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bertinplot Plot a Bertin Matrix

Description

Plot a data matrix of cases and variables. Each value is represented by a symbol. Large values are
highlighted. The matrix can be rearranged to make structure in the data visible (see Falguerolles et
al 1997). bertin_cut_line() can be used to add cut lines (see Details).
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Usage

bertinplot(x, order = NULL, highlight = TRUE, options = NULL)

Arguments

x a data matrix. Note that following Bertin, columns are variables and rows are
cases. This behavior can be reversed using reverse = TRUE in options.

order an object of class ser_permutation to rearrange x before plotting. If NULL, no
rearrangement is performed.

highlight a logical scalar indicating whether to use highlighting. If TRUE, all variables with
values greater than the variable-wise mean are highlighted. To control highlight-
ing, also a logical matrix or a matrix with colors with the same dimensions as x
can be supplied.

options a list with options for plotting. The list can contain the following elements:

panel.function a function to produce the symbols. Currently available func-
tions are panel.bars (default), panel.circles, panel.squares, panel.blocks
and panel.lines. For circles and squares neg. values are represented by
a dashed border. For blocks all blocks are the same size (can be used with
shading=TRUE).

reverse logical indicating whether to swap cases and variables in the plot. The
default (FALSE) is to plot cases as columns and variables as rows.

xlab, ylab labels (default: use labels from x).
spacing relative space between symbols (default: 0.2).
shading use gray shades to encode value instead of highlighting (default: FALSE).
shading.function a function that accepts a single argument in range [.1, .8]

and returns a valid corresponding color (e.g., using rgb).
frame plot a grid to separate symbols (default: FALSE).
mar margins (see par).
gp_labels gpar object for labels (see gpar).
gp_panels gpar object for panels (see gpar).
newpage a logical indicating whether to start the plot on a new page (see grid.newpage).
pop a logical indicating whether to pop the created viewports (see pop.viewport)?

Details

The plot is organized as a matrix of symbols. The symbols are drawn by a panel function, where all
symbols of a row are drawn by one call of the function (using vectorization). The interface for the
panel function is panel.myfunction(value,spacing,hl). value is the vector of values for a row
scaled between 0 and 1, spacing contains the relative space between symbols and hl is a logical
vector indicating which symbol should be highlighted.

Cut lines can be added to an existing bertin plot using bertin_cut_line(x=NULL,y=NULL). x/y is
can be a number indicating where to draw the cut line between two columns/rows. If both x and y
is specified then one can select a row/column and the other can select a range to draw a line which
does only span a part of the row/column. It is important to call bertinplot() with the option
pop=FALSE.
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Author(s)

Michael Hahsler

References

de Falguerolles, A., Friedrich, F., Sawitzki, G. (1997): A Tribute to J. Bertin’s Graphical Data
Analysis. In: Proceedings of the SoftStat ’97 (Advances in Statistical Software 6), 11–20.

See Also

ser_permutation, seriate, Package grid.

Examples

data("Irish")
scale_by_rank <- function(x) apply(x, 2, rank)
x <- scale_by_rank(Irish[,-6])

## use the the sum of absolute rank differences
order <- c(

seriate(dist(x, "minkowski", p = 1)),
seriate(dist(t(x), "minkowski", p = 1))

)

## plot
bertinplot(x, order)

## some alternative displays
bertinplot(x, order, options = list(shading = TRUE, panel = panel.blocks))
bertinplot(x, order, options = list(panel = panel.lines))
bertinplot(x, order, options = list(panel = panel.squares))
bertinplot(x, order,

options = list(panel = panel.circles, spacing = -0.5))

## plot with cut lines (we manually set the order here)
order <- ser_permutation(c(21, 16, 19, 18, 14, 12, 20, 15,

17, 26, 13, 41, 7, 11, 5, 23, 28, 34, 31, 1, 38, 40,
3, 39, 4, 27, 24, 8, 37, 36, 25, 30, 33, 35, 2,
22, 32, 29, 10, 6, 9),
c(4, 2, 1, 6, 8, 7, 5, 3))

bertinplot(x, order, options=list(pop=FALSE))
bertin_cut_line(,4) ## horizontal line between rows 4 and 5
bertin_cut_line(,7) ## separate "Right to Life" from the rest
bertin_cut_line(14,c(0,4)) ## separate a block of large values (vertically)



Chameleon 5

Chameleon 2D Data Sets used for the CHAMELEON Clustering Algorithm

Description

Several 2D data sets used to evaluate the CHAMELEON clustering alogrithm in the paper by
Karypis et al (1999) and used by iVAT, an ordering-based tool to asses cluster tendency (Havens
and Bezdek, 2012).

Usage

data(Chameleon)

Format

chameleon_ds4: The format is a 8,000 x 2 data.frame.

chameleon_ds5: The format is a 8,000 x 2 data.frame.

chameleon_ds7: The format is a 10,000 x 2 data.frame.

chameleon_ds8: The format is a 8,000 x 2 data.frame.

Source

The data was obtained from http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download

References

Karypis, G., EH. Han, V. Kumar (1999): CHAMELEON: A Hierarchical Clustering Algorithm
Using Dynamic Modeling, IEEE Computer, 32(8): 68–75.

Havens, T.C. and Bezdek, J.C. (2012): An Efficient Formulation of the Improved Visual Assessment
of Cluster Tendency (iVAT) Algorithm, IEEE Transactions on Knowledge and Data Engineering,
24(5), 813–822.

Examples

data(Chameleon)

plot(chameleon_ds4, cex=.1)

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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color_palettes Different Useful Color Palettes

Description

Defines several color palettes for pimage, dissplot and hmap.

Usage

bluered(n, bias = 1)
greenred(n, bias = 1)
grays(n, power = 1)
greys(n, power = 1)

Arguments

n number of different colors produces.

bias a positive number. Higher values give more widely spaced colors at the high
end.

power control parameter determining how luminance should be increased (1 = linear,
2 = quadratic, etc.).

Details

bluered creates a blue-red color palette.

greenred creates a green-red color palette.

greys and grays creates gray scales.

See colorRampPalette to create your own color palettes.

Value

A vector with n colors.

Author(s)

Michael Hahsler

See Also

colorRampPalette, pimage, dissplot, hmap.
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Examples

pimage(rbind(1:100))
pimage(rbind(1:100), col = greys(100, power=2))
pimage(rbind(1:100), col = bluered(100))
pimage(rbind(1:100), col = bluered(100, bias = 2))
pimage(rbind(-100:100), col = greenred(10))

## create your own color palettes
## red to green (with 10 colors)
pimage(rbind(1:100),

col = colorRampPalette(colors = c("red", "yellow", "green"))(10))
## white to blue (with 100 colors)
pimage(rbind(1:100),

col = colorRampPalette(colors = c("white", "blue"))(100))

criterion Criterion for a Loss/Merit Function for Data Given a Permutation

Description

Compute the value for different loss functions L and merit functionM for data given a permutation.

Usage

criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)

Arguments

x an object of class dist or a matrix (currently no functions are implemented for
array).

order an object of class ser_permutation suitable for x. If NULL, the identity permu-
tation is used.

method a character vector with the names of the criteria to be employed, or NULL (de-
fault) in which case all available criteria are used.

... additional parameters passed on to the criterion method.

force_loss logical; should merit function be converted into loss functions by multiplying
with -1?

Details

For a symmetric dissimilarity matrix D with elements d(i, j) where i, j = 1 . . . n, the aim is gener-
ally to place low distance values close to the diagonal. The following criteria to judge the quality of
a certain permutation of the objects in a dissimilarity matrix are currently implemented (for a more
detailed description and an experimental comparison see Hahsler (2017)):
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"Gradient_raw", "Gradient_weighted" Gradient measures (Hubert et al 2001). A symmetric
dissimilarity matrix where the values in all rows and columns only increase when moving
away from the main diagonal is called a perfect anti-Robinson matrix (Robinson 1951). A
suitable merit measure which quantifies the divergence of a matrix from the anti-Robinson
form is

M(D) =

n∑
i=1

∑
i<k<j

f(dij , dik) +
∑

i<k<j

f(dij , dkj)

where f(., .) is a function which defines how a violation or satisfaction of a gradient condition
for an object triple (Oi, Ok, Oj) is counted.
Hubert et al (2001) suggest two functions. The first function is given by:

f(z, y) = sign(y − z) = +1ifz < y; 0ifz = y; and− 1ifz > y.

It results in raw number of triples satisfying the gradient constraints minus triples which vio-
late the constraints.
The second function is defined as:

f(z, y) = |y − z|sign(y − z) = y − z

It weights the each satisfaction or violation by the difference by its magnitude given by the
absolute difference between the values.

"AR_events", "AR_deviations" Anti-Robinson events (Chen 2002). An even simpler loss func-
tion can be created in the same way as the gradient measures above by concentrating on
violations only.

L(D) =

n∑
i=1

∑
i<k<j

f(dik, dij) +
∑

i<k<j

f(dkj , dij)

To only count the violations we use

f(z, y) = I(z, y) = 1ifz < yand0otherwise.

I(·) is an indicator function returning 1 only for violations. Chen (2002) presented a formu-
lation for an equivalent loss function and called the violations anti-Robinson events and also
introduced a weighted versions of the loss function resulting in

f(z, y) = |y − z|I(z, y)

using the absolute deviations as weights.

"RGAR" Relative generalized Anti-Robinson events (Tien et al 2008). Counts Anti-Robinson events
in a variable band (window specified by w defaults to the maximum of n− 1) around the main
diagonal and normalizes by the maximum of possible events.

L(D) = 1/m

n∑
i=1

∑
(i−w)≤j<k<i

I(dij < dik) +
∑

i<j<k≤(i+w))

I(dij > dik)

where m = (2/3 − n)w + nw2 − 2/3w3, the maximal number of possible anti-Robinson
events in the window. The window size w represents the number of neighboring objects
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(number of entries from the diagonal of the distance matrix) are considered. The window size
is 2 ≤ w < n, where smaller values result in focusing on the local structure while larger values
look at the global structure. Alternatively, pct can be used instead of w to specify the window
as a percentage of n. relative=FALSE can be to get the GAR, i.e., the absolute number of
AR events in the window.

"BAR" Banded Anti-Robinson Form (Earle and Hurley 2015).
Simplified measure for closeness to the anti-Robinson form in a band of size b with 1 <= b <
n around the diagonal.

L(D) =
∑

|i−j|<=b

(b+ 1− |i− j|)dij

For b = 1 the measure reduces to the Hamiltonian path length. For b = n− 1 the measure is
equivalent to ARc defined (Earle and Hurley, 2015). Note that ARc is equivalent to the Linear
Seriation criterion (scaled by 1/2).
b defaults to a band of 20% of n.

