
sequoia
Reconstruction of multi-generational pedigrees from SNP data

Jisca Huisman (jisca.huisman @ gmail.com)

May 17, 2020
Contents

1 Quick-start examples 3
1.1 Example 1: Simulated data . 3
1.2 Example 2: Real data . 4

2 Background 5

3 Key points 6
3.1 Pedigree reconstruction – overview . 6
3.2 Package function overview . 6

3.2.1 Input check . 6
3.2.2 Simulate genotype data . 7
3.2.3 Age ‘prior’ . 7
3.2.4 Pedigree reconstruction . 7
3.2.5 Pedigree check & comparisons . 7
3.2.6 Miscellaneous . 8

3.3 Opposite homozygosity (OH) & Mendelian errors (ME) 8
3.3.1 MaxMismatch . 9

3.4 Genotyping errors . 9
3.4.1 Effect on pedigree inference . 9
3.4.2 ErrFlavour . 10
3.4.3 Estimation . 11

3.5 Birth years & Age difference based ‘prior’ . 11
3.5.1 Definition & interpretation . 11
3.5.2 Implementation . 12
3.5.3 Grandparents, aunts & uncles . 12
3.5.4 Customising the ageprior . 12
3.5.5 Age-based excluded true relatives . 13

3.6 Parent log-likelihood ratios (LLR) . 13
3.7 Estimate confidence levels . 14

4 Input 15
4.1 Genotype data . 15

4.1.1 Real data - Selection of SNP markers 15
4.1.2 Exclusion of low call rate samples & SNPs 16
4.1.3 Family IDs . 16
4.1.4 Very large datasets . 16

4.2 Life history data . 16
4.2.1 BY.min & BY.max . 17

4.3 sequoia parameters explained . 17
4.3.1 Re-use of previous output . 19

1

5 Running Sequoia 20
5.1 Data check . 20
5.2 Check for duplicates . 20
5.3 Parentage assignment . 20
5.4 Sibship clustering & the rest . 21

5.4.1 Dummy Individuals . 21
5.4.2 Total likelihood . 21

5.5 Save output . 22

6 Output check 23
6.1 Pedigree stats & plots . 23
6.2 Comparison with previous pedigree . 23

6.2.1 Dummy matching . 24
6.2.2 Example . 24
6.2.3 Comparison of pairwise relationships . 27
6.2.4 Colony . 28

6.3 Comparison pedigree-based and genomic relatedness 28

7 Other 29
7.1 Find non-assigned likely relatives . 29
7.2 Unusual relationships . 29
7.3 Hermaphrodites . 30

7.3.1 Pedigree prior . 30
7.4 Cluster families . 31

8 FAQ 31
8.1 Error messages when reading in data . 31
8.2 Why is the assignment rate so low? . 31
8.3 Why does it not use year of death? . 33
8.4 How do I know if the assigned parents are correct? 33
8.5 I have genotyped additional individuals, how do I update the pedigree? 33

2

1 Quick-start examples

1.1 Example 1: Simulated data

An example pedigree and associated life history data are provided with the package,
which can be used to try out some of the functions. This fictional pedigree consists of 5
generations with interconnected half-sib clusters (Pedigree II in [1]).

install.packages("sequoia") # only required first time

library(sequoia) # load the package

#

get the example pedigree and life history data

data(Ped_HSg5, LH_HSg5)

tail(Ped_HSg5)

#

simulate genotype data for 200 SNPs

Geno <- SimGeno(Ped = Ped_HSg5, nSnp = 200)

#

run sequoia - duplicate check & parentage assignment only

(maximum number of sibship-clustering iterations = 0)

ParOUT <- sequoia(GenoM = Geno,

LifeHistData = LH_HSg5,

MaxSibIter = 0)

names(ParOUT)

[1] "Specs" "AgePriors" "LifeHist" "PedigreePar" "MaybeParent"

"TotLikParents"

#

run sequoia - sibship clustering & grandparent assignment

use parents assigned above (in 'ParOUT$PedigreePar')

SeqOUT <- sequoia(GenoM = Geno,

SeqList = ParOUT,

MaxSibIter = 10)

#

compare the assigned real and dummy parents to the true pedigree

chk <- PedCompare(Ped1 = Ped_HSg5, Ped2 = SeqOUT$Pedigree)

chk$Counts["TT",,]

#

save results

save(SeqOUT, file="Sequoia_output_date.RData")

writeSeq(SeqList = SeqOUT, GenoM = Geno, folder = "Sequoia-OUT")

3

1.2 Example 2: Real data

First get a subset of SNPs which are as informative (high MAF, high call rate), reliable
(low error rate), and independent (low LD) as possible. Ideally around 400 – 700 for full
pedigree reconstruction; fewer are necessary for only parentage assignment, while more
may be necessary with high levels of polygamy or inbreeding. In addition you need a
dataframe with the sex and birth/hatching year of as many individuals as possible, in
arbitrary order.

read in genotype data if already coded as 0/1/2, with missing=-9:

Geno <- as.matrix(read.csv("mydata.csv", header=FALSE, row.names=1))

CheckGeno(Geno)

read in many other input formats (not .vcf (yet)):

Geno <- GenoConvert(InFile = "mydata.ped", InFormat="ped")

#

read in lifehistory data: ID-Sex-birthyear, column names ignored

optional: minimum & maximum birth year, when not exactly known

LH <- read.table("LifeHistoryData.txt", header=T)

#

duplicate check & parentage assignment (takes few minutes)

(maximum number of sibship-clustering iterations = 0)

ParOUT <- sequoia(GenoM = Geno, LifeHistData = LH_HSg5,

MaxSibIter = 0, Err=0.005,

quiet = FALSE, Plot = TRUE)

#

inspect duplicates (intentional or accidental)

ParOUT$DupGenotype

#

compare assigned parents to field pedigree (check column order!)

FieldPed <- read.table("FieldPed.txt", header=T)

PC.par <- PedCompare(Ped1 = FieldPed[, c("id", "dam", "sire")],

Ped2 = ParOUT$PedigreePar)

PC.par$Counts["TT",,]

#

calculate Mendelian errors per SNP (works also w field pedigree)

stats <- SnpStats(Geno, ParOUT$PedigreePar)

MAF <- ifelse(stats[,"AF"] <= 0.5, stats[,"AF"], 1-stats[,"AF"])

#

..

polish dataset: remove one indiv. from each duplicate pair

& drop low call rate samples

& drop SNPs with high error rate and/or low MAF

Geno2 <- Geno[!rownames(Geno) %in% ParOUT$DupGenotype$ID2,]

Geno2 <- Geno2[, -which(stats[,"Err.hat"]>0.05 | MAF < 0.1)]

#

Indiv.Mis <- apply(Geno2, 1, function(x) sum(x == -9)) / ncol(Geno2)

Geno2 <- Geno2[Indiv.Mis < 0.2,]

4

check histograms for sensible thresholds, iterate if necessary

#

run full pedigree reconstruction (may take up to a few hours)

including re-run of parentage assignment

SeqOUT <- sequoia(GenoM = Geno2,

LifeHistData = LH_HSg5,

MaxSibIter = 20,

Err = 0.001)

#

inspect assigned parents, proportion dummy parents, etc.

SummarySeq(SeqOUT)

(see Example 1 for saving results)

2 Background

The core of Sequoia is to

� Assign genotyped parents to genotyped individuals (‘parentage assignment’), even
if the sex or birth year of some candidate parents is unknown;

� Cluster genotyped half- and full-siblings for which the parent is not genotyped into
sibships, assigning a ‘dummy parent’ to each sibship

� Find grandparents to each sibship, both among genotyped individuals and among
dummy parents to other sibships.

