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shadow: R Package for Geometric

Shadow Calculations in an Urban

Environment
by Michael Dorman, Evyatar Erell, Adi Vulkan, Itai Kloog

Abstract This paper introduces the shadow package for R. The package provides functions for shadow-
related calculations in the urban environment, namely shadow height, shadow footprint and Sky
View Factor (SVF) calculations, as well as a wrapper function to estimate solar radiation while taking
shadow effects into account. All functions operate on a layer of polygons with a height attribute,
also known as “extruded polygons” or 2.5D vector data. Such data are associated with accuracy
limitations in representing urban environments. However, unlike 3D models, polygonal layers of
building outlines along with their height are abundantly available and their processing does not
require specialized closed-source 3D software. The present package thus brings spatio-temporal
shadow, SVF and solar radiation calculation capabilities to the open-source spatial analysis workflow
in R. Package functionality is demonstrated using small reproducible examples for each function.
Wider potential use cases include urban environment applications such as evaluation of micro-climatic
influence for urban planning, studying urban climatic comfort and estimating photovoltaic energy
production potential.

Introduction

Spatial analysis of the urban environment (Biljecki et al., 2015) frequently requires estimating whether
a given point is shaded or not, given a representation of spatial obstacles (e.g. buildings) and a
time-stamp with its associated solar position. For example, we may be interested in -

• Calculating the amount of time a given roof or facade is shaded, to determine the utility of
installing photovoltaic cells for electricity production (e.g. Redweik et al., 2013).

• Calculating shadow footprint on vegetated areas, to determine the expected influence of a tall
new building on the surrounding microclimate (e.g. Bourbia and Boucheriba, 2010).

Such calculations are usually carried out using GIS-based models (Freitas et al., 2015), in either
vector-based 3D or raster-based 2.5D settings. Both approaches have their advantages and limitations,
as discussed in the following paragraphs.

Shadow calculations on vector-based 3D models of the urban environment are mostly restricted to
proprietary closed-source software such as ArcGIS (ESRI, 2017) or SketchUp (Google, 2017), though
recently some open-source models such as SURFSUN3D have been developed (Liang et al., 2015).
One of the drawbacks of using closed-source software in this context is the difficulty of adjusting the
software for specific needs and uncommon scenarios. This problem is especially acute in research
settings, where flexibility and extensibility are essential for exploring new computational approaches.
The other difficulty with using 3D software in urban spatial analysis concerns interoperability of
file formats. Since ordinary vector spatial data formats, such as the ESRI Shapefile, cannot represent
three-dimensional surfaces, 3D software is associated with specialized file formats. The latter cannot
be readily imported to a general-purpose geocomputational environment such as R or Python (Van
Rossum and Drake, 2011), thus fragmenting the analysis workflow. Moreover, most 3D software, such
as those mentioned above, are design-oriented, thus providing advanced visualization capabilities
but limited quantitative tools (calculating areas, angles, coordinates, etc.). Finally, true-3D databases
of large urban areas are difficult to obtain, while vector-based 2.5D databases (building outline and
height, see below) are almost universal. The advantages of true-3D software are “wasted” when
the input data are 2.5D, while the disadvantages, such as lack of quantitative procedures and data
interoperability difficulties, still remain.

Raster-based 2.5D solutions, operating on a Digital Elevation Model (DEM) raster, are much
simpler and have thus been more widely implemented in various software for several decades (Kumar
et al., 1997; Ratti and Richens, 2004). For example, raster-based shadow calculations are available in
open-source software such as the r.sun command (Hofierka and Suri, 2002) in GRASS GIS (GRASS
Development Team, 2017), the UMEP plugin (Lindberg et al., 2018) for QGIS (QGIS Development
Team, 2017) and package insol (Corripio, 2014) in R. In the proprietary ArcGIS software, raster-based
shadow calculations are provided through the Solar Analyst extension (Fu and Rich, 1999). Thanks
to this variety of tools, raster-based shadow modelling can be easily incorporated within a general
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spatial analysis workflow. However, raster-based models are more suitable for large-scale analysis of
natural terrain, rather than fine-scale urban environments, for the following reasons -

• A raster representing surface elevation, known as a DEM, at sufficiently high resolution for
the urban context, may not be available and is expensive to produce, e.g. using airborne Light
Detection And Ranging (LiDAR) surveys (e.g. Redweik et al., 2013). Much more commonly,
municipalities and other sources such as OpenStreetMap (Haklay and Weber, 2008) offer 2.5D
vector-based data on cities, i.e. polygonal layers of building outlines associated with height
attributes.

• Rasters are composed of pixels, which have no natural association to specific urban elements,
such as an individual building, thus making it more difficult to associate analysis results with
the corresponding urban elements.

• Vertical surfaces, such as building facades, are rare in natural terrain yet very common in
urban environments. Raster-based representation of facades is problematic since the latter
correspond to (vertical) discontinuities in the 2.5D digital elevation model, requiring unintuitive
workarounds (Redweik et al., 2013).

It should be noted that more specialized approaches have been recently developed to address
some of the above-mentioned difficulties, but they are usually not available as software packages (e.g.
Redweik et al., 2013; Hofierka and Zlocha, 2012).

The shadow package (Dorman, 2019) aims at addressing these limitations by introducing a simple
2.5D vector-based algorithm for calculating shadows, Sky View Factor (SVF) and solar radiation
estimates in the urban environment. The algorithms operate on a polygonal layer extruded to 2.5D,
also known as Levels-of-Detail (LoD) 1 in the terminology of the CityGML standard (Gröger and Plümer,
2012). On the one hand, the advantages of individual urban element representation (over raster-based
approach) and input data availability (over both raster-based and full 3D approaches) are maintained.
On the other hand, the drawbacks of closed-source software and difficult interoperability (as opposed
to full 3D environment) are avoided.

