
Package ‘simml’
May 24, 2019

Type Package

Title Single-Index Models with Multiple-Links

Version 0.1.0

Author Park, H., Petkova, E., Tarpey, T., Ogden, R.T.

Maintainer Hyung Park <parkh15@nyu.edu>

Description A major challenge in estimating treatment decision rules from a randomized clini-
cal trial dataset with covariates measured at baseline lies in detecting relatively small treat-
ment effect modification-related variability (i.e., the treatment-by-covariates interaction ef-
fects on treatment outcomes) against a relatively large non-treatment-related variabil-
ity (i.e., the main effects of covariates on treatment outcomes). The class of Single-Index Mod-
els with Multiple-Links is a novel single-index model specifically designed to estimate a single-
index (a linear combination) of the covariates associated with the treatment effect modification-
related variability, while allowing a nonlinear association with the treatment outcomes via flexi-
ble link functions. The models provide a flexible regression approach to developing treatment de-
cision rules based on patients' data measured at baseline. We re-
fer to Petkova, Tarpey, Su, and Ogden (2017) <doi: 10.1093/biostatistics/kxw035> and ``A con-
strained single-index model for estimating interactions between a treatment and covariates'' (un-
der review, 2019) for detail. The main function of this package is simml().

License GPL-3

Imports mgcv, plyr

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-05-24 12:40:03 UTC

R topics documented:
der.link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
fit.simml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1



2 fit.simml

generate.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
pred.simml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
simml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Index 11

der.link A subfunction used in estimation

Description

This function computes the 1st derivative of the treatment-specific "smooth" w.r.t. the single index,
using finite difference.

Usage

der.link(g.fit, arg.number = 2, eps = 10^(-6))

Arguments

g.fit a mgcv::gam object

arg.number the argument of g.fit that we take derivative w.r.t.; the default is arg.number=2
(i.e., take deriviative w.r.t. the single-index.)

eps a small finite difference used in numerical differentiation.

See Also

fit.simml, simml

fit.simml Single-index models with multiple-links (the workhorse function)

Description

fit.simml is the workhorse function for Single-index models with multiple-links (SIMML). The
function estimates a linear combination (a single-index) of covariates X, and models the treatment-
specific outcome y, via treatment-specific nonparametrically-defined link functions.

Usage

fit.simml(y, Tr, X, mu.hat = NULL, family = "gaussian",
ortho.constr = TRUE, bs = "ps", k = 8, alpha.ini = NULL,
ind.to.be.positive = 1, pen.order = 0, lambda = 0, max.iter = 30,
eps.iter = 0.01, trace.iter = TRUE)



fit.simml 3

Arguments

y a n-by-1 vector of treatment outcomes; y is assumed to follow an exponential
family distribution; any distribution supported by mgcv::gam.

Tr a n-by-1 vector of treatment indicators; each element represents one of the L(>1)
treatment conditions; e.g., c(1,2,1,1,1...); can be a factor-valued.

X a n-by-p matrix of pre-treatment covarates.

mu.hat a n-by-1 vector for efficinecy augmentation provided by the user; the defult is
NULL; the optimal choice for this vector is h(E(y|X)), where h is the canonical
link function.

family specifies the distribution of y; e.g., "gaussian", "binomial", "poisson"; the defult
is "gaussian"; can be any family supported by mgcv::gam.

ortho.constr separates the interaction effects from the main effect (without this, the interac-
tion effect can be confounded by the main effect; the default is TRUE.

bs type of basis for representing the treatment-specific smooths; the defult is "ps"
(p-splines); any basis supported by mgcv::gam can be used, e.g., "cr" (cubic
regression splines)

k basis dimension; the same number (k) is used for all treatment groups, however,
the smooths of different treatments have different roughness parameters.

alpha.ini an initial solution of alpha.coef; a p-by-1 vector; the defult is NULL.
ind.to.be.positive

for identifiability of the solution alpha.coef, we restrict the jth component of
alpha.coef to be positive; by default j=1.

pen.order 0 indicates the ridge penalty; 1 indicates the 1st difference penalty; 2 indicates
the 2nd difference penalty, used in a penalized least squares (LS) estimation of
alpha.coef.

lambda a regularziation parameter associated with the penalized LS of alpha.coef.

max.iter an integer specifying the maximum number of iterations for alpha.coef update.

eps.iter a value specifying the convergence criterion of algorithm.

trace.iter if TRUE, trace the estimation process and print the differences in alpha.coef.

Details

SIMML captures the effect of covariates via a single-index and their interaction with the treatment
via nonparametric link functions. Interaction effects are determined by distinct shapes of the link
functions. The estimated single-index is useful for comparing differential treatment efficacy. The
resulting simml object can be used to estimate an optimal treatment decision rule for a new patient
with pretreatment clinical information.