Sequoia provides a conservative hill-climbing algorithm to construct a high-likelihood
pedigree from data on hundreds of single nucleotide polymorphisms (SNPs), described in
[1]. Explicit consideration of the likelihoods of alternative relationships (parent-offspring,
full siblings, grandparent–grand-offspring, . . .) before making an assignment reduces
the number of false positives, compared to parentage assignment methods that rely on
the likelihood ratio between parent-offspring versus unrelated only [4]. The heuristic,
sequential approach used is considerably quicker than most alternative approaches such
as MCMC, and when genetic information is abundant there is little to no loss in accuracy.
Typical computation times are a few minutes for parentage assignment, and a few hours
for full pedigree reconstruction when not all individuals are genotyped.

A word of caution: the most likely relationship is not necessarily the true relation-
ship between a pair, due to the random nature of Mendelian segregation, and possible
genotyping errors. In addition, the most likely relationship for a pair will not necessarily
result in the highest global likelihood, and may therefore not have been assigned.

5

3 Key points

3.1 Pedigree reconstruction – overview

When running sequoia, one or more of these sub-programs are run (each can also be
run separately, using the function in brackets):

1. Data check: check that the genotype data and life history data are in a valid
format (CheckGeno)

2. Duplicates: Check for identical genotypes, and for duplicated IDs in the genotype
and life history data (sequoia(..., MaxSibIter=-1))

3. Parentage: Parentage assignment (assign genotyped parents to genotyped focal
individuals) (sequoia(..., MaxSibIter=0))

4. Agepriors: Calculation of age-difference based prior probability ratios for each
type of relative (MakeAgePrior)

5. Full pedigree reconstruction: Clustering of half- and full-siblings, grandparent
assignment to singletons and sibships, and identification of avuncular relationships
between sibships (sequoia(..., MaxSibIter >0))

6. Remaining relatives: Identification of likely relatives, prior to pedigree recon-
struction or not assigned due to e.g. missing or incompatible age or sex information,
or LLR just below the assignment threshold. (GetMaybeRel)

3.2 Package function overview

3.2.1 Input check

GenoConvert Read in genotype data from PLINK file, Colony file, or many user-
specified formats, and return a matrix in sequoia’s (or Colony) format. Does not support
vcf yet.

LHConvert Extract sex and birth year from PLINK file; optionally recode sex to
1=female, 2=male, check consistency with other LifeHistData, or combine family ID
and individual ID into FID IID.

CheckGeno Check that the provided genotype matrix is in the correct format, and
check for low call rate samples and SNPs

SnpStats Calculate per-SNP allele frequency, missingness, and, if a pedigree provided,
number of Mendelian errors.

CalcMaxMismatch Calculate the maximum expected number of mismatches for du-
plicate samples, and Mendelian errors for parent-offspring pairs and parent-parent-offspring
trios.

6

3.2.2 Simulate genotype data

SimGeno Simulate genotype data for independent SNPs. Specify pedigree, founder
MAF, call rate, proportion of non-genotyped parents, genotyping error & error model.

MkGenoErrors Add genotyping errors and missingness to genotype data; more fine-
scale control than with SimGeno.

EstConf Estimate assignment error rate (false positives & false negatives). Using a
reference pedigree, repeatedly simulate genotype data, run sequoia, and compare inferred
to reference pedigree.

3.2.3 Age ‘prior’

MakeAgePrior For various categories of pairwise relatives (R), calculate age-difference
(A) based probability ratios P (A|R)/P (A) = P (R|A)/P (R), or how much likelier a re-
lationship is given the age difference. It applies corrections when the skeleton-pedigree
contains few/no pairs with known age difference for some relationships.

PlotAgePrior Visualise the age-difference based prior probability ratios as a heatmap.

3.2.4 Pedigree reconstruction

sequoia Main function to run parentage assignment and full pedigree reconstruction,
calls many of the other functions.

GetMaybeRel Identify pairs of individuals likely to be related, but not assigned as
such in the provided pedigree. Either search only for potential parent-offspring pairs, or
for all 1st and 2nd degree relatives.

3.2.5 Pedigree check & comparisons

These functions can be applied to any pedigree, not just pedigrees reconstructed by sequoia.

SummarySeq (1 pedigree) Graphical overview of the assignment rate, the propor-
tion dummy parents, sibship sizes, parental LLR distributions, and Mendelian errors, +
tables with pedigree summary statistics.

CalcOHLLR (pedigree + genotype data) Count opposite homozygous (OH) loci
between parent-offspring pairs and Mendelian errors (ME) between parent-parent-offspring
trios, and calculate the parental log-likelihood ratios (LLR)

getAssignCat (1 pedigree) Identify which individuals are genotyped, and which
can potentially be substituted by a dummy individual. ’Dummifiable’ are those non-
genotyped individuals with at least 2 genotyped offspring, or at least 1 genotyped off-
spring and 1 genotyped parent.

7

PedCompare (2 pedigrees) Compare 2 pedigrees, e.g. field and genetically in-
ferred, or reference and inferred-from-simulated-data. Matches dummy parents to non-
genotyped parents.

GetRelCat (1 pedigree) Determine the relationship between individual X and all
other individuals in the pedigree, going up to 1 or 2 generations back.

ComparePairs (2 pedigrees) Compare, count and identify different types of relative
pairs between two pedigrees. The matrix returned by DyadCompare [Deprecated] is a
subset of the matrix returned here using default settings.

3.2.6 Miscellaneous

PedPolish Ensure all parents & all genotyped individuals are included, remove dupli-
cates, rename columns, and replace 0 by NA or v.v.

ErrToM Generate a matrix with the probabilities of observed genotypes (columns)
conditional on actual genotypes (rows), or return a function to generate such matrices.
The error matrix can be used as input for sequoia and CalcOHLLR, the error function
as input for SimGeno

writeSeq Write the list with sequoia output in human-readable format, either as a
folder with .txt files, or as a many-tabbed excel file. The latter uses R package xlsx,
which requires java and can (therefore) be cumbersome to install.

writeColumns write data.frame or matrix to a text file, using white space padding to
keep columns aligned.

FindFamilies Add a column with family IDs (FIDs) to a pedigree, with each number
denoting a cluster of connected individuals.

PedStripFID Reverse the joining of FID and IID in GenoConvert and LHConvert

3.3 Opposite homozygosity (OH) & Mendelian errors (ME)

Parent and offspring will never be opposing homozygotes (one aa, other AA) at a locus,
except due to genotyping errors. This metric is easy and quick to calculate even in
very large datasets, and provides a good way to to subset candidate parents (done by
sequoia internally), or to check if an existing pedigree is consistent with new genetic
data (function CalcOHLLR(, CalcLLR=FALSE)).

The count of opposing homozygous (OH) SNPs is not always a reliable indicator
to distinguish parents from not-parents. When the genotyping error rate is high, true
parent–offspring pairs may have a high OH count . On the other side, by chance some
full siblings may have a very low OH count, and in small inbred populations this may
be true for other types of relatives as well. Therefore, sequoia uses OH only as a filter
to reduce the number of candidate parents for each individual, and uses likelihood ratios
for actual assignments.

8

The number of Mendelian errors in an offspring-mother-father trio includes the OH
counts between offspring and each parent, as well as cases where the offspring should
have been heterozygous, but isn’t (mother aa, father AA, offspring aa or AA), and
cases where it is heterozygous, but shouldn’t (when mother and father are identical
homozyotes). This metric is used to subset ‘compatible’ parent-pairs when there are
candidate parents from both sexes.

