
Package ‘shinytest’
June 18, 2020

Title Test Shiny Apps

Version 1.4.0

Description For automated testing of Shiny applications, using a headless
browser, driven through 'WebDriver'.

License MIT + file LICENSE

LazyData true

URL https://github.com/rstudio/shinytest

BugReports https://github.com/rstudio/shinytest/issues

RoxygenNote 7.1.0

Imports assertthat, digest, crayon, debugme, parsedate, pingr, callr
(>= 2.0.3), R6, rematch, httr, shiny (>= 1.3.2), testthat (>=
1.0.0), utils, webdriver (>= 1.0.5), htmlwidgets, jsonlite,
withr, httpuv, rstudioapi (>= 0.8.0.9002)

Suggests rmarkdown, flexdashboard

Encoding UTF-8

SystemRequirements PhantomJS (http://phantomjs.org/)

NeedsCompilation no

Author Winston Chang [aut, cre],
Gábor Csárdi [aut],
RStudio [cph, fnd],
Mango Solutions [cph, ccp]

Maintainer Winston Chang <winston@rstudio.com>

Repository CRAN

Date/Publication 2020-06-18 18:00:07 UTC

R topics documented:
dependenciesInstalled . 2
diffviewer_widget . 2
expectUpdate . 3

1

https://github.com/rstudio/shinytest
https://github.com/rstudio/shinytest/issues

2 diffviewer_widget

expect_pass . 4
installDependencies . 4
migrateShinytestDir . 5
recordTest . 6
ShinyDriver . 7
shinytest . 10
snapshotCompare . 10
testApp . 11
textTestDiff . 12
viewTestDiff . 13
viewTestDiffWidget . 14
Widget . 14

Index 16

dependenciesInstalled Checks all dependencies are installed

Description

Checks that all the required system dependencies are installed properly, returns. If dependencies
are missing, consider running installDependencies.

Usage

dependenciesInstalled()

Value

TRUE when all dependencies are fulfilled; otherwise, FALSE.

See Also

installDependencies to install missing dependencies.

diffviewer_widget Creat an htmlwidget that shows differences between files or directories

Description

This function can be used for viewing differences between current test results and the expected
results

Usage

diffviewer_widget(old, new, width = NULL, height = NULL, pattern = NULL)

expectUpdate 3

Arguments

old, new Names of the old and new directories to compare. Alternatively, they can be a
character vectors of specific files to compare.

width Width of the htmlwidget.

height Height of the htmlwidget

pattern A filter to apply to the old and new directories.

expectUpdate testthat expectation for a Shiny update

Description

testthat expectation for a Shiny update

Usage

expectUpdate(
app,
output,
...,
timeout = 3000,
iotype = c("auto", "input", "output")

)

Arguments

app A ShinyDriver object.

output Character vector, the name(s) of the output widgets that are required to update
for the test to succeed.

... Named arguments specifying updates for Shiny input widgets.

timeout Timeout for the update to happen, in milliseconds.

iotype Type of the widget(s) to change. These are normally input widgets.

Examples

Not run:
https://github.com/rstudio/shiny-examples/tree/master/050-kmeans-example
app <- ShinyDriver$new("050-kmeans-example")
expectUpdate(app, xcol = "Sepal.Width", output = "plot1")
expectUpdate(app, ycol = "Petal.Width", output = "plot1")
expectUpdate(app, clusters = 4, output = "plot1")

End(Not run)

4 installDependencies

expect_pass Expectation: shinytest object passed snapshot tests

Description

This returns an testthat expectation object.

Usage

expect_pass(object, info = NULL)

Arguments

object The results returned by testApp.

info Extra information to be included in the message (useful when writing tests in
loops).

Examples

Not run:
expect_pass(testApp("path/to/app/"))

End(Not run)

installDependencies Installs missing dependencies

Description

Installs all the required system depencies to record and run tests. This will install a headless web
browser, PhantomJS.