As demonstrated below, functions in the shadow package operate on a vector layer of obstacle
outlines (e.g. buildings) along with their heights, passed as a "SpatialPolygonsDataFrame" object
defined in package sp (Bivand et al., 2013; Pebesma and Bivand, 2005). The latter makes incorporating
shadow calculations in Spatial analysis workflow in R straightforward. Functions to calculate shadow
height, shadow ground footprint, Sky View Factor (SVF) and solar radiation are implemented in the
package.

Theory

Shadow height

All functions currently included in package shadow are based on trigonometric relations in the triangle
defined by the sun’s rays, the ground - or a plane parallel to the ground - and an obstacle.

For example, shadow height at any given ground point can be calculated based on (1) sun
elevation, (2) the height of the building(s) that stand in the way of sun rays and (3) the distance(s)
between the queried point and the building(s) along the sun rays projection on the ground. Figure 1
depicts a scenario where shadow is being cast by building A onto the facade of building B, given the
solar position defined by its elevation angle αelev and azimuth angle αaz. Once the intersection point is
identified (marked with x in Figure 1), shadow height (hshadow) at the queried point (viewer) can be
calculated based on (1) sun elevation (αelev), (2) the height of building A (hbuild) and (3) the distance
(dist1) between the viewer and intersection point x (Equation 1).

hshadow = hbuild − dist1 · tan(αelev) (1)

The latter approach can be extended to the general case of shadow height calculation at any ground
location and given any configuration of obstacles. For example, if there is more than one obstacle
potentially casting shadow on the queried location, we can calculate hshadow for each obstacle and then
take the maximum value.

Logical shadow flag

Once the shadow height is determined, we may evaluate whether any given 3D point is in shadow
or not. This is done simply by comparing the Z-coordinate (i.e. height) of the queried point with the
calculated shadow height at the same X-Y (i.e. ground) location.
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Figure 1: Shadow height calculation

Shadow footprint

Instead of calculating shadow height at a pre-specified point (e.g. the viewer in Figure 1), we can set
hshadow to zero and calculate the distance (dist2) where the shadow intersects ground level (Equation
2).

dist2 =
hbuild

tan(αelev)
(2)

Shifting the obstacle outline by the resulting distance (dist2) in a direction opposite to sun azimuth
(αaz) yields a shadow footprint outline (Weisthal, 2014). Shadow footprints are useful to calculate the
exact ground area that is shaded at specific time. For example, Figure 2 shows the shadow footprints
produced by a single building at different times of a given day.
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Figure 2: Shadow footprints cast by a building on a horizontal ground surface at hourly intervals on
2004-06-24. The building, indicated by the gray shaded area, is located at 31.97°N 34.78°E, and is 21.38
meters tall
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Figure 3: Sky View factor calculation

Figure 4: Angular cross sections for calculating the Sky View Factor (SVF)

Sky View Factor (SVF)

The Sky View Factor (Beckers, 2013; Erell et al., 2011; Grimmond et al., 2001) is the extent of sky
observed from a point as a proportion of the entire sky hemisphere. The SVF can be calculated based
on the maximal angles (β) formed in triangles defined by the queried location and the obstacles (Figure
3), evaluated in multiple circular cross-sections surrounding the queried location. Once the maximal
angle βi is determined for a given angular section i, SVFi for that particular section is defined (Gál
and Unger, 2014) in Equation 3.

SVFi = 1 − sin2(βi) (3)

For example, in case (βi = 45◦), as depicted in Figure 3, SVFi is equal to -

SVFi = 1 − sin2(45◦) = 0.5

Averaging SVFi values for all i = 1, 2, ..., n circular cross-sections gives the final SVF estimate for
the queried location (Equation 4).

SVF =
∑

n
i=1 SVFi

n
(4)

The number of evaluated cross sections depends on the chosen angular resolution. For example,
an angular resolution of 5◦ means the number of cross sections is n = 360◦/5◦ = 72 (Figure 4).
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Solar radiation

Components

Frequently, evaluating whether a given location is shaded, and when, is just a first step towards
evaluating the amount of solar radiation for a given period of time. The annual insolation at a given
point is naturally affected by the degree of shading throughout the year, but shading is not the only
factor.

The three components of the solar radiation are the direct, diffuse and reflected radiation -

• Direct radiation refers to solar radiation traveling on a straight line from the sun to the surface
of the earth. Direct radiation can be estimated by taking into account: (1) shading, (2) surface
orientation relatively to the sun, and (3) meteorological measurements of direct radiation on a
horizontal plane or on a plane normal to the beam of sunlight.

• Diffuse radiation refers to solar radiation reaching the Earth’s surface after having been scat-
tered from the direct solar beam by molecules or particulates in the atmosphere. Diffuse
radiation can be estimated by taking into account: (1) SVF, and (2) meteorological measurements
of diffuse radiation at an exposed location.

• Reflected radiation refers to the sunlight that has been reflected off non-atmospheric obstacles
such as ground surface cover or buildings. Most urban surfaces have a low albedo: asphalt
reflects only 5-10 percent of incident solar radiation, brick and masonry 20-30 percent, and
vegetation about 20 percent. Because a dense urban neighborhood will typically experience
multiple reflections, an iterative process is required for a complete analysis. Calculating re-
flected radiation requires taking into account reflective properties of the various surfaces, their
geometrical arrangement (Givoni, 1998) and their view factors from the receiving surface, which
is beyond the scope of the shadow package.

The diffuse radiation component is the dominant one on overcast days, when most radiation is
scattered, while the direct radiation component is dominant under clear sky conditions when direct
radiation reaches the earth’s surface.

Direct Normal Irradiance

Equation 5 specifies the Coefficient of Direct Normal Irradiance for a vertical facade surface, as
function of solar position given by the difference between facade azimuth and sun azimuth angles,
and sun elevation angle, at time t.

θ f acade,t = cos(αaz,t − α′az) · cos(αelev,t) (5)

In Equation 5, θ f acade,t is the Coefficient of Direct Normal Irradiance on a facade at time t, αaz,t is

the sun azimuth angle at time t (see Figure 1), α′az is the facade azimuth angle, i.e. the direction where
the facade is facing, and αelev,t is sun elevation angle at time t (see Figure 1). Note that all of latter
variables, with the exception of facade azimuth angle α′az, are specific for the time interval t due to the
variation in solar position.

Horizontal roof surfaces, unlike facades, are not tilted towards any particular azimuth1. Equation
5 thus simplifies to Equation 6 when referring to a roof, rather than a facade, surface.

θroo f ,t = cos(90◦ − αelev,t) (6)

Figure 5 demonstrates the relation given in Equations 5 and 6 for the entire relevant range of
solar positions relative to facade or roof orientation. Again, note that for roof surfaces, the θroo f ,t

coefficient is only dependent on sun elevation angle αelev,t (Equation 6) as illustrated on the right panel
of Figure 5. (The code for producing Figure 5 can be found in the help page of function coefDirect

from shadow).

For example, the left panel in Figure 5 shows that maximal proportion of incoming solar radiation
(i.e. θ f acade,t = 1) on a facade surface is attained when facade azimuth is equal to sun azimuth and
sun elevation is 0 (αelev,t = 0◦, i.e. facade directly facing the sun). Similarly, the right panel shows that
maximal proportion of solar radiation on a roof surface (i.e. θroo f ,t = 1) is attained when the sun is at
the zenith (αelev,t = 90◦, i.e. sun directly above the roof).

Once the Coefficient of Direct Normal Irradiance θ f acade,t or θroo f ,t is determined, the Direct Normal
Irradiance meteorological measurement raddirect,t referring to the same time interval t, usually on an

1It should be noted that roof surfaces may be pitched rather than horizontal; however 2.5D models, which
shadow supports, can only represent horizontal roofs
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Figure 5: Coefficient of Direct Normal Irradiance, as function of solar position, expressed as the
difference between facade and sun azimuths (X-axis) and sun elevation (Y-axis). The left panel refers
to a facade, the right panel refers to a roof. Note that a horizontal roof has no azimuth, thus the X-axis
is irrelevant for the right panel and only shown for uniformity

hourly time step, is multiplied by the coefficient at a point on the building surface to give the local
irradiation at that point (Equation 7). The result rad′direct,t is the corrected Direct Irradiance the surface
receives given its orientation relative to the solar position.

rad′direct,t = θt · raddirect,t (7)

Both raddirect,t and rad′direct,t, as well as raddi f f use,t, rad′di f f use,t (Equation 8) and rad′total (Equation

9) (see below), are given for each time interval t in units of power per unit area, such as kWh/m2.

Diffuse Horizontal Irradiance

Moving on to discussing the second component in the radiation balance, the diffuse irradiance. Diffuse
irradiance is given by the meteorological measurement of Diffuse Horizontal Irradiance raddi f f use,t,
which needs to be corrected for the specific proportion of viewed sky given surrounding obstacles
expressed by SVF. Assuming isotropic contribution (Freitas et al., 2015), rad′di f f use,t is the corrected

diffuse irradiance the surface receives (Equation 8). Note that SVF is unrelated to solar position; it is
a function of the given configuration of the queried location and surrounding obstacles, and is thus
invariable for all time intervals t.

rad′di f f use,t = SVF · raddi f f use,t (8)

Total irradiance

Finally, the direct and diffuse radiation estimates are summed for all time intervals t to obtain the
total (e.g. annual) insolation for the given surface rad′total (Equation 9). The sum refers to n intervals
t = 1, 2, ..., n, commonly n = 24 × 365 = 8, 760 when referring to an annual radiation estimate using
an hourly time step.

rad′total =
n

∑
t=1

rad′direct,t +
n

∑
t=1

rad′di f f use,t (9)

Package structure

The shadow package contains four “low-level” functions, one “high-level” function, and several
“helper functions”.

The “low-level” functions calculate distinct aspects of shading, and the SVF -

• shadowHeight - Calculates shadow height

• inShadow - Determines a logical shadow flag (in shadow or not)

• shadowFootprint - Calculates shadow footprint

• SVF - Calculates the SVF
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Function Location Obstacles Sun Pos. Output

shadowHeight Points (2D) / Raster Polygons Matrix Numeric matrix / Raster
inShadow Points (2D/3D) / Raster Polygons Matrix Logical matrix / Raster
shadowFootprint - Polygons Matrix Polygons
SVF Points (2D/3D) / Raster Polygons - Numeric vector / Raster

Table 1: Inputs and outputs for main functions in package shadow

Table 1 gives a summary of the (main) input and output object types for each of the “low-level”
functions. The following list clarifies the exact object classes referenced in the table -

• The queried locations points (e.g. the viewer point in Figure 1) can be specified in several ways.
Points ("SpatialPoints*") can be either 2D, specifying ground locations, or 3D2 - specifying
any location on the ground or above ground. Alternatively, a raster ("Raster*") can be used to
specify a regular grid of ground locations. Note that the shadow height calculation only makes
sense for ground locations, as height above ground is what the function calculates, so it is not
applicable for 3D points

• The obstacle polygons are specified as a "SpatialPolygonsDataFrame" object having a height
attribute ("extrusion" height) given in the same units as the layer Coordinate Reference System
(CRS), usually meters. Geographic coordinates (long/lat) are not allowed because these units
are meaningless for specifying height

• Solar position matrix is given as a "matrix" object, where the first column specifies sun azimuth
angle and the second column specifies sun elevation angle. Both angles should be given in
decimal degrees, where -

– sun azimuth (e.g. αaz in Figure 1) is measured clockwise relative to North, i.e North = 0◦,
East = 90◦, South = 180◦, West = 270◦

– sun elevation (e.g. αelev in Figure 1) is measured relatively to a horizontal surface, i.e. sun
on the horizon = 0◦, sun at its zenith = 90◦

• The output of shadowHeight and inShadow is a numeric or logical "matrix", respectively, where
rows represent locations and columns represent solar positions. The output of shadowFootprint
is a polygonal layer of footprints. The output of SVF is a numeric vector where values correspond
to locations. All functions that can accept a raster of ground locations return a corresponding
raster of computed values

The “high-level” function radiation is a wrapper around inShadow and SVF for calculating direct
and diffuse solar radiation on the obstacle surface area (i.e. building roofs and facades). In addition
to the geometric layers and solar positions, this function also requires meteorological measurements
of direct and diffuse radiation at an unobstructed weather station. The shadow package provides a
sample Typical Meteorological Year (TMY) dataset tmy to illustrate the usage of the radiation function
(see below). Similar TMY datasets were generated for many areas (e.g. Pusat et al., 2015) and are
generally available from meteorological agencies, or from databases for building energy simulation
such as EnergyPlus (?).

Finally, the shadow package provides several “helper functions” which are used internally by
“low-level” and “high-level” functions, but can also be used independently -

• classifyAz - Determines the azimuth where the perpendicular of a line segment is facing; used
internally to classify facade azimuth

• coefDirect - Calculates the Coefficient of Direct Normal Irradiance reduction (Equations 5 and
6)

• plotGrid - Makes an interactive plot of 3D spatial points. This is a wrapper around scatterplot3js

from package threejs (Lewis, 2017)

• ray - Creates a spatial line between two given points

• shiftAz - Shifts spatial features by azimuth and distance

• surfaceGrid - Creates a 3D point layer with a grid which covers the facades and roofs of
obstacles

• toSeg - Splits polygons or lines to segments

The following section provides a manual for using these functions through a simple example with
four buildings.

2The third dimension of 3D points has to be specified using three-dimensional coordinates, rather than a "height"
attribute in a 2D point layer (see Examples section)
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Figure 6: Sample data: a buildings layer and a green park layer. Text labels express building height in
meters.

Examples

In this section we demonstrate the main functionality of shadow, namely calculating -

• Shadow height (function shadowHeight)

• Logical shadow flag (function inShadow)

• Shadow footprint (function shadowFootprint)

• Sky View Factor (function SVF)

• Solar radiation (function radiation)

Before going into the examples, we load the shadow package. Package sp is loaded automatically
along with shadow. Packages raster (Hijmans, 2017) and rgeos (Bivand and Rundel, 2017) are used
throughout the following code examples for preparing the inputs and presenting the results, so they
are loaded as well.

> library(shadow)

> library(raster)

> library(rgeos)

In the examples, we will use a small real-life dataset representing four buildings in Rishon-Le-Zion,
Israel (Figure 6), provided with package shadow and named build.

The following code section also creates a hypothetical circular green park located 20 meters to the
north and 8 meters to the west from the buildings layer centroid (hereby named park).

> location = gCentroid(build)

> park_location = shift(location, y = 20, x = -8)

> park = gBuffer(park_location, width = 12)

The following expressions visualize the build and park layers as shown in Figure 6. Note that
the build layer has an attribute named BLDG_HT specifying the height of each building (in meters), as
shown using text labels on top of each building outline.

> plot(build, col = "lightgrey")

> text(gCentroid(build, byid = TRUE), build$BLDG_HT)

> plot(park, col = "lightgreen", add = TRUE)

Shadow height

The shadowHeight function calculates shadow height(s) at the specified point location(s), given a layer
of obstacles and solar position(s). The shadowHeight function, as well as other functions that require a
solar position argument such as inShadow, shadowFootprint and radiation (see below), alternatively
accept a time argument instead of the solar position. In case a time (time) argument is passed instead
of solar position (solar_pos), the function internally calculates solar position using the lon/lat of
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the location layer centroid and the specified time, using function solarpos from package maptools
(Bivand and Lewin-Koh, 2017).

In the following example, we would like to calculate shadow height at the centroid of the buildings
layer (build) on 2004-12-24 at 13:30:00. First we create the queried points layer (location), in this case
consisting of a single point: the build layer centroid. This is our layer of locations where we would
like to calculate shadow height.

> location = gCentroid(build)

Next we need to specify the solar position, i.e. sun elevation and azimuth, at the particular time
and location (31.967°N 34.777°E), or let the function calculate it automatically based on the time. Using
the former option, we can figure out solar position using function solarpos from package maptools.
To do that, we first define a "POSIXct" object specifying the time we are interested in -

> time = as.POSIXct(

+ x = "2004-12-24 13:30:00",

+ tz = "Asia/Jerusalem"

+ )

Second, we find the longitude and latitude of the point by reprojecting it to a geographic CRS3.

> location_geo = spTransform(

+ x = location,

+ CRSobj = "+proj=longlat +datum=WGS84"

+ )

Finally, we use the solarpos function to find solar position, given longitude, latitude and time -

> library(maptools)

> solar_pos = solarpos(

+ crds = location_geo,

+ dateTime = time

+ )

We now know the sun azimuth (208.7°) and elevation (28.8°) -

> solar_pos

#> [,1] [,2]

#> [1,] 208.7333 28.79944

Given the solar position along with the layer of obstacles build, shadow height in location can
be calculated using the shadowHeight function, as follows -

> h = shadowHeight(

+ location = location,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ solar_pos = solar_pos

+ )

The resulting object contains the shadow height value of 19.86 meters -

> h

#> [,1]

#> [1,] 19.86451

The second (shorter) approach is letting the function calculate solar position for us, in which case
we can pass just the spatial layers and the time, without needing to calculate solar position ourselves -

> shadowHeight(

+ location = location,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ time = time

+ )

3Note that calculating solar position is the only example where lon/lat coordinates are needed when working
with shadow. All other spatial inputs are required to be passed in a projected CRS, due to the fact that obstacles
height is meaningless to specify in lon/lat degree units
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Figure 7: Shadow height (m) at a single point (indicated by black + symbol)

#> [,1]

#> [1,] 19.86451

The results of both approaches are identical. The first approach, where solar position is manually
defined, takes more work and thus may appear unnecessary. However, it is useful for situations when
we want to use specific solar positions from an external data source, or to evaluate arbitrary solar
positions that cannot be observed in the queried location in real life.

Either way, the resulting object h is a "matrix", though in this case it only has a single row and a
single column. The shadowHeight function accepts location layers with more than one point, in which
case the resulting "matrix" will have additional rows. It also accepts more than one solar position or
time value (see below), in which case the resulting "matrix" will have additional columns. It is thus
possible to obtain a matrix of shadow height values for a set of locations in a set of times.

Figure 7 illustrates how the shadow height calculation was carried out. First, a line of sight is
drawn between the point of interest and the sun direction based on sun azimuth (shown as a yellow
line). Next, potential intersections are detected (marked with + symbols). Finally, shadow height
induced by each intersection is calculated based on the distance towards intersection, sun elevation
and intersected building height (see Figure 1). The final result is the maximum of the per-intersection
heights.

The procedure can be readily expanded to calculate a continuous surface of shadow heights, as the
shadowHeight function also accepts "Raster*" objects (package raster). The raster serves as a template,
defining the grid where shadow height values will be calculated. For example, in the following code
section we create such a template raster covering the examined area plus a 50-meter buffer on all sides,
with a spatial resolution of 2 meters -

> ext = as(extent(build) + 50, "SpatialPolygons")

> r = raster(ext, res = 2)

> proj4string(r) = proj4string(build)

Now we can calculate a shadow height raster by simply replacing the location argument with
the raster r -

> height_surface = shadowHeight(

+ location = r,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ solar_pos = solar_pos,

+ parallel = 5

+ )

The result (height_surface), in this case, is not a matrix - it is a shadow height surface (a
"RasterLayer" object) of the same spatial dimensions as the input template r. Note that unshaded
pixels get an NA shadow height value, thus plotted in white (Figure 8). Also note the partial shadow on
the roof of the north-eastern building (top-right) caused by the neighboring building to the south-west.
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The additional parallel=5 argument splits the calculation of raster cells among 5 processor cores,
thus making it faster. A different number can be specified, depending the number of available cores.
Behind the scenes, parallel processing relies on the parallel package (R Core Team, 2018).

Shadow (logical)

Function shadowHeight, introduced in the previous section, calculates shadow height for a given ground
location. In practice, the metric of interest is very often whether a given 3D location is in shade or not.
Such a logical flag can be determined by comparing the Z-coordinate (i.e. the height) of the queried
point with the calculated shadow height at the same X-Y location. The inShadow function is a wrapper
around shadowHeight for doing that.

The inShadow function gives the logical shadow/non-shadow classification for a set of 3D points.
The function basically calculates shadow height for a given unique ground location (X-Y), then
compares it with the elevation (Z) of all points in that location. The points which are positioned
“above” the shadow are considered non-shaded (receiving the value of FALSE), while the points which
are positioned “below” the shadow are considered shaded (receiving the value of TRUE).

The 3D points we are interested in when doing urban analysis are usually located on the surface of
elements such as buildings. The surfaceGrid helper function can be used to automatically generate
a grid of such surface points. The inputs for this function include the obstacle layer for which to
generate a surface grid and the required grid resolution. The returned object is a 3D point layer.

For example, the following expression calculates a 3D point layer named grid covering the build

surface at a resolution of 2 meters -

> grid = surfaceGrid(

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ res = 2

+ )

The resulting grid points are associated with all attributes of the original obstacles each surface
point corresponds to, as well as six new attributes -

• obs_id - Unique consecutive ID for each feature in obstacles

• type - Either "facade" or "roof"
• seg_id - Unique consecutive ID for each facade segment (only for “facade” points)
• xy_id - Unique consecutive ID for each ground location (only for “facade” points)
• facade_az - The azimuth of the corresponding facade, in decimal degrees (only for “facade”

points)

In this case, the resulting 3D point grid has 2,693 features, starting with "roof" points -
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> head(grid)

#> build_id BLDG_HT obs_id type seg_id xy_id facade_az

#> 1 722 22.49 3 roof NA NA NA

#> 2 722 22.49 3 roof NA NA NA

#> 3 722 22.49 3 roof NA NA NA

#> 4 722 22.49 3 roof NA NA NA

#> 5 722 22.49 3 roof NA NA NA

#> 6 722 22.49 3 roof NA NA NA

Then going through the "facade" points -

> tail(grid)

#> build_id BLDG_HT obs_id type seg_id xy_id facade_az

#> 19610 831 19.07 4 facade 74 44 100.2650

#> 19710 831 19.07 4 facade 75 45 123.6695

#> 19810 831 19.07 4 facade 75 46 123.6695

#> 19910 831 19.07 4 facade 75 47 123.6695

#> 20010 831 19.07 4 facade 75 48 123.6695

#> 20110 831 19.07 4 facade 75 49 123.6695

Printing the coordinates confirms that, indeed, grid is a 3D point layer having three-dimensional
coordinates where the third dimension h represents height above ground -

> head(coordinates(grid))

#> x1 x2 h

#> 1 667882.9 3538086 22.5

#> 2 667884.9 3538086 22.5

#> 3 667886.9 3538086 22.5

#> 4 667888.9 3538086 22.5

#> 5 667890.9 3538086 22.5

#> 6 667892.9 3538086 22.5

Once the 3D grid is available, we can evaluate whether each point is in shadow or not, at the
specified solar position(s), using the inShadow wrapper function -

> s = inShadow(

+ location = grid,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ solar_pos = solar_pos

+ )

The resulting object s is a "logical" matrix with rows corresponding to the grid features and
columns corresponding to the solar positions. In this particular case a single solar position was
evaluated, thus the matrix has just one column -

> dim(s)

#> [1] 2693 1

The scatter3D function from package plot3D (Soetaert, 2017) is useful for visualizing the result.
In the following code section, we use two separate scatter3D function calls to plot the grid with both
variably colored filled circles (yellow or grey) and constantly colored (black) outlines.

> library(plot3D)

> scatter3D(

+ x = coordinates(grid)[, 1],

+ y = coordinates(grid)[, 2],

+ z = coordinates(grid)[, 3],

+ theta = 55,

+ colvar = s[, 1],

+ col = c("yellow", "grey"),

+ pch = 16,

+ scale = FALSE,
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Figure 9: Buildings surface points in shadow (grey) and in direct sunlight (yellow) on 2004-12-24
13:30:00

+ colkey = FALSE,

+ cex = 1.1

+ )

> scatter3D(

+ x = coordinates(grid)[, 1],

+ y = coordinates(grid)[, 2],

+ z = coordinates(grid)[, 3],

+ theta = 55,

+ col = "black",

+ pch = 1,

+ lwd = 0.1,

+ scale = FALSE,

+ colkey = FALSE,

+ cex = 1.1,

+ add = TRUE

+ )

The output is shown in Figure 9. It shows the 3D grid points, along with the inShadow classification
encoded as point color: grey for shaded surfaces, yellow for sun-exposed surfaces.

Shadow footprint

The shadowFootprint function calculates the geometry of shadow projection on the ground. The
resulting footprint layer can be used for various applications. For example, a shadow footprint layer
can be used to calculate the proportion of shaded surface in a defined area, or to examine which
obstacles are responsible for shading a given urban element.

In the following example, the shadowFootprint function is used to determine the extent of shading
on the hypothetical green park (Figure 6) at different times of day. First, let us consider a single time
instance of 2004-06-24 09:30:00. At this particular time and geographical location, the solar position is
at an azimuth of 88.8° and at an elevation of 46.7° -

> time2 = as.POSIXct(

+ x = "2004-06-24 09:30:00",

+ tz = "Asia/Jerusalem"

+ )

> solar_pos2 = solarpos(

+ crds = location_geo,
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Figure 10: Shaded park proportion on 2004-06-24 09:30:00

+ dateTime = time2

+ )

> solar_pos2

#> [,1] [,2]

#> [1,] 88.83113 46.724

The following expression calculates the shadow footprint for this particular solar position.

> footprint = shadowFootprint(

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ solar_pos = solar_pos2

+ )

The resulting object footprint is a polygonal layer ("SpatialPolygonsDataFrame" object) which
can be readily used in other spatial calculations. For example, the footprint and park polygons can be
intersected to calculate the proportion of shaded park area within total park area, as follows.

> park_shadow = gIntersection(park, footprint)

> shade_prop = gArea(park_shadow) / gArea(park)

> shade_prop

#> [1] 0.3447709

The numeric result shade_prop gives the proportion of shaded park area, 0.34 in this case (Figure
10).

The shadow footprint calculation can also be repeated for a sequence of times, rather than a single
one, to monitor the daily (monthly, annual, etc.) course of shaded park area proportion. To do that, we
first need to prepare the set of solar positions in the evaluated dates/times. Again, this can be done
using function solarpos. For example, the following code creates a matrix named solar_pos_seq

containing solar positions over the 2004-06-24 at hourly intervals -

> time_seq = seq(

+ from = as.POSIXct("2004-06-24 03:30:00", tz = "Asia/Jerusalem"),

+ to = as.POSIXct("2004-06-24 22:30:00", tz = "Asia/Jerusalem"),

+ by = "1 hour"

+ )

> solar_pos_seq = solarpos(

+ crds = location_geo,

+ dateTime = time_seq

+ )

Note that the choice of an hourly interval is arbitrary. Shorter intervals (e.g. 30 mins) can be used
for increased accuracy.

To calculate the shaded park proportion at each time step we can loop over the solar_pos_seq

matrix, each time -

• Calculating shadow footprint
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Figure 11: Shaded park proportion at each hourly time step on 2004-06-24

• Intersecting the shadow footprint with the park outline

• Calculating the ratio of intersection and total park area

The code of such a for loop is given below.

> shadow_props = rep(NA, nrow(solar_pos_seq))

> for(i in 1:nrow(solar_pos_seq)) {

+ if(solar_pos_seq[i, 2] < 0) shadow_props[i] = 1 else {

+ footprint =

+ shadowFootprint(

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ solar_pos = solar_pos_seq[i, , drop = FALSE]

+ )

+ park_shadow = gIntersection(park, footprint)

+ if(is.null(park_shadow))

+ shadow_props[i] = 0

+ else

+ shadow_props[i] = gArea(park_shadow) / gArea(park)

+ }

+ }

The loop creates a numeric vector named shadow_props. This vector contains shaded propor-
tions for the park in agreement with the times we specified in time_seq. Note that two conditional
statements are being used to deal with special cases -

• Shadow proportion is set to 1 (i.e. maximal) when sun is below the horizon

• Shadow proportion is set to 0 (i.e. minimal) when no intersections are detected between the
park and the shadow footprint

Plotting shadow_props as function of time_seq (Figure 11) summarizes the daily course of shaded
park proportion on the 2004-06-24. The individual value of 0.34 which we have calculated for 09:30 in
the previous example (Figure 10) is highlighted in red.

Sky View Factor

The SVF function can be used to estimate the SVF at any 3D point location. For example, the following
expression calculates the SVF on the ground4 at the centroid of the build layer (Figure 4).

> s = SVF(

+ location = location,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT"

+ )

The resulting SVF is 0.396, meaning that about 39.6% of the sky area are visible (Figure 12) from
this particular location.

4Recall (Table 1) that the inShadow and SVF functions accept either 2D or 3D points, whereas 2D points are
treated as ground locations
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+ symbol at the center of the image)

> s

#> [1] 0.3959721

Note that the SVF function has a tuning parameter named res_angle which can be used to modify
angular resolution (default is 5◦, as shown in Figure 4). A smaller res_angle value will give more
accurate SVF but slower calculation.

Given a “template” grid, the latter calculation can be repeated to generate a continuous surface of
SVF estimates for a grid of ground locations. In the following code section we calculate an SVF surface
using the same raster template with a resolution of 2 meters from the shadow height example (see
above).

> svf_surface = SVF(

+ location = r,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ parallel = 5

+ )

Note that the parallel=5 option is used once again to make the calculation run simultaneously on
5 cores. The resulting SVF surface is shown in Figure 12. As could be expected, SVF values are lowest
in the vicinity of buildings due to their obstruction of the sky.

Solar radiation

Shadow height, shadow footprint and SVF can be considered as low-level geometric calculations.
Frequently, the ultimate aim of an analysis is the estimation of insolation, which is dependent on
shadow and SVF but also on surface orientation and meteorological solar radiation conditions. Thus,
the low-level geometric calculations are frequently combined and wrapped with meteorological solar
radiation estimates to take the geometry into account when evaluating insolation over a given time
interval. The shadow package provides this kind of wrapper function named radiation.

The radiation function needs several parameters to run -

• 3D points grid representing surfaces where the solar radiation is evaluated. It is important to
specify whether each grid point is on a "roof" or on a "facade", and the azimuth it is facing (only
for "facade"). A grid with those attributes can be automatically produced using the surfaceGrid

function (see above)

• Obstacles layer defined with obstacles, having an obstacles_height_field attribute (see
above)

• Solar positions defined with solar_pos (see above)
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• Meteorological estimates defined with solar_normal and solar_diffuse, corresponding to
the same time intervals given by solar_pos

Given this set of inputs, the radiation function:

• calculates whether each grid surface point is in shadow or not, for each solar position solar_pos,
using the inShadow function (Equation 1),

• calculates the Coefficient of Direct Normal Irradiance reduction, for each grid surface point at
each solar position solar_pos, using the coefDirect function (Equations 5 and 6),

• combines shadow, the coefficient and the meteorological estimate solar_normal to calculate the
direct radiation (Equation 7),

• calculates the SVF for each grid surface point, using the SVF function (Equations 3 and 4),

• combines the SVF and the meteorological estimate solar_diffuse to calculate the diffuse
radiation (Equation 8)

• and calculates the sums of the direct, diffuse and total (i.e. direct+diffuse) solar radiation per
grid surface point for the entire period (Equation 9).

To demonstrate the radiation function, we need one more component not used in the previous
examples: the reference solar radiation data. The shadow package comes with a sample Typical
Meteorological Year (TMY) dataset named tmy that can be used for this purpose. This dataset was
compiled for the same geographical area where the buildings are located, and therefore can be
realistically used in our example.

The tmy object is a data.frame with 8,760 rows, where each row corresponds to an hourly interval
over an entire year (24 × 365 = 8, 760). The attributes given for each hourly interval include solar
position (sun_az, sun_elev) and solar radiation measurements (solar_normal, solar_diffuse). Both
solar radiation measurements are given in W/m2 units.

> head(tmy, 10)

#> time sun_az sun_elev solar_normal solar_diffuse dbt ws

#> 1 1999-01-01 01:00:00 66.73 -70.94 0 0 6.6 1.0

#> 2 1999-01-01 02:00:00 82.02 -58.68 0 0 5.9 1.0

#> 3 1999-01-01 03:00:00 91.00 -45.99 0 0 5.4 1.0

#> 4 1999-01-01 04:00:00 98.13 -33.32 0 0 4.9 1.0

#> 5 1999-01-01 05:00:00 104.81 -20.86 0 0 4.4 1.0

#> 6 1999-01-01 06:00:00 111.73 -8.76 0 6 4.8 1.0

#> 7 1999-01-01 07:00:00 119.41 2.91 118 24 7.3 1.0

#> 8 1999-01-01 08:00:00 128.39 13.30 572 45 11.2 1.0

#> 9 1999-01-01 09:00:00 139.20 22.46 767 57 16.0 1.0

#> 10 1999-01-01 10:00:00 152.33 29.63 809 66 16.3 2.1

The Direct Normal Irradiance (solar_normal) is the amount of solar radiation received per unit
area by a surface that is always held normal to the incoming rays from the sun’s current position in
the sky. This is an estimate of maximal direct radiation, obtained on an optimally tilted surface. The
Diffuse Horizontal Irradiance (solar_diffuse) is the amount of radiation received per unit area at a
surface that has not arrived on a direct path from the sun, but has been scattered by molecules and
particles in the atmosphere. This is an estimate of diffuse radiation.

To use the solar positions from the tmy dataset, we create a separate matrix with just the sun_az

and sun_elev columns -

> solar_pos = as.matrix(tmy[, c("sun_az", "sun_elev")])

The first few rows of this matrix are -

> head(solar_pos)

#> sun_az sun_elev

#> 2 66.73 -70.94

#> 3 82.02 -58.68

#> 4 91.00 -45.99

#> 5 98.13 -33.32

#> 6 104.81 -20.86

#> 7 111.73 -8.76
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Now we have everything needed to run the radiation function. We are hereby using the same
grid layer with 3D points covering the roofs and facades of the four buildings created above using the
surfaceGrid function (Figure 9), the layer of obstacles, and the solar position and measured solar
radiation at a reference weather station from the tmy table.

> rad = radiation(

+ grid = grid,

+ obstacles = build,

+ obstacles_height_field = "BLDG_HT",

+ solar_pos = solar_pos,

+ solar_normal = tmy$solar_normal,

+ solar_diffuse = tmy$solar_diffuse,

+ parallel = 5

+ )

The returned object rad is a data.frame with the summed direct, diffuse and total (i.e. di-
rect+diffuse) solar radiation estimates, as well as the SVF, for each specific surface location in grid.
Summation takes place over the entire period given by solar_pos, solar_normal and solar_diffuse.
In the present case it is an annual insolation. The units of measurement are therefore Wh/m2 summed
over an entire year.

For example, the following printout -

> head(rad)

#> svf direct diffuse total

#> 1 0.9999875 1242100 473334.1 1715434

#> 2 0.9999830 1242100 473332.0 1715432

#> 3 0.9999778 1242100 473329.5 1715429

#> 4 0.9999685 1242100 473325.1 1715425

#> 5 0.9999538 1242099 473318.2 1715417

#> 6 0.9999396 1242099 473311.4 1715411

refers to the first six surface points which are part of the same roof, thus sharing similar annual
solar radiation estimates. Overall, however, the differences in insolation are very substantial among
different locations on the buildings surfaces, as shown in Figure 13. For example, the roofs receive
about twice as much direct radiation as the south-facing facades. The code for producing Figure 13,
using function scatter3D (see Figure 9), can be found on the help page of the radiation function and
is thus omitted here to save space. Note that the figure shows radiation estimates in kWh/m2 units, i.e.
the values from the rad table (above) divided by 1000.

Discussion

The shadow package introduces a simple geometric model for shadow-related calculations in an urban
environment. Specifically, the package provides functions for calculating shadow height, shadow
footprint and SVF. The latter can be combined with TMY data to estimate insolation on built surfaces.
It is, to the best of our knowledge, the only R package aimed at shadow calculations in a vector-based
representation of the urban environment. It should be noted that the insol package provides similar
functionality for a raster-based environment, but the latter is more suitable for modelling large-scale
natural environments rather than detailed urban landscapes.

The unique aspect of our approach is that calculations are based on a vector layer of polygons
extruded to a given height, known as 2.5D, such as building footprints with a height attribute. The
vector-based 2.5D approach has several advantages over the two commonly used alternative ones:
vector-based 3D and raster-based models. Firstly, the availability of 2.5D input data is much greater
compared to both specialized 3D models and high-resolution raster surfaces. Building layers for entire
cities are generally available from various sources, ranging from local municipality GIS systems to
global crowd-sourced datasets (e.g. OpenStreetMap) (Haklay and Weber, 2008). Secondly, processing
does not require closed-source software, or interoperability with complex specialized software, as
opposed to working with 3D models. Thirdly, results are easily associated back to the respective
urban elements such as buildings, parks, roofs facades, etc., as well as their attributes, via a spatial join
operation (e.g. using function over in R package sp). For example, we can easily determine which
building is responsible for shading the green park in the above shadow footprint example (Figure 10).
This is unlike a raster-based approach, where the input is a continuous surface with no attributes, thus
having no natural association to individual urban elements or objects.
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However, it should be noted that the 2.5D vector-based approach requires several assumptions and
has some limitations. When the assumptions do not hold, results may be less accurate compared to the
above-mentioned alternative approaches. For example, it is impossible to represent geometric shapes
that are not a simple extrusion in 2.5D (though, as mentioned above, urban surveys providing such
detailed data are not typically available). An ellipsoid tree, a bridge with empty space underneath, a
balcony extruding outwards from a building facade, etc., can only be represented with a polyhedral
surface in a full vector-based 3D environment (Gröger and Plümer, 2012; Biljecki et al., 2016). Recently,
classes for representing true-3D urban elements, such as the Simple Feature type POLYHEDRALSURFACE,
have been implemented in R package sf (Pebesma, 2018). However, functions for working with those
classes, such as calculating 3D-intersection, are still lacking. Implementing such functions in R could
bring new urban analysis capabilities to the R environment in the future, in which solar analysis of 3D
city models probably comprises a major use case (Biljecki et al., 2015).

It should also be noted that a vector-based calculation may be generally slower than a raster
based calculation. This becomes important when the study area is very large. Though the present
algorithms can be optimized to some extent, they probably cannot compete with raster-based cal-
culations where sun ray intersections can be computed using fast ray-tracing algorithms based on
matrix input (Amanatides et al., 1987), as opposed to computationally intensive search for intersections
between a line and a polygonal layer in a vector-based environment. For example, calculating the SVF
surface shown in Figure 12 requires processing 72 angular sections × 3,780 raster cells = 272,160 SVF
calculations, which takes about 7.3 minutes using five cores on an ordinary desktop computer (Intel®
Core™ i7-6700 CPU @ 3.40GHz × 8). The annual radiation estimate shown in Figure 13 however takes
about 3.9 hours to calculate, as it requires SVF calculation for 2,693 grid points, as well as 727 ground
locations × 8,760 hours = 6,368,520 shadow height calculations.

To summarize, the shadow package can be used to calculate shadow, SVF and solar radiation in
an urban environment using widely available polygonal building data, inside the R environment (e.g.
Vulkan et al., 2018). Potential use cases include urban environment applications such as evaluation of
micro-climatic influence for urban planning, studying urban well-being (e.g. climatic comfort) and
estimating photovoltaic energy production potential.
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