3.3.1 MaxMismatch

The parameter ‘MaxMismatch’ in previous versions proved a common source of confusion
and false-negatives. It has therefore been deprecated as input parameter from version
2.0, and the value is calculated internally instead (by CalcMaxMismatch). It now also
differentiates stringently between

� MaxMismatchDUP: The maximum number of differences in observed genotypes be-
tween potential duplicates

� MaxMismatchOH: The maximum number of opposing homozygous SNPs between
potential parent and offspring

� MaxMismatchME: The maximum number of Mendelian errors among a potential
offspring-dam-sire trio

3.4 Genotyping errors

3.4.1 Effect on pedigree inference

Unsurprisingly, a higher rate of genotyping errors leads to more false negatives and more
false positives during pedigree reconstruction, as illustrated in Figure 1. The scale of the
effect can be unpredictable: One wrong assignment due to a few genotyping errors in a
key individual may have numerous knock-on effects, while dozens of genotyping errors
in a ’dead end’ individual may have no consequences at all. Accordingly, even with only
5 replicates per simulated/assumed error rate combination, there is considerable scatter
in the performance metrics (Figure 1).

Runtime increases considerably with assumed genotyping error rate (3rd panel in
Figure 1) because the time-saving filtering steps become less effective. At the same time
are those steps may filter out some true relatives, contributing to the increase in false
negatives.

An inaccurate assumed genotyping error rate Err can negatively affect assignment
success too: among others, when Err is much lower than the actual genotyping error rate,
some true parent-offspring pairs will be assigned as full siblings, while when Err is much
too high some true full siblings will be classified as parent-offspring. The consequences
of being off by a factor 2 are limited (Figure 1), but being off by a factor 10 or even 100
will affect assignment considerably.

Therefore, do consider carefully which value to use for Err, and explore if
and how results change when you vary this parameter. The default assumed genotyping
error rate of 0.01% is based on data from a SNP array after stringent quality control;
in many cases the error rate will be (much) higher (but changing the default value is likely to

cause problems for people re-using old code).

9

1e−04 2e−04 5e−04 1e−03 2e−03 5e−03 1e−02 2e−02 5e−02

0.00

0.02

0.04

0.06

0.08

E_sim

F
al

se
 n

eg
at

iv
es

1e−04 2e−04 5e−04 1e−03 2e−03 5e−03 1e−02 2e−02 5e−02

0.00

0.02

0.04

0.06

0.08

0.10

E_sim

F
al

se
 p

os
iti

ve
s

1e−04 2e−04 5e−04 1e−03 2e−03 5e−03 1e−02 2e−02 5e−02

0

5

10

15

20

E_sim

R
un

 ti
m

e
(m

in
ut

es
)

Eseq ... Esim

lower
equal
higher

1e−04 2e−04 5e−04 1e−03 2e−03 5e−03 1e−02

0.000

0.002

0.004

0.006

0.008

0.010

1e−04 2e−04 5e−04 1e−03 2e−03 5e−03 1e−02

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Figure 1: A higher rate of simulated genotyping error rate (x-axes) increases false negatives
(top), false positives (middle) and run time (bottom). To mimic imprecise knowledge of true
genotyping rates, sequoia was also run with the ‘neighbouring’ values of E sim. Results from
pedigree ‘Ped HSg5’ with 200 SNPs, call rate of 99%, and 40% of parents non-genotyped. Filled
symbols show average across the 5 replicates.

When exploring different values, possibly in combination with non-default values for
the thresholds Tfilter and Tassign, do keep in mind the consequences of potential
false-positives versus false-negatives during later use of the pedigree.

3.4.2 ErrFlavour

Genotyping errors are unavoidable, and different genotyping methods are likely to have
different error structures. Therefore, from version 2.0 sequoia allows fine-scale control
over how potential genotyping errors are accounted for. An error matrix with the prob-
ability to observe genotype G (columns), conditional on actual genotype g (rows), can
now be specified to several functions via parameter ErrFlavour. The current default
(‘version2.0’) is given in Table 1, and previous defaults can be given in the help file of
ErrToM. The slight differences between versions only have any consequences when the
error rate is high (> 1%).

10

Table 1: Probability to observe genotype G (columns) conditional on actual genotype g (rows)
and per-locus error rate E

0 1 2

0 (1− E/2)2 E(1− E/2) (E/2)2

1 E/2 1− E E/2
2 (E/2)2 E(1− E/2) (1− E/2)2

During pedigree inference, the error rate is presumed equal across all SNPs. It is also
assumed that none of the errors (or missingness) are due to heritable mutations.

3.4.3 Estimation

Function SnpStats can estimate the genotyping error rate per SNP, conditional on a
provided pedigree and error structure (ErrFlavour). These estimated error rates will
not be as accurate as from duplicate samples, since a single error in an individual with
many offspring will be counted many times, while errors in individuals without parents
or offspring will not be counted at all.

3.5 Birth years & Age difference based ‘prior’

For details, including worked examples, mathematical framework, and full range of op-
tions, please see the separate vignette on this topic.

For every species, some age differences between parent and offspring or between
siblings are more likely than others, and some are downright impossible. Parents are
always older than their offspring, and this reduces the number of candidate parents to
consider. Similarly, a species’ minimum and maximum age of reproduction limits the age-
difference between siblings. When these differ between the sexes, it can help distinguish
between maternal and paternal half-siblings.

In addition, for parent–offspring pairs it is impossible to determine genetically which
one is the parent, and which one is the offspring — age data is required to orientate the
pair the right way around in the pedigree. Exception is when a ‘complementary’ set of
parents can be identified, which may both be of unknown age (but for at least one the
sex must be known to make an assignment).

3.5.1 Definition & interpretation

The ‘agepriors’ as used by sequoia s not an official term, nor a proper prior, but a set
of age-difference based probability ratios which can be interpreted as

If I were to pick two individuals with an age difference A, and two individ-
uals at random, how much more likely are the first pair to have relationship
R, compared to the second pair?

And the value may vary from 0 (impossible), to 1 (just as likely), and typically
not far beyond 10 (10x as likely). This quantification allows age-differences to be used
jointly with genetic information, which is mostly (except when UseAge='extra') done in
a conservative fashion: only when the focal relationship is the most likely both when

11

considering only genetic data, and when considering genetic + age data, is the assignment
made. Note that ‘most likely’ applies to ‘from the set of possible relationships’, i.e. those
with an age prior value > 0.

3.5.2 Implementation

Estimation of the ageprior is done from the age differences between relatives according to
a provided pedigree by function MakeAgeprior. Since often not all biologically possible
age-differences may be present in the provided pedigree, by default it applies a correction
to allow for relatives to differ 1-2 years more in age than observed in the pedigree, and
to smooth out any dips or gaps in the distributions.

The probability ratios are included sequoia’s output in the list element AgePriors

as a matrix with 5 columns (M = mother, P = father, FS = full sibling, MS = maternal
sibling, PS = paternal sibling) and as many rows as the birth year range detected in the
life history data, or as specified by AgePriors’s argument MaxAgeParent.

By default, during parentage assignment the ageprior only specifies that an age dif-
ference of 0 (first row) for parent-offspring pairs is impossible (0) and that all other
age-relationship combinations are possible (1). It is updated after parentage assignment,
based on the age differences in the just-assigned scaffold pedigree, and this update is
used during full pedigree reconstruction (Figure 3.5.2).

Default 0/1
Ageprior

Duplicate
check

Parentage
assignment

Pedigree-
based

Ageprior

Sibship
clustering

LifeHistData
MaxAgeParent

Custom
Ageprior

Smooth
Flatten

OUT

OUT

3.5.3 Grandparents, aunts & uncles

The ageprior distributions for grandparents and avuncular pairs (aunts/ uncles) are
calculated from the distributions for parent-offspring and siblings just before full pedigree
reconstruction, and included in the output as ParOUT$AgePriorExtra. The distribution
for avuncular pairs is not strictly symmetrical around zero (see row names of this matrix);
aunts/uncles are often older than their nieces/nephews, but not necessarily so. Note that

up to sequoia v1.3 it was assumed that the ageprior for maternal and paternal full- and half- aunts and

uncles was approximately similar, and approximately symmetrical around zero – both these assumptions

have been dropped from version 2.0.
These ageprior distributions are an important tool to distinguish between half-siblings,

grandparent–grand-offspring and full avuncular pairs, which are genetically indistinguish-
able unless both already have at least one parent assigned. Especially when there are
only one or two age classes in the data, or none (all birth years unknown), it is worth con-
templating whether or not it is desirable to consider full- and half-avuncular relationships
as alternatives, and checking whether the extended ageprior (ParOUT$AgePriorExtra)
matches the desired behaviour.