"Path_length" Hamiltonian path length (Caraux and Pinloche 2005).
The order of the objects in a dissimilarity matrix corresponds to a path through a graph where
each node represents an object and is visited exactly once, i.e., a Hamilton path. The length
of the path is defined as the sum of the edge weights, i.e., dissimilarities.

L(D) =

n−1∑
i=1

di,i+1

The length of the Hamiltonian path is equal to the value of the minimal span loss function (as
used by Chen 2002). Both notions are related to the traveling salesperson problem (TSP).
If order is not unique or there are non-finite distance values NA is returned.

"Lazy_path_length" Lazy path length (Earl and Hurley 2015).
A weighted version of the Hamiltonian path criterion. This loss function postpones larger
distances to later in the order (i.e., a lazy traveling sales person).

L(D) =

n−1∑
i=1

(n− i)di,i+1

Earl and Hurley (2015) proposed this criterion for reordering in visualizations to concentrate
on closer objects first.

"Inertia" Inertia criterion (Caraux and Pinloche 2005).
Measures the moment of the inertia of dissimilarity values around the diagonal as

M(D) =

n∑
i=1

n∑
j=1

d(i, j)|i− j|2

|i − j| is used as a measure for the distance to the diagonal and d(i, j) gives the weight.
This criterion gives higher weight to values farther away from the diagonal. It increases with
quality.
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"Least_squares" Least squares criterion (Caraux and Pinloche 2005).
The sum of squares of deviations between the dissimilarities and rank differences (in the ma-
trix) between two elements:

L(D) =

n∑
i=1

n∑
j=1

(d(i, j)− |i− j|)2,

where d(i, j) is an element of the dissimilarity matrix D and |i − j| is the rank difference
between the objects.
Note that if Euclidean distance is used to calculate D from a data matrix X , the order of
the elements in X by projecting them on the first principal component of X minimizes this
criterion. The least squares criterion is related to unidimensional scaling.

"LS" Linear Seriation Criterion (Hubert and Schultz 1976).
Weights the distances with the absolute rank differences.

L(D)

n∑
i,j=1

d(i, j)(−|i− j|)

"2SUM" 2-Sum Criterion (Barnard, Pothen, and Simon 1993).
The 2-Sum loss criterion multiplies the similarity between objects with the squared rank dif-
ferences.

L(D)

n∑
i,j=1

1/(1 + d(i, j))(i− j)2,

where s(i, j) = 1/(1 + d(i, j)) represents the similarity between objects i and j.

"ME", "Moore_stress", "Neumann_stress", "Cor_R" These criteria are defined on general ma-
trices (see below for definitions). The dissimilarity matrix is first converted into a similarity
matrix using S = 1/(1 + D). If a different transformation is required, then perform the
transformation first and supply a matrix instead of a dist object.

For a general matrix X = xij , i = 1 . . . n and j = 1 . . .m, currently the following loss/merit
functions are implemented:

"ME" Measure of Effectiveness (McCormick 1972).
The measure of effectiveness (ME) for matrix X , is defined as

M(X) = 1/2

n∑
i=1

m∑
j=1

xi,j(xi,j−1 + xi,j+1 + xi−1,j + xi+1,j)

with, by convention

x0,j = xm+1,j = xi,0 = xi,n+1 = 0.

ME is a merit measure, i.e. a higher ME indicates a better arrangement. Maximizing ME is
the objective of the bond energy algorithm (BEA).
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"Cor_R" Weighted correlation coefficient R developed as the Measure of Effectiveness for the Mo-
ment Ordering Algorithm (Deutsch and Martin 1971).
R is a merit measure normalized so that its value always lies in [−1, 1]. For the special case of
a square matrix R = 1 corresponds to only the main diagonal being filled, R = 0 to a random
distribution of value throughout the array, and R = −1 to the opposite diagonal only being
filled.

"Moore_stress", "Neumann_stress" Stress (Niermann 2005).
Stress measures the conciseness of the presentation of a matrix/table and can be seen as a
purity function which compares the values in a matrix/table with its neighbors. The stress
measure used here is computed as the sum of squared distances of each matrix entry from its
adjacent entries.

L(X) =

n∑
i=1

m∑
j=1

σij

The following types of neighborhoods are available:

Moore: comprises the eight adjacent entries.

σij =

min(n,i+1)∑
k=max(1,i−1)

min(m,j+1)∑
l=max(1,j−1)

(xij − xkl)2

Neumann: comprises the four adjacent entries.

σij =

min(n,i+1)∑
k=max(1,i−1)

(xij − xkj)2 +
min(m,j+1)∑

l=max(1,j−1)

(xij − xil)2

The major difference between the Moore and the Neumann neighborhood is that for the later
the contribution of row and column permutations to stress are independent and thus can be
optimized independently.

Value

A named vector of real values.

Author(s)

Christian Buchta and Michael Hahsler

References

Barnard, S.T., A. Pothen, and H. D. Simon (1993): A Spectral Algorithm for Envelope Reduction of
Sparse Matrices. In Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, 493–502.
Supercomputing ’93. New York, NY, USA: ACM.

Caraux, G. and S. Pinloche (2005): Permutmatrix: A Graphical Environment to Arrange Gene
Expression Profiles in Optimal Linear Order, Bioinformatics, 21(7), 1280–1281.

Chen, C.-H. (2002): Generalized association plots: Information visualization via iteratively gener-
ated correlation matrices, Statistica Sinica, 12(1), 7–29.
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Deutsch, S.B. and J.J. Martin (1971): An ordering algorithm for analysis of data arrays. Operational
Research, 19(6), 1350–1362.

Earle, D. and C.B. Hurley (2015): Advances in Dendrogram Seriation for Application to Visualiza-
tion. Journal of Computational and Graphical Statistics, 24(1), 1–25.

Hahsler, M. (2017): An experimental comparison of seriation methods for one-mode two-way data.
European Journal of Operational Research, 257, 133–143.

Hubert, L. and J. Schultz (1976): Quadratic Assignment as a General Data Analysis Strategy.
British Journal of Mathematical and Statistical Psychology, 29(2). Blackwell Publishing Ltd. 190–
241.

Hubert, L., P. Arabie, and J. Meulman (2001): Combinatorial Data Analysis: Optimization by
Dynamic Programming. Society for Industrial Mathematics.

Niermann, S. (2005): Optimizing the Ordering of Tables With Evolutionary Computation, The
American Statistician, 59(1), 41–46.

McCormick, W.T., P.J. Schweitzer and T.W. White (1972): Problem decomposition and data reor-
ganization by a clustering technique, Operations Research, 20(5), 993-1009.

Robinson, W.S. (1951): A method for chronologically ordering archaeological deposits, American
Antiquity, 16, 293–301.

Tien, Y-J., Yun-Shien Lee, Han-Ming Wu and Chun-Houh Chen (2008): Methods for simultane-
ously identifying coherent local clusters with smooth global patterns in gene expression profiles,
BMC Bioinformatics, 9(155), 1–16.

See Also

list_criterion_methods to query the criterion registry.

Examples

## create random data and calculate distances
m <- matrix(runif(20),ncol=2)
d <- dist(m)

## get an order for rows (optimal for the least squares criterion)
o <- seriate(d, method = "MDS")
o

## compare the values for all available criteria
rbind(

unordered = criterion(d),
ordered = criterion(d, o)

)

## compare RGAR by window size (from local to global)
w <- 2:(nrow(m)-1)
RGAR <- sapply(w, FUN = function (w)

criterion(d, o, method="RGAR", w = w))
plot(w, RGAR, type = "b", ylim = c(0,1),

xlab = "Windows size (w)", main = "RGAR by window size")
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criterion_methods Registry for Criterion Methods

Description

A registry to manage methods to calculate a criterion value given data and a permutation.

Usage

list_criterion_methods(kind)
show_criterion_methods(kind)
get_criterion_method(kind, name)
set_criterion_method(kind, name, fun, description = NULL, merit = NA, ...)

Arguments

kind the data type the method works on. For example, "dist", "matrix" or "array".

name a short name for the method used to refer to the method in the function criterion().

fun a function containing the method’s code.

description a description of the method. For example, a long name.

merit a boolean indicating if the criterion measure is a merit (TRUE) or a loss (FALSE)
measure.

... further information that is stored for the method in the registry.

Details

All methods below are convenience methods for the registry named registry_criterion.

list_criterion_method() lists all available methods for a given data type (kind). The result is a
vector of character strings with the short names of the methods.

show_criterion_method() shows all available methods for a given data type (kind) including a
description.

get_criterion_method() returns information (including the implementing function) about a given
method in form of an object of class "criterion_method".

With set_criterion_method() new criterion methods can be added by the user. The implement-
ing function (fun) needs to have the formal arguments x,order,..., where x is the data object,
order is an object of class permutation_vector and ... can contain additional information for the
method passed on from criterion(). The implementation has to return the criterion value as a
scalar.

Author(s)

Michael Hahsler
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Examples

## the registry
registry_criterion

## use the convenience functions
list_criterion_methods("dist")

show_criterion_methods("dist")

get_criterion_method("dist", "AR_d")

## define a new method

## a function that return sum of the diagonal elements
criterion_method_matrix_foo <- function(x, order, ...) {
if(!is.null(order)) x <- permute(x,order)

sum(diag(x))
}

## set new method
set_criterion_method("matrix", "foo", criterion_method_matrix_foo,

"foo: a useless demo criterion", FALSE)

list_criterion_methods("matrix")

##use all criterion methods (including the new one)
criterion(matrix(1:9, ncol=3))

dissimilarity Dissimilarities and Correlations Between Seriation Orders

Description

Calculates dissimilarities/correlations between seriation orders in a list.

Usage

ser_cor(x, y = NULL, method = "spearman", reverse = TRUE, test = FALSE)
ser_dist(x, y = NULL, method = "spearman", reverse = TRUE, ...)
ser_align(x, method = "spearman")

Arguments

x set of seriation orders as a list with elements which can be coerced into ser_permutation_vector
objects.

y if not NULL then a single seriation order can be specified. In this case x has to be
a single seriation order and not a list.
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method a character string with the name of the used measure. Available measures are:
"kendall", "spearman", "manhattan", "euclidean", "hamming", "ppc" (po-
sitional proximity coefficient), and "aprd" (absolute pairwise rank differences).

reverse a logical indicating if the orders should also be checked in reverse order and
the best value (highest correlation, lowest distance) is reported. This only affect
ranking-based measures and not precedence invariant measures (e.g., ppc, aprd).

test a logical indicating if a correlation test should be performed.

