Provides tools for simulating spatially dependent predictors (continuous or binary), which are used to generate scalar outcomes in a (generalized) linear model framework. Continuous predictors are generated using traditional multivariate normal distributions or Gauss Markov random fields with several correlation function approaches (e.g., see Rue (2001) <doi:10.1111/1467-9868.00288> and Furrer and Sain (2010) <doi:10.18637/jss.v036.i10>), while binary predictors are generated using a Boolean model (see Cressie and Wikle (2011, ISBN: 978-0-471-69274-4)). Parameter vectors exhibiting spatial clustering can also be easily specified by the user.
Version: | 0.1.0 |
Depends: | R (≥ 3.5.0) |
Imports: | car, ggplot2, MASS, Rdpack, spam (≥ 2.2-0), tidyverse, tibble, dplyr, magrittr, matrixcalc |
Suggests: | knitr, rmarkdown, testthat |
Published: | 2020-03-14 |
Author: | Justin Leach [aut, cre, cph] |
Maintainer: | Justin Leach <jleach at uab.edu> |
BugReports: | http://github.com/jmleach-bst/sim2Dpredictr |
License: | GPL-3 |
URL: | http://github.com/jmleach-bst/sim2Dpredictr |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | sim2Dpredictr results |
Reference manual: | sim2Dpredictr.pdf |
Package source: | sim2Dpredictr_0.1.0.tar.gz |
Windows binaries: | r-devel: sim2Dpredictr_0.1.0.zip, r-release: sim2Dpredictr_0.1.0.zip, r-oldrel: sim2Dpredictr_0.1.0.zip |
macOS binaries: | r-release: sim2Dpredictr_0.1.0.tgz, r-oldrel: sim2Dpredictr_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=sim2Dpredictr to link to this page.