3.5.4 Customising the ageprior

When running sequoia, you can pass arguments to AgePriors via args.AP. For example,
when you are sure generations do not overlap in your sample, you can specify this via

12

AgePriors’s argument Discrete:

SeqOUT <- sequoia(GenoM = Geno, LifeHistData = LH,

args.AP = list(Discrete = TRUE))

Alternatively, if you have a field-pedigree or microsatellite-based pedigree that con-
tains many more individuals than have been SNP-genotyped, an ageprior estimated from
that old pedigree will be much more informative than the one estimated from a limited
number of SNP-genotyped parent-offspring pairs. This can be done as follows:

APfromOld <- MakeAgePrior(Pedigree = MyOldPedigree,

LifeHistData = LH,

Smooth = TRUE)

SeqOUT <- sequoia(GenoM = Geno,

SeqList = list(AgePriors = APfromOld),

MaxSibIter = 10)

When argument SeqList contains an element AgePriors, that one is used during both
parentage assignment and sibship clustering. Thus, if you wish to use different agepriors
during those different phases, you need to run them separately (see Section 4.3.1).

When you have no pedigree, or no birth year information, but know the maximum
age of parents, you can specify just that:

APdraft <- MakeAgePrior(MaxAgeParent = c(4, 5)) # dams, sires

You optionally could edit this matrix manually before using it as input in sequoia.

3.5.5 Age-based excluded true relatives

Any genetically identified parent-offspring pairs, or other types of relatives, which are
impossible according to the specified age prior can be found by GetMaybeRel. When you
include the inferred pedigree as input, any relative pairs in the pedigree will be excluded
from the output. I suggest to re-run pedigree reconstruction after updating the ageprior
to allow for their age difference, and/or after correcting their birth years.

3.6 Parent log-likelihood ratios (LLR)

When parentage assignment or pedigree reconstruction is completed (when the total
likelihood has asymptoted) for each assigned parent-offspring pair a log-likelihood ratio
(LLR) is calculated. This is the ratio between the likelihood of being parent and off-
spring, versus the next-most-likely relationship between them, conditional on all other
relationships in the pedigree. Note that this differs from for example Cervus [2], which
returns the ratio between the likelihood that the assigned parent is the parent, versus
that the next most likely candidate is the parent.

The calculation of these parental LLR’s can be rather time-consuming, and therefore
sequoia can be run with CalcLLR=FALSE. When one wants to calculate the parental
LLR’s later, or wants to calculate them for any existing pedigree, use CalcOHLLR.

13

Very small or negative LLR’s The parent LLR’s are calculated based on genetic
data only, without any consideration of age. Consequently, they are often close to zero
for dummy – dummy parent-offspring pairs, as genetically the parent may just as well
be the offspring. Such pairs will not have been assigned unless there is a compatible
co-parent (LLRpair should always be positive) or if there is overwhelming age-based
evidence to decide which one is the parent.

When a parental LLR is negative without an accompanying positive LLRpair, or
when LLRpair, this is reason to cautious about the assignment and for example compare
it with a previous pedigree (section 6.2) or inspect the genomic relatedness (section 6.3).
In contrast to MCMC type approaches, sequoia’s algorithm has very limited scope to
undo previously made assignments, and may get stuck at suboptimal solutions.

Extremely negative LLRs (< −100) are typically caused by one or more of the alter-
native relationships considered becoming very convoluted when conditioning on the rest
of the pedigree, and the particular case neither being caught as ‘highly improbable and
not implemented’ nor being implemented properly (see Table 7.2 on page 29 for dou-
ble relationships that are implemented). In the unlikely event that the parent-offspring
relationship is not implemented properly (the parent-offspring link was a ‘side-effect’ of
other assignments), you will see an error value of 444 or 777.

3.7 Estimate confidence levels

The provided likelihood ratio between the assigned parent being the parent versus oth-
erwise related to the focal individual, does not necessarily indicate how likely it is that
the assignment is correct. Pedigree-wide confidence probabilities can, amongst others,
be estimated by

� simulating genotype data according to the reconstructed (or an existing) pedigree,
imposing realistic levels of missingness and genotyping errors (SimGeno);

� reconstructing a pedigree from these simulated data (sequoia);

� counting the number of mismatches between the ‘true’ pedigree, used as input
for the simulated data, and the pedigree reconstructed from the simulated data
(PedCompare).

When repeated at least 10–20 times, the proportion of assignments that is correct pro-
vides an estimate of the confidence probability. Note that this can be rather time con-
suming, and will give an anti-conservative estimate as the current simulations assume all
SNPs are independent.

This process is conveniently wrapped in the function EstConf, which calculates sep-
arate confidence levels for dams and sires (which may have very different sampling pro-
portions), and for the different combinations of genotyped/dummy(/none) individual,
parent and co-parent.

14

4 Input

4.1 Genotype data

The SNP data should be provided as a numeric matrix GenoM with one line per individual,
and one column per SNP, with each SNP is coded as 0, 1, 2 copies of the reference allele,
or missing (-9). The rownames should be the individual IDs, and column names are
ignored.

GenoM <- as.matrix(read.table("MyGenoData.txt",

row.names=1, header=FALSE))

When the genotype data is currently in another format, such as Colony input files or
PLINK’s .ped or .raw files, sequoia’s GenoConvert() can be used.

4.1.1 Real data - Selection of SNP markers

Using tens of thousands of SNP markers for pedigree reconstruction is unnecessary, will
slow down computation, and may even hamper inferences by their non-independence.
Rather, a subset of SNPs with a decent genotyping call rate (e.g. > 0.9), in low linkage
disequilibrium (LD) with each other, and with high minor allele frequencies (e.g. MAF
> 0.3) ought to be selected first if more than a few hundred SNPs are available. The
calculations assume independence of markers, and while low (background) levels of LD
are unlikely to interfere with pedigree reconstruction, high levels may give spurious re-
sults. Markers with a high MAF provide the most information, as although rare allele
provide strong evidence when they are inherited, this does not balance out the rarity of
such events.

Since the full dataset may be too large to easily load into R, creating a subset of
SNPs can for example be done using PLINK:
plink --file mydata --geno 0.1 --maf 0.3 --indep 50 5 2

which on a windows machine is equivalent to running inside R

system("cmd", input = "plink --file mydata --maf 0.3 --indep 50 5 2")

This will create a list of SNPs with a missingness below 0.1, a minor allele frequency
of at least 0.3, and which in a window of 50 SNPs, sliding by 5 SNPs per step, have a
VIF of maximum 2. VIF, or variance inflation factor, is 1/(1− r2). For further details,
see https://www.cog-genomics.org/plink2/ld#indep.

It is advised to ‘tweak’ the parameter values until a set with a few hundred SNPs
(300–700) is created. To assist with this, the function SnpStats gives for each SNP both
the allele frequency and the missingness. In addition, when a pedigree is provided (e.g.
an existing one, or from a preliminary parentage-only run), the number of Mendelian
errors per SNP is calculated and used to estimate the genotyping error rate.

The resulting list (‘plink.prune.in’) can be used to create the genotype file used as
input for Sequoia, with SNPs codes as 0, 1, 2, or NA, with the command
plink --file mydata --extract plink.prune.in --recodeA --out

inputfile_for_sequoia

This will create a file with the extension .RAW, which can be converted to the required
input format using

GenoM <- GenoConvert(InFile = "inputfile_for_sequoia.raw", InFormat="raw")

This function can also convert from two-columns-per-SNP format, as e.g. used by Colony.