... Further arguments passed on to the method.

Details

ser_cor calculates the correlation between two sequences (orders). Note that a seriation order and
its reverse are identical and purely an artifact due to the method that creates the order. This is a
major difference to rankings. For ranking-based correlation measures (Spearman and Kendall) the
absolute value of the correlation is returned for reverse = TRUE (in effect returning the correltation
for the reversed order). If test = TRUE then the appropriate test for association is performed and a
matrix with p-values is returned as the attribute "p-value". Note that no correction for multiple
testing is performed.

For ser_dist, the correlation coefficients (Kendall’s tau and Spearman’s rho) are converted into
a dissimilarity by taking one minus the correlation value. Note that Manhattan distance between
the ranks in a linear order is equivalent to Spearman’s footrule metric (Diaconis 1988). reverse =
TRUE returns the pairwise minima using also reversed orders.

The positional proximity coefficient (ppc) is a precedence invariant measure based on product of
the squared positional distances in two permutations defined as (see Goulermas et al 2016):

dppc(R,S) = 1/h

n∑
j=2

j−1∑
i=1

(πR(i)− πR(j))2 ∗ (πS(i)− πS(j))2,

where R and S are two seriation orders, piR and piS are the associated permutation vectors and h
is a normalization factor. The associatied generalized correlation coefficient is defined as 1− dppc.
For this precedence invariant measure reverse is ignored.

The absolute pairwise rank difference (aprd) is also precedence invariant and defined as a distance
measure:

daprd(R,S) =

n∑
j=2

j−1∑
i=1

||πR(i)− πR(j)| − |πS(i)− πS(j)||p,

where p is the power which can be passed on as parameter p and is by default set to 2. For this
precedence invariant measure reverse is ignored.

ser_align tries to normalize the direction in a list of seriations such that ranking-based methods
can be used. We add for each permutation also the reversed order to the set and then use a modified
version of Prim’s algorithm for finding a minimum spanning tree (MST) to choose if the original
seriation order or its reverse should be used. We use the orders first added to the MST. Every time
an order is added, its reverse is removed from the possible remaining orders.



16 dissimilarity

Value

ser_dist returns an object of class dist. ser_align returns a new list with elements of class
ser_permutation.

Author(s)

Michael Hahsler

References

P. Diaconis (1988): Group Representations in Probability and Statistics. Institute of Mathematical
Statistics, Hayward, CA.

J.Y. Goulermas, A. Kostopoulos, and T. Mu (2016): A New Measure for Analyzing and Fusing
Sequences of Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 38(5):833-
48.

See Also

ser_permutation_vector

Examples

set.seed(1234)
## seriate dist of 50 flowers from the iris data set
data("iris")
x <- as.matrix(iris[-5])
x <- x[sample(1:nrow(x), 50),]
rownames(x) <- 1:50
d <- dist(x)

## Create a list of different seriations
methods <- c("HC_single", "HC_complete", "OLO", "GW", "R2E", "VAT",

"TSP", "Spectral", "SPIN", "MDS", "Identity", "Random")

os <- sapply(methods, function(m) {
cat("Doing", m, "... ")
tm <- system.time(o <- seriate(d, method = m))
cat("took", tm[3],"s.\n")
o

})

## Compare the methods using distances. Default is based on
## Spearman's rank correlation coefficient. Reverse orders are considered
## equivalent.
ds <- ser_dist(os)
hmap(ds, margin=c(7,7))

## Compare using actual correlation between orders. Reversed orders have
## negative correlation!
cs <- ser_cor(os, reverse = FALSE)
hmap(cs, margin=c(7,7))
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## Also check reversed seriation orders.
## Now all but random and identity are highly positive correlated
cs2 <- ser_cor(os, reverse = TRUE)
hmap(cs2, margin=c(7,7))

## Use Manhattan distance of the ranks (i.e., Spearman's foot rule)
ds <- ser_dist(os, method="manhattan")
plot(hclust(ds))

dissplot Dissimilarity Plot

Description

Visualizes a dissimilarity matrix using seriation and matrix shading using the method developed by
Hahsler and Hornik (2011). Entries with lower dissimilarities (higher similarity) are plotted darker.
Such a plot can be used to uncover hidden structure in the data.

The plot can also be used to visualize cluster quality (see Ling 1973). Objects belonging to the same
cluster are displayed in consecutive order. The placement of clusters and the within cluster order is
obtained by a seriation algorithm which tries to place large similarities/small dissimilarities close
to the diagonal. Compact clusters are visible as dark squares (low dissimilarity) on the diagonal of
the plot. Additionally, a Silhouette plot (Rousseeuw 1987) is added. This visualization is similar to
CLUSION (see Strehl and Ghosh 2002), however, allows for using arbitrary seriating algorithms.

Usage

dissplot(x, labels = NULL, method = "Spectral",
control = NULL, options = NULL, ...)

Arguments

x an object of class dist.

labels NULL or an integer vector of the same length as rows/columns in x indicating
the cluster membership for each object in x as consecutive integers starting with
one. The labels are used to reorder the matrix.

method a list with up to three elements or a single character string. Use a single character
string to apply the same algorithm to reorder the clusters (inter cluster seriation)
as well as the objects within each cluster (intra cluster seriation).
If separate algorithms for inter and intra cluster seriation are required, method
can be a list of two named elements (inter_cluster and intra_cluster
each containing the name of the respective seriation method. See seriate.dist
for available algorithms.
Set method to NA to plot the matrix as is (no or only coarse seriation). For
intra cluster reordering the special method "silhouette width" is available.
Objects in clusters are then ordered by silhouette width (from silhouette plots).
If no method is given, the default method of seriate.dist is used.
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The third list element (named aggregation) controls how inter cluster dissimi-
larities are computed from from the given dissimilarity matrix. The choices are
"avg" (average pairwise dissimilarities; average-link), "min" (minimal pairwise
dissimilarities; single-link), "max" (maximal pairwise dissimilarities; complete-
link), and "Hausdorff" (pairs up each point from one cluster with the most
similar point from the other cluster and then uses the largest dissimilarity of
paired up points).

control a list of control options passed on to the seriation algorithm. In case of two
different seriation algorithms, control can contain a list of two named elements
(inter_cluster and intra_cluster) containing each a list with the control
options for the respective algorithm.

options a list with options for plotting the matrix. The list can contain the following
elements:

plot a logical indicating if a plot should be produced. if FALSE, the returned
object can be plotted later using the function plot which takes as the second
argument a list of plotting options (see options below).

cluster_labels a logical indicating whether to display cluster labels in the
plot.

averages a logical vector of length two. The first element controls the upper
triangle and the second element the lower triangle of the plot. FALSE dis-
plays the original dissimilarity between objects, TRUE displays cluster-wise
average dissimilarities, and NA leaves the triangle white (default: c(FALSE,TRUE),
i.e., the lower triangle displays averages)

lines a logical indicating whether to draw lines to separate clusters.

flip a logical indicating if the clusters are displayed on the diagonal from
north-west to south-east (FALSE; default) or from north-east to south-west
(TRUE).

silhouettes a logical indicating whether to include a silhouette plot (see Rousseeuw,
1987).

threshold a numeric. If used, only plot distances below the threshold are dis-
played. Consider also using zlim for this purpose.

col colors used for the image plot.

key a logical indicating whether to place a color key below the plot.

zlim range of values to display (defaults to range x).

axes "auto" (default; enabled for less than 25 objects), "y" or "none".

main title for the plot.

newpage a logical indicating whether to start plot on a new page (see grid.newpage
in package grid).

pop a logical indicating whether to pop the created viewports (see package
grid)?

gp, gp_lines, gp_labels objects of class gpar containing graphical parame-
ters (see gpar in package grid).

... further arguments are added to options.
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Value

An invisible object of class cluster_proximity_matrix with the following elements:

order NULL or integer vector giving the order used to plot x.

cluster_order NULL or integer vector giving the order of the clusters as plotted.

method vector of character strings indicating the seriation methods used for plotting x.

k NULL or integer scalar giving the number of clusters generated.

description a data.frame containing information (label, size, average intra-cluster dissim-
ilarity and the average silhouette) for the clusters as displayed in the plot (from
top/left to bottom/right).

This object can be used for plotting via plot(x,options = NULL,...), where x is the object and
options contains a list with plotting options (see above).

Author(s)

Michael Hahsler

References

Hahsler, M. and Hornik, K. (2011): Dissimilarity plots: A visual exploration tool for partitional
clustering. Journal of Computational and Graphical Statistics, 10(2):335–354.

Ling, R.F. (1973): A computer generated aid for cluster analysis. Communications of the ACM,
16(6), 355–361.

Rousseeuw, P.J. (1987): Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20(1), 53–65.

Strehl, A. and Ghosh, J. (2003): Relationship-based clustering and visualization for high-dimensional
data mining. INFORMS Journal on Computing, 15(2), 208–230.

See Also

dist, seriate, pimage and hmap.

Examples

data("iris")
d <- dist(iris[-5])

## plot original matrix
res <- dissplot(d, method = NA)

## plot reordered matrix using the nearest insertion algorithm (from tsp)
res <- dissplot(d, method = "TSP",

options = list(main = "Seriation (TSP)"))

## cluster with pam (we know iris has 3 clusters)
library("cluster")
l <- pam(d, 3, cluster.only = TRUE)
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## we use a grid layout to place several plots on a page
library("grid")
grid.newpage()
pushViewport(viewport(layout=grid.layout(nrow = 2, ncol = 2),

gp = gpar(fontsize = 8)))
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 1))

## visualize the clustering (using Spectral between clusters and MDS within)
res <- dissplot(d, l, method = list(inter = "Spectral", intra = "MDS"),

options = list(main = "PAM + Seriation - standard",
newpage = FALSE))

popViewport()
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 2))

## more visualization options. Note that we reuse the reordered object res!
## color: use 10 shades red-blue
plot(res, options = list(main = "PAM + Seriation",

col= bluered(10, bias=.5), newpage = FALSE))

popViewport()
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 1))

## threshold (using zlim) and cubic scale to highlight differences
plot(res, options = list(main = "PAM + Seriation - threshold",

zlim = c(0, 1.5), col = greys(100, power = 2), newpage = FALSE))

popViewport()
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 2))

## use custom (logistic) scale
plot(res, options = list(main = "PAM + Seriation - logistic scale",

col= hcl(c = 0, l = (plogis(seq(10, 0, length=100),
location = 2, scale = 1/2, log = FALSE))*100),
newpage = FALSE))

popViewport(2)

## the reordered_cluster_dissimilarity_matrix object
res
names(res)

get_order Extracting Order Information from a Permutation Object

Description

Method to get the order information from an object of class ser_permutation or ser_permutation_vector.
Order information can be extracted as an integer permutation vector, a vector containing the object
ranks or a permutation matrix.
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Usage

get_order(x, ...)
## S3 method for class 'ser_permutation_vector'
get_order(x, ...)
## S3 method for class 'ser_permutation'
get_order(x, dim = 1, ...)

get_rank(x, ...)

get_permutation_matrix(x, ...)

