \sqrt{\hat{\sigma}_{g j j}}}\right)}{g \times p(p+1)}}
$$

where $s_{g i j}$ is the observed covariance between indicators i and j in group $g, \hat{\sigma}_{i j}$ is the model-implied covariance between indicators i and j in group g, p is the number of indicators.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Browne, M. W., \& Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods \& Research, 21, 230-258.

See Also

SimResult for the object input

Examples

```
## Not run:
path <- matrix(0, 4, 4)
path[3, 1:2] <- NA
path[4, 3] <- NA
pathVal <- matrix("", 4, 4)
pathVal[3, 1:2] <- "runif(1, 0.3, 0.5)"
pathVal[4, 3] <- "runif(1, 0.5, 0.7)"
pathMis <- matrix(0, 4, 4)
pathMis[4, 1:2] <- "runif(1, -0.1, 0.1)"
BE <- bind(path, pathVal, pathMis)
residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1, 0.3, 0.1)")
Path.Model <- model(RPS = RPS, BE = BE, modelType="Path")
# The number of replications in actual analysis should be much more than 5
ParamObject <- sim(5, n=200, Path.Model)
# Summarize the model misspecification that is specified in the 'pathMis' object
summaryMisspec(ParamObject)
## End(Not run)
```

```
summaryParam
```

Provide summary of parameter estimates and standard error across replications

Description

This function will provide averages of parameter estimates, standard deviations of parameter estimates, averages of standard errors, and power of rejection with a priori alpha level for the null hypothesis of parameters equal 0 .

Usage

summaryParam(object, alpha $=0.05$, std = FALSE, detail = FALSE, improper $=$ TRUE, digits $=$ NULL, matchParam $=$ FALSE)

Arguments

object SimResult object being described
alpha The alpha level used to find the statistical power of each parameter estimate
std If TRUE, (a) standardized coefficients and their standard errors substitute unstandardized coefficients, (b) standardized parameter values substitute parameter values, (c) confidence intervals of standardized coefficients are calculated

	using Wald confidence interval, and (d) all results (e.g., biases or coverage) are calculated based on standardized coefficients.
detail	If TRUE, more details about each parameter estimate are provided, such as rel- ative bias, standardized bias, or relative standard error bias.
improper	If TRUE, include the replications that provided improper solutions
digits	The number of digits rounded in the result. If NULL, the results will not be rounded. matchParamIf TRUE, only parameter estimates that have the same names as the parameter val- ues will be reported. This argument is recommended when users know that the data-generation model and analysis model are the same. Then the comparison between the parameter estimates and parameter value will be valid.

Value

A data frame that provides the statistics described above from all parameters. For using with linkS4class\{SimResult\}, each column means

- Estimate.Average: Average of parameter estimates across all replications
- Estimate. SD: Standard Deviation of parameter estimates across all replications
- Average. SE: Average of standard errors across all replications
- Power (Not equal 0) : Proportion of significant replications when testing whether the parameters are different from zero. The alpha level can be set by the alpha argument of this function.
- Average. Param: Parameter values or average values of parameters if random parameters are specified
- SD.Param: Standard Deviations of parameters. Show only when random parameters are specified.
- Average.Bias: The difference between parameter estimates and parameter underlying data
- SD.Bias: Standard Deviations of bias across all replications. Show only when random parameters are specified. This value is the expected value of average standard error when random parameter are specified.
- Coverage: The percentage of (1-alpha)\% confidence interval covers parameters underlying the data.
- Rel.Bias: Relative Bias, which is (Estimate.Average - Average.Param)/Average.Param. Hoogland and Boomsma (1998) proposed that the cutoff of .05 may be used for acceptable relative bias. This option will be available when detail=TRUE. This value will not be available when parameter values are very close to 0 .
- Std.Bias: Standardized Bias, which is (Estimate.Average - Average.Param)/Estimate. SD for fixed parameters and (Estimate.Average - Average.Param)/SD.Bias for random parameters. Collins, Schafer, and Kam (2001) recommended that biases will be only noticeable when standardized bias is greater than 0.4 in magnitude. This option will be available when detail=TRUE
- Rel.SE.Bias: Relative Bias in standard error, which is (Average. SE - Estimate. SD)/Estimate. SD for fixed parameters and (Average.SE-SD.Bias)/SD.Bias for random parameters. Hoogland and Boomsma (1998) proposed that 0.10 is the acceptable level. This option will be available when detail=TRUE
- Not Cover Below: The percentage of (1-alpha)\% confidence interval does not cover the parameter and the parameter is below the confidence interval.
- Not Cover Above: The percentage of (1-alpha)\% confidence interval does not cover the parameter and the parameter is above the confidence interval.
- Average CI Width: The average of (1-alpha)\% confidence interval width across replications.
- SD CI Width: The standard deviation of (1-alpha)\% confidence interval width across replications.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

References

Collins, L. M., Schafer, J. L., \& Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.

Hoogland, J. J., \& Boomsma, A. (1998). Robustness studies in covariance structure modeling. Sociological Methods \& Research, 26, 329-367.

See Also

SimResult for the object input

Examples

```
showClass("SimResult")
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=500, CFA.Model)
# Summary of the parameter estimates
summaryParam(Output)
# Summary of the parameter estimates with additional details
summaryParam(Output, detail=TRUE)
```


summaryPopulation Summarize the population model used for data generation underlying a result object

Description

Summarize the population model used for data generation underlying a result object

Usage

summaryPopulation(object, std = FALSE, improper = TRUE)

Arguments

object The result object that you wish to extract the data generation population model from (linkS4class\{SimResult\}).
std If TRUE, the standardized parameter values are used instead of unstandardized parameter values.
improper If TRUE, include the replications that provided improper solutions

Value

A data.frame contianing the summary of population model across replications.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

- SimResult for result object

Examples

```
## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, "runif(1, 0.4, 0.9)")
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
# We will use only 10 replications to save time.
# In reality, more replications are needed.
Output <- sim(10, n=200, model=CFA.Model)
# Get the summary of population model
summaryPopulation(Output)
```

\#\# End(Not run)
summarySeed Summary of a seed number

Description

Summary of a seed number used in the simulation

Usage

summarySeed(object)

Arguments

object SimResult object being described

Value

The first section is the seed number used in running the whole simulation. The second section is the L'Ecuyer seed of the last replication.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
summarySeed(Output)
## End(Not run)
```


Description

Provide short summary if it is available. Otherwise, it is an alias for summary.

Usage

summaryShort(object, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { Desired object being described } \\
\ldots & \text { any additional arguments }
\end{array}
$$

Value

NONE. This function will print on screen only.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

See Also

This is the list of classes that can use summaryShort method.

- SimMatrix
- SimVector

Examples

```
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
LY <- bind(loading, "runif(1, 0.8, 0.9)")
summaryShort(LY)
```

```
summaryTime Time summary
```


Description

Provide a summary of time elapsed in running the simulation.

Usage

summaryTime(object, units = "seconds")

Arguments

object SimResult object being described
units The units of time, which can be "seconds", "minutes", "hours", or "days"

Value

The first section is the actual time used in each step of the simulation. The second section is the average system (processor) time used in each replication. The third section is the summary of starting time, end time, total actual time, and total system time.

Author(s)

Sunthud Pornprasertmanit (psunthud@gmail.com)

Examples

```
## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
summaryTime(Output)
## End(Not run)
```


Index

*Topic classes

SimDataDist-class, 124
SimMatrix-class, 125
SimMissing-class, 126
SimResult-class, 128
SimVector-class, 132
all.equal, 84
analyze, 3, 8, 24, 78, 83
anova, 5, 129
anova, SimResult-method (anova), 5
archmCopula, 9, 17
bind, $6,125,132$
bindDist, $8,17,124$
binds, 125
binds (bind), 6
cfa, 4, 121
coef, 10, 69, 129
coef, SimResult-method (coef), 10
combineSim, 11
continuousCoverage, 12, 28
continuousPower, 14, 27, 41, 42
createData, 16, 18, 20, 45, 46
draw, $16,18,19,20,24-26,44-46,78,83$, 118, 119
ellipCopula, 9, 17
estmodel, 21
exportData, 25
findCoverage, 27, 129
findFactorIntercept, 29, 30, 32-34, 36-39
findFactorMean, 29, 30, 32-34, 36-39
findFactorResidualVar, 29, 31, 31, 33, 34, 36-39
findFactorTotalCov, 29, 31, 32, 32, 34, 36-39
findFactorTotalVar, 29, 31-33, 34, 36-39
findIndIntercept, 29, 30, 32-34, 35, 37-39
findIndMean, 29, 30, 32-34, 36, 36, 38, 39
findIndResidualVar, 29, 30, 32-34, 36, 37, 37, 39
findIndTotalVar, 29, 30, 32-34, 36-38, 38
findPossibleFactorCor, 40, 43
findPower, 41, 129
findRecursiveSet, 40, 42
generate, $8,19,24,43,78,83$
getCIwidth, 46, 85, 129
getCoverage, 28, 48, 87, 129
getCutoff, 50, 52, 54, 59, 60, 63, 89, 99, 129
getCutoffNested, 51, 54, 90, 102, 129
getCutoffNonNested, 53, 65, 92, 104, 129
getExtraOutput, 55, 118, 129
getPopulation, 56, 69, 129
getPower, 27, 41, 42, 57, 98, 129
getPowerFit, 59, 99, 129
getPowerFitNested, 61, 102, 129
getPowerFitNonNested, 64, 104, 129
getPowerFitNonNested, SimResult, SimResult, missing-method (getPowerFitNonNested), 64
getPowerFitNonNested, SimResult, SimResult, vector-method (getPowerFitNonNested), 64
getPowerFitNonNested-methods (getPowerFitNonNested), 64
growth, 4, 121
impose, 95, 127
impose (imposeMissing), 66
imposeMissing, 66, 73, 74, 127
inspect, 10, 69, 129
inspect, SimResult-method (inspect), 69
lavaan, 4, 55, 71, 82, 107, 109, 111, 118, 120, 121
lavOptions, 4, 120
likRatioFit, 71, 129
link, 129
miss, 25, 73, 95, 118, 126
model, 8, 24, 25, 43, 75, 83, 117, 120, 131, 132
model.lavaan, 82
multipleAllEqual, 84
Mvdc, 9
normalCopula, 9, 17
parameterEstimates, 119
plotCIwidth, 85, 129
plotCoverage, 86, 129
plotCutoff, 88, 130
plotCutoffNested, 90, 102, 130
plotCutoffNonNested, 54, 91, 104, 130
plotDist, 93
plotDist,SimDataDist-method (SimDataDist-class), 124
plotLogitMiss, 67, 73, 94
plotMisfit, 96, 130
plotPower, 97, 130
plotPowerFit, 98, 130
plotPowerFitNested, 101, 130
plotPowerFitNonNested, 103, 130
popDiscrepancy, 105, 106
popMisfitMACS, 106
pValue, 107, 130
pValueNested, 72, 109, 130
pValueNonNested, 72, 111, 130
rawDraw, 113, 125, 133
sem, 4, 121
setPopulation, 114, 130
sim, 24, 55, 68, 70, 73, 78, 83, 116, 128-130
SimDataDist, 9, 16, 17, 26, 44, 93, 94, 118
SimDataDist-class, 124
SimMatrix, 6, 7, 76, 77, 113, 133, 143
SimMatrix-class, 125
SimMissing, 66, 68, 73, 74
SimMissing-class, 126
SimResult, 5, 10-15, 47-55, 57-60, 62-65, 69-72, 85, 87-92, 96-99, 101-104, 107-112, 115, 118, 120, 121, 134-138, 140-142, 144
SimResult-class, 128
SimSem, 8, 17, 19, 24, 25, 43, 45, 46, 78, 83, 117, 119-121
SimSem-class, 131
simulateData, 45, 117, 120

SimVector, 6, 7, 76, 77, 113, 125, 143
SimVector-class, 132
summary, 114, 127, 130, 133
summary, SimDataDist-method
(SimDataDist-class), 124
summary, SimMatrix-method
(SimMatrix-class), 125
summary,SimMissing-method
(SimMissing-class), 126
summary, SimResult-method
(SimResult-class), 128
summary, SimSem-method (SimSem-class), 131
summary, SimVector-method
(SimVector-class), 132
summaryConverge, 130, 133
summaryFit, 135
summaryMisspec, 105, 106, 128, 130, 134, 136
summaryParam, 114, 130, 138
summaryPopulation, 130, 141
summarySeed, 70, 130, 142
summaryShort, 125, 130, 133, 143
summaryShort, ANY-method (summaryShort), 143
summaryShort, matrix-method
(summaryShort), 143
summaryShort, SimMatrix-method
(SimMatrix-class), 125
summaryShort,SimResult-method
(SimResult-class), 128
summaryShort,SimVector-method
(SimVector-class), 132
summaryShort, vector-method
(summaryShort), 143
summaryShort-methods (summaryShort), 143
summaryTime, 70, 130, 144