15

https://www.cog-genomics.org/plink2/ld#indep

4.1.2 Exclusion of low call rate samples & SNPs

Samples with a very low genotyping success rate (call rate) can sometimes wrongly be
assigned as parents to unrelated individuals, as sequoia does not (yet) deal perfectly with
these cases. In addition, at least in my experience with SNP arrays, a low sample call rate
is often indicative of poor sample quality or a poor genotyping run, and associated with
a high sample error rate. Samples with a call rate below 5% are automatically excluded,
but it is strongly advised to create a subset where all individuals are genotyped for at
least 50% of SNPs, and preferably for at least 80%.

In addition, SNPs with a call rate below 10% are excluded, as these contribute almost
no information. Again, a stricter threshold is advised of at least 50%.

Checks for individuals and SNPs with low call rate, and monomorphic SNPs, are
done automatically when calling sequoia and various other functions, but can be done
separately by calling CheckGeno.

4.1.3 Family IDs

By default, the ’Family ID’ (1st) column in the PLINK file is ignored, and IDs are
extracted from the second column only. If the family IDs are essential to distinguish be-
tween individuals, use GenoConvert with the flag ’UseFID = TRUE’ which will combine
individual IDs and family IDs as FID IID. Ensure the IDs in the life history file are in
the same format, for example by using LHConvert. The FID and IID can be split again
in the resulting pedigree using PedStripFID.

4.1.4 Very large datasets

When the number of individuals is very large, loading the genotype data into R will
take up a lot of memory, and may even exceed R’s memory limit and be impossible. A
stand-alone version of the algorithm underlying this R package does not suffer from this
limitation, and is available as Fortran source code from https://github.com/JiscaH.
Using this requires a Fortran95 compiler. The input consists of three text files: the
genotype data with one column for IDs followed by one column per SNP (0/1/2/-9), and
no header row; the life history data; and the parameter settings, for which an example
file is included with the code. These files can be generated using writeSeq, for example
after running sequoia on a subset of the data. No manual for this has been written yet,
please email jisca.huisman @ gmail.com if you intend to use this and require help.

4.2 Life history data

The life history data (LifeHistData) should be a dataframe with three or five columns
(column names are ignored, order is important!):

� ID: It is probably safest to stick to R’s ‘syntactically valid names’, defined as
“consists of letters, numbers and the dot or underline characters and starts with a
letter, or the dot not followed by a number”.

� Sex: 1 = female, 2 = male, 3=unknown, 4=hermaphrodites. All other numbers,
letters, or NA = unknown

� BirthYear: Year of birth/hatching/germination. In species with more than one
generation per year, a finer time scale than year of birth ought to be used (in

16

https://github.com/JiscaH

Table 2: Example LifeHistData with the optional columns for minimum + maximum birth
year.

ID Sex BirthYear BYmin BYmax
A 2 NA NA 2010
B 2 2012 NA NA
C 1 2011 NA NA
D 3 NA 2000 2012
E 3 NA NA NA

round numbers), ensuring that parents are born prior to their putative offspring
(e.g. parent’s BY=2001 and offspring BY=2005). Negative numbers and NA’s are
interpreted as unknown.

� BY.min: (optional) Earliest year in which individual may have been born, if exact
year is unknown.

� BY.max: (optional) Latest year in which individual may have been born

Ideally this basic life history information is provided for all genotyped individuals,
but this is not necessary. This dataframe may include many more individuals than the
genotype data, or in a different order.

4.2.1 BY.min & BY.max

Especially in wild populations the year of birth is regularly unknown, but often some
rough estimate can be made to determine ’BY.min’ and ’BY.max’. It is possible to
provide only one of the pair, e.g. ’BY.max’ is at the latest the first year in which an
individual was observed.

Even very wide ranges may help in pedigree reconstruction: for example, if individuals
A and B are genetically parent and offspring, A was first seen last year (say 2011) as
an adult, and B was known to be born this year (2012), than A is certainly the parent
of B. Before version 2.0 there was no system to inform sequoia that A could not have
been born after year t, and thereby could have been an offspring of A. It was possible to
provide ’guestimated’ birth years, but this can be time consuming when there are many
individuals with unknown birth years, and is potentially prone to errors.

To minimise pedigree errors where parent and offspring are flipped the wrong way
around, and the ‘secondary’ errors derived from these cases, it is recommended to set
the possible birth year range as wide as possible, at least during an initial (preliminary)
round of parentage assignment. To see the pairs that are genetically parent and offspring,
but for which it cannot be determined which of the two is the parent, use function
GetMaybeRel.

4.3 sequoia parameters explained

MaxSibIter The maximum number of iterations of sibship clustering (i.e., full pedigree
reconstruction, also including assignment of grandparents). Non-positive values have a
special meaning:

� -9: Only input check and create $Specs list element

� -1: check for duplicates

17

� 0: check for duplicates + parentage assignment

� x > 0: as above + at most x iterations of full pedigree reconstruction

Sibship clustering is much more time consuming than parentage assignment and may
take several hours for large datasets. It is therefore often prudent to first run only the
much faster parentage assignment, and inspect the output.

During sibship clustering, MaxSibIter mostly functions as a safety net for the rare
cases where the total likelihood does not converge. When the total likelihood asymptotes
before MaxSibIter is reached, the algorithm is terminated and the results returned.

Err The genotyping error rate assumed, equal across all SNPs.

ErrFlavour The error model, see 3.4

Tfilter Threshold LLR between a proposed relationship versus unrelated, to select
candidate relatives. Typically negative; a more negative value may prevent filtering out
of true relatives, but will increase computational time.

Tassign Threshold log10-likelihood ratio (LLR) required for acceptance of a proposed
relationship, relative to next most likely relationship. Must be zero or positive, with
higher values resulting in more conservative assignments. Counter-intuitively a high
Tassign can sometimes increase the number of wrong assignments, as a correct low-
threshold assignment may prevent wrong assignments among close relatives (a.o. by
revealing likely genotyping errors).

MaxSibshipSize Maximum number of offspring for a single individual. A generous
safety margin is advised of at least twice the biologically plausible maximum.

DummyPrefix The prefixes for dummy individuals (sham parental IDs assigned to
sibship clusters) can be altered to avoid confusion with IDs of real individuals. Defaults
to ‘F’ for females (‘F0001’, ‘F0002’, . . .) and ‘M’ for males (‘M0001’, ‘M0002’, . . .).

Complex The complexity of the mating system considered. One of:

� mono: only consider monogamous matings. This can be especially useful for small
SNP panels that have insufficient power to distinguish reliably between full siblings
and half-siblings, but may have ample power to distinguish between full siblings
and third degree relatives (e.g. full cousins). Works well when full aunts/uncles
and grandparents differ consistently more in age than full siblings, and do not have
to be considered as alternatives to full sibling either.

� simp: consider polygamous matings, but ignore all inbred and double relationships
(e.g. a pair being both paternal half-siblings and maternal full cousins). Note that
such relationships may still be assigned as side-effect. This again can be useful if
the SNP panel has limited power, and the occurance of such complex relationships
is very rare.

18

� full: the default, consider all kinds of ‘weird’ relationship combinations; see section
7.2. E.g. a pair may be both paternal half-siblings and maternal aunt-nephew,
when their mothers where mother and daughter and mated with the same male.

� herm: hermaphrodites, automatically selected when any individuals in the life
history data have sex=4. Otherwise like ’full’.

UseAge During parentage assignment age information is always used in the most
minimalistic sense that parents must be born before their offspring. When setting
UseAge='no', no further use of the birth year information is made during full pedigree
reconstruction either. When UseAge='yes', the age distribution of dams, sires, siblings,
etc. in the scaffold parentage-only pedigree is estimated (by MakeAgePrior()) and used
to distinguish between half-siblings, grandparents and full aunts/uncles, amongst others.