Usage

installDependencies()

See Also

dependenciesInstalled to check if dependencies are missing. For more information about where
PhantomJS will be installed, see install_phantomjs.

migrateShinytestDir 5

Examples

Not run:

if (!dependenciesInstalled() &&
identical(menu(c("Yes", "No"), "Install missing dependencies?"), 1L)) {

installDependencies()
}

End(Not run)

migrateShinytestDir Migrate legacy shinytest files to new test directory structure

Description

This function migrates the old-style directory structure used by shinytest (versions 1.3.1 and below)
to new test directory structure used in shinytest 1.4.0 and above.

Usage

migrateShinytestDir(appdir, dryrun = FALSE)

Arguments

appdir A directory containing a Shiny application.

dryrun If TRUE, print out the changes that would be made, but don’t actually do them.

Details

Before shinytest 1.4.0, the shinytest scripts and results were put in a subdirectory of the application
named tests/. As of shinytest 1.4.0, the tests are put in tests/shinytest/, so that it works with the
runTests() function shiny package (added in shiny 1.5.0).

With shinytest 1.3.1 and below, the tests/ subdirectory of the application was used specifically for
shinytest, and could not be used for other types of tests. So the directory structure would look like
this:

appdir/
`- tests

`- mytest.R

In Shiny 1.5.0, the shiny::runTests() function was added, and it will run test scripts tests/ subdi-
rectory of the application. This makes it possible to use other testing systems in addition to shinytest.
shinytest 1.4.0 is designed to work with this new directory structure. The directory structure looks
something like this:

6 recordTest

appdir/
|- R
|- tests

|- shinytest.R
|- shinytest
| `- mytest.R
|- testthat.R
`- testthat

`- test-script.R

This allows for tests using the shinytest package as well as other testing tools, such as the shiny::testServer()
function, which can be used for testing module and server logic, and for unit tests of functions in an
R/ subdirectory.

In shinytest 1.4.0 and above, it defaults to creating the new directory structure.

recordTest Launch test event recorder for a Shiny app

Description

Launch test event recorder for a Shiny app

Usage

recordTest(
app = ".",
save_dir = NULL,
load_mode = FALSE,
seed = NULL,
loadTimeout = 10000,
debug = "shiny_console",
shinyOptions = list()

)

Arguments

app A ShinyDriver object, or path to a Shiny application.

save_dir A directory to save stuff.

load_mode A boolean that determines whether or not the resulting test script should be
appropriate for load testing.

seed A random seed to set before running the app. This seed will also be used in the
test script.

loadTimeout Maximum time to wait for the Shiny application to load, in milliseconds. If a
value is provided, it will be saved in the test script.

ShinyDriver 7

debug start the underlying ShinyDriver in debug mode and print those debug logs to
the R console once recording is finished. The default, 'shiny_console', cap-
tures and prints R console output from the recorded R shiny process. Any value
that the debug argument in ShinyDriver accepts may be used (e.g., 'none'
may be used to completely suppress the driver logs).

shinyOptions A list of options to pass to runApp(). If a value is provided, it will be saved in
the test script.

ShinyDriver Class to manage a shiny app and a phantom.js headless browser

Description

Class to manage a shiny app and a phantom.js headless browser

Usage

app <- ShinyDriver$new(path = ".", loadTimeout = 5000,
checkNames = TRUE, debug = c("none", "all",
ShinyDriver$debugLogTypes), phantomTimeout = 5000,
seed = NULL, cleanLogs = TRUE, shinyOptions = list()))

app$stop()
app$getDebugLog(type = c("all", ShinyDriver$debugLogTypes))

app$getValue(name, iotype = c("auto", "input", "output"))
app$setValue(name, value, iotype = c("auto", "input", "output"))
app$sendKeys(name = NULL, keys)

app$getWindowSize()
app$setWindowSize(width, height)

app$getUrl()
app$goBack()
app$refresh()
app$getTitle()
app$getSource()
app$takeScreenshot(file = NULL)

app$findElement(css = NULL, linkText = NULL,
partialLinkText = NULL, xpath = NULL)

app$findElements(css = NULL, linkText = NULL,
partialLinkText = NULL, xpath = NULL)

app$waitFor(expr, checkInterval = 100, timeout = 3000)

app$waitForValue(name, ignore = list(NULL, ""), iotype = "input", timeout = 10000, checkInterval = 400)