Arguments

x an object of class ser_permutation or ser_permutation_vector.

dim order information for which dimension should be returned?

... further arguments are ignorred for get_order. For get_rank and for get_permutation_matrix
the additional arguments are passed on to get_order (e.g., as dim).

Details

get_order returns the seriation as an integer vector containing the order of the objects after per-
mutation. That is, the index of the first, second, ..., n-th object. These permuation vectors can
directly be used to reorder objects using subsetting with "[". Note: In seriation we usually use
these order-based permutation vectors.

get_rank returns the seriation as an integer vector containing the rank/position for each objects in
the permutation. That is, position of the first, second, ..., n-th object after permutation. Note: Use
order() to convert ranks back to an order.

get_permutation_matrix returns a n× n permutation matrix.

Value

Returns an integer permutation vector/a permutation matrix.

Author(s)

Michael Hahsler

See Also

ser_permutation_vector, ser_permutation

Examples

## permutation_vector
o <- ser_permutation_vector(sample(10))
o

get_order(o)
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get_rank(o)
get_permutation_matrix(o)

## permutation
o2 <- ser_permutation(o, sample(5))
o2

get_order(o2, dim = 2)
get_rank(o2, dim = 2)
get_permutation_matrix(o2, dim = 2)

hmap Plot Heat Map Reordered Using Seriation

Description

Provides heat maps reordered using several different seriation methods. This includes dendrogram
based reordering with optimal leaf order and matrix seriation based heat maps.

Usage

hmap(x, distfun = dist, method = "OLO", control = NULL, zlim = NULL, ...)

Arguments

x a matrix or a dissimilarity matrix of class dist. If a dissimilarity matrix is used,
then the distfun is ignored.

distfun function used to compute the distance (dissimilarity) between both rows and
columns (default: dist).

method a character strings indicating the used seriation algorithm (see seriate.dist).
If the method results in a dendrogram then heatmap in stats is used to show the
dendrograms, otherwise reordered distance matrices are shown instead.

control a list of control options passed on to the seriation algorithm specified in method.

zlim range of values to display (defaults to the range of x).

... further arguments.

Details

For dendrogram based heat maps the arguments are passed on to heatmap.2 in gplots. See for ex-
ample margins and col. The following arguments for heatmap.2 cannot be used: Rowv,Colv,hclustfun,reorderfun.

For seriation-based heat maps further arguments include:

gp an object of class gpar containing graphical parameters (see gpar in package grid).

newpage a logical indicating whether to start plot on a new page (see gpar in package grid).

prop a logical indicating whether the height and width of x should be plotted proportional to its
dimensions.
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showdist Display seriated dissimilarity matrices? Values are "none", "both", "rows" or "columns".

key logical; show a colorkey?.

key.lab string plotted next to the color key.

axes one of "auto" (default; show axis labels if there are less than 25 labels), "x", "y", "both"
and "none".

margins bottom and right-hand-side margins are calculated automatically or can be specifies as a
vector of two numbers (in lines).

zlim range of values displayed.

col, col_dist color palettes used.

For dendrogram = TRUE, seriate.hclust with the default method "optimal" is used for arranging
the dendrograms and x. heatmap is used for plotting.

For dendrogram = FALSE, seriate.dist with the default method "tsp" (a traveling salesperson
solver) for arranging x is used. grid code implemented in this package is used to produce the plot.

Note that unlike the default behavior of heatmap, scaling is not automatically applied. The data
have to be scaled before using hmap.

Value

An invisible list with elements:

rowInd, colInd index permutation vectors.

reorder_method name of the method used to reorder the matrix.

The list may contain additional elements (dendrograms, colors, etc).

Author(s)

Michael Hahsler

See Also

seriate, pimage, dissplot, heatmap.2 in gplots.

Examples

data("Wood")

## default heatmap does Euclidean distance, hierarchical clustering with
## average-link and optimal leaf ordering
hmap(Wood)

## heatmap with correlation-based distance, green-red color (greenred is
## predefined) and optimal leaf ordering and no row label
dist_cor <- function(x) as.dist(1-cor(t(x)))

hmap(Wood, method="OLO", distfun = dist_cor, col=greenred(100), labRow=FALSE)

## order-based heatmap
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hmap(Wood, method="MDS_angle", distfun = dist_cor, col=greenred(100))

## order-based with dissimilarity matrices
hmap(Wood, method="MDS_angle", distfun = dist_cor, showdist = "both",

col=greenred(100))

Irish Irish Referendum Data Set

Description

A data matrix containing the results of 8 referenda for 41 Irish communities used in Falguerolles et
al (1997).

Usage

data(Irish)

Format

The format is a 41 x 9 matrix. Two values are missing.

Details

Column 6 contains the size of the Electorate in 1992.

Source

The data was kindly provided by Guenter Sawitzki.

References

de Falguerolles, A., Friedrich, F., Sawitzki, G. (1997): A Tribute to J. Bertin’s Graphical Data
Analysis. In: Proceedings of the SoftStat ’97 (Advances in Statistical Software 6), 11–20.

Examples

data(Irish)
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Munsingen Hodson’s Munsingen Data Set

Description

This data set contains a grave times artifact incidence matrix for the Celtic Münsingen-Rain ceme-
tery in Switzerland as provided by Hodson (1968) and published by Kendall 1971.

Usage

data("Munsingen")

Format

A 59 x 70 0-1 matrix. Rows (graves) and columns (artifacts) are in the order determined by Hodson
(1968).

References

Hodson, F.R. (1968): The La Tene Cemetery at Münsingen-Rain. Stämpfli, Bern.

Kendall, D.G. (1971): Seriation from abundance matrices. In: Hodson, F.R., Kendall, D.G. and
Tautu, P., (Editors). Mathematics in the Archaeological and Historical Sciences, Edinburgh Uni-
versity Press, Edinburgh, 215–232.

Examples

data("Munsingen")

## Seriation method after Kendall (1971)
## Kendall's square symmetric matrix S and SoS
S <- function(x, w = 1) {

sij <- function(i , j) w * sum(pmin(x[i,], x[j,]))
h <- nrow(x)
r <- matrix(ncol = h, nrow =h)
for(i in 1:h) for (j in 1:h) r[i,j] <- sij(i,j)
r

}

SoS <- function(x) S(S(x))

## Kendall's horse shoe (Hamiltonian arc)
horse_shoe_plot <- function(mds, sigma, threshold = mean(sigma), ...) {

plot(mds, main = paste("Kendall's horse shoe with th =", threshold), ...)
l <- which(sigma > threshold, arr.ind=TRUE)
for(i in 1:nrow(l)) lines(rbind(mds[l[i,1],], mds[l[i,2],]))

}

## shuffle data
x <- Munsingen[sample(nrow(Munsingen)),]
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## calculate matrix and do isoMDS (from package MASS)
sigma <- SoS(x)
library("MASS")
mds <- isoMDS(1/(1+sigma))$points

## plot Kendall's horse shoe
horse_shoe_plot(mds, sigma)

## find order using a TSP
library("TSP")
tour <- solve_TSP(insert_dummy(TSP(dist(mds)), label = "cut"),

method = "2-opt", control = list(rep = 15))
tour <- cut_tour(tour, "cut")
lines(mds[tour,], col = "red", lwd = 2)

## create and plot order
order <- ser_permutation(tour, 1:ncol(x))
bertinplot(x, order, options= list(panel=panel.circles,

rev = TRUE))

## compare criterion values
rbind(

random = criterion(x),
reordered = criterion(x, order),
Hodson = criterion(Munsingen)
)

permutation Class ser_permutation – A Collection of Permutation Vectors for Seri-
ation

Description

The class ser_permutation is a collection of permutation vectors (see class ser_permutation_vector),
one for each dimension (mode) of the data to be permuted.

Usage

## constructor
ser_permutation(x, ...)

Arguments

x an object of class ser_permutation_vector or any object which can be con-
verted into a object of class ser_permutation (e.g. an integer vector).

... permutation vectors for further dimensions
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Details

The basic functions print, "[", "[[" and c are provided.

Value

An object of class ser_permutation.

Author(s)

Michael Hahsler

See Also

ser_permutation_vector, get_order, get_permutation_matrix

Examples

o <- ser_permutation(1:5, 10:1)
o

## length (number of dimensions)
length(o)

## get permutation vector for 2nd dimension
get_order(o, 2)

## reverse dimensions
o[2:1]

## combine
o <- c(o, ser_permutation(1:15))
o

## get an individual permutation
o[[2]]

## reverse the order of a permutation
o[[2]] <- rev(o[[2]])
get_order(o,2)

permutation_matrix Conversion Between Permutation Vector and Permutation Matrix

Description

Converts between permutation vectors and matrices.
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Usage

permutation_matrix2vector(x)
permutation_vector2matrix(x)

Arguments

x A permutation vector (any object that can be converted into a permutation vector,
e.g., a integer vector or a hclust object) or a matrix representing a permutation.
Arguments are checked.

Author(s)

Michael Hahsler

See Also

ser_permutation, permute

Examples

## create a random permutation vector
pv <- sample(1:5)
pv

## convert into a permutation matrix
pm <- permutation_vector2matrix(pv)
pm

## convert back
permutation_matrix2vector(pm)

permutation_vector Class ser_permutation_vector – A Single Permutation Vector for Seri-
ation

Description

The class ser_permutation_vector represents a single permutation vector.

Usage

## constructor
ser_permutation_vector(x, method = NULL)

Arguments

x an object which contains a permutation vector (currently an integer vector or an
object of class hclust). The value NA creates an identity permutation.

method a string representing the method used to obtain the permutation vector
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Details

A permutation vector maps a set of n objects {O1, O2, ..., On} onto itself. In seriation we repre-
sent a permutation π as a vector which lists the objects in their permuted order. For example, the
permutation vector 〈3, 1, 2〉 indicates that in first position is the object with index 3 then the object
with index 1 and finally the object with index 2. A permutation vector can be extracted from a per-
muation vector object via get_order(). Such a permutation vector can be directly used to subset
the list of original objects with "[" to apply the permutation. Note: An alternative way to specify a
permutation is via a list of the ranks of the objects after permutation (see get_rank()).

ser_permutation_vector objects are usually packed into a ser_permutation object which is a
collection of k permutation vectors for k-mode data.