This is by default done rather conservatively, but the reliance on age information can
be increased by choosing UseAge='extra'. To prevent cascading effects of errors, the
initial iterations are identical to UseAge='yes', but when the total likelihood plateaus
some stringent criteria are relaxed and the program continues for several more iterations.

args.AP After parentage assignment and before full pedigree reconstruction, the age-
difference distribution is estimated by sequoia calling MakeAgePrior. By default, these
age-difference based prior distributions are flattened when number of pairs of assigned
relatives with known age difference is limited, and any dips and the tails are smoothed.
Sometimes this is undesirable, e.g. when generations do not overlap, or when the assigned
relatives are known to represent the entire possible age-difference range for that relative
type. Then, in args.AP any non-default arguments can be specified that will be passed
on to MakeAgePrior.

For details on MakeAgePrior, see the separate vignette on that topic.

4.3.1 Re-use of previous output

The parameter values used as arguments when calling sequoia will be returned in the
list element Specs. These settings can be re-used in a subsequent run, optionally afer
editing them

load("Sequoia_output_date.RData") # if it was saved to disk

ParOUT$Specs$DummyPrefixFemale <- "D-FEM"

ParOUT$Specs$DummyPrefixMale <- "D-MALE"

SeqOUTX <- sequoia(GenoM = Geno,

SeqList = list(Specs = ParOUT$Specs,

PedigreePar = ParOUT$PedigreePar),

MaxSibIter = 10)

When SeqList is provided and contains an element named Specs, all other (default)
parameter values are ignored, except MaxSibIter. It is also possible to re-use the entire
output list, which will use Specs, LifeHist, AgePriors, and PedigreePar in ’ParOUT’.
If PedigreePar is provided and maxSibIter> 0, parentage assignment will not be re-run
but taken from the provided pedigree.

19

5 Running Sequoia

5.1 Data check

A common problem with SNP datasets it that errors slip through, because the data are
too large to spot the errors by simply looking at the data in excel. There are many
tools available to deal with genotype data and do proper quality control; the function
CheckGeno merely checks that the data are in the correct format, and that there are no
SNPs or individuals with excessively many missing values.

5.2 Check for duplicates

The data may contain positive controls, as well as other intentional and unintentional
duplicated samples, with or without life-history information. Sequoia searches the data
for (near) identical genotypes, allowing for a MaxMismatchDUP mismatches between the
genotypes, which may or may not have the same individual ID. Note that very inbred
individuals may be nearly indistinguishable from their parent(s), especially when the
number of SNPs is limited.

It will also return a vector of individuals included in the genotype data, but not in
the life history data (NoLH). This is merely a service to the user; individuals without life
history information can often be successfully included in the pedigree (but not always,
see section 7.1).

5.3 Parentage assignment

Assignment of genotyped parents to genotyped offspring is performed unless earlier-
assigned parents are provided in SeqList$PedigreePar.

The number of pairs to be checked if they are parent and offspring is very large for
even moderate numbers of individuals, e.g. 5 000 pairs for 100 individuals, and 2 million
for 2 000 individuals. Therefore, three ‘sieves’ are applied sequentially to find candidate
parent-offspring pairs, with decreasing ‘mesh size’

� The number of SNPs at which the pair are opposing homozygotes must be less
than MaxMismatchOH;

� The likelihood ratio between being parent and offspring versus unrelated, not condi-
tioning on any already assigned parents, must be equal to or greater than Tfilter;

� The likelihood ratio between the pair being parent and offspring versus being oth-
erwise related must be equal to or greater than Tassign, to filter out siblings,
grandparents and aunts/uncles,

and the older of the pair is assigned as parent of the younger. If it is unclear which is the
older, or if it is unclear whether the parent is the mother or the father, no assignment is
made (but the pair will be returned in MaybeParent when FindMaybeRel=TRUE, or with
function GetMaybeRel (section 7.1). If there are multiple candidate parents of the same
sex, or some of unknown sex, the parent pair or single parent resulting in the highest
likelihood is assigned.

This heuristic sequential filtering approach makes parentage assignment quick, and
usually takes only a few minutes, especially when setting CalcLLR=FALSE.

20

5.4 Sibship clustering & the rest

Full pedigree reconstruction, including sibship clustering amongst those individuals which
have not been assigned two genotyped parents, is performed when MaxSibIter> 0. This
may take from a few seconds to several hours, depending on the number of individuals
without an already assigned parent, the proportion of individuals with unknown sex or
birth year, the number of sibships that is being clustered and their degree of intercon-
nection, and the number of SNPs and their error rate. During this phase, all first and
second degree links between individuals are attempted to be assigned, using the following
steps in each iteration

� Find pairs of likely full- and half-siblings

� Cluster sibling pairs into sibships

� Find and assign grandparent – grand-offspring pairs (round 3+)

� Merge existing sibships, where possible

� Replace dummy parents by genotyped individuals, where possible (round 2+)

� For individuals without parent(s), find candidate real and dummy parents, and
assign parent(-pairs) where possible

� For sibships without grandparent(s), find candidate real and dummy grandparents,
and assign grandparent(-pairs) where possible (round 2+)

5.4.1 Dummy Individuals

The ‘dummy’ parent assigned to each cluster of half-siblings is denoted by increasing
numbers, by default with prefix ‘F’ for females and ‘M’ for males. Dummy individuals
are appended at the bottom of the pedigree with their assigned parents, i.e. the sib-
ship’s grandparents, and by default have IDs ‘F0001’, ‘F0002’, . . . for dams and ‘M0001’,
‘M0002’, . . . for sires.

In addition, all information for each dummy individual is given in dataframe DummyIDs,
including its parents (again), its offspring, and the estimated birth year, as a point es-
timate (‘BY.est’) and lower and upper bound of the 95% probability interval. This
information is intended to make it easier to match dummy IDs to real IDs of observed
but non-genotyped individuals (see also section 6.2).

5.4.2 Total likelihood

The total likelihood provides a measure of how well the observed genotype data is ex-
plained by the currently inferred pedigree, the allele frequencies of the SNPs, the pre-
sumed genotyping error rate, and if founder genotypes were drawn from a genepool in
Hardy-Weinberg equilibrium. It is a negative number, and closer to zero indicates a
better fit. The total likelihood typically asymptotes within five to ten iterations, even
for complex pedigrees. When an asymptote is reached before MaxSibIter, either the
algorithm is concluded (the default) or dependency on the age prior is increased (if
UseAge = ’extra’) and the algorithm continues until a new asymptote or MaxSibIter is
reached. If there is a large change in value between the second-last and last likelihood of
output element TotLikSib, consider running the algorithm for more iterations (increase
MaxSibIter).

21

5.5 Save output

There are various ways in which the output can be stored. This includes saving the
seqoia list object, and optionally any other object, in an .RData file

save(SeqList, LHdata, Geno, file="Sequoia_output_date.RData")

which can be read back into R at a later point

load("Sequoia_output_date.RData")

'SeqList' and 'LHdata' will appear in R environment

The advantage is that all data is stored and can easily be manipulated when recalled.
The disadvantage is that the file is not human-readable, and (to my knowledge) can only
be opened by R.

Alternatively, the various dataframes and list elements can each be written to a text
file in a designated folder. This can be done using write.table or write.csv, or (since
v0.10) using writeSeq:

writeSeq(SeqList, GenoM = Geno, folder=paste("Sequoia_OUT", Sys.Date()))

which also creates a README file, to remind one that this was created by sequoia and
the date. This can be used for any notes or comments, and any R scripts could be saved
in the same folder.

The same function can also write the dataframes and list elements to an excel file
(.xls or .xlsx), each to a separate sheet, using library xlsx:

writeSeq(SeqList, OutFormat="xls", file="Sequoia_OUT.xlsx")

Note that ’GenoM’ is ignored, as a very large genotype matrix may result in a file that
is too large for excel to open. If you have a genotype matrix of modest size, you can add
it to the same excel file:

library(xlsx)

write.xlsx(Geno, file = "Sequoia_OUT.xlsx", sheetName="Genotypes",

col.names=FALSE, row.names=TRUE, append=TRUE, showNA=FALSE)

The option append=TRUE ensures that the sheet is appended to the file, rather than the
file overwritten.