8 ShinyDriver

app$listWidgets()

app$checkUniqueWidgetNames()

app$findWidget(name, iotype = c("auto", "input", "output"))

app$expectUpdate(output, ..., timeout = 3000,
iotype = c("auto", "input", "output"))

Arguments

app A ShinyDriver instance.

path Path to a directory containing a Shiny app, i.e. a single app.R file or a server.R and ui.R
pair.

loadTimeout How long to wait for the app to load, in ms. This includes the time to start R.

phantomTimeout How long to wait when connecting to phantomJS process, in ms.

checkNames Whether to check if widget names are unique in the app.

debug Whether to start the app in debugging mode. In debugging mode debug messages are printed
to the console.

seed An optional random seed to use before starting the application. For apps that use R’s random
number generator, this can make their behavior repeatable.

cleanLogs Whether to remove the stdout and stderr logs when the Shiny process object is garbage
collected.

shinyOptions A list of options to pass to runApp().

name Name of a shiny widget. For $sendKeys it can be NULL, in which case the keys are sent to
the active HTML element.

iotype Type of the Shiny widget. Usually shinytest finds the widgets by their name, so this need
not be specified, but Shiny allows input and output widgets with identical names.

keys Keys to send to the widget or the app. See the sendKeys method of the webdriver package.

width Scalar integer, the desired width of the browser window.

height Scalar integer, the desired height of the browser window.

file File name to save the screenshot to. If NULL, then it will be shown on the R graphics device.

css CSS selector to find an HTML element.

linkText Find <a> HTML elements based on their innerText.

partialLinkText Find <a> HTML elements based on their innerText. It uses partial matching.

xpath Find HTML elements using XPath expressions.

expr A string scalar containing JavaScript code that evaluates to the condition to wait for.

checkInterval How often to check for the condition, in milliseconds.

ignore List of possible values that are to not be considered valid. app$waitForValue will continue
to poll until it finds a value not contained in ignore.

timeout Timeout for the condition, in milliseconds.

ShinyDriver 9

output Character vector, the name(s) of the Shiny output widgets that should be updated.

allowInputNoBinding_ When setting the value of an input, allow it to set the value of an input
even if that input does not have an input binding.

... For expectUpdate these can be named arguments. The argument names correspond to Shiny
input widgets: each input widget will be set to the specified value.

Details

ShinyDriver$new() function creates a ShinyDriver object. It starts the Shiny app in a new R
session, and it also starts a phantomjs headless browser that connects to the app. It waits until the
app is ready to use. It waits at most loadTimeout milliseconds, and if the app is not ready, then it
throws an error. You can increase loadTimeout for slow loading apps. Currently it supports apps
that are defined in a single app.R file, or in a server.R and ui.R pair.

app$stop() stops the app, i.e. the external R process that runs the app, and also the phantomjs
instance.

app$getDebugLog() queries one or more of the debug logs: shiny_console, browser or shinytest.

app$getValue() finds a widget and queries its value. See the getValue method of the Widget
class.

app$setInputs() sets the value of inputs. The arguments must all be named; an input with each
name will be assigned the given value.

app$uploadFile() uploads a file to a file input. The argument must be named and the value must
be the path to a local file; that file will be uploaded to a file input with that name.

app$getAllValues() returns a named list of all inputs, outputs, and export values.

app$setValue() finds a widget and sets its value. See the setValue method of the Widget class.

app$sendKeys sends the specified keys to the HTML element of the widget.

app$getWindowSize() returns the current size of the browser window, in a list of two integer
scalars named ‘width’ and ‘height’.

app$setWindowSize() sets the size of the browser window to the specified width and height.

app$getUrl() returns the current URL.

app$goBack() “presses” the browser’s ‘back’ button.

app$refresh() “presses” the browser’s ‘refresh’ button.

app$getTitle() returns the title of the page. (More precisely the document title.)

app$getSource() returns the complete HTML source of the current page, in a character scalar.

app$takeScreenshot() takes a screenshot of the current page and writes it to a file, or (if file is
NULL) shows it on the R graphics device. The output file has PNG format.

app$findElement() find an HTML element on the page, using a CSS selector or an XPath expres-
sion. The return value is an Element object from the webdriver package.

app$findElements() finds potentially multiple HTML elements, and returns them in a list of
Element objects from the webdriver package.

app$waitFor() waits until a JavaScript expression evaluates to true, or a timeout happens. It
returns TRUE is the expression evaluated to true, possible after some waiting.

10 snapshotCompare

app$waitForValue() waits until the current application’s input (or output) value is not one of
the supplied invalid values. The function returns the value found if the time limit has not been
reached (default is 10 seconds). This function can be useful in helping determine if an application
has initialized or finished processing a complex reactive situation.

app$listWidgets() lists the names of all input and output widgets. It returns a list of two character
vectors, named input and output.

app$checkUniqueWidgetNames() checks if Shiny widget names are unique.

app$findWidget() finds the corresponding HTML element of a Shiny widget. It returns a Widget
object.

expectUpdate() is one of the main functions to test Shiny apps. It performs one or more update
operations via the browser, and then waits for the specified output widgets to update. The test
succeeds if all specified output widgets are updated before the timeout. For updates that involve a
lot of computation, you increase the timeout.

Examples

Not run:
https://github.com/rstudio/shiny-examples/tree/master/050-kmeans-example
app <- ShinyDriver$new("050-kmeans-example")
expectUpdate(app, xcol = "Sepal.Width", output = "plot1")
expectUpdate(app, ycol = "Petal.Width", output = "plot1")
expectUpdate(app, clusters = 4, output = "plot1")

End(Not run)

shinytest Test Shiny Apps

Description

Uses a headless browser, driven through ’WebDriver’. See ShinyDriver to get started.

snapshotCompare Compare current and expected snapshots

Description

This compares current and expected snapshots for a test set, and prints any differences to the con-
sole.

testApp 11

Usage

snapshotCompare(
appDir,
testnames = NULL,
autoremove = TRUE,
images = TRUE,
quiet = FALSE,
interactive = base::interactive(),
suffix = NULL

)

snapshotUpdate(appDir = ".", testnames = NULL, quiet = FALSE, suffix = NULL)

Arguments

appDir Directory that holds the tests for an application. This is the parent directory for
the expected and current snapshot directories.

testnames Name or names of a test. If NULL, compare all test results.

autoremove If the current results match the expected results, should the current results be
removed automatically? Defaults to TRUE.

images Should screenshots and PNG images be compared? It can be useful to set this
to FALSE when the expected results were taken on a different platform from the
current results.

quiet Should output be suppressed? This is useful for automated testing.

interactive If there are any differences between current results and expected results, provide
an interactive graphical viewer that shows the changes and allows the user to
accept or reject the changes.

suffix An optional suffix for the expected results directory. For example, if the suffix
is "mac", the expected directory would be mytest-expected-mac.

See Also

testApp

testApp Run tests for a Shiny application

Description

Run tests for a Shiny application

12 textTestDiff

Usage

testApp(
appDir = ".",
testnames = NULL,
quiet = FALSE,
compareImages = TRUE,
interactive = base::interactive(),
suffix = NULL

)

Arguments

appDir Path to the Shiny application to be tested.

testnames Test script(s) to run. The .R extension of the filename is optional. For example,
"mytest" or c("mytest","mytest2.R"). If NULL (the default), all scripts in
the tests/ directory will be run.

quiet Should output be suppressed? This is useful for automated testing.

compareImages Should screenshots be compared? It can be useful to set this to FALSE when the
expected results were taken on a different platform from the one currently being
used to test the application.

interactive If there are any differences between current results and expected results, provide
an interactive graphical viewer that shows the changes and allows the user to
accept or reject the changes.

suffix An optional suffix for the expected results directory. For example, if the suffix
is "mac", the expected directory would be mytest-expected-mac.

See Also

snapshotCompare and snapshotUpdate if you want to compare or update snapshots after testing.
In most cases, the user is prompted to do these tasks interactively, but there are also times where it
is useful to call these functions from the console.

textTestDiff Get textual diff of test results

Description

Get textual diff of test results

Usage

textTestDiff(appDir = ".", testnames = NULL, images = TRUE, suffix = NULL)

viewTestDiff 13

Arguments

appDir Directory of the Shiny application that was tested.
testnames A character vector of names of tests to compare. If NULL, compare all test

results for which there are differences.
images Compare screenshot images.
suffix An optional suffix for the expected results directory. For example, if the suffix

is "mac", the expected directory would be mytest-expected-mac.

See Also

viewTestDiff for interactive diff viewer.

viewTestDiff View differences in test results

Description

View differences in test results

Usage

viewTestDiff(
appDir = ".",
testnames = NULL,
interactive = base::interactive(),
images = TRUE,
suffix = NULL

)

Arguments

appDir Directory of the Shiny application that was tested.
testnames A character vector of names of tests to compare. If NULL, compare all test

results for which there are differences.
interactive If TRUE, use the interactive diff viewer, which runs in a Shiny app. If FALSE,

print a textual diff, generated by textTestDiff.
images Compare screenshot images (only used when interactive is FALSE).
suffix An optional suffix for the expected results directory. For example, if the suffix

is "mac", the expected directory would be mytest-expected-mac.

Value

A character vector the same length as testnames, with "accept" or "reject" for each test.

See Also

textTestDiff to get a text diff as a string.

14 Widget

viewTestDiffWidget Interactive viewer widget for changes in test results

Description

Interactive viewer widget for changes in test results

Usage

viewTestDiffWidget(appDir = ".", testname = NULL, suffix = NULL)

Arguments

appDir Directory of the Shiny application that was tested.

testname Name of test to compare.

suffix An optional suffix for the expected results directory. For example, if the suffix
is "mac", the expected directory would be mytest-expected-mac.

Widget Class for a Shiny widget

Description

Class for a Shiny widget

Usage

w <- app$findWidget(name,
iotype = c("auto", "input", "output"))

w$getName()
w$getElement()
w$getType()
w$getIoType()
w$isInput()
w$isOutput()

w$getValue()
w$setValue(value)

w$sendKeys(keys)

w$listTabs()

Widget 15

Arguments

app A ShinyDriver object.

w A Widget object.

name Name of a Shiny widget.

iotype Character scalar, whether the widget is ‘input’ or ‘output’. The default ‘auto’ value works
well, provided that widgets have unique names. (Shiny allows an input and an output widget
with the same name.)

value Value to set for the widget. Its interpretation depends on the type of the widget, see details
below.

keys Keys to send to the widget. See the sendKeys method of the Element class in the webdriver
package.

Details

A Widget object represents a Shiny input or output widget. app$findWidget creates a widget
object from a ShinyDriver object.

w$getName() returns the name of the widget.

w$getElement() returns an HTML element. This is an Element object from the webdriver pack-
age.

w$getType() returns the type of the widget, possible values are textInput, selectInput, etc.

w$getIoType() returns ‘input’ or ‘output’, whether the widget is an input or output widget.

w$isInput() returns TRUE for input widgets, FALSE otherwise.

w$isOutput() returns TRUE for output widgets, FALSE otherwise.

w$getValue() returns the value of the widget. The exact type returned depends on the type of the
widget. TODO: list widgets and their return types.

w$setValue() sets the value of the widget, through the web browser. Different widget types expect
different different value arguments. TODO: list widgets and types.

w$sendKeys sends the specified keys to the HTML element of the widget.

w$listTabs lists the tab names of a tabsetPanel widget. It fails for other types of widgets.

Examples

{

}

Index

dependenciesInstalled, 2, 4
diffviewer_widget, 2

Element, 9, 15
expect_pass, 4
expectUpdate, 3

install_phantomjs, 4
installDependencies, 2, 4

migrateShinytestDir, 5

recordTest, 6

ShinyDriver, 3, 6, 7, 7, 10, 15
shinytest, 10
snapshotCompare, 10, 12
snapshotUpdate, 12
snapshotUpdate (snapshotCompare), 10

testApp, 4, 11, 11
textTestDiff, 12, 13

viewTestDiff, 13, 13
viewTestDiffWidget, 14

Widget, 9, 10, 14

16

	dependenciesInstalled
	diffviewer_widget
	expectUpdate
	expect_pass
	installDependencies
	migrateShinytestDir
	recordTest
	ShinyDriver
	shinytest
	snapshotCompare
	testApp
	textTestDiff
	viewTestDiff
	viewTestDiffWidget
	Widget
	Index

