Package ‘shinyEventLogger’

February 22, 2019

Type Package
Title Logging Events in Shiny Apps
Version 0.1.1

Description Logging framework dedicated for complex shiny apps.
Different types of events can be logged
(value of a variable, multi-line output of a function,
result of a unit test, custom error, warning, or diagnostic message).
Each event can be logged with a list of parameters that are event-specific,
common for events within the same scope, session-specific, or app-wide.
Logging can be done simultaneously to R console,
browser JavaScript console, a file log, and a database (MongoDB).
Log data can be further analyzed with the help of process-mining techniques
from 'bupaR' package.

URL https://github.com/kalimu/shinyEventLogger#readme,

https://kalimu.github.io/project/shinyeventlogger/

BugReports https://github.com/kalimu/shinyEventLogger/issues
License MIT + file LICENSE

Encoding UTF-8

Language en-US

Imports shiny, jsonlite, mongolite, R.utils, utils, stringr, purrr,
bupaR

Suggests spelling, DiagrammeR, testthat, knitr, rmarkdown

LazyData true

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Kamil Wais [aut, cre] (<https://orcid.org/0000-0002-4062-055X>)
Maintainer Kamil Wais <kamil.wais@gmail.com>

Repository CRAN

Date/Publication 2019-02-22 10:20:03 UTC

https://github.com/kalimu/shinyEventLogger#readme
https://kalimu.github.io/project/shinyeventlogger/
https://github.com/kalimu/shinyEventLogger/issues

2

R topics documented:

Index

inspect_object L.
inspect_objects L.
log event
log_init L.
log_message
log output
log_params
log_started
log_test
log_value
purge_eventlog
read_eventlog
run_demo
set_logging
set_logging_session
shinyEventLogger

inspect_object

inspect_object

Copying objects to global environment

Description

Convenient wrapper for inspect_objects.

Usage

inspect_object(...)

Arguments

Named objects to be copy to the global environment. If there is only one un-
named object, its name in the global environment will be the same as the name

of the object passed to

inspect_objects 3

inspect_objects Copying objects to global environment

Description
With inspect_objects you can copy an object to the global environment for further debugging or
developing.

Usage

inspect_objects(...)

Arguments
Named objects to be copy to the global environment. If there is only one un-
named object, its name in the global environment will be the same as the name
of the object passed to

Examples

if (interactive()) {

set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
inspect_objects(mtcars)
inspect_objects(df1 = head(mtcars), df2 = head(iris))
3
)

log_event Logging an event

Description
log_event logs an event into R console, browser JavaScript console, file, or database depending on
user’s settings (see set_logging).

Usage

log_event(..., name = NULL, type = "EVENT", status = "FIRED",
params = NULL, event_counter = NULL)

4 log_init

Arguments
Objects that are evaluated, coerced into character string, collapsed and pasted
into log entry body (or header if name is NULL).
name A character string. The name of the event.
type A character string. A type of the event. Default is "EVENT".
status A character string. A status of the event. Default is "FIRED".
params A list of additional named event-specific parameters. Default is NULL.

event_counter An integer. The number of the event. Default is NULL which will be replaced by
the current value of the counter returned by the internal getter function get_event_counter.

See Also

set_logging for setting event logging, log_init for initialize JavaScript logging in shiny app,
log_params for setting scope-specific event parameters, read_eventlog for reading eventlog from
a file or a database.

Other logging events functions: log_message, log_output, log_started, log_test, log_value

Examples

if (interactive()) {
set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
log_event("Event 1")
log_event("Event 2 body”, name = "Event 2")
log_event("Event 3", type = "NewTYPE")
log_event("Event 4", status = "EXECUTED")
log_event("Event 5", event_counter = 123)

log_init Initialize logging to JavaScript console

Description
log_init should be put into the shiny ui to initialize JavaScript code that enables logging to
JavaScript console in an Internet browser.

Usage
log_init()

log_message 5

Value

A taglist with script tag inside head tag.

Examples

if (interactive()) {
set_logging(js_console = TRUE)
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
log_event("See browser JavaScript console (CTRL + SHIFT + I)")
}
)
}

log_message Logging a message

Description

log_message, log_warning, and log_error are wrapper functions for logging events of type
MESSAGE, WARNING, or ERROR. Relevant message, warning or error is raised after logging an event.
Raising an error is done using stop function and it can stop the whole shiny app.

Usage

log_message(...)
log_warning(...)

log_error(...)

Arguments
Objects that are evaluated, coerced into character string, collapsed and pasted
as event name into log entry header. The character string is also passed to the
message, warning, or error raised.

Functions

* log_message: Logging a message
* log_warning: Logging a warning
* log_error: Logging an error

See Also

Other logging events functions: log_event, log_output, log_started, log_test, log_value

6 log_output

Examples

if (interactive()) {
set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
log_message("Example of a message"”)
log_warning(”"Example of a warning”)
log_error("Example of an error”)
}
)
}

log_output Logging output of a function

Description

log_output logs output of a function into log entry body and uses deparsed function call as the

event name.
Usage
log_output(..., type = "OUTPUT", status = "FIRED", params = NULL)
Arguments
A function call that is evaluated, coerced into character string, collapsed and
pasted as multi-line text into log entry body. Deparsed function call is used as
the event name in log entry header.
type A character string. A type of the event. Default is "OUTPUT".
status A character string. A status of the event. Default is "FIRED".
params A list of additional named event-specific parameters. Default is NULL.
See Also

Other logging events functions: log_event, log_message, log_started, log_test, log_value

Examples

if (interactive()) {
set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
log_output (NROW(mtcars))

log_params 7

log_output(head(mtcars))
}
)

log_params Logging scope-specific parameters of events

Description

With log_params you can define a set of named parameters, which are common for events from
the same scope (for example inside an observer). These parameters will be added to event-specific
parameters and logged within the same log entry.

Usage
log_params(...)

Arguments
a set of named objects (usually of type character, numeric, or date) to be logged
as event parameters.
Details
The function takes all objects passed inside ... argument, evaluates them, and stores them in a

new environment called log_setting which is assigned to the parent environment from which the
log_params function was called.

See Also

Other setting up logging parameters functions: set_logging_session, set_logging

Examples

if (interactive()) {
set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
observe({
log_params("observer” = "A")
log_event("Event A.1")
log_event("Event A.2")
1))
observe({
log_params("”observer” = "B")

log_started

log_event("Event B.1")
log_event("Event B.2")

D

log_started

Logging the start of an event

Description

log_started logs an event with status "STARTED"”. log_done logs the same event with status
"DONE". Difference between timestamps of these two log entries can be used for timing an event.
One event can have several instances with different statuses. When logging instances of the same
event, event name or, if name = NULL, objects passed to ... must be exactly the same, as they are
used to create unique event id. Started events, their types and counters are registered in an environ-
ment called log_event_register, which enables creating and timing multiple nested events.

Usage

log_started(..., name = NULL, type = "EVENT"”, status = "STARTED",
params = NULL)

log_done(..., name = NULL, params = NULL)

Arguments

name

type

status

params

Functions

Objects that are evaluated, coerced into character string, collapsed and pasted
into log entry body (or header if name is NULL).

A character string. The name of the event.

A character string. A type of the event. Default for log_started is "EVENT".
The type logged with log_done is the same as the type of the event logged
with log_started.

A character string. A status of the event. Default for log_startedis "STARTED".
The status is always "DONE" when using log_done.

A list of additional named event-specific parameters. Default is NULL.

* log_started: Logging the start of an event

* log_done: Logging the end of an event

See Also

Other logging events functions: log_event, log_message, log_output, log_test, log_value

log_test 9

Examples

if (interactive()) {
set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
log_started(as.character(Sys.time()), name = "Event 1")
Sys.sleep(0.5)
log_started(as.character(Sys.time()), name = "Event 2")

log_event(as.character(Sys.time()), name = "Event 3")
Sys.sleep(0.5)
log_done(as.character(Sys.time()), name = "Event 2")
log_done(as.character(Sys.time()), name = "Event 1")
}
)
3
log_test Logging unit test
Description

log_test logs a unit test which can be built in inside a shiny app. The event logged has status
SUCCESS or ERROR if the unit test does not pass successfully. The error status is logged silently and
does not stops the shiny app from running by itself. The error message is logged in a log entry body.
Deparsed unit test function call is logged as an event name in a log entry header.

Usage
log_test(..., type = "TEST", params = NULL)
Arguments
An unit test function call that is evaluated and logged.
type A character string. A type of the event. Default for log_test is "TEST".
params A list of additional named event-specific parameters. Default is NULL.
See Also

Other logging events functions: log_event, log_message, log_output, log_started, log_value

10
Examples

if (interactive()) {
set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()
log_test(testthat::expect_true(TRUE))
log_test(testthat: :expect_true(FALSE))
}
)
}

log_value

log_value Logging value

Description

log_value logs value of an evaluated function into log entry body and uses deparsed function call

as the event name.

Usage

log_value(..., type = "VALUE", status = "FIRED", params

Arguments
A function call that is evaluated, the returned value is coerced into character
string, and pasted into log entry body. Deparsed function call is used as the
event name in log entry header.
type A character string. A type of the event. Default is "VALUE".
status A character string. A status of the event. Default is "FIRED".
params A list of additional named event-specific parameters. Default is NULL.
See Also

Other logging events functions: log_event, log_message, log_output, log_started, log_test

Examples

if (interactive()) {
set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session()

purge_eventlog 11

log_value(NROW(mtcars))
}
)

purge_eventlog Purging eventlog

Description

purge_eventlog removes obsolete event records based on selected criteria. Please be careful. If
you do not back up your eventlog, purging operation can be irreversible.

Usage

purge_eventlog(file = "events.log”, min_build = NULL)

Arguments
file A character string. Path to a file log.
min_build An integer. Minimum build version of the app that should be kept in the eventlog
after purging.
Examples

demo_filelog <- system.file("shiny"”, "demoapp/events.log",
package = "shinyEventLogger")

temp_file <- tempfile()

file_conn <- base::file(temp_file)
writeLines(readLines(con = demo_filelog), file_conn)
close(file_conn)

purge_eventlog(file = temp_file, min_build = 23)

12 read_eventlog

read_eventlog Reading eventlog

Description

read_eventlog reads eventlog stored in a file or in a database.

Usage

read_eventlog(file = NULL, db = NULL, last_n = Inf, verbose = TRUE)

Arguments
file A character string. Path to a file log.
db A character string. Connection string to a mongo database.
last_n An integer. How many last event records should be return? Default is Inf which
returns the whole eventlog.
verbose A logical value. Should the function print addition messages? Default is TRUE.
Value

An object of class eventlog which is a data frame with appropriate case, activity and timestamp
classifiers specified. The eventlog object is a result of bupaR:eventlog function from bupaR
package and it is suitable for further process-mining analysis.

See Also

purge_eventlog, run_demo.

Examples

read_eventlog(

last_n = 25,

file = system.file("shiny"”, "demoapp/events.log",
package = "shinyEventLogger"))

run_demo 13

run_demo Run demo shiny app

Description

run_demo runs demo shiny app which logs different types of events. run_demo_dashboard runs
demo shiny dashboard that allows for interactive analysis of events from demo app. The demo app
can be also run in background and events fired in the app can be seen immediately in the demo
dashboard.

Usage
run_demo(in_background = FALSE)

run_demo_dashboard()

Arguments

in_background A logical. If TRUE the demo shiny app is run in the background on port 5555.
Default is FALSE.

Functions

* run_demo: Run demo shiny app

* run_demo_dashboard: Run demo shiny dashboard

Examples

if (interactive()) {
run_demo(in_background = TRUE)
run_demo_dashboard()

}

set_logging Settings for event logging

Description

set_logging should be used outside ui and server functions, possibly in global.R, to be used
only once to define where the logging should be done. Events can be sent to R console, browser
JavaScript console, a eventlog file, or a database (or any combination of these). By default logging is
done to the R console and JavaScript console. set_logging also can be used to define global event
parameters - named objects passed to . . . that will be evaluated and added to lists of parameters of
all events.

14 set_logging

Usage
set_logging(r_console = TRUE, js_console = TRUE, file = FALSE,
database = FALSE, ...)
Arguments
r_console A logical. Should events be logged into R console? Default is TRUE.
js_console A logical. Should events be logged into browser JavaScript console? Default is
TRUE.
file A logical or a character string. Should events be logged to a file? Default is

FALSE. If TRUE the default eventlog filename is "events.log”. If character
string, path and name of the filelog.

database A logical or a character string. Should events be logged into a database? Default
is FALSE. If TRUE or "mongoDB" the connection URL to the database will be read
from the first line of a text file named " .db_url”.

a set of named objects (usually of type character, numeric, or date) to be logged
as parameters common to all events.

Details

set_logging assigns to the parent frame a new environment log_settings_global for storing
global event parameters. If database = TRUE additional database connection object named log_db
is assigned to the parent frame as well.

See Also

Other setting up logging parameters functions: log_params, set_logging_session

Examples

if (interactive()) {

set_logging(r_console = TRUE,
js_console = FALSE,
"param_1" = 1,
"param_2" = "A")

shiny: :shinyApp(
ui = shiny::fluidPage(),
server = function(input, output) {
set_logging_session()
log_event("Event with global params”)
}
)
3

set_logging_session 15

set_logging_session Session-specific settings for event logging

Description

set_logging_session should be used at the beginning of the shiny server function to define
session-specific event parameters. set_logging_session also sets event counter to 1.

Usage

set_logging_session(...)

Arguments

a set of named objects (usually of type character, numeric, or date) to be logged
as parameters common to all events.

Details

set_logging_session assigns to the parent frame new environment: log_settings_session for
storing session-specific event parameters and information about multiple instances of the same event
(see log_started).

See Also

Other setting up logging parameters functions: log_params, set_logging

Examples

if (interactive()) {

set_logging()
shiny: :shinyApp(
ui = shiny::fluidPage(log_init()),
server = function(input, output) {
set_logging_session(
session_id = shiny: :getDefaultReactiveDomain()$token
)
log_event(”"Event 1 with session parameter”)
log_event(”"Event 2 with session parameter”)
3
)

You can open app in the browser and duplicate tab to see different
unique session ids in event parameters.

}

16 shinyEventLogger

shinyEventLogger shinyEventLogger: Logging Events in Shiny Apps

Description

Logging framework dedicated for complex shiny apps. Different types of events can be logged
(value of a variable, multi-line output of a function, result of a unit test, custom error, warning, or
diagnostic message). Each event can be logged with a list of parameters that are event-specific,
common for events within the same scope, session-specific, or app-wide. Logging can be done
simultaneously to R console, browser JavaScript console, a file log, and a database (MongoDB).
Log data can be further analyzed with the help of process-mining techniques from "bupaR’ package.

Author(s)

Kamil Wais <kamil.wais@gmail.com>

See Also
Useful links:
* https://github.com/kalimu/shinyEventLogger#readme

e https://kalimu.github.io/project/shinyeventlogger/
* Report bugs at https://github.com/kalimu/shinyEventlLogger/issues

https://github.com/kalimu/shinyEventLogger#readme
https://kalimu.github.io/project/shinyeventlogger/
https://github.com/kalimu/shinyEventLogger/issues

Index

bupaR:eventlog, 12

inspect_object, 2
inspect_objects, 2, 3

log_done (log_started), 8
log_error (log_message), 5
log_event, 3, 5, 6, 810
log_init, 4,4
log_message, 4, 5, 6, 8—10
log_output, 4, 5, 6, 8—10
log_params, 4,7, 14, 15
log_started, 4-6, 8,9, 10, 15
log_test, 4-6, 8,9, 10
log_value, 4-6, 8, 9, 10
log_warning (log_message), 5

purge_eventlog, 11, 12

read_eventlog, 4, 12
run_demo, /2, 13
run_demo_dashboard (run_demo), 13

set_logging, 3,4,7,13, 15
set_logging_session, 7, 14, 15
shinyEventLogger, 16
shinyEventLogger-package

(shinyEventLogger), 16
stop, 5

17

	inspect_object
	inspect_objects
	log_event
	log_init
	log_message
	log_output
	log_params
	log_started
	log_test
	log_value
	purge_eventlog
	read_eventlog
	run_demo
	set_logging
	set_logging_session
	shinyEventLogger
	Index