22

6 Output check

6.1 Pedigree stats & plots

Various summary statistics can be calculated and displayed using function SummarySeq,
such as the number and kind of assigned parents, family sizes (Figures 2 and 3), and
the distributions of Mendelian errors. Its output also includes a table analogous to
pedigreeStats by R package pedantics (which was archived on CRAN in December
2019).

Pat. grandfather

Pat. grandmother

Mat. grandfather

Mat. grandmother

Sire (father)

Dam (mother)

No. parents and grandparents
assigned to genotyped individuals

No. genotyped individuals

0 500 1000 1500 2000 2500 3000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Dummy None

Dummy None

Dummy None

Dummy None

Dummy None

Dummy None

Figure 2: Number of parents assigned to genotyped individuals, split by category

There is a range of software available to plot pedigrees in various styles, such as for
example R package kinship2 or the program PedigreeViewer. Be aware that many use
a different column order (id - sire - dam, instead of id - dam - sire used here), use ’0’
to denote missing parents rather than NA, and/or do not allow individuals to have one
parent (they must be founders or have both parents). The last two issues can be resolved
with Sequoia’s function PedPolish.

6.2 Comparison with previous pedigree

Often a (part) pedigree is already available to which one wants to compare the results,
for example with field-observed mothers. Function PedCompare() performs such com-
parisons between pedigrees. The terminology assumes that Ped1 is the ‘true’ pedigree
(the one from which data is simulated) and Ped2 is the newly inferred pedigree (from
the simulated data), but the function works on any two pedigrees, and both may have
genotyped as well as non-genotyped individuals.

23

1 3 5 7 9 11

Maternal sibships

Sibship size

C
ou

nt

0

50

100

150

1 8 16 25 34 43

Paternal sibships

Sibship size

C
ou

nt

0

20

40

60

80

100

1 2 3 4

Full sibships

Sibship size

C
ou

nt

0

500

1000

1500

2000

Figure 3: Family sizes, split by genotyped (dark) or dummy (light) parent

The output list consists of Counts, a summary of the number of matches and mis-
matches between the two pedigrees, as well as MergedPed, a side-by-side comparison,
and ConsensusPed, an amalgamation of the two.

6.2.1 Dummy matching

PedCompare() does its best to align any dummy parents in the inferred pedigree 2, to
non-genotyped individuals in pedigree 1. It is considered a ‘match’ if the inferred sibship
(in Pedigree 2) which contains the most offspring of a non-genotyped parent (in Pedigree
1), consists for more than half of this individual’s offspring. When a cluster of 5 siblings
in Pedigree 1 is split into one of three and one of two in Pedigree 2, the larger sibship
of three is considered a match, and the smaller a mismatch (thus 2 mismatches) — even
though it can be argued the inferred pedigree 2 does not contain any incorrect links.

6.2.2 Example

To increase the chance of mismatches, we simulate a genotype dataset with few SNPs,
and pretend 20% of birth years and genders are unknown. The specific numbers will
differ between simulated datasets, but the output structure will be the same.
data(LH_HSg5, Ped_HSg5)

GM <- SimGeno(Ped = Ped_HSg5, nSnp = 100, SnpError = 0.01)

#

LH <- LH_HSg5

LH$BirthYear[sample.int(nrow(LH), round(nrow(LH)*0.2))] <- NA

LH$Sex[sample.int(nrow(LH), round(nrow(LH)*0.2))] <- NA

#

run sequoia, parentage assignment only

SeqX <- sequoia(GenoM = GM, LifeHistData = LH, MaxSibIter = 0,

24

Figure 4: Various categories when comparing two pedigrees, e.g. with Pedigree1 = true
pedigree used to simulate genotype data, and Pedigree2 = inferred pedigree.

Err = 0.005) # assumed genotyping error rate

#

check if there were any assignment errors

compPar <- PedCompare(Ped1 = Ped_HSg5, Ped2 = SeqX$PedigreePar)

compPar$Counts["GG",,] # GG = Genotyped offspring, Genotyped parent

dam sire

Total 550 553

Match 494 478

Mismatch 11 12

P1only 45 63

P2only 0 0

When Pedigree 1 is the true pedigree, the assignment error rate is Mismatch + P2only / 2N,
thus here (11 + 12 + 0 + 0)/(2 ∗ 1000) = 0.0115. P1only are the false-negatives, i.e. cases where
both offspring and its parent in Pedigree 1 were genotyped, but no assignment was made in
Pedigree 2.

We can investigate the mismatches further (in Rstudio, you can also use View(comp$Mismatch)):

print(head(compPar$Mismatch[, c(1:5, 9:12)]), row.names=F) # subset columns for easier viewing

id dam.1 sire.1 dam.2 sire.2 id.dam.cat id.sire.cat dam.class sire.class

a02015 a01002 b01151 a01001 b01151 GG GG Mismatch Match

a02082 a01070 b01069 a02084 b01072 GG GG Mismatch Mismatch

a02084 a01070 b01069 a01071 b01072 GG GG Mismatch Mismatch

a03052 a02112 b02158 a02110 <NA> GG GD Mismatch P1only

a03112 a02107 b02187 a03111 b02187 GG GG Mismatch Match

a03157 a02051 b02061 a04122 <NA> GG GD Mismatch P1only

and knowing that full siblings in this pedigree have consecutive IDs, we see that for the
first individual, the assigned dam was a full sibling of the true dam; for the second individual,
its own full sibling was assigned as dam; etc.

For the fourth individual, there is no sire assigned in Pedigree 2, but there is a sire in
Pedigree 1, thus sire.Class = P1only. The column ‘id.sire.cat’ is ‘GD’, which indicates that
the individual is Genotyped, while the sire is a potential Dummy.

Continuing with sibship clustering (this may take a while when the genotyping error rate

25

is high):
SeqXF <- sequoia(GenoM = GM, LifeHistData = LH, MaxSibIter = 10,

Err = 0.005)

comp <- PedCompare(Ped1 = Ped_HSg5, Ped2 = SeqXF$Pedigree)

comp$Counts["GG",,] # let's look at `GG' again first

dam sire

Total 549 550

Match 530 526

Mismatch 10 8

P1only 9 16

P2only 0 0

We can see that in the final pedigree, there are slightly fewer mismatches and far fewer
false-negatives among parent-offspring pairs that have both been genotyped. This is because
the clustered sibships provide additional power to distinguish between parents, full-siblings and
aunts/uncles.

comp$Counts["TT",,] # Totals

dam sire

Total 962 962

Match 885 880

Mismatch 20 21

P1only 55 59

P2only 2 2

The overall assignment error, including dummy individuals, is (20+21+2+2)/(2∗1000) =
0.0225, thus higher than for the parentage assignment (as is typical). We can see more easily
how it differs between categories by averaging across dams and sires, and dividing by the total
within each category:

tmp <- apply(comp$Counts, 1:2, mean)

round(tmp / tmp[,"Total"], 3)