The constructor ser_permutation_vector checks if the permutation vector is valid (i.e. if all
integers occur exactly once).

The following functions are implemented: print, rev, length, get_order, get_rank, get_method.

Value

An object of class ser_permutation_vector.

Author(s)

Michael Hahsler

See Also

ser_permutation, get_order, get_rank, get_permutation_matrix, permutation_vector2matrix.

Examples

p <- ser_permutation_vector(sample(10), "random")
p

## some methods
length(p)
get_method(p)
get_order(p)
get_rank(p)
get_permutation_matrix(p)

r <- rev(p)
r
get_order(r)

## create a indentity permutation vector (with unknown length)
ip <- ser_permutation_vector(NA)
ip
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permute Permute the Order in Various Objects

Description

Provides the generic function and methods for permuting the order of various objects including
vectors, dendrograms (also hclust objects), the order of observations in a dist object, the rows
and columns of a matrix, all dimensions of an array given a suitable ser_permutation object.

Usage

permute(x, order, ...)

Arguments

x an object (a list, a vector, a dist object, a matrix, an array or any other object
which provides dim and standard subsetting with "[").

order an object of class ser_permutation which contains suitable permutation vec-
tors for x.

... additional arguments for the permutation function.

Details

The permutation vectors in ser_permutation are suitable if the number of permutation vectors
matches the number of dimensions of x and if the length of each permutation vector has the same
length as the corresponding dimension of x.

For 1-dimensional/1-mode data (list, vector, dist), order can also be a single permutation vector
of class ser_permutation_vector or data which can be automatically coerced to this class (e.g. a
numeric vector).

For dendrograms and hclust, subtrees are rotated to represent the order best possible. If the order
is not achived perfectly then the user is warned. This behavior can be changed with the extra
parameter incompatible which can take the values "warn" (default), "stop" or "ignore".

Author(s)

Michael Hahsler

See Also

ser_permutation, dist in package stats.
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Examples

## permute matrix
m <- matrix(rnorm(10), 5, 2, dimnames = list(1:5, 1:2))
m

## permute rows and columns
permute(m, ser_permutation(5:1, 2:1))
## permute only columns
permute(m, ser_permutation(NA, 2:1))

## permute objects in a dist object
d <- dist(m)
d

permute(d, ser_permutation(c(3,2,1,4,5)))

## permute a list
l <- list(a=1:5, b=letters[1:3], c=0)
l

permute(l, c(2,3,1))

## permute a dendrogram
hc <- hclust(d)
plot(hc)
plot(permute(hc, 5:1))

pimage Permutation Image Plot

Description

Provides methods for plotting image plots for matrix and dist objects given a permutation. By
default, no permutation is performed. This plot can also be used as a more versatile replacement of
image plot in graphics based on grid.

Usage

pimage(x, order = NULL, col = NULL, main ="", xlab = "", ylab = "",
axes = "auto", zlim=NULL, key=TRUE, key.lab="", symkey=TRUE,
upper.tri = TRUE, lower.tri = TRUE, prop = NULL,
..., newpage=TRUE, pop=TRUE, gp=NULL)

Arguments

x a matrix or an object of class dist.

order an object of class ser_permutation. If NULL the order in x is plotted.
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col a list of colors used. If NULL, a gray scale is used (for matrix larger values are
displayed darker and for dist smaller distances are darker). For matrices con-
taining logical data, black and white is used. For matrices containing negative
values a symmetric diverging color palette is used.

main plot title.

xlab, ylab labels for the x and y axes.

axes a character string indicating if axes labels (column and row names of x) should
be potted. Possible values are "auto" (only plot if less then 25 labels), "x", "y",
"both" and "none".

zlim vector with two elements giving the range (min, max) for representing the values
in the matrix.

key logical; add a color key? No key is available for logical matrices.

key.lab string plotted next to the color key.

symkey logical; if x contains negative values, should the color palate be symmetric (zero
is in the middle)>

upper.tri, lower.tri

a logical indicating whether to show the upper or lower triangle of the distance
matrix.

prop logical; draw the cells in the image proportional (defaults to TRUE for dist and
FALSE for matrix).

... further arguments passed on to image in graphics.

newpage, pop two logical. Start plot on a new page and pop the viewports after plotting (see
grid).

gp a gpar object (see grid).

Details

Plots a matrix in its original row and column orientation. This means, in a plot the columns become
the x-coordinates and the reversed rows the y-coordinates.

If x is of class dist it is converted to full-storage representation before plotting.

The viewports used for plotting are called: "plot", "image" and "colorkey".

Author(s)

Christian Buchta and Michael Hahsler

See Also

seriate, hmap, dissplot and image.
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Examples

x <- matrix(sample(c(FALSE, TRUE), 300, rep=TRUE), ncol=10,
dimnames = list(1:30, LETTERS[1:10]))

## matrix (large values are dark/black)
pimage(x, main = "Random data", key = FALSE)

## plot seriated matrix (use red, proportional display and plot all axes)
pimage(x, seriate(x), col = c("white", "red"),

prop = TRUE, axes="both", main = "Reordered data", key = FALSE)

## show correlation (for neg. values a diverging color scheme is
## used automatically)
pimage(cor(x), prop=TRUE)

## distances (note that low distances are represented dark!)
d <- dist(x, method = "binary")
pimage(d, upper.tri = FALSE, main = "Distances")

pimage(d, seriate(d), upper.tri = FALSE, main = "Distances", axes = "both")

## add to the plot using grid (use pop = FALSE)
library(grid)
pimage(x, pop = FALSE)
downViewport(name = "image")

## highlight cell 7/5 with a red arrow
grid.lines(x = c(5, 7), y = c(3, 5), arrow = arrow(),

default.units = "native", gp = gpar(col="red", lwd = 3))

## add a red box around rows 15 and 16
grid.rect(x = 0.5, y = 15.5, width = ncol(x), height = 2,

just = "left",
default.units = "native", gp = gpar(col="red", lwd = 3, fill = NA))

## remove the viewports
popViewport(0)

## put several pimages on a page (uses viewports and newpage = FALSE)
library(grid)
grid.newpage()
pushViewport(viewport(layout=grid.layout(nrow = 1, ncol = 2)))
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 1))

## seriate matrix
o <- seriate(x)
pimage(x, o, main = "Random data", prop = TRUE, axes = "both", key = FALSE,

newpage = FALSE)

upViewport(1)
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 2))
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## add the reordered disimilarity matrix for rowa
pimage(d, o[[1]], upper.tri = FALSE, main = "Distances", axes = "both",

key = FALSE, newpage = FALSE)

upViewport(1)
popViewport(0)

Psych24 Results of 24 Psychological Test for 8th Grade Students

Description

A data set collected by Holzinger and Swineford (1939) which consists of the results of 24 psy-
chological tests given to 145 seventh and eighth grade students in a Chicago suburb. This data set
contains the correlation matrix for the 24 test results.

The data set was also used as an example for visualization of cluster analysis by Ling (1973).

Usage

data("Psych24")

Format

A 24 x 24 correlation matrix.

References

Holzinger, K. L., Swineford, F. (1939): A study in factor analysis: The stability of a bi-factor
solution. Supplementary Educational Monograph, No. 48. Chicago: University of Chicago Press.

Ling, R. L. (1973): A computer generated aid for cluster analysis. Communications of the ACM,
16(6), pp. 355–361.

Examples

data("Psych24")

## create a dist object and also get rid of the one negative entry in the
## correlation matrix
d <- as.dist(1 - abs(Psych24))

pimage(d)

## do hclust as in Ling (1973)
hc <- hclust(d, method = "complete")
plot(hc)

pimage(d, hc)

## use seriation
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order <- seriate(d, method = "tsp")
#order <- seriate(d, method = "tsp", control = list(method = "concorde"))
pimage(d, order)

register_DendSer Register Seriation Methods from Package DendSer

Description

Register the DendSer dendrogram seriation method and the ARc criterion (Earle and Hurley, 2015).

Usage

register_DendSer()

Details

Registers the method "DendSer" for seriate. DendSer is a fast heuristic for reordering dendro-
grams developed by Earle and Hurley (2015) able to use different criteria. control for seriate
with method "DendSer" accepts the following parameters:

"h" or "method" A dendrogram or a method for hierarchical clustering (see hclust). Default:
complete-link.

"criterion" A seriation criterion to optimize (see list_criterion_methods("dist")). De-
fault: "BAR" (Banded anti-Robinson from with 20% band width).

"verbose" print progress information.

"DendSer_args" additional arguments for DendSer.

For convenience the following methods (for differnt cost functions) are also provided: "DendSer_ARc"
(anti-robinson form), "DendSer_BAR" (banded anti-Robinson form), "DendSer_LS" (leaf seriation),
"DendSer_PL" (path length).

Note: Package DendSer needs to be installed.

Author(s)

Michael Hahsler based on code by Catherine B. Hurley and Denise Earle

References

D. Earle, C. B. Hurley (2015): Advances in dendrogram seriation for application to visualization.
Journal of Computational and Graphical Statistics, 24(1), 1–25.

See Also

seriate, DendSer in DendSer.
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Examples

## Not run:
register_DendSer()
list_seriation_methods("dist")

d <- dist(random.robinson(20, pre=TRUE))

## use Banded AR form with default clustering (complete-link)
o <- seriate(d, "DendSer_BAR")
pimage(d, o)

## use different hclust method (Ward) and AR as the cost function for
## dendrogram reordering
o <- seriate(d, "DendSer", control = list(method = "ward.D2", criterion = "AR"))
pimage(d, o)

## End(Not run)

register_GA Register a Genetic Algorithm Seriation Method

Description

Register a GA-based seriation metaheuristic.

Usage

register_GA()

Details

Registers the method "GA" for seriate. This method can be used to optimize any criterion in
package seriation. control for seriate with method "GA" accepts the following parameters:

"criterion" criterion to optimize. Default: BAR

"suggestions" suggestions to warm start the GA. NA means no warm start. Default: TSP, QAP_LS
and Spectral.

"selection" Selection operator (see GA). Default: non-linear rank selection

"crossover" Crossover operator (see GA). Default: ordered crossover (OX)

"mutation" Mutation operator (see GA). Default: a mixture of the simple insertion (80% chance)
and simple inversion (20% chance) operators.

"pmutation" proability for permutations. Default: .5

"pcrossover" probability for crossover. Default: .2

"popsize" the population size. Default: 100

"maxiter" maximum number of generations. Default: 1000
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"run" stop after run generations without improvement. Default: 50

"parallel" use multiple cores? Default: TRUE

"verbose" Report progress? Default: TRUE

The GA uses by default the ordered cross-over (OX) operator. For mutation, the GA uses a mix-
ture of simple insertion and simple inversion operators. This mixed operator is created using
seriation::gaperm_mixedMutation(ismProb = .8), where ismProb is the probability that the
simple insertion mutation operator is used. See package GA for a description of other available
cross-over and mutation operators for permutaitons. The appropriate operator functions in GA start
with gaperm_.

We warm start the GA using "suggestions" given by several heuristics. Set "suggestions" to NA
to start with a purely random initial population.

Note: Package GA needs to be installed.

Author(s)

Michael Hahsler

References

Luca Scrucca (2013): GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1–37. URL http://www.jstatsoft.org/v53/i04/.

See Also

seriate, ga in GA.

Examples

## Not run:
register_GA()
list_seriation_methods("dist")

d <- dist(random.robinson(50, pre=TRUE, noise=.1))

## use default settings: Banded AR form
o <- seriate(d, "GA")
pimage(d, o)

## optimize for linear sertiation criterion (LS)
o <- seriate(d, "GA", control = list(criterion = "LS"))
pimage(d, o)

## no warm start
o <- seriate(d, "GA", control = list(criterion = "LS", suggestions = NA))
pimage(d, o)

## End(Not run)

http://www.jstatsoft.org/v53/i04/
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reorder.hclust Reorder Dendrograms using Optimal Leaf Ordering

Description

Reorder method for dendrograms for optimal leaf ordering.

Usage

## S3 method for class 'hclust'
reorder(x, dist, method = "OLO", ...)

Arguments

x an object of class hclust.

dist an object of class dist with dissimilarities between the objects in x.

method a character string with the name of the used measure Available are: "OLO" (op-
timal leaf ordering; Bar-Joseph et al., 2001) and "GW" (Gruvaeus and Wainer,
1972).

... further arguments are currently ignored.

Details

Minimizes the distance between neighboring objects (leaf nodes) in the dendrogram by flipping the
order of subtrees. The algorithm by Gruvaeus and Wainer is implemented in package gclus (Hurley
2004).

Value

A reordered hclust object.

Author(s)

Michael Hahsler

References

Bar-Joseph, Z., E. D. Demaine, D. K. Gifford, and T. Jaakkola. (2001): Fast Optimal Leaf Ordering
for Hierarchical Clustering. Bioinformatics, 17(1), 22–29.

Gruvaeus, G. and Wainer, H. (1972): Two Additions to Hierarchical Cluster Analysis, British Jour-
nal of Mathematical and Statistical Psychology, 25, 200–206.

Hurley, Catherine B. (2004): Clustering Visualizations of Multidimensional Data. Journal of Com-
putational and Graphical Statistics, 13(4), 788–806.

See Also

reorder.hclust
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Examples

## cluster European cities by distance
data("eurodist")
d <- as.dist(eurodist)
hc <- hclust(eurodist)

## plot original dendrogram and the reordered dendrograms
plot(hc)
plot(reorder(hc, d, method = "GW"))
plot(reorder(hc, d, method = "OLO"))

Robinson Create and Recognize Robinson and Pre-Robinson Matrices

Description

Provides functions to create and recognize (anti) Robinson and pre-Robinson matrices. A (anti)
Robinson matrix has strictly decreasing (increasing) values when moving away from the main diag-
onal. A pre-Robinson matrix is a matrix which can be transformed into a perfect Robinson matrix
using simultaneous permutations of rows and columns.

Usage

is.robinson(x, anti = TRUE, pre = FALSE)
random.robinson(n, anti = TRUE, pre = FALSE, noise = 0)

Arguments

x a symmetric, positive matrix or a dissimilarity matrix (a dist object).

anti logical; check for anti Robinson structure? Note that for distances, anti Robin-
son structure is appropriate.

pre logical; recognize/create pre-Robinson matrices.

n number of objects.

noise noise intensity between 0 and 1. Zero means no noise. Noise more than zero
results in non-Robinson matrices.

Details

Note that the default matrices are anti Robinson matrices. This is done because distance matrices
(the default in R) are typically anti Robinson matrices with values increasing when moving away
from the diagonal.

Robinson matrices are recognized using the fact that they have zero anti Robinson events. For pre-
Robinson matrices we use spectral seriation first since spectral seriation is guaranteed to perfectly
reorder pre-Robinson matrices (see Laurent and Seminaroti, 2015).

Random pre-Robinson matrices are generated by reversing the process of unidemensional scaling.
We randomly (uniform distribution with range [0, 1]) choose x coordinates for n points on a straight
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line and calculate the pairwise distances. For Robinson matrices, the points are sorted first according
to x. For noise, y coordinates is added. The coordinates are chosen uniformly between 0 and noise,
with noise between 0 and 1.

Value

A single logical value.

References

M. Laurent, M. Seminaroti (2015): The quadratic assignment problem is easy for Robinsonian
matrices with Toeplitz structure, Operations Research Letters 43(1), 103–109.

Examples

## create a perfect anti Robinson structure
m <- random.robinson(10)
pimage(m)

is.robinson(m)

## permute the structure to make it not Robinsonian. However,
## it is still pre-Robinson.
o <- sample(10)
m2 <- permute(m, ser_permutation(o,o))
pimage(m2)

is.robinson(m2)
is.robinson(m2, pre = TRUE)

## create a binary random Robinson matrix (not anti Robinson)
m3 <- random.robinson(10, anti = FALSE) > .7
pimage(m3)
is.robinson(m3, anti = FALSE)

## create matrices with noise (as distance matrices)
m4 <- as.dist(random.robinson(50, pre = FALSE, noise = .1))
pimage(m4)
criterion(m4, method = "AR")

m5 <- as.dist(random.robinson(50, pre = FALSE, noise = .5))
pimage(m5)
criterion(m5, method = "AR")

seriate Seriate Dissimilarity Matrices, Matrices or Arrays

Description

Tries to find an linear order for objects using data in form of a dissimilarity matrix (two-way one
mode data), a data matrix (two-way two-mode data) or a data array (k-way k-mode data).
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Usage

## S3 method for class 'dist'
seriate(x, method = "Spectral", control = NULL, ...)
## S3 method for class 'matrix'
seriate(x, method = "PCA", control = NULL,

margin = c(1,2), ...)
## S3 method for class 'array'
seriate(x, method = "PCA", control = NULL,

margin = seq(length(dim(x))), ...)

Arguments

x the data.

method a character string with the name of the seriation method (default: varies by data
type).

control a list of control options passed on to the seriation algorithm.

margin a vector giving the margins to be seriated. For matrix, 1 indicates rows, 2 in-
dicates columns, c(1,2) indicates rows and columns. For array, margin gets a
vector with the dimensions to seriate.

... further arguments (unused).

Details

Seriation methods are available via a registry. See list_seriation_methods for help.

Many seriation methods (heuristically) optimize (minimize or maximize) an objective function. The
value of the function for a given seriation can be calculated using criterion. In this manual page
we only state the measure which is optimized (using bold font). A definition of the measures can
be found in the criterion manual page.

Two-way two-mode data has to be provided as a dist object (not as a symmetric matrix). Similarities
have to be transformed in a suitable way into dissimilarities. Currently the following methods are
implemented for dist (for a more detailed description and an experimental comparison see Hahsler
(2017)):

"ARSA" Anti-Robinson seriation by simulated annealing to minimize the linear seriation criterion
(simulated annealing initialization used in Brusco et al 2008).
Several control parameters are available: cool (cooling rate), tmin (minimum tempera-
ture), swap_to_inversion (proportion of swaps to inversions for local neighborhood search),
try_multiplier (local search tries per temperature; multiplied with the number of objects),
reps (repeat the algorithm with random initialization), verbose. Use verbose = TRUE to see
the default values for the parameters.

"BBURCG" Anti-Robinson seriation by branch-and-bound to minimize the unweighted gradient
measure (Brusco and Stahl 2005). This is only feasible for a relatively small number of
objects.

"BBWRCG" Anti-Robinson seriation by branch-and-bound to minimize the weighted gradient mea-
sure (Brusco and Stahl 2005). This is only feasible for a relatively small number of objects.
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"TSP" Traveling salesperson problem solver to minimize the Hamiltonian path length. The
solvers in TSP are used (see solve_TSP). The solver method can be passed on via the control
argument, e.g. control = list(method = "two_opt"). Default is the est of 10 runs of arbi-
trary insertion heuristic with 2-opt improvement.
Since a tour returned by a TSP solver is a connected circle and we are looking for a path
representing a linear order, we need to find the best cutting point. Climer and Zhang (2006)
suggest to add a dummy city with equal distance to each other city before generating the tour.
The place of this dummy city in an optimal tour with minimal length is the best cutting point
(it lies between the most distant cities).

"R2E" Rank-two ellipse seriation (Chen 2002).
This method starts with generating a sequence of correlation matrices R1, R2, . . .. R1 is the
correlation matrix of the original distance matrix D (supplied to the function as x), and

Rn+1 = φRn,

where φ calculates the correlation matrix.
The rank of the matrix Rn falls with increasing n. The first Rn in the sequence which has a
rank of 2 is found. Projecting all points in this matrix on the first two eigenvectors, all points
fall on an ellipse. The order of the points on this ellipse is the resulting order.
The ellipse can be cut at the two interception points (top or bottom) of the vertical axis with
the ellipse. In this implementation the top most cutting point is used.

"MDS", "MDS_metric", "MDS_nonmetric", "MDS_angle" Multidimensional scaling (MDS).
Use multidimensional scaling techniques to find an linear order by minimizing stress. Note
MDS algorithms used for a single dimension tend to end up in local optima and unidimen-
sional scaling (see Maier and De Leeuw, 2015) would be more appropriate. However, gener-
ally, ordering along the first component of MDS provides good results.
By default, metric MDS (cmdscale in stats) is used. In case of of general dissimilarities,
non-metric MDS can be used. The choices are isoMDS and sammon from MASS. The method
can be specified as the element method ("cmdscale", "isoMDS" or "sammon") in control.
For convenience, "MDS_metric" performs cmdscale and "MDS_nonmetric" performs isoMDS.
"MDS_angle" projects the data on the first two components found by MDS and then orders by
the angle in this space. The order is split by the larges gap between adjacent angles. A similar
method was used for ordering correlation matrices by Friendly (2002).

"HC", "HC_single", "HC_complete", "HC_average","HC_ward" Hierarchical clustering.
Using the order of the leaf nodes in a dendrogram obtained by hierarchical clustering can
be used as a very simple seriation technique. This method applies hierarchical clustering
(hclust) to x. The clustering method can be given using a "method" element in the control
list. If omitted, the default "average" is used.
For convenience the other methods are provided as shortcuts.

"GW", "OLO" Hierarchical clustering (by default using average-link) with additional leaf-node re-
ordering to minimize Hamiltonian path length (restricted).
A dendrogram (binary tree) has 2n−1 internal nodes (subtrees) and the same number of leaf
orderings. That is, at each internal node the left and right subtree (or leaves) can be swapped,
or, in terms of a dendrogram, be flipped.
Method "GW" uses an algorithm developed by Gruvaeus and Wainer (1972) and implemented
in package gclus (Hurley 2004). The clusters are ordered at each level so that the objects at
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the edge of each cluster are adjacent to that object outside the cluster to which it is nearest.
The method produces an unique order.
Method "OLO" (Optimal leaf ordering, Bar-Joseph et al., 2001) produces an optimal leaf or-
dering with respect to the minimizing the sum of the distances along the (Hamiltonian) path
connecting the leaves in the given order. The time complexity of the algorithm isO(n3). Note
that non-finite distance values are not allowed.
Both methods start with a dendrogram created by hclust. As the "method" element in
the control list a clustering method (default "average") can be specified. Alternatively,
a hclust object can be supplied using an element named "hclust".
For convenience "GW_single", "GW_average", "GW_complete", "GW_ward" and "OLO_single",
"OLO_average", "OLO_complete", "OLO_ward" are provided.

"VAT" Visual Assessment of (Clustering) Tendency (Bezdek and Hathaway (2002)).
Creates an order based on Prim’s algorithm for finding a minimum spanning tree (MST) in a
weighted connected graph representing the distance matrix. The order is given by the order in
which the nodes (objects) are added to the MST.

"SA" Simulated Annealing for diverse criterion measures.
Implement simulated annealing similar to the ARSA method, however, it works for any crite-
rion measure defined in seriation. By default the algorithm optimizes for raw gradient mea-
sure and is warm started with the result of spectral seriation (2-Sum problem) since Hahsler
(2017) shows that 2-Sum solutions are similar to solutions for the gradient measure.
Local neighborhood functions are LS_insert, LS_swap, LS_reverse, and LS_mix (1/3 inser-
tion, 1/3 swap and 1/3 reverse). Any neighborhood function can be defined. It needs to take
as the only argument the order (integer vector) and return a random neighbor.
Note that this is an R implementation repeatedly calling criterion, and therefore is relatively
slow.
Several control parameters are available: criterion (criterion to optimize; default: "Gra-
dient_raw"), init (initial order; default: "Spectral"), localsearch (neighborhood function;
default: LS_insert), cool (cooling rate), tmin (minimum temperature), swap_to_inversion
(proportion of swaps to inversions), nlocal (number of objects times nlocal is the number of
search tries per temperature), verbose. Use verbose = TRUE to see the default values for the
parameters.

"Spectral", "Spectral_norm" Spectral seriation (Ding and He 2004).
Spectral seriation uses a relaxation to minimize the 2-Sum Problem (Barnard, Pothen, and
Simon 1993). It uses the order of the Fiedler vector of the similarity matrix’s (normalized)
Laplacian.
Spectral seriation gives a good trade-off between seriation quality, speed and scalability (see
Hahsler, 2017).

"SPIN_NH", "SPIN_STS" Sorting Points Into Neighborhoods (SPIN) (Tsafrir 2005). Given a weight
matrix W , the algorithms try to minimize the energy for a permutation (matrix P ) given by

F (P ) = tr(PDPTW ),

where tr denotes the matrix trace.
"SPIN_STS" implements the Side-to-Side algorithm which tries to push out large distance
values. The default weight matrix suggested in the paper with W = XXT and Xi = i −
(n + 1)/2 is used. We run the algorithm from step (25) iteration and restart the algorithm



44 seriate

nstart (10) with random initial permutations (default values in parentheses). Via control
the parameters step, nstart, X and verbose.
"SPIN_NH" implements the neighborhood algorithm (concentrate low distance values around
the diagonal) with a Gaussian weight matrix Wij = exp(−(i − j)2/nσ), where n is the size
of the dissimilarity matrix and σ is the variance around the diagonal that control the influence
of global (large σ) or local (small σ) structure.
We use the heuristic suggested in the paper for the linear assignment problem. We do not
terminate as indicated in the algorithm, but run all the iterations since the heuristic does not
guarantee that the energy is strictly decreasing. We also implement the heuristic "annealing"
scheme where σ is successively reduced. The parameters in control are sigma which can be
a single value or a decreasing sequence (default: 20 to 1 in 10 steps) and step which defines
how many update steps are performed before for each value of alpha. Via W_function a
custom function to create W with the function signature function(n,sigma,verbose) can
be specified. The parameter verbose can be used to display progress information.

"QAP_LS", "QAP_2SUM", "QAP_BAR", "QAP_Inertia" Quadratic assignment problem formulations
for seriation using a simulated annealing solver. These methods minimize the Linear Seri-
ation Problem (LS) formulation (Hubert and Schultz 1976), the 2-Sum Problem formulation
(Barnard, Pothen, and Simon 1993), the banded anti-Robinson form (BAR) or the inertia
criterion.
The parameters in control are passed on to qap in qap. An important parameter is rep to
return the best result out of the given number of repetitions with random restarts. Default is 1,
but bigger numbers result in better and more stable results.

"GA" Use a genetic algorithm to optimize for various criteria. The GA code has to be first regis-
tered. A detailed description can be found in the manual page for register_GA.

"DendSer" Use heuristic dendrogram seriation to optimize for various criteria. The DendSer
code has to be first registered. A detailed description can be found in the manual page for
register_DendSer.

"Identity" Produces an identity permutation.

"Random" Produces a random permutation.

Two-way two mode data are general positive matrices. Currently the following methods are imple-
mented for matrix:

"BEA" Bond Energy Algorithm (BEA; McCormick 1972). The algorithm tries to maximize the
Measure of Effectiveness. of a non-negative matrix. Due to the definition of this measure,
the tasks of ordering rows and columns is separable and can be solved independently.
A row is arbitrarily placed; then rows are positioned one by one. When this is completed, the
columns are treated similarly. The overall procedure amounts to two approximate traveling
salesperson problems (TSP), one on the rows and one on the columns. The so-called ‘best
insertion strategy’ is used: rows (or columns) are inserted into the current permuted list of
rows (or columns). Several consecutive runs of the algorithm might improve the energy.
Note that Arabie and Hubert (1990) question its use with non-binary data if the objective is to
find a seriation or one-dimensional orderings of rows and columns.
The BEA code used in this package was implemented by Fionn Murtagh.
In control as element "rep" the number of runs can be specified. The results of the best run
will be returned.
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"BEA_TSP" Use a TSP to optimize the Measure of Effectiveness (Lenstra 1974).
In control as element "method" a TSP solver method can be specified (see package TSP).

"PCA", "PCA_angle" Principal component analysis.
Uses the projection of the data on its first principal component to determine the order.
Note that for a distance matrix calculated from x with Euclidean distance, this methods mini-
mizes the least square criterion.
"PCA_angle" projects the data on the first two principal components and then orders by the
angle in this space. The order is split by the larges gap between adjacent angles. A similar
method was used for ordering correlation matrices by Friendly (2002).

"Identity" Produces an identity permutation.

"Random" Produces a random permutation.

For array no built-in methods are currently available.

Value

Returns an object of class ser_permutation.

Author(s)

Michael Hahsler

References
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See Also

list_seriation_methods, criterion, register_GA, register_DendSer, solve_TSP in TSP,
hclust in stats.

Examples

## show available seriation methods (for dist and matrix)
show_seriation_methods("dist")
show_seriation_methods("matrix")

##seriate dist
data("iris")
x <- as.matrix(iris[-5])
x <- x[sample(1:nrow(x)),]
d <- dist(x)

## default seriation
order <- seriate(d)
order

## plot
pimage(d, main = "Random")
pimage(d, order, main = "Reordered")

## compare quality
rbind(
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random = criterion(d),
reordered = criterion(d, order)

)

## seriate matrix
data("iris")
x <- as.matrix(iris[-5])

## to make the variables comparable, we scale the data
x <- scale(x, center = FALSE)

## try some methods
pimage(x, main = "original data")
criterion(x)

order <- seriate(x, method = "BEA_TSP")
pimage(x, order, main = "TSP to optimize ME")
criterion(x, order)

order <- seriate(x, method = "PCA")
pimage(x, order, main = "First principal component")
criterion(x, order)

## 2 TSPs
order <- c(

seriate(dist(x), method = "TSP"),
seriate(dist(t(x)), method = "TSP")

)
pimage(x, order, main = "2 TSPs")
criterion(x, order)

seriation_data Create Simulated Data for Seriation Evaluation

Description

Several functions to create simulated data to evaluate different aspects of seriation algorithms and
criterion functions.

Usage

create_lines_data(n = 250)
create_ordered_data(n = 250, k = 2, size = NULL, spacing = 6, path = "linear",

sd1 = 1, sd2 = 0)

Arguments

n number of data points to create.

k number of Gaussian components.
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size relative size (number of points) of components (length of k). If NULL then all
components have the same size.

spacing space between the centers of components. The default of 6 means that the com-
ponents will barely touch at ds1=1 (3 standard deviations for each Gaussian
component).

path Are the components arranged along a "linear" or "circular" path?

sd1 variation in the direction along the components. A value greater than one means
the components are mixing.

sd2 variation perpendicular to the direction along the components. A value greater
than 0 will introduce anti-Robinson violation events.

Details

create_lines_data creates the lines data set used in for iVAT in Havens and Bezdeck (2012).

create_ordered_data is a versatile function which creates "orderable" 2D data using Gaussian
components along a linear or circular path. The components are equally spaced (spacing) along
the path. The default spacing of 6 ensures that 2 adjacent components with a standard deviation of
one along the direction of the path will barely touch. The standard deviation along the path is set
by sd1. The standard deviation perpendicular to the path is set by sd2. A value larger than zero
will result in the data not being perfectly orderable (i.e., the resulting distance matrix will not be a
perfect pre-anti-Robinson matrix and contain anti-Robinson violation events after seriation). Note
that a circular path always creates anti-Robinson violation since the circle has to be broken at some
point to create a linear order.

Author(s)

Michael Hahsler

References

Havens, T.C. and Bezdek, J.C. (2012): An Efficient Formulation of the Improved Visual Assessment
of Cluster Tendency (iVAT) Algorithm, IEEE Transactions on Knowledge and Data Engineering,
24(5), 813–822.

See Also

seriate, criterion, VAT.

Examples

## lines data set from Havens and Bezdek (2011)
x <- create_lines_data(250)
plot(x, xlim=c(-5,5), ylim=c(-3,3), cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO_single"), col = bluered(100, bias=.5), key = TRUE)

## create_ordered_data can produce many types of "orderable" data

## perfect pre-Anti-Robinson matrix (with a single components)
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x <- create_ordered_data(250, k = 1)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias=.5), key = TRUE)

## separated components
x <- create_ordered_data(250, k = 5)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias=.5), key = TRUE)

## overlapping components
x <- create_ordered_data(250, k = 5, sd1 = 2)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias=.5), key = TRUE)

## introduce anti-Robinson violations (a non-zero y value)
x <- create_ordered_data(250, k = 5, sd1 = 2, sd2 = 5)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias=.5), key = TRUE)

## circular path (has always violations)
x <- create_ordered_data(250, k = 5, path = "circular", sd1=2)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO"), col = bluered(100, bias=.5), key = TRUE)

## circular path (with more violations violations)
x <- create_ordered_data(250, k = 5, path = "circular", sd1=2, sd2=1)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO"), col = bluered(100, bias=.5), key = TRUE)

seriation_methods Registry for Seriation Methods

Description

A registry to manage methods for seriation.

Usage

list_seriation_methods(kind)
show_seriation_methods(kind)
get_seriation_method(kind, name)
set_seriation_method(kind, name, definition, description = NULL, control = list(), ...)
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Arguments

kind the data type the method works on. For example, "dist", "matrix" or "array".

name a short name for the method used to refer to the method in seriate().

definition a function containing the method’s code.

description a description of the method. For example, a long name.

control a list with control arguments and default values.

... further information that is stored for the method in the registry.

Details

The functions below are convenience function for the registry registry_seriate.

list_seriation_method() lists all available methods for a given data type (kind). The result is a
vector of character strings with the short names of the methods.

show_seriation_method() shows all available methods including a description.

get_seriation_method() returns information (including the implementing function) about a given
method in form of an object of class "seriation_method".

With set_seriation_method() new seriation methods can be added by the user. The imple-
menting function (definition) needs to have the formal arguments x,control, where x is the
data object and control contains a list with additional information for the method passed on
from seriate(). The implementation has to return a list of objects which can be coerced into
ser_permutation_vector objects (e.g., integer vectors). The elements in the list have to be in
corresponding order to the dimensions of x.

Author(s)

Michael Hahsler

Examples

## registry
registry_seriate

## convenience functions
show_seriation_methods("matrix")

list_seriation_methods("matrix")

get_seriation_method("matrix", "BEA")

## define a new method

## create a identity function which returns the identity order
seriation_method_identity <- function(x, control) {

lapply(dim(x), seq)
}

## set new method
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set_seriation_method("matrix", "identity", seriation_method_identity,
"Identity order")

set_seriation_method("array", "identity", seriation_method_identity,
"Identity order")

show_seriation_methods("matrix")

##use all criterion methods (including the new one)
seriate(matrix(1:12, ncol=3), "identity")

SupremeCourt Voting Patterns in the Second Rehnquist U.S. Supreme Court

Description

Contains a (a subset of the) decisions for the stable 8-yr period 1995-2002 of the second Rehnquist
Supreme Court. Decisions are aggregated to the joint probability for disagreement between judges.

Usage

data("SupremeCourt")

Format

A square, symmetric 9-by-9 matrix with the joint probability for disagreement.

Author(s)

Michael Hahsler

References

Sirovich, L. (2003). A pattern analysis of the second Rehnquist U.S. Supreme Court. Proceedings of
the National Academy of Sciences of the United States of America, 100, 7432-7437. doi:10.1073/pnas.1132164100.

Examples

data("SupremeCourt")

SupremeCourt

d <- as.dist(SupremeCourt)
o <- seriate(d)

pimage(d, o)

plot(hclust(as.dist(SupremeCourt)))
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Townships Bertin’s Characteristics of Townships

Description

This data contains nine characteristics for 16 townships. The data set was used by Bertin (1981) to
illustrate that the conciseness of presentation can be improved by seriating the rows and columns.

Usage

data("Townships")

Format

A matrix with 16 0-1 variables (columns) indicating the presence (1) or absence (0) of characteris-
tics of townships (rows).

Author(s)

Michael Hahsler

References

Bertin, J. (1981): Graphics and Graphic Information Processing. Berlin, Walter de Gruyter.

Examples

data("Townships")

## original data
pimage(Townships)
criterion(Townships)

## seriated data
order <- seriate(Townships, method = "BEA", control = list(rep = 5))
pimage(Townships, order)
criterion(Townships, order)
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uniscale Unidimensional Scaling from Seriation Results

Description

Performs (approximate) unidimensional scaling by first performin seriation to obtain a permutation
and the using the permutation to calulate the configuration.

Usage

uniscale(d, order = NULL, method = "QAP_LS", rep = 10, ...)

Arguments

d a dissimilarity matrix.

order a precomputed permutation (configuration) order. If NULL, then seriation is per-
formed using the method specified in method.

method seriation method used if o is NULL.

rep Number of repetitions of the seriation heuristic.

... additional arguments are passed on to the seriation method.

Details

Uses the method describes in Maier and De Leeuw (2015) to calculate the minimum stress con-
figuration for either a given configuration/permutation/order or for a permutation computed via a
seriation method.

The code is similar to uniscale in smacof, but scales to larger datasets since it does not check all
permutations.

Value

A vector with the fitted configuration.

Author(s)

Michael Hahsler with code from Patrick Mair (from smacof).

References

Mair P., De Leeuw J. (2015). Unidimensional scaling. In Wiley StatsRef: Statistics Reference
Online, Wiley, New York.
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Examples

data(SupremeCourt)

d <- as.dist(SupremeCourt)

sc <- uniscale(d)
sc

orderplot(sc)

VAT Visual Analysis for Cluster Tendency Assessment (VAT/iVAT)

Description

Implements Visual Analysis for Cluster Tendency Assessment (VAT; Bezdek and Hathaway, 2002)
and Improved Visual Analysis for Cluster Tendency Assessment (iVAT; Wang et al, 2010).

Usage

VAT(x, ...)
iVAT(x, ...)
path_dist(x)

Arguments

x a dist object.
... further arguments are passed on to pimage.

Details

path_dist redefines the distance between two objects as the minimum over the largest distances in
all possible paths between the objects as used for iVAT.

Author(s)

Michael Hahsler

References

Bezdek, J.C. and Hathaway, R.J. (2002): VAT: a tool for visual assessment of (cluster) tendency.
Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN ’02), Volume:
3, 2225–2230.

Havens, T.C. and Bezdek, J.C. (2012): An Efficient Formulation of the Improved Visual Assessment
of Cluster Tendency (iVAT) Algorithm, IEEE Transactions on Knowledge and Data Engineering,
24(5), 813–822.

Wang L., U.T.V. Nguyen, J.C. Bezdek, C.A. Leckie and K. Ramamohanarao (2010): iVAT and
aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment, Proceedings of the PAKDD
2010, Part I, LNAI 6118, 16–27.
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See Also

seriate, pimage, create_lines_data.

Examples

## lines data set from Havens and Bezdek (2011)
x <- create_lines_data(250)
plot(x, xlim=c(-5,5), ylim=c(-3,3), cex=.2)
d <- dist(x)

## create regular VAT
VAT(d, colorkey = TRUE, main = "VAT")
## same as: pimage(d, seriate(d, "VAT"))

## create iVAT which shows visually the three lines
iVAT(d, main = "iVAT")
## same as:
## d_path <- path_dist(d)
## pimage(d_path, seriate(d_path, "VAT"))

## compare with dissplot (shows banded structures and relationship between
## center line and the two outer lines)
dissplot(d, method="OLO_single", main = "Dissplot", col = bluered(100, bias = .5))

## compare with optimally reordered heatmap
hmap(d, method="OLO_single", main = "Heat map (opt. leaf ordering)",
col = bluered(100, bias = .5))

Wood Gene Expression Data for Wood Formation in Poplar Trees

Description

A data matrix containing a sample of the normalized gene expression data for 6 locations in the stem
of Popla trees published in the study by Herzberg et al (2001). The sample of 136 genes selected
by Caraux and Pinloche (2005).

Usage

data(Wood)

Format

The format is a 136 x 6 matrix.

Source

The data was obtained from http://www.atgc-montpellier.fr/permutmatrix/manual/Exemples/
Wood/Wood.htm.

http://www.atgc-montpellier.fr/permutmatrix/manual/Exemples/Wood/Wood.htm
http://www.atgc-montpellier.fr/permutmatrix/manual/Exemples/Wood/Wood.htm
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References

Hertzberg M., H. Aspeborg, J. Schrader, A. Andersson, R.Erlandsson, K. Blomqvist, R. Bhalerao,
M. Uhlen, T. T. Teeri, J. Lundeberg, Bjoern Sundberg, P. Nilsson and Goeran Sandberg (2001): A
transcriptional roadmap to wood formation, PNAS, 98(25), 14732–14737.

Caraux G. and Pinloche S. (2005): PermutMatrix: a graphical environment to arrange gene expres-
sion profiles in optimal linear order, Bioinformatics, 21(7) 1280–1281.

Examples

data(Wood)
head(Wood)

Zoo Zoo Data Set

Description

A database containing characteristics of different animals. The database was created and donated
by Richard S. Forsyth and is available from the UCI Machine Learning Repository (Newman et al,
1998).

Usage

data("Zoo")

Format

A data frame with 101 observations on the following 17 variables.

hair {0, 1}
feathers {0, 1}
eggs {0, 1}
milk {0, 1}
airborne {0, 1}
aquatic {0, 1}
predator {0, 1}
toothed {0, 1}
backbone {0, 1}
breathes {0, 1}
venomous {0, 1}
fins {0, 1}
legs Numeric (set of values: {0, 2, 4, 5, 6, 8})
tail {0, 1}
domestic {0, 1}
catsize {0, 1}
class a factor with levels amphibian bird fish insect invertebrate mammal reptile
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Source

D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz (1998): UCI Repository of machine learn-
ing databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, University of Califor-
nia, Irvine, Dept. of Information and Computer Sciences.

Examples

data("Zoo")
x <- scale(Zoo[, -17])

d <- dist(x)
pimage(d)

order <- seriate(d, method = "tsp")
pimage(d, order)

http://www.ics.uci.edu/~mlearn/MLRepository.html
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