Package 'shadow'

June 13, 2020
Type Package
Title Geometric Shadow Calculations

Version 0.6.7

Description Functions for calculating: (1) shadow height, (2) logical shadow flag, (3) shadow footprint, (4) Sky View Factor and (5) radiation load. Basic required inputs include a polygonal layer of obstacle outlines along with their heights (i.e. "extruded polygons"), sun azimuth and sun elevation. The package also provides functions for related preliminary calculations: breaking polygons into line segments, determining azimuth of line segments, shifting segments by azimuth and distance, constructing the footprint of a line-of-sight between an observer and the sun, and creating a 3D grid covering the surface area of extruded polygons.

License MIT + file LICENSE

LazyData TRUE
Imports rgeos ($>=0.3$), raster ($>=2.4-15$), methods, parallel ($>=$ 3.4.0)

Depends R (>= 3.2.3), sp (>= 1.1.1)
RoxygenNote 7.1.0
Suggests R.rsp, maptools (>= 0.8), testhat, reshape2 (>= 1.4.2), threejs, rgdal, stars
VignetteBuilder R.rsp
URL https://github.com/michaeldorman/shadow/
BugReports https://github.com/michaeldorman/shadow/issues/
Encoding UTF-8
NeedsCompilation no
Author Michael Dorman [aut, cre], Evyatar Erell [ctb], Itai Kloog [ctb], Adi Vulkan [ctb]
Maintainer Michael Dorman dorman@post.bgu.ac.il
Repository CRAN
Date/Publication 2020-06-13 08:20:02 UTC

R topics documented:

beersheva_build 2
beersheva_elev 3
boston_block 3
boston_build 4
boston_park 4
boston_sidewalk 5
build 5
classifyAz 6
coefDirect 6
deg2rad 8
inShadow 8
plotGrid 13
rad2deg 14
radiation 15
ray 19
shadow 20
shadowFootprint 21
shadowHeight 22
shiftAz 26
solarpos2 27
surfaceGrid 27
SVF 29
tmy 32
tmy2 33
toGMT 34
toSeg 34
Index 36beersheva_build Polygonal layer of 376 buildings in Beer-Sheva

Description

A SpatialPolygonsDataFrame object representing the outlines of 367 buildings in the Ramot neighborhood, Beer-Sheva. The attribute height_m contains building height, in meters.

Usage

beersheva_build

Format

A SpatialPolygonsDataFrame with 10 features and 4 attributes:
build_id Building ID
floors Number of floors for building
apartments Number of apartments
height_m Building height, in meters
elev Elevation above sea level of building base, in meters

```
beersheva_elev DEM of Ramot neighborhood, Beer-Sheva
```


Description

Digital Elevation Model (DEM) of Ramot neighborhood, Beer-Sheva. Raster values represent elevation above sea level, in meters.

Usage

beersheva_elev

Format

A RasterLayer representing a grid of 1974 raster cells, each cell is a $30 * 30$ meters rectangle. Data source is the Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global dataset.

References

https://lta.cr.usgs.gov/SRTM1Arc

```
boston_block Polygonal layer of a building block in Boston
```


Description

A SpatialPolygons object representing the boundaries of a building block in Central Boston.

Usage

boston_block

Format

A SpatialPolygons with a single feature.
boston_build Polygonal layer of three buildings in Boston

Description

A SpatialPolygonsDataFrame object representing the outlines of three buildings located in Central Boston. The attribute height_m contains building height, in meters.

Usage

boston_build

Format

A SpatialPolygonsDataFrame with 10 features and 4 attributes:
objectid Building part ID
build_id Building ID
part_floor Number of floors for part
height_m Building height, in meters
boston_park Polygonal layer of a park in Boston

Description

A SpatialPolygons object representing the boundaries of a park in Central Boston.

Usage

boston_park

Format

A SpatialPolygons with a single feature.

Description

A SpatialLinesDataFrame object representing sidewalks in Central Boston.

Usage

boston_sidewalk

Format

A SpatialLinesDataFrame with 78 features.
build Polygonal layer of four buildings in Rishon

Description

A SpatialPolygonsDataFrame object representing the outlines of four buildings located in Rishon-Le-Zion. The attribute BLDG_HT contains building height, in meters.

Usage

build

Format

A SpatialPolygonsDataFrame with 4 features and 2 attributes:
build_id Building ID
BLDG_HT Building height, in meters

```
classifyAz Classify azimuth of line segments
```


Description

Classify azimuth of line segments

Usage

classifyAz(sl)

Arguments

sl
A SpatialLines* object

Value

A numeric vector with the segment azimuth values (in decimal degrees)

Examples

```
    build_seg = toSeg(build[1, ])
    az = classifyAz(build_seg)
    plot(build_seg, col = rainbow(4)[cut(az, c(0, 90, 180, 270, 360))])
    raster::text(
    rgeos::gCentroid(build_seg, byid = TRUE),
    round(az)
)
```

coefDirect Coefficient of Direct Normal Irradiance reduction

Description

This function calculates the coefficient of reduction in Direct Normal Irradiance load due to angle of incidence. For example, a coefficient of 1 is obtained when the sun is perpendicular to the surface.

Usage

coefDirect(type, facade_az, solar_pos)

Arguments

$$
\begin{array}{ll}
\text { type } & \text { character, specifying surface type. All values must be either "roof" or "facade" } \\
\text { facade_az } & \text { Facade azimuth, in decimal degrees from North. Only relevant for type="facade" } \\
\text { solar_pos } & \begin{array}{l}
\text { A matrix with two columns representing sun position(s); first column is the } \\
\text { solar azimuth (in decimal degrees from North), second column is sun elevation } \\
\text { (in decimal degrees); rows represent different positions (e.g. at different times } \\
\text { of day) }
\end{array}
\end{array}
$$

Value

Numeric vector of coefficients, to be multiplied by the direct beam radiation values. The vector length is the same as the length of the longest input (see Note below)

Note

All four arguments are recycled to match each other's length. For example, you may specify a single type value of "roof" or "facade" and a single facade_az value, but multiple sun_az and sun_elev values, for calculating the coefficients for a single location given different positions of the sun, etc.

Examples

```
# Basic usage
coefDirect(type = "facade", facade_az = 180, solar_pos = matrix(c(210, 30), ncol = 2))
# Demonstration - Direct beam radiation coefficient on 'facades'
sun_az = seq(270, 90, by = -5)
sun_elev = seq(0, 90, by = 5)
solar_pos = expand.grid(sun_az = sun_az, sun_elev = sun_elev)
solar_pos$coef = coefDirect(type = "facade", facade_az = 180, solar_pos = as.matrix(solar_pos))[1, ]
coef = reshape2::acast(solar_pos, sun_az ~ sun_elev, value.var = "coef")
image(
    180 - sun_az, sun_elev, coef,
    col = rev(heat.colors(10)),
    breaks = seq(0, 1, 0.1),
    asp = 1,
    xlab = "Facade azimuth - Sun azimuth (deg)",
    ylab = "Sun elevation (deg)",
    main = "Facade - Coefficient of Direct Normal Irradiance"
)
contour(180 - sun_az, sun_elev, coef, add = TRUE)
# Demonstration - Direct beam radiation coefficient on 'roofs'
solar_pos$coef = coefDirect(type = "roof", facade_az = 180, solar_pos = as.matrix(solar_pos))[1, ]
coef = reshape2::acast(solar_pos, sun_az ~ sun_elev, value.var = "coef")
image(
    180 - sun_az, sun_elev, coef,
    col = rev(heat.colors(10)),
    breaks = seq(0, 1, 0.1),
    asp = 1,
```

```
        xlab = "Facade azimuth - Sun azimuth (deg)",
        ylab = "Sun elevation (deg)",
        main = "Roof - Coefficient of Direct Normal Irradiance"
)
contour(180 - sun_az, sun_elev, coef, add = TRUE)
```


Description

Degrees to radians

Usage

```
    deg2rad(deg)
```


Arguments

$$
\text { deg } \quad \text { Angle in degrees }
$$

Value

numeric Angle in radians

Examples

$$
\operatorname{deg} 2 \operatorname{rad}(360)==2 * \mathrm{pi}
$$

inShadow Logical shadow calculation (is given point shaded?) for 3D points considering sun position and obstacles

Description

This function determines whether each given point in a set of 3D points (location), is shaded or not, taking into account:

- Obstacles outline (obstacles), given by a polygonal layer with a height attribute (obstacles_height_field), or alternatively a Raster* which is considered as a grid of ground locations
- Sun position (solar_pos), given by azimuth and elevation angles

Alternatively, the function determines whether each point is in shadow based on a raster representing shadow height shadowHeightRaster, in which case obstacles, obstacles_height_field and solar_pos are left unspecified.

```
Usage
## S4 method for signature 'SpatialPoints,Raster,missing,missing'
inShadow(
    location,
    shadowHeightRaster,
    obstacles,
    obstacles_height_field,
    solar_pos
)
## S4 method for signature 'SpatialPoints,missing,ANY,ANY'
inShadow(
    location,
    shadowHeightRaster,
    obstacles,
    obstacles_height_field,
    solar_pos = solarpos2(location, time),
    time = NULL,
)
## S4 method for signature 'Raster,missing,ANY,ANY'
inShadow(
        location,
        shadowHeightRaster,
        obstacles,
        obstacles_height_field,
        solar_pos = solarpos2(pnt, time),
        time = NULL,
)
```


Arguments

location A SpatialPoints* or Raster* object, specifying the location(s) for which to calculate logical shadow values. If location is SpatialPoints*, then it can have 2 or 3 dimensions. A 2D SpatialPoints* is considered as a point(s) on the ground, i.e. 3D point(s) where $z=0$. In a 3D SpatialPoints* the 3rd dimension is assumed to be elevation above ground z (in CRS units). Raster* cells are considered as ground locations

shadowHeightRaster

Raster representing shadow height
obstacles A SpatialPolygonsDataFrame object specifying the obstacles outline obstacles_height_field

Name of attribute in obstacles with extrusion height for each feature
solar_pos A matrix with two columns representing sun position(s); first column is the solar azimuth (in degrees from North), second column is sun elevation (in degrees); rows represent different positions (e.g. at different times of day)

> time When both shadowHeightRaster and solar_pos are unspecified, time can be passed to automatically calculate solarpos based on the time and the centroid of location, using function maptools:: solarpos. In such case location must have a defined CRS (not NA). The time value must be a POSIXct or POSIXIt object.
... Other parameters passed to shadowHeight, such as parallel

Value

Returned object is either a logical matrix or a Raster* with logical values -

- If input location is a SpatialPoints*, then returned object is a matrix where rows represent spatial locations (location features), columns represent solar positions (solar_pos rows) and values represent shadow state
- If input location is a Raster*, then returned object is a RasterLayer or RasterStack, where raster layers represent solar positions (solar_pos rows) and pixel values represent shadow state

In both cases the logical values express shadow state:

- TRUE means the location is in shadow
- FALSE means the location is not in shadow
- NA means the location 3D-intersects an obstacle

Note

For a correct geometric calculation, make sure that:

- The layers location and obstacles are projected and in same CRS
- The values in obstacles_height_field of obstacles are given in the same distance units as the CRS (e.g. meters when using UTM)

Examples

```
# Method for 3D points - Manually defined
opar = par(mfrow = c(1, 3))
# Ground level
location = sp::spsample(
    rgeos::gBuffer(rgeos::gEnvelope(build), width = 20),
    n = 80,
    type = "regular"
)
solar_pos = as.matrix(tmy[9, c("sun_az", "sun_elev")])
s = inShadow(
    location = location,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos
```

```
)
plot(location, col = ifelse(s[, 1], "grey", "yellow"), main = "h=0")
plot(build, add = TRUE)
# 15 meters above ground level
coords = coordinates(location)
coords = cbind(coords, z = 15)
location1 = SpatialPoints(coords, proj4string = CRS(proj4string(location)))
solar_pos = as.matrix(tmy[9, c("sun_az", "sun_elev")])
s = inShadow(
    location = location1,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos
)
plot(location, col = ifelse(s[, 1], "grey", "yellow"), main = "h=15")
plot(build, add = TRUE)
# 30 meters above ground level
coords = coordinates(location)
coords = cbind(coords, z = 30)
location2 = SpatialPoints(coords, proj4string = CRS(proj4string(location)))
solar_pos = as.matrix(tmy[9, c("sun_az", "sun_elev")])
s = inShadow(
    location = location2,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos
)
plot(location, col = ifelse(s[, 1], "grey", "yellow"), main = "h=30")
plot(build, add = TRUE)
par(opar)
# Shadow on a grid covering obstacles surface
## Not run:
# Method for 3D points - Covering building surface
obstacles = build[c(2, 4), ]
location = surfaceGrid(
    obstacles = obstacles,
    obstacles_height_field = "BLDG_HT",
    res = 2,
    offset = 0.01
)
solar_pos = tmy[c(9, 16), c("sun_az", "sun_elev")]
solar_pos = as.matrix(solar_pos)
s = inShadow(
    location = location,
    obstacles = obstacles,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos
```

```
)
location$shadow = s[, 1]
plotGrid(location, color = c("yellow", "grey")[as.factor(location$shadow)], size = 0.5)
location$shadow = s[, 2]
plotGrid(location, color = c("yellow", "grey")[as.factor(location$shadow)], size = 0.5)
# Method for ground locations raster
ext = as(raster::extent(build) + 20, "SpatialPolygons")
location = raster::raster(ext, res = 2)
proj4string(location) = proj4string(build)
obstacles = build[c(2, 4), ]
solar_pos = tmy[c(9, 16), c("sun_az", "sun_elev")]
solar_pos = as.matrix(solar_pos)
s = inShadow( ## Using 'solar_pos'
    location = location,
    obstacles = obstacles,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos,
    parallel = 3
)
time = as.POSIXct(tmy$time[c(9, 16)], tz = "Asia/Jerusalem")
s = inShadow( ## Using 'time'
    location = location,
    obstacles = obstacles,
    obstacles_height_field = "BLDG_HT",
    time = time,
    parallel = 3
)
plot(s)
# Method for pre-calculated shadow height raster
ext = as(raster::extent(build), "SpatialPolygons")
r = raster::raster(ext, res = 1)
proj4string(r) = proj4string(build)
r[] = rep(seq(30, 0, length.out = ncol(r)), times = nrow(r))
location = surfaceGrid(
    obstacles = build[c(2, 4), ],
    obstacles_height_field = "BLDG_HT",
    res = 2,
    offset = 0.01
)
s = inShadow(
    location = location,
    shadowHeightRaster = r
)
location$shadow = s[, 1]
r_pnt = raster::as.data.frame(r, xy = TRUE)
coordinates(r_pnt) = names(r_pnt)
proj4string(r_pnt) = proj4string(r)
r_pnt = SpatialPointsDataFrame(
    r_pnt,
```

```
        data.frame(
            shadow = rep(TRUE, length(r_pnt)),
            stringsAsFactors = FALSE
        )
    )
    pnt = rbind(location[, "shadow"], r_pnt)
    plotGrid(pnt, color = c("yellow", "grey")[as.factor(pnt$shadow)], size = 0.5)
    # Automatically calculating 'solar_pos' using 'time' - Points
    location = sp::spsample(
        rgeos::gBuffer(rgeos::gEnvelope(build), width = 20),
        n = 500,
        type = "regular"
    )
    time = as.POSIXct("2004-12-24 13:30:00", tz = "Asia/Jerusalem")
    s = inShadow(
        location = location,
        obstacles = build,
        obstacles_height_field = "BLDG_HT",
        time = time
    )
    plot(location, col = ifelse(s[, 1], "grey", "yellow"), main = time)
    plot(build, add = TRUE)
    ## End(Not run)
```

 plotGrid Interactive plot for 3D spatial points

Description

This is a wrapper around scatterplot3js from package threejs. The function adjusts the x, y and z axes so that 1:1:1 proportion are kept and $\mathrm{z}=0$ corresponds to ground level.

Usage

plotGrid(grid, color = c("grey", "red")[as.factor(grid\$type)], size = 0.2, ...)

Arguments

grid A three-dimensional SpatialPoints* object
color Point color, either a single value or vector corresponding to the number of points. The default values draws "facade" and "roof" points in different colors, assuming these classes appear in a column named type, as returned by function surfaceGrid
size \quad Point radius, default is 0.1
... Additional parameters passed to scatterplot3js

Value

An htmlwidget object that is displayed using the object's show or print method. If you don't see your widget plot, try printing it with the print function. (Same as for threejs: : scatterplot3js)

Examples

```
## Not run:
grid = surfaceGrid(
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    res = 1,
    offset = 0.01
)
plotGrid(grid)
## End(Not run)
```

rad2deg Radians to degrees

Description

Radians to degrees

Usage

$$
\operatorname{rad} 2 d e g(r a d)
$$

Arguments

rad Angle in radians

Value

numeric Angle in degrees

Examples

```
rad2deg(2*pi) == 360
```

radiation | Estimation of Direct and Diffuse Radiation Load on Extruded Polygon |
| :--- |
| Surfaces |

Description

This is a wrapper function for calculating total diffuse, direct and total radiation load per unit area on extruded polygon surfaces. The function operates on obstacle geometry and a set of sun positions with associated meteorological estimates for direct and diffuse radiation (see Details below).

Usage

```
    radiation(
        grid,
        obstacles,
        obstacles_height_field,
        solar_pos = solarpos2(obstacles, time),
        time = NULL,
        solar_normal,
        solar_diffuse,
        radius = Inf,
        returnList = FALSE,
        parallel = getOption("mc.cores")
    )
```


Arguments

grid A 3D SpatialPointsDataFrame layer, such as returned by function surfaceGrid, specifying the locations where radiation is to be estimated. The layer must include an attribute named type, with possible values being "roof" or "facade", expressing surface orientation per 3D point. The layer must also include an attribute named facade_az, specifying facade azimuth (only for "facade" points, for "roof" points the value should be NA). The type and facade_az attributes are automatically created when creating the grid with the surfaceGrid function
obstacles A SpatialPolygonsDataFrame object specifying the obstacles outline, inducing self- and mutual-shading on the grid points
obstacles_height_field
Name of attribute in obstacles with extrusion height for each feature
solar_pos A matrix with two columns representing sun position(s); first column is the solar azimuth (in decimal degrees from North), second column is sun elevation (in decimal degrees); rows represent different sun positions corresponding to the solar_normal and the solar_diffuse estimates. For example, if solar_normal and solar_diffuse refer to hourly measurements in a Typical Meteorological Year (TMY) dataset, then solar_pos needs to contain the corresponding hourly sun positions
$\left.\left.\begin{array}{ll}\text { time } & \begin{array}{l}\text { When solar_pos is unspecified, time can be passed to automatically calculate } \\ \text { solar_pos based on the time and the centroid of obstacles, using function } \\ \text { maptools: : solarpos. In such case obstacles must have a defined CRS (not }\end{array} \\ \text { NA). The time value must be a POSIXct or POSIXlt object }\end{array}\right\} \begin{array}{l}\text { Direct Normal Irradiance (e.g. in } \mathrm{Wh} / \mathrm{m}^{\wedge} \text { 2), at sun positions corresponding to } \\ \text { solar_pos. Must be a vector with the same number of elements as the number } \\ \text { of rows in solar_pos }\end{array}\right\}$

Details

Input arguments for this function comprise the following:

- An extruded polygon obstacles layer (obstacles and obstacles_height_field) inducing shading on the queried grid
- A grid of 3D points (grid) where radiation is to be estimated. May be created from the 'obstacles' layer, or a subset of it, using function surfaceGrid. For instance, in the code example (see below) radiation is estimated on a grid covering just one of four buildings in the build layer (the first building), but all four buildings are taken into account for evaluating self- and mutual-shading by the buildings.
- Solar positions matrix (solar_pos)
- Direct and diffuse radiation meteorological estimate vectors (solar_normal and solar_diffuse)

Given these inputs, the function goes through the following steps:

- Determining whether each grid point is shaded, at each solar position, using inShadow
- Calculating the coefficient of Direct Normal Irradiance reduction, using coefDirect
- Summing direct radiation considering (1) mutual shading, (2) direst radiation coefficient and (3) direct radiation estimates
- Calculating the Sky View Factor (SVF) for each point, using SVF
- Summing diffuse radiation load considering (1) SVF and (2) diffuse radiation estimates
- Summing total (direct + diffuse) radiation load

Value

If returnList=FALSE (the default), then returned object is a data.frame, with rows corresponding to grid points and four columns corresponding to the following estimates:

- svf Computed Sky View Factor (see function SVF)
- direct Total direct radiation for each grid point
- diffuse Total diffuse radiation for each grid point
- total Total radiation (direct + diffuse) for each grid point

Each row of the data. frame gives summed radiation values for the entire time period in solar_pos, solar_normal and solar_diffuse

If returnList=TRUE then returned object is a list with two elements:

- direct Total direct radiation for each grid point
- diffuse Total diffuse radiation for each grid point

Each of the elements is a matrix with rows corresponding to grid points and columns corresponding to time steps in solar_pos, solar_normal and solar_diffuse

Examples

```
# Create surface grid
grid = surfaceGrid(
    obstacles = build[1, ],
    obstacles_height_field = "BLDG_HT",
    res = 2
)
solar_pos = tmy[, c("sun_az", "sun_elev")]
solar_pos = as.matrix(solar_pos)
# Summed 10-hour radiation estimates for two 3D points
rad1 = radiation(
    grid = grid[1:2, ],
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos[8:17, , drop = FALSE],
    solar_normal = tmy$solar_normal[8:17],
    solar_diffuse = tmy$solar_diffuse[8:17],
    returnList = TRUE
)
rad1
## Not run:
# Same, using 'time' instead of 'solar_pos'
rad2 = radiation(
    grid = grid[1:2, ],
    obstacles = build,
```

```
    obstacles_height_field = "BLDG_HT",
    time = as.POSIXct(tmy$time[8:17], tz = "Asia/Jerusalem"),
    solar_normal = tmy$solar_normal[8:17],
    solar_diffuse = tmy$solar_diffuse[8:17],
    returnList = TRUE
)
rad2
# Differences due to the fact that 'tmy' data come with their own
# solar positions, not exactly matching those calulated using 'maptools::solarpos'
rad1$direct - rad2$direct
rad1$diffuse - rad2$diffuse
## End(Not run)
## Not run:
### Warning! The calculation below takes some time.
# Annual radiation estimates for entire surface of one building
rad = radiation(
    grid = grid,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos,
    solar_normal = tmy$solar_normal,
    solar_diffuse = tmy$solar_diffuse,
    parallel = 3
)
# 3D plot of the results
library(plot3D)
opar = par(mfrow=c(1, 3))
scatter3D(
    x = coordinates(grid)[, 1],
    y = coordinates(grid)[, 2],
    z = coordinates(grid)[, 3],
    colvar = rad$direct / 1000,
    scale = FALSE,
    theta = 55,
    pch = 20,
    cex = 1.35,
    clab = expression(paste("kWh / ", m^2)),
    main = "Direct radiation"
)
scatter3D(
    x = coordinates(grid)[, 1],
    y = coordinates(grid)[, 2],
    z = coordinates(grid)[, 3],
    colvar = rad$diffuse / 1000,
    scale = FALSE,
```

```
        theta = 55,
        pch = 20,
        cex = 1.35,
        clab = expression(paste("kWh / ", m^2)),
        main = "Diffuse radiation"
    )
    scatter3D(
        x = coordinates(grid)[, 1],
        y = coordinates(grid)[, 2],
    z = coordinates(grid)[, 3],
    colvar = rad$total / 1000,
    scale = FALSE,
        theta = 55,
        pch = 20,
        cex = 1.35,
        clab = expression(paste("kWh / ", m^2)),
        main = "Total radiation"
    )
    par(opar)
    ## End(Not run)
```

 ray
 Line between two points

Description

The function connects two points into a line segment.

Usage

ray (from, to)

Arguments

from	A SpatialPoints* object specifying origin.
to	A SpatialPoints* object specifying destination.

Value

A SpatialLines object.

Examples

```
ctr = rgeos::gCentroid(build)
angles = seq(0, 359, 20)
sun = mapply(
    shadow:::.sunLocation,
```

```
    sun_az = angles,
    MoreArgs = list(
        location = ctr,
    sun_elev = 10)
)
rays = mapply(ray, MoreArgs = list(from = ctr), to = sun)
rays$makeUniqueIDs = TRUE
rays = do.call(rbind, rays)
plot(rays)
sun = do.call(rbind, sun)
text(sun, as.character(angles))
```


Description

Main functions for calculating:

- shadowHeight, Shadow height at individual points or continuous surface
- shadowFootprint, Polygonal layer of shadow footprints on the ground
- SVF, Sky View Factor (SVF) value at individual points or continuous surface

Typical inputs for these functions include:

- location, Queried location(s)
- obstacles, A polygonal layer of obstacles (e.g. buildings) outline, with height attributes obstacles_height_field
- solar_pos, Solar position (i.e. sun azimuth and elevation angles)

The package also provides functions for related preliminary calculations, such as:

- toSeg, Converting polygons to line segments
- classifyAz, Finding segment azimuth
- shiftAz, Shifting segments by azimuth and distance
- ray, Constructing a line between two points

Description

Creates a polygonal layer of shadow footprints on the ground, taking into account:

- Obstacles outline (obstacles), given by a polygonal layer with a height attribute (obstacles_height_field)
- Sun position (solar_pos), given by azimuth and elevation angles

The calculation method was inspired by Morel Weisthal's MSc thesis at the Ben-Gurion University of the Negev.

```
Usage
    ## S4 method for signature 'SpatialPolygonsDataFrame'
    shadowFootprint(
        obstacles,
        obstacles_height_field,
        solar_pos = solarpos2(obstacles, time),
        time = NULL,
        b = 0.01
    )
```


Arguments

obstacles
obstacles_height_field
Name of attribute in obstacles with extrusion height for each feature

solar_pos \quad| A matrix with one row and two columns; first column is the solar azimuth |
| :--- |
| (in decimal degrees from North), second column is sun elevation (in decimal |
| degrees) |

time \quad| When solar_pos is unspecified, time can be passed to automatically calculate |
| :--- |
| solar_pos based on the time and the centroid of obstacles, using function |
| maptools: : solarpos. In such case obstacles must have a defined CRS (not |

nA). The time value must be a POSIXct or POSIXlt object

Value

A SpatialPolygonsDataFrame object representing shadow footprint, plus buildings outline. Object length is the same as that of the input obstacles, with an individual footprint feature for each obstacle.

References

Weisthal, M. (2014). Assessment of potential energy savings in Israel through climate-aware residential building design (MSc Thesis, Ben-Gurion University of the Negev). https://www. dropbox.com/s/bztnh1fi9znmswj/Thesis_Morel_Weisthal.pdf?dl=1

Examples

```
location = rgeos::gCentroid(build)
time = as.POSIXct("2004-12-24 13:30:00", tz = "Asia/Jerusalem")
solar_pos = maptools::solarpos(
    matrix(c(34.7767978098526, 31.9665936050395), ncol = 2),
        time
    )
footprint1 = ## Using 'solar_pos'
    shadowFootprint(
        obstacles = build,
        obstacles_height_field = "BLDG_HT",
        solar_pos = solar_pos
        )
footprint2 = ## Using 'time'
        shadowFootprint(
        obstacles = build,
        obstacles_height_field = "BLDG_HT",
        time = time
        )
all.equal(footprint1, footprint2)
footprint = footprint1
plot(footprint, col = adjustcolor("lightgrey", alpha.f = 0.5))
plot(build, add = TRUE, col = "darkgrey")
```

shadowHeight Shadow height calculation considering sun position and obstacles

Description

This function calculates shadow height at given points or complete grid (location), taking into account:

- Obstacles outline (obstacles), given by a polygonal layer with a height attribute (obstacles_height_field)
- Sun position (solar_pos), given by azimuth and elevation angles

Usage

```
## S4 method for signature 'SpatialPoints'
shadowHeight(
    location,
    obstacles,
```

```
    obstacles_height_field,
    solar_pos = solarpos2(location, time),
    time = NULL,
    b = 0.01,
    parallel = getOption("mc.cores"),
    filter_footprint = FALSE
)
## S4 method for signature 'Raster'
shadowHeight(
    location,
    obstacles,
    obstacles_height_field,
    solar_pos = solarpos2(pnt, time),
    time = NULL,
    b = 0.01,
    parallel = getOption("mc.cores"),
    filter_footprint = FALSE
)
```


Arguments

location | A SpatialPoints* or Raster* object, specifying the location(s) for which to |
| :--- |
| calculate shadow height |

obstacles A SpatialPolygonsDataFrame object specifying the obstacles outline
obstacles_height_field
Name of attribute in obstacles with extrusion height for each feature
A matrix with two columns representing sun position(s); first column is the
solar azimuth (in decimal degrees from North), second column is sun elevation
(in decimal degrees); rows represent different positions (e.g. at different times
of day)
When solar_pos is unspecified, time can be passed to automatically calcu-
late solar_pos based on the time and the centroid of location, using function
maptools: : solarpos. In such case location must have a defined CRS (not

Value

Returned object is either a numeric matrix or a Raster* -

- If input location is a SpatialPoints*, then returned object is a matrix, where rows represent spatial locations (location features), columns represent solar positions (solar_pos rows) and values represent shadow height
- If input location is a Raster*, then returned object is a RasterLayer or RasterStack where layers represent solar positions (solar_pos rows) and pixel values represent shadow height

In both cases the numeric values express shadow height -

- NA value means no shadow
- A valid number expresses shadow height, in CRS units (e.g. meters)
- Inf means complete shadow (i.e. sun below horizon)

Note

For a correct geometric calculation, make sure that:

- The layers location and obstacles are projected and in same CRS
- The values in obstacles_height_field of obstacles are given in the same distance units as the CRS (e.g. meters when using UTM)

Examples

```
# Single location
location = rgeos::gCentroid(build)
## Not run:
location_geo = spTransform(location, "+proj=longlat +datum=WGS84")
## End(Not run)
location_geo = matrix(c(34.7767978098526, 31.9665936050395), ncol = 2)
time = as.POSIXct("2004-12-24 13:30:00", tz = "Asia/Jerusalem")
solar_pos = maptools::solarpos(location_geo, time)
plot(build, main = time)
plot(location, add = TRUE)
sun = shadow:::.sunLocation(location = location, sun_az = solar_pos[1,1], sun_elev = solar_pos[1,2])
sun_ray = ray(from = location, to = sun)
build_outline = as(build, "SpatialLinesDataFrame")
inter = rgeos::gIntersection(build_outline, sun_ray)
plot(sun_ray, add = TRUE, col = "yellow")
plot(inter, add = TRUE, col = "red")
shadowHeight(
    location = location,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solar_pos
)
# Automatically calculating 'solar_pos' using 'time'
shadowHeight(
    location = location,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    time = time
```

```
)
## Not run:
# Two points - three times
location0 = rgeos::gCentroid(build)
location1 = raster::shift(location0, 0, -15)
location2 = raster::shift(location0, -10, 20)
locations = rbind(location1, location2)
time = as.POSIXct("2004-12-24 13:30:00", tz = "Asia/Jerusalem")
times = seq(from = time, by = "1 hour", length.out = 3)
shadowHeight( ## Using 'solar_pos'
    location = locations,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = maptools::solarpos(location_geo, times)
)
shadowHeight( ## Using 'time'
    location = locations,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    time = times
)
# Grid - three times
time = as.POSIXct("2004-12-24 13:30:00", tz = "Asia/Jerusalem")
times = seq(from = time, by = "1 hour", length.out = 3)
ext = as(raster::extent(build), "SpatialPolygons")
r = raster::raster(ext, res = 2)
proj4string(r) = proj4string(build)
x = Sys.time()
shadow1 = shadowHeight(
    location = r,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    time = times,
    parallel = 3
)
y = Sys.time()
y - x
x = Sys.time()
shadow2 = shadowHeight(
    location = r,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    solar_pos = solarpos2(r, times),
    parallel = 3
)
y = Sys.time()
y - x
shadow = shadow1
opar = par(mfrow = c(1, 3))
for(i in 1:raster::nlayers(shadow)) {
```

```
        plot(shadow[[i]], col = grey(seq(0.9, 0.2, -0.01)), main = raster::getZ(shadow)[i])
        raster::contour(shadow[[i]], add = TRUE)
        plot(build, border = "red", add = TRUE)
    }
    par(opar)
    ## End(Not run)
```

 shiftAz
 Shift features by azimuth and distance

Description

Shift features by azimuth and distance

Usage

shiftAz(object, az, dist)

Arguments

object	The object to be shifted.
az	Shift azimuth, in decimal degrees.
dist	Shift distance, in object projection units.

Value

The shifted object.

Examples

```
s = c(270, 90, 180, 0)
build_shifted = shiftAz(build, az = s, dist = 2.5)
plot(build)
plot(build_shifted, add = TRUE, border = "red")
raster::text(rgeos::gCentroid(build, byid = TRUE), s)
```


Description

This is a wrapper function around maptools: : solarpos, adapted for accepting location as a Spatial* layer or a Raster. The function calculates layer centroid, transforms it to lon-lat, then calls maptools: : solarpos to calculate solar position(s) for that point at the given time(s)

Usage

solarpos2(location, time)

Arguments

location	A Spatial* or a Raster object
time	A SpatialLines* or a SpatialPolygons* object

Value

A matrix with two columns representing sun position(s); first column is the solar azimuth (in decimal degrees from North), second column is sun elevation (in decimal degrees); rows represent different times corresponding to time

Examples

```
time = as.POSIXct("2004-12-24 13:30:00", tz = "Asia/Jerusalem")
solarpos2(build, time)
```

surfaceGrid

Create grid of 3D points covering the 'facades' and 'roofs' of obstacles

Description

The function creates a grid of 3D points covering the given obstacles at specified resolution. Such a grid can later on be used to quantify the shaded / non-shaded proportion of the obstacles surface area.

Usage

```
    surfaceGrid(obstacles, obstacles_height_field, res, offset = 0.01)
```


Arguments

$$
\left.\begin{array}{l}
\text { obstacles A SpatialPolygonsDataFrame object specifying the obstacles outline } \\
\text { obstacles_height_field } \\
\text { Name of attribute in obstacles with extrusion height for each feature } \\
\text { res } \\
\text { offset }
\end{array} \begin{array}{l}
\text { Required grid resolution, in CRS units }
\end{array}\right\} \begin{aligned}
& \text { Offset between grid points and facade (horizontal distance) or between grid } \\
& \text { points and roof (vertical distance). }
\end{aligned}
$$

Value

A 3D SpatialPointsDataFrame layer, including all attributes of the original obstacles each surface point corresponds to, followed by six new attributes:

- obs_id Unique consecutive ID for each feature in obstacles
- type Either "facade" or "roof"
- seg_id Unique consecutive ID for each facade segment (only for 'facade' points)
- xy_id Unique consecutive ID for each ground location (only for 'facade' points)
- facade_az The azimuth of the corresponding facade, in decimal degrees (only for 'facade' points)

Note

The reason for introducing an offset is to avoid ambiguity as for whether the grid points are "inside" or "outside" of the obstacle. With an offset all grid points are "outside" of the building and thus not intersecting it. offset should be given in CRS units; default is 0.01 .

See Also

Function plotGrid to visualize grid.

Examples

```
grid = surfaceGrid(
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    res = 2
)
plot(grid)
plot(grid, pch = 1, lwd = 0.1, col = "black", add = TRUE)
# When 'res/2' is larger then height, facade will be left unsampled
build_small = build
build_small$BLDG_HT = 1
grid = surfaceGrid(
    obstacles = build_small,
    obstacles_height_field = "BLDG_HT",
    res = 2
)
```

```
    plot(grid)
    plot(grid, pch = 1, lwd = 0.1, col = "black", add = TRUE)
    table(grid$type)
    grid = surfaceGrid(
        obstacles = build_small,
        obstacles_height_field = "BLDG_HT",
        res = 2.00001 # res/2 > h
    )
    plot(grid)
    plot(grid, pch = 1, lwd = 0.1, col = "black", add = TRUE)
    table(grid$type)
    # When input already contains 'obs_id', 'type', 'seg_id', 'xy_id', 'facade_az' or 'ZZZ'
    build2 = build
    build2$ZZZ = 1
    grid = surfaceGrid(
        obstacles = build2,
        obstacles_height_field = "BLDG_HT",
        res = 2
)
```

SVF

Sky View Factor (SVF) calculation

Description

Calculates the Sky View Factor (SVF) at given points or complete grid (location), taking into account obstacles outline (obstacles) given by a polygonal layer with a height attribute (obstacles_height_field).

Usage

```
## S4 method for signature 'SpatialPoints'
SVF(
    location,
    obstacles,
    obstacles_height_field,
    res_angle = 5,
    b = 0.01,
    parallel = getOption("mc.cores")
)
## S4 method for signature 'Raster'
SVF(
    location,
    obstacles,
    obstacles_height_field,
    res_angle = 5,
```

```
        b = 0.01,
    parallel = getOption("mc.cores")
)
```


Arguments

location A SpatialPoints* or Raster* object, specifying the location(s) for which to calculate logical shadow values. If location is SpatialPoints*, then it can have 2 or 3 dimensions. A 2D SpatialPoints* is considered as a point(s) on the ground, i.e. 3D point(s) where $z=0$. In a 3D SpatialPoints* the 3rd dimension is assumed to be elevation above ground z (in CRS units). Raster* cells are considered as ground locations
obstacles A SpatialPolygonsDataFrame object specifying the obstacles outline obstacles_height_field

Name of attribute in obstacles with extrusion height for each feature
res_angle Circular sampling resolution, in decimal degrees. Default is 5 degrees, i.e. 0, 5, 10... 355.
b Buffer size when joining intersection points with building outlines, to determine intersection height
parallel Number of parallel processes or a predefined socket cluster. With parallel=1 uses ordinary, non-parallel processing. Parallel processing is done with the parallel package

Value

A numeric value between 0 (sky completely obstructed) and 1 (sky completely visible).

- If input location is a SpatialPoints*, then returned object is a vector where each element representing the SVF for each point in location
- If input location is a Raster*, then returned object is a RasterLayer where cell values express SVF for each ground location

Note

SVF calculation for each view direction follows the following equation -

$$
1-(\sin (\beta))^{2}
$$

Where β is the highest elevation angle (see equation 3 in Gal \& Unger 2014).

References

Erell, E., Pearlmutter, D., \& Williamson, T. (2012). Urban microclimate: designing the spaces between buildings. Routledge.
Gal, T., \& Unger, J. (2014). A new software tool for SVF calculations using building and tree-crown databases. Urban Climate, 10, 594-606.

Examples

```
## Individual locations
location0 = rgeos::gCentroid(build)
location1 = raster::shift(location0, 0, -15)
location2 = raster::shift(location0, -10, 20)
locations = rbind(location1, location2)
svfs = SVF(
    location = locations,
    obstacles = build,
    obstacles_height_field = "BLDG_HT"
)
plot(build)
plot(locations, add = TRUE)
raster::text(locations, round(svfs, 2), col = "red", pos = 3)
## Not run:
## Grid
ext = as(raster::extent(build), "SpatialPolygons")
r = raster::raster(ext, res = 5)
proj4string(r) = proj4string(build)
pnt = raster::rasterToPoints(r, spatial = TRUE)
svfs = SVF(
    location = r,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    parallel = 3
    )
plot(svfs, col = grey(seq(0.9, 0.2, -0.01)))
raster::contour(svfs, add = TRUE)
plot(build, add = TRUE, border = "red")
## 3D points
ctr = rgeos::gCentroid(build)
heights = seq(0, 28, 1)
loc3d = data.frame(
    x = coordinates(ctr)[, 1],
    y = coordinates(ctr)[, 2],
    z = heights
)
coordinates(loc3d) = ~ x + y + z
proj4string(loc3d) = proj4string(build)
svfs = SVF(
    location = loc3d,
    obstacles = build,
    obstacles_height_field = "BLDG_HT",
    parallel = 3
)
plot(heights, svfs, type = "b", xlab = "Elevation (m)", ylab = "SVF", ylim = c(0, 1))
abline(v = build$BLDG_HT, col = "red")
## Example from Erell et al. 2012 (p. 19 Fig. 1.2)
```

```
# Geometry
pol1 = rgeos::readWKT("POLYGON ((0 100, 1 100, 1 0, 0 0, 0 100))")
pol2 = rgeos::readWKT("POLYGON ((2 100, 3 100, 3 0, 2 0, 2 100))")
pol = sp::rbind.SpatialPolygons(pol1, pol2, makeUniqueIDs = TRUE)
pol = sp::SpatialPolygonsDataFrame(pol, data.frame(h = c(1, 1)), match.ID = FALSE)
pnt = rgeos::readWKT("POINT (1.5 50)")
plot(pol, col = "grey", xlim = c(0, 3), ylim = c(45, 55))
plot(pnt, add = TRUE, col = "red")
# Fig. 1.2 reproduction
h = seq(0, 2, 0.1)
svf = rep(NA, length(h))
for(i in 1:length(h)) {
    pol$h = h[i]
    svf[i] = SVF(location = pnt, obstacles = pol, obstacles_height_field = "h", res_angle = 1)
}
plot(h, svf, type = "b", ylim = c(0, 1))
# Comparison with SVF values from the book
test = c(1, 0.9805806757, 0.9284766909, 0.8574929257, 0.7808688094,
0.7071067812, 0.6401843997, 0.5812381937, 0.52999894, 0.4856429312,
0.4472135955, 0.4138029443, 0.3846153846, 0.3589790793, 0.336336397,
0.316227766, 0.2982749931, 0.282166324, 0.2676438638, 0.2544932993,
0.242535625)
range(test - svf)
## End(Not run)
```


Description

A table with hourly solar radiation estimates for a typical meteorological year in Tel-Aviv.

- time Time, as character in the "\%Y-\%m-\%d \%H:\%M:\%S" format, e.g. "2000-01-01 06:00:00", referring to local time
- sun_az Sun azimuth, in decimal degrees from North
- sun_elev Sun elevation, in decimal degrees
- solar_normal Direct Normal Irradiance, in Wh/m^2
- solar_diffuse Diffuse Horizontal Irradiance, in Wh/m^2
- dbt Dry-bulb temperature, in Celsius degrees
- ws Wind speed, in m/s

Usage

tmy

Format

A data. frame with 8760 rows and 7 columns.

References

https://energyplus.net/weather-location/europe_wmo_region_6/ISR//ISR_Tel.Aviv-Bet.Dagan.401790_MSI
tmy2
Typical Meteorological Year (TMY) solar radiation in Beer-Sheva

Description

A table with hourly solar radiation estimates for a typical meteorological year in Beer-Sheva.

- time Time, as character in the "\%Y-\%m-\%d \%H: \%M:\%S" format, e.g. "2000-01-01 06:00:00", referring to local time
- sun_az Sun azimuth, in decimal degrees from North
- sun_elev Sun elevation, in decimal degrees
- solar_normal Direct Normal Irradiance, in Wh/m^2
- solar_diffuse Diffuse Horizontal Irradiance, in Wh/m^2
- dbt Dry-bulb temperature, in Celsius degrees
- ws Wind speed, in m/s

Usage

tmy2

Format

A data. frame with 8760 rows and 7 columns.

References

https://energyplus.net/weather-location/europe_wmo_region_6/ISR//ISR_Beer.Sheva.401900_MSI
toGMT Local time to GMT

Description

The function transforms a POSIXct object in any given time zone to GMT.

Usage

toGMT (time)

Arguments

time Time, a POSIXct object.

Value

A a POSIXct object, in GMT.

Examples

```
time = as.POSIXct("1999-01-01 12:00:00", tz = "Asia/Jerusalem")
toGMT(time)
```

toSeg Split polygons or lines to segments

Description

Split lines or polygons to separate segments.

Usage

toSeg (x)

Arguments

x A SpatialLines* or a SpatialPolygons* object

Value

A SpatialLines object where each segment is represented by a separate feature

References

This function uses a modified version of code from the following 'r-sig-geo' post by Roger Bivand: https://stat.ethz.ch/pipermail/r-sig-geo/2013-April/017998.html

Examples

```
seg = toSeg(build[1, ])
plot(seg, col = sample(rainbow(length(seg))))
raster::text(rgeos::gCentroid(seg, byid = TRUE), 1:length(seg))
\# Other data structures
toSeg(geometry(build)) \# SpatialPolygons
toSeg(boston_sidewalk) \# SpatialLinesDataFrame
toSeg(geometry(boston_sidewalk)) \# SpatialLinesDataFrame
```


Index

*Topic datasets

beersheva_build, 2
beersheva_elev, 3
boston_block, 3
boston_build, 4
boston_park, 4
boston_sidewalk, 5
build, 5
tmy, 32
tmy 2, 33
beersheva_build, 2
beersheva_elev, 3
boston_block, 3
boston_build, 4
boston_park, 4
boston_sidewalk, 5
build, 5
classifyAz, 6
coefDirect, 6, 16
deg2rad, 8
inShadow, 8, 16
inShadow, Raster, missing, ANY, ANY-method (inShadow), 8
inShadow, SpatialPoints, missing, ANY, ANY-method (inShadow), 8
inShadow, SpatialPoints, Raster, missing, missing-method (inShadow), 8
plotGrid, 13, 28
rad2deg, 14
radiation, 15
ray, 19
shadow, 20
shadowFootprint, 21