Total Match Mismatch P1only P2only

GG 1 0.961 0.016 0.023 0.000

GD 1 0.850 0.027 0.123 0.000

GT 1 0.918 0.021 0.062 0.000

DG 1 0.939 0.045 0.015 0.000

DD 1 0.946 0.018 0.036 0.000

DT 1 0.943 0.033 0.025 0.000

TT 1 0.917 0.021 0.059 0.002

The ’P2only’ cases only show up in the ‘TT’ grand-totals category, because they involve
individuals in Pedigree 2 that shouldn’t exist:
print(comp$P2only[, 1:6], row.names=F)

id dam.1 sire.1 dam.2 sire.2 id.r

M0033 <NA> <NA> a02116 b02009 nomatch

M0034 <NA> <NA> F0022 b03005 nomatch

We can look a bit further into dummy male M0033:

print(comp$MergedPed[which(comp$MergedPed$sire.2 == "M0033"), 1:8], row.names=F)

id dam.1 sire.1 dam.2 sire.2 id.r dam.r sire.r

a04033 a03177 b03092 a03177 M0033 a04033 <NA> nomatch

26

a04045 a03083 b03092 F0045 M0033 a04045 a03083 nomatch

b04081 a03165 b03092 a03165 M0033 b04081 <NA> nomatch

b04084 a03165 b03092 a03165 M0033 b04084 <NA> nomatch

From this, it M0033 looks like a perfectly good match with male b03092 in Pedigree
1. However, that male is already matched to dummy M0027, in which sibship more of
its offspring are included:

print(comp$MergedPed[which(comp$MergedPed$sire.1 == "b03092"),

c("id", "sire.1", "sire.2", "sire.r")], row.names=F)

id sire.1 sire.2 sire.r

a04033 b03092 M0033 nomatch

a04034 b03092 M0027 b03092

a04035 b03092 M0027 b03092

a04036 b03092 M0027 b03092

a04045 b03092 M0033 nomatch

a04046 b03092 M0027 b03092

a04082 b03092 M0027 b03092

b04048 b03092 M0027 b03092

b04081 b03092 M0033 nomatch

b04083 b03092 M0027 b03092

b04084 b03092 M0033 nomatch

M0010 b03092 M0027 b03092

Because of such cases, it is often useful to inspect the discrepancies between the
pedigrees in some detail, to figure out exactly what is going on (and if the situation is
really as dire as the Counts suggests).

6.2.3 Comparison of pairwise relationships

An alternative way to compare two pedigrees is by counting the number of pairs of
full sibs in Pedigree 1, that are full sibs, half sibs, or unrelated in Pedigree 2. This is
implemented in function ComparePairs:
comp.p <- ComparePairs(Ped1 = Ped_HSg5, Ped2 = SeqXF$Pedigree,

GenBack = 1,

patmat = TRUE) # distinguish between maternal & paternal relatives

comp.p

Ped2

Ped1 M P O FS MHS PHS U X

M 530 0 2 0 0 0 11 417

P 0 526 1 0 0 0 16 417

FS 3 0 3 1197 35 22 145 198

MHS 0 0 0 0 1342 0 200 218

PHS 0 0 0 0 0 2758 476 446

U 6 6 12 1 31 13 415419 75064

X 0 0 0 0 0 0 0 0

This shows for example that of the mothers (M) in Pedigree 1 (top row), 530 were
correctly assigned (as in comp$Counts["GG",,]), while in 2 cases their offspring was
assigned as their parent (O), and in 11 instances were unrelated (U) to their true offspring
when tracing only 1 generation back, so ’U’ potentially includes assignments as aunt or

27

grandmother. When choosing GenBack=2, a larger table is generated, which does include
avuncular relationships and grandparent.s

6.2.4 Colony

To compare Colony output with an existing pedigree, use:
BestConfig <- read.table("Colony/file/file.BestConfig",

header=T, sep="", comment.char="")

PedCompare(Ped1 = ExistingPedigree,

Ped2 = BestConfig)

6.3 Comparison pedigree-based and genomic relatedness

One way to compare two pedigrees is by comparing the pedigree-based relatednesses
calculated from each. In R, pedigree relatedness can for example be calculated by the R
package kinship2 – relatedness is defined as twice the kinship coefficient.

kinship2 requires a pedigree with columns id - dadid - momid - sex, and requires
that individuals either have two parents, or zero:
Ped <- PedPolish(SeqOUT$Pedigree[, 1:3],

FillParents = TRUE) # add fake single parents

Ped <- merge(Ped, MyLifeHistData, by.x="id", by.y="ID", all.x=TRUE)

library(kinship2)

change sex coding: for kinship2 1=male, 2=female

Ped.fix <- with(Ped_, kinship2::fixParents(id=id, dadid=sire, momid=dam,

sex=c("female", "male", "unknown")[Sex]))

create a pedigree object:

ped.k <- with(Ped.fix, kinship2::pedigree(id, dadid, momid, sex, missid=0))

calculate kinship matrix:

kin <- kinship(ped.k)

turn matrix into dataframe:

kin.df <- data.frame("IID1" = rep(rownames(kin.M), each=ncol(kin.M)),

"IID2" = rep(colnames(kin.M), times=nrow(kin.M)),

"k.ped" = c(t(kin.M)),

stringsAsFactors=FALSE)

calculate pedigree relatedness:

kin.df$R.ped <- kin.df$k.ped *2

In absence of a previous pedigree, or when it is not obvious whether the previous or
newly inferred pedigree is correct, one could compare the pairwise relatedness estimated
from the pedigrees to a measure of genomic relatedness, estimated directly from the com-
plete SNP data – which may be many more SNPs than used for pedigree reconstruction.
Genomic relatedness can be estimated for example using GCTA, http://cnsgenomics.
com/software/gcta/#MakingaGRM. Genomic relatedness will vary around the pedigree-
based relatedness even for a perfect pedigree due to Mendelian variance, but outliers
suggest pedigree errors.

As the number of pairs p becomes very large even for moderate numbers of indi-
viduals n (p = n × (n − 1)/2), additional packages are required to assist with merging
(data.table) and plotting (hexbinplot). For example:
Rel.snp <- read.table("GT.grm.gz")

Rel.id <- read.table("GT.grm.id", stringsAsFactors=FALSE)

Rel.snp[,1] <- as.character(factor(Rel.snp[,1], labels=Rel.id[,2]))

Rel.snp[,2] <- as.character(factor(Rel.snp[,2], labels=Rel.id[,2]))

names(Rel.snp) <- c("IID1", "IID2", "SNPS", "R.SNP")

Rel.snp <- Rel.snp[Rel.snp$IID1 != Rel.snp$IID2,]

28

http://cnsgenomics.com/software/gcta/#MakingaGRM
http://cnsgenomics.com/software/gcta/#MakingaGRM

#

library(data.table)

Rel.gt <- merge(data.table(Rel.snp[,c(1,2,4)], key=c("IID1", "IID2")),

data.table(kin.df, key=c("IID1", "IID2")), all.x=TRUE)

Rel.gt <- as.data.frame(Rel.gt) # turn back into regular dataframe

rm(PedStats, Rel.snp, kin.df) # clean up large dataframes

#

round(cor(Rel.gt[, c("R.SNP", "R.ped")], use="pairwise.complete"),4)

#

library(hexbin)

ColF <- function(n) rev(rainbow(n, start=0, end=4/6,

s=seq(.9,.6,length.out=n),v=.8))

hexbinplot(Rel.gt$R.SNP~Rel.gt$R.ped, xbins=100, aspect=1, maxcnt=10^6.5,

trans=log10,inv=function(x) 10^x, colorcut=seq(0,1,length=14),

xlab="Pedigree relatedness", ylab="Genomic relatedness",

xlim=c(-.1,.9), ylim=c(-.1, .9), colramp=ColF, colorkey = TRUE)

#

or, if you want to add a diagonal line to the plot:

hb <- hexbin(Rel.gt$R.SNP~Rel.gt$R.ped, xbins=100,

xbnds=c(-.1,.9), ybnds=c(-.1, .9),

xlab="Pedigree relatedness", ylab="Genomic relatedness")

hbp <- plot(hb, maxcnt=10^6.5, colramp=ColF, trans=log10,

inv=function(x) 10^x, colorcut=seq(0,1,length=14))

hexVP.abline(hbp$plot.vp, a=0, b=1)

7 Other

7.1 Find non-assigned likely relatives

During parentage assignment, occasionally pairs are encountered which genetically are
more likely to be parent-offspring than unