install.packages("shinyr")
library(shinyr)
library(shinyr)
shinyr::shineMe()
valid_sets() will give all the data sets that are available in the data frame
library(shinyr)
dsets <- shinyr::valid_sets()
knitr::kable(dsets)
Package | LibPath | Item | Title | |
---|---|---|---|---|
5 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | CO2 | Carbon Dioxide Uptake in Grass Plants |
6 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | ChickWeight | Weight versus age of chicks on different diets |
7 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | DNase | Elisa assay of DNase |
13 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | Indometh | Pharmacokinetics of Indomethacin |
17 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | LifeCycleSavings | Intercountry Life-Cycle Savings Data |
18 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | Loblolly | Growth of Loblolly pine trees |
20 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | Orange | Growth of Orange Trees |
21 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | OrchardSprays | Potency of Orchard Sprays |
23 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | Puromycin | Reaction Velocity of an Enzymatic Reaction |
25 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | Theoph | Pharmacokinetics of Theophylline |
27 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | ToothGrowth | The Effect of Vitamin C on Tooth Growth in Guinea Pigs |
32 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | USArrests | Violent Crime Rates by US State |
33 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | USJudgeRatings | Lawyers' Ratings of State Judges in the US Superior Court |
41 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | airquality | New York Air Quality Measurements |
42 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | anscombe | Anscombe's Quartet of 'Identical' Simple Linear Regressions |
43 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | attenu | The Joyner-Boore Attenuation Data |
44 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | attitude | The Chatterjee-Price Attitude Data |
53 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | esoph | Smoking, Alcohol and (O)esophageal Cancer |
59 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | freeny | Freeny's Revenue Data |
62 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | infert | Infertility after Spontaneous and Induced Abortion |
63 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | iris | Edgar Anderson's Iris Data |
68 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | longley | Longley's Economic Regression Data |
71 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | morley | Michelson Speed of Light Data |
72 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | mtcars | Motor Trend Car Road Tests |
75 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | npk | Classical N, P, K Factorial Experiment |
80 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | quakes | Locations of Earthquakes off Fiji |
81 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | randu | Random Numbers from Congruential Generator RANDU |
83 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | rock | Measurements on Petroleum Rock Samples |
84 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | sleep | Student's Sleep Data |
87 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | stackloss | Brownlee's Stack Loss Plant Data |
98 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | swiss | Swiss Fertility and Socioeconomic Indicators (1888) Data |
100 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | trees | Diameter, Height and Volume for Black Cherry Trees |
103 | datasets | C:/Users/rpush1/OneDrive - Monsanto/Migrated from My PC/Documents/R/R-3.6.2/library | warpbreaks | The Number of Breaks in Yarn during Weaving |
In case you want to load any data sets from the list of datasets from return of valis_sets() function you can use base::get() function to load the data sets. this will help you to choose on data sets to load dynamycally in any program.
dsets$Item <- as.character(dsets$Item)
mtcars <- get(dsets$Item[dsets$Item == "mtcars"])
knitr::kable(head(mtcars))
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mazda RX4 | 21.0 | 6 | 160 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 |
Mazda RX4 Wag | 21.0 | 6 | 160 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 |
Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 |
Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 |
To figure the class of each column in the given data frame use getnumericcols() it return the column names which are numeric
getnumericCols(mtcars)
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
## [11] "carb"
to split paragraph or sentence to induvidial words use splitAndGet(), it returns the list of induvidual words in the given input which can be later used by getFeqTable()
## [[1]]
## [1] "**shinyr**" "is" "developed" "to" "build"
## [6] "dynamic" "shiny" "based" "dashboards" "to"
## [11] "analyze" "the" "data" "of" "your"
## [16] "choice." "" "It" "provides" "simple"
## [21] "yet" "genius" "dashboard" "design" "to"
## [26] "subset" "the" "data," "perform" "exploratory"
## [31] "analysis" "and" "predictive" "analysis" "by"
## [36] "means" "of"
getFeqTable will be used on the output of spliAndGet() to get the frequency of each word, which will be used by getWordCloud
word | freq | |
---|---|---|
analysis | analysis | 2 |
data | data | 2 |
analyze | analyze | 1 |
based | based | 1 |
build | build | 1 |
choice | choice | 1 |
dashboard | dashboard | 1 |
dashboards | dashboards | 1 |
design | design | 1 |
developed | developed | 1 |
dynamic | dynamic | 1 |
exploratory | exploratory | 1 |
genius | genius | 1 |
means | means | 1 |
perform | perform | 1 |
predictive | predictive | 1 |
provides | provides | 1 |
shiny | shiny | 1 |
shinyr | shinyr | 1 |
simple | simple | 1 |
subset | subset | 1 |
yet | yet | 1 |
Use getWordCloud() to plot word cloud.
getWordCloud(x)
getDataInsights() takes data frame as an input and returns the basic insights such as class, number of values missing, maximum, min, var, sd, mean, median, unique items for each column.
Column | Class | Missing | Max | Min | Mean | Median | SD | Variance | Unique_items |
---|---|---|---|---|---|---|---|---|---|
mpg | numeric | 0 | 33.9 | 10.4 | 20.09 | 19.2 | 6.03 | 36.32 | 21,22.8,21.4,18.7,18.1,14.3,24.4,19.2,17.8,16.4,17.3,15.2,10.4,14.7,32.4,30.4,33.9,21.5,15.5,13.3,27.3,26,15.8,19.7,15 |
cyl | numeric | 0 | 8 | 4 | 6.19 | 6 | 1.79 | 3.19 | 6,4,8 |
disp | numeric | 0 | 472 | 71.1 | 230.72 | 196.3 | 123.94 | 15360.8 | 160,108,258,360,225,146.7,140.8,167.6,275.8,472,460,440,78.7,75.7,71.1,120.1,318,304,350,400,79,120.3,95.1,351,145,301,121 |
hp | numeric | 0 | 335 | 52 | 146.69 | 123 | 68.56 | 4700.87 | 110,93,175,105,245,62,95,123,180,205,215,230,66,52,65,97,150,91,113,264,335,109 |
drat | numeric | 0 | 4.93 | 2.76 | 3.6 | 3.7 | 0.53 | 0.29 | 3.9,3.85,3.08,3.15,2.76,3.21,3.69,3.92,3.07,2.93,3,3.23,4.08,4.93,4.22,3.7,3.73,4.43,3.77,3.62,3.54,4.11 |
wt | numeric | 0 | 5.424 | 1.513 | 3.22 | 3.33 | 0.98 | 0.96 | 2.62,2.875,2.32,3.215,3.44,3.46,3.57,3.19,3.15,4.07,3.73,3.78,5.25,5.424,5.345,2.2,1.615,1.835,2.465,3.52,3.435,3.84,3.845,1.935,2.14,1.513,3.17,2.77,2.78 |
qsec | numeric | 0 | 22.9 | 14.5 | 17.85 | 17.71 | 1.79 | 3.19 | 16.46,17.02,18.61,19.44,20.22,15.84,20,22.9,18.3,18.9,17.4,17.6,18,17.98,17.82,17.42,19.47,18.52,19.9,20.01,16.87,17.3,15.41,17.05,16.7,16.9,14.5,15.5,14.6,18.6 |
vs | numeric | 0 | 1 | 0 | 0.44 | 0 | 0.5 | 0.25 | 0,1 |
am | numeric | 0 | 1 | 0 | 0.41 | 0 | 0.5 | 0.25 | 1,0 |
gear | numeric | 0 | 5 | 3 | 3.69 | 4 | 0.74 | 0.54 | 4,3,5 |
carb | numeric | 0 | 8 | 1 | 2.81 | 2 | 1.62 | 2.61 | 4,1,2,3,6,8 |
getDataInsight() also calculates the correlation table for the given data frame.
knitr::kable(res$cor_matrix)
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
mpg | 1.0000000 | -0.8521620 | -0.8475514 | -0.7761684 | 0.6811719 | -0.8676594 | 0.4186840 | 0.6640389 | 0.5998324 | 0.4802848 | -0.5509251 |
cyl | -0.8521620 | 1.0000000 | 0.9020329 | 0.8324475 | -0.6999381 | 0.7824958 | -0.5912421 | -0.8108118 | -0.5226070 | -0.4926866 | 0.5269883 |
disp | -0.8475514 | 0.9020329 | 1.0000000 | 0.7909486 | -0.7102139 | 0.8879799 | -0.4336979 | -0.7104159 | -0.5912270 | -0.5555692 | 0.3949769 |
hp | -0.7761684 | 0.8324475 | 0.7909486 | 1.0000000 | -0.4487591 | 0.6587479 | -0.7082234 | -0.7230967 | -0.2432043 | -0.1257043 | 0.7498125 |
drat | 0.6811719 | -0.6999381 | -0.7102139 | -0.4487591 | 1.0000000 | -0.7124406 | 0.0912048 | 0.4402785 | 0.7127111 | 0.6996101 | -0.0907898 |
wt | -0.8676594 | 0.7824958 | 0.8879799 | 0.6587479 | -0.7124406 | 1.0000000 | -0.1747159 | -0.5549157 | -0.6924953 | -0.5832870 | 0.4276059 |
qsec | 0.4186840 | -0.5912421 | -0.4336979 | -0.7082234 | 0.0912048 | -0.1747159 | 1.0000000 | 0.7445354 | -0.2298609 | -0.2126822 | -0.6562492 |
vs | 0.6640389 | -0.8108118 | -0.7104159 | -0.7230967 | 0.4402785 | -0.5549157 | 0.7445354 | 1.0000000 | 0.1683451 | 0.2060233 | -0.5696071 |
am | 0.5998324 | -0.5226070 | -0.5912270 | -0.2432043 | 0.7127111 | -0.6924953 | -0.2298609 | 0.1683451 | 1.0000000 | 0.7940588 | 0.0575344 |
gear | 0.4802848 | -0.4926866 | -0.5555692 | -0.1257043 | 0.6996101 | -0.5832870 | -0.2126822 | 0.2060233 | 0.7940588 | 1.0000000 | 0.2740728 |
carb | -0.5509251 | 0.5269883 | 0.3949769 | 0.7498125 | -0.0907898 | 0.4276059 | -0.6562492 | -0.5696071 | 0.0575344 | 0.2740728 | 1.0000000 |
You can use corrplot::corrplot() on correlation table to get the correlation table.
corrplot::corrplot(as.matrix(res$cor_matrix),method = "number")
This function was developed to eliminate few items from the list of items for any reason.
excludeThese(mtcars$mpg, c(21.0))
## [1] 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4 14.7
## [16] 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
You can find out most repeated values in the given set of values.
getMostRepeatedValue(c(1,1,1,2,2,3,4,5))
## [1] 1
## Levels: 1 2 3 4 5
missing count will calculate the total number of NA, NULL, “”, “NULL”, “NA” s in a given set of values. lets introduce some missing values to mtcars
x <- head(mtcars)
x$mpg[1:2] <- NA
missing_count(x$mpg)
## [1] 2
You can replace the missing values in any column of given data frame with one of mean, median, max, and min, sum and mode by using ImputeMydata(). for example you can impute the missing values in the mpg column by mean of all the values in the column as shown below.
imputeMyData(df = x, col = "mpg", FUN = "mean")
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 20.25 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 20.25 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.80 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.40 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.70 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.10 6 225 105 2.76 3.460 20.22 1 0 3 1
You can summarize the values of one column by grouping the values in the other column using groupByandSummarize(). For example you can calculate mean of hp by am.
knitr::kable(groupByandSumarize(mtcars, grp_col = c("am"), summarise_col = "hp", FUN = "mean"))
am | mean_of_hp_by_am |
---|---|
1 | 126.8462 |
0 | 160.2632 |
You can split a given data set into training set and test set by using datapartition(), you can specify the percentage to specify the size of trainset. For example you can split mtcars into 85 percent to train and 15 to test as shown below.
partition <- dataPartition(mtcars, 85)
partition is a list of length 2, which contains test and train sets.
knitr::kable(head(partition$Train))
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.150 | 22.90 | 1 | 0 | 4 | 2 |
Mazda RX4 Wag | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.780 | 18.00 | 0 | 0 | 3 | 3 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.070 | 17.40 | 0 | 0 | 3 | 3 |
Hornet Sportabout | 18.7 | 8 | 360.0 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 |
Pontiac Firebird | 19.2 | 8 | 400.0 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 |
knitr::kable(head(partition$Test))
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Hornet 4 Drive | 21.4 | 6 | 258.0 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
Valiant | 18.1 | 6 | 225.0 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 |
Cadillac Fleetwood | 10.4 | 8 | 472.0 | 205 | 2.93 | 5.250 | 17.98 | 0 | 0 | 3 | 4 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.90 | 1 | 1 | 5 | 2 |
Volvo 142E | 21.4 | 4 | 121.0 | 109 | 4.11 | 2.780 | 18.60 | 1 | 1 | 4 | 2 |
mod <- lm(formula = wt ~ ., data = mtcars)
mod
##
## Call:
## lm(formula = wt ~ ., data = mtcars)
##
## Coefficients:
## (Intercept) mpg cyl disp hp drat
## -0.230634 -0.041666 -0.057254 0.006685 -0.003230 -0.090083
## qsec vs am gear carb
## 0.199541 -0.066368 0.018445 -0.093508 0.248688
predictions <- predict(mod, mtcars[,-6])
get the metrics of regression model by using regressionModelmMetrics()
actials <- mtcars[,6]
x <- regressionModelMetrics(actuals = actials, predictions = predictions, model = mod)
y <- as.data.frame(x)
row.names(y) <- NULL
knitr::kable(y)
AIC | BIC | MAE | MSE | RMSE | MAPE | Corelation | r.squared | adj.r.squared |
---|---|---|---|---|---|---|---|---|
20.01 | 37.6 | 0.18 | 0.05 | 0.23 | 0.06 | 0.97 | 0.94 | 0.92 |