Value

a list of information of the fitted SIMML including

alpha.coef the estimated single-index coefficients.

g.fit a mgcv:gam object containing information about the estimated treatment-specific
link functions.



4 generate.data

alpha.ini the initial value used in the estimation of alpha.coef

alpha.path solution path of alpha.coef over the iterations

d.alpha records the magnitude of change in alpha.coef over the solution path, alpha.path

scale.X sd of pretreatment covariates X

center.X mean of pretreatment covariates X

L number of different treatment options

p number of pretreatment covariates X

n number of subjects

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

pred.simml, fit.simml

generate.data A dataset generation function

Description

generate.data generates an example dataset from a mean model that has a "main" effect com-
ponent and a treatment-by-covariates interaction effect component (and a random component for
noise).

Usage

generate.data(n = 200, p = 10, family = "gaussian",
correlationX = 0, sigmaX = 1, sigma = 0.4, w = 2, delta = 1,
pi.1 = 0.5, true.alpha = NULL, true.eta = NULL)

Arguments

n sample size.

p dimension of covariates.

family specifies the distribution of the outcome y; "gaussian", "binomial", "poisson";
the defult is "gaussian"

correlationX correlation among the covariates.

sigmaX standard deviation of the covariates.

sigma standard deviation of the random noise term (for gaussian response).

w controls the nonliarity of the treatment-specific link functions that define the
interaction effect component.



pred.simml 5

w=1 linear
w=2 nonlinear

delta controls the intensity of the main effect; can take any intermediate value, e.g.,
delta= 1.4.

delta=1 moderate main effect
delta=2 big main effect

pi.1 probability of being assigned to the treatment 1

true.alpha a p-by-1 vector of the true single-index coefficients (associated with the interac-
tion effect component); if NULL, true.alpha is set to be (1, 0.5, 0.25, 0.125, 0,...0)’
(only the first 4 elements are nonzero).

true.eta a p-by-1 vector of the true main effect coefficients; if NULL, true.eta is set to
be (0,..., 0.125, 0.25, 0.25, 1)’ (only the last 4 elements are nonzero).

Value

y a n-by-1 vector of treatment outcomes.

Tr a n-by-1 vector of treatment indicators.

X a n-by-p matrix of pretreatment covariates.

SNR the "signal" (interaction effect) to "nuisance" (main effect) variance ratio (SNR)
in the canonical parameter function.

true.alpha the true single-index coefficient vector.

true.eta the true main effect coefficient vector.

optTr a n-by-1 vector of treatments, indicating the optimal treatment selections.

value.opt the "value" implied by the optimal treatment decision rule, optTr.

pred.simml SIMML prediction function

Description

This function makes predictions from an estimated SIMML, given a (new) set of pretreatment co-
variates. The function returns a set of predicted outcomes for each treatment condition and a set of
recommended treatment assignments (assuming a larger value of the outcome is better).

Usage

pred.simml(simml.obj, newx, type = "response", maximize = TRUE)



6 simml

Arguments

simml.obj a simml object

newx a (n-by-p) matrix of new values for the pretreatment covariates X at which pre-
dictions are to be made.

type the type of prediction required; the default "response" is on the scale of the
response variable; the alternative "link" is on the scale of the linear predictors.

maximize the default is TRUE, assuming a larger value of the outcome is better; if FALSE, a
smaller value is assumed to be prefered.

Value

pred.new a (n-by-L) matrix of predicted values; each column represents a treatment op-
tion.

trt.rule a (n-by-1) vector of suggested treatment assignments

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

simml,fit.simml

simml Single-index models with multiple-links (the main function)

Description

simml is the wrapper function for Single-index models with multiple-links (SIMML). The function
estimates a linear combination (a single-index) of covariates X, and models the treatment-specific
outcome y, via treatment-specific nonparametrically-defined link functions.

Usage

simml(y, Tr, X, mu.hat = NULL, family = "gaussian",
ortho.constr = TRUE, bs = "ps", k = 8, alpha.ini = NULL,
ind.to.be.positive = 1, pen.order = 0, lambda = 0, max.iter = 30,
eps.iter = 0.01, trace.iter = TRUE, bootstrap = FALSE,
nboot = 200, boot.alpha = 0.05, seed = 1357)



simml 7

Arguments

y a n-by-1 vector of treatment outcomes; y is assumed to follow an exponential
family distribution; any distribution supported by mgcv::gam.

Tr a n-by-1 vector of treatment indicators; each element represents one of the L(>1)
treatment conditions; e.g., c(1,2,1,1,1...); can be a factor-valued.

X a n-by-p matrix of pre-treatment covarates.

mu.hat a n-by-1 vector for efficinecy augmentation provided by the user; the defult is
NULL; the optimal choice for this vector is h(E(y|X)), where h is the canonical
link function.

family specifies the distribution of y; e.g., "gaussian", "binomial", "poisson"; the defult
is "gaussian"; can be any family supported by mgcv::gam.

ortho.constr separates the interaction effects from the main effect (without this, the interac-
tion effect can be confounded by the main effect; the default is TRUE.

bs type of basis for representing the treatment-specific smooths; the defult is "ps"
(p-splines); any basis supported by mgcv::gam can be used, e.g., "cr" (cubic
regression splines)

k basis dimension; the same number (k) is used for all treatment groups, however,
the smooths of different treatments have different roughness parameters.

alpha.ini an initial solution of alpha.coef; a p-by-1 vector; the defult is NULL.
ind.to.be.positive

for identifiability of the solution alpha.coef, we restrict the jth component of
alpha.coef to be positive; by default j=1.

pen.order 0 indicates the ridge penalty; 1 indicates the 1st difference penalty; 2 indicates
the 2nd difference penalty, used in a penalized least squares (LS) estimation of
alpha.coef.

lambda a regularziation parameter associated with the penalized LS of alpha.coef.

max.iter an integer specifying the maximum number of iterations for alpha.coef update.

eps.iter a value specifying the convergence criterion of algorithm.

trace.iter if TRUE, trace the estimation process and print the differences in alpha.coef.

bootstrap if TRUE, compute bootstrap confidence intervals for the single-index coefficients,
alpha.coef; the default is FALSE.

nboot when bootstrap=TRUE, a value specifying the number of bootstrap replications.

boot.alpha specifies bootstrap CI percentiles; e.g., 0.05 gives 95% CIs; 0.1 gives 90% CIs.

seed when bootstrap=TRUE, randomization seed used in bootstrap resampling.

Details

SIMML captures the effect of covariates via a single-index and their interaction with the treatment
via nonparametric link functions. Interaction effects are determined by distinct shapes of the link
functions. The estimated single-index is useful for comparing differential treatment efficacy. The
resulting simml object can be used to estimate an optimal treatment decision rule for a new patient
with pretreatment clinical information.



8 simml

Value

a list of information of the fitted SIMML including

alpha.coef the estimated single-index coefficients.

g.fit a mgcv:gam object containing information about the estimated treatment-specific
link functions.

alpha.ini the initial value used in the estimation of alpha.coef

alpha.path solution path of alpha.coef over the iterations

d.alpha records the change in alpha.coef over the solution path, alpha.path

scale.X sd of pretreatment covariates X

center.X mean of pretreatment covariates X

L number of different treatment options

p number of pretreatment covariates X

n number of subjects

boot.ci (1-boot.alpha/2) percentile bootstrap CIs (LB, UB) associated with alpha.coef

Author(s)

Park, Petkova, Tarpey, Ogden

See Also

pred.simml, fit.simml

Examples

## application of SIMML (on a simulated dataset) (see help(generate.data) for data generation).

family <- "gaussian" #"poisson"
delta = 1 # moderate main effect
w=2 # if w=2 (w=1), a nonlinear (linear) contrast function
n=500 # number of subjects
p=10 # number of pretreatment covariates

# generate a training dataset
data <- generate.data(n= n, p=p, delta = delta, w= w, family = family)
data$SNR # the ratio of interactions("signal") vs. main effects("noise") in the canonical param.
Tr <- data$Tr
y <- data$y
X <- data$X

# generate a (large, 10^5) testing dataset
data.test <- generate.data(n=10^5, p=p, delta = delta, w= w, family = family)
Tr.test <- data.test$Tr
y.test <- data.test$y
X.test <- data.test$X
data.test$value.opt # the optimal "value"



simml 9

## estimate SIMML
#1) SIMML without efficiency augmenation
simml.obj1 <- simml(y, Tr, X, family = family)

#2) SIMML with efficiency augmenation
# we can improove efficinecy by using the efficiency augmentation term, mu.hat.
# mu.hat is estimated by a main effect only model (y~ X).
glm.fit <- glm(y ~ X, family=family) # could also use cv.glmnet to obtain a mu.hat
mu.hat <- as.vector(predict(glm.fit, newx =X, type="link"))
simml.obj2 <- simml(y, Tr, X, mu.hat = mu.hat, family = family)

## apply the estimated SIMMLs to the testing set and obtain treatment assignment rules.
simml.trt.rule1 <- pred.simml(simml.obj1, newx= X.test)$trt.rule
# "value" estimation (estimated by IPWE)
simml.value1 <- mean(y.test[simml.trt.rule1 == Tr.test])
simml.value1

simml.trt.rule2 <- pred.simml(simml.obj2, newx= X.test)$trt.rule
# "value" estimation (estimated by IPWE)
simml.value2 <- mean(y.test[simml.trt.rule2 == Tr.test])
simml.value2

# compare these to the optimal "value"
data.test$value.opt

## estimate the MC (modified covariates) model of Tien et al 2014

n.t <- summary(as.factor(Tr)); pi.t <- n.t/sum(n.t)
mc <- (as.numeric(Tr) + pi.t[1] -2) *cbind(1, X) # 0.5*(-1)^as.numeric(Tr) *cbind(1, X)
mc.coef <- coef(glm(y ~ mc, family = family))
mc.trt.rule <- (cbind(1, X.test) %*% mc.coef[-1] > 0) +1
# "value" estimation (estimated by IPWE)
mc.value <- mean(y.test[mc.trt.rule == Tr.test])
mc.value

## visualization of the estimated treatment-specific link functions of SIMML
simml.obj1$alpha.coef # estimated single-index coefficients
g.fit <- simml.obj1$g.fit # estimated trt-specific link functions; "g.fit" is a mgcv::gam object.
#plot(g.fit)

## by using the package "mgcViz", we can improve the visualization.
# install.packages("mgcViz")
# mgcViz depends on "rgl". "rgl" depends on XQuartz, which you can download from xquartz.org
# library(mgcViz)

## transform the "mgcv::gam" object to a "mgcViz" object (to improve visualization)
#g.fit <- getViz(g.fit)



10 simml

#plot1 <- plot( sm(g.fit,1) ) # for treatment group 1
#plot1 + l_fitLine(colour = "red") + l_rug(mapping = aes(x=x, y=y), alpha = 0.8) +
# l_ciLine(mul = 5, colour = "blue", linetype = 2) + l_points(shape = 19, size = 1, alpha = 0.1) +
# xlab(expression(paste("z = ", alpha*minute, "x"))) + ylab("y") +
# ggtitle("Treatment group 1 (Tr =1)") + theme_classic()

#plot2 <- plot( sm(g.fit,2) ) # for treatment group 2
#plot2 + l_fitLine(colour = "red") + l_rug(mapping = aes(x=x, y=y), alpha = 0.8) +
# l_ciLine(mul = 5, colour = "blue", linetype = 2) + l_points(shape = 19, size = 1, alpha = 0.1) +
# xlab(expression(paste("z = ", alpha*minute, "x"))) +ylab("y") +
# ggtitle("Treatment group 2 (Tr =2)") + theme_classic()

#trans = function(x) x + g.fit$coefficients[2]

#plotDiff(s1 = sm(g.fit, 2), s2 = sm(g.fit, 1), trans=trans) + l_ciPoly() +
# l_fitLine() + geom_hline(yintercept = 0, linetype = 2) +
# xlab(expression(paste("z = ", alpha*minute, "x")) ) +
# ylab("(Treatment 2 effect) - (Treatment 1 effect)") +
# ggtitle("Contrast between two treatment effects") +
# #geom_vline(xintercept=-0.45, linetype="dotted", color = "red", size=0.8) +
# theme_classic()

# another way of visualization, using ggplot2
#library(ggplot2)
#dat <- data.frame(y= simml.obj1$g.fit$model$y,
# x= simml.obj1$g.fit$model$single.index,
# Treatment= simml.obj1$g.fit$model$Tr)
#g.plot <- ggplot(dat, aes(x=x, y=y, color=Treatment, shape=Treatment, linetype=Treatment)) +
# geom_point(aes(color=Treatment, shape=Treatment), size=1, fill="white") +
# scale_colour_brewer(palette="Set1", direction=-1) + theme_classic() +
# xlab(expression(paste(alpha*minute,"x"))) + ylab("y")
#g.plot + geom_smooth(method=gam, formula= y~ s(x, bs=simml.obj1$bs, k=simml.obj1$k),
# se=TRUE, fullrange=TRUE, alpha = 0.35)

#### can obtain bootstrap CIs associated with the single-index coefficients (alpha.coef).
glm.fit <- glm(y ~ X, family=family) # could also use cv.glmnet.
mu.hat <- as.vector(predict(glm.fit, newx= X, type= "link")) # efficiency augmentation vector
simml.obj <- simml(y,Tr,X, mu.hat=mu.hat, family=family, bootstrap =TRUE, nboot=15, max.iter=7)
# the default is to use 200 bootstrap replications.
simml.obj$alpha.coef
simml.obj$boot.ci # displays a set of (1-boot.alpha/2) percentile bootstrap CIs (LB, UB).

# compare the estimates to the true alpha.coef.
data$true.alpha



Index

der.link, 2

fit.simml, 2

generate.data, 4

pred.simml, 5

simml, 6

11


	der.link
	fit.simml
	generate.data
	pred.simml
	simml
	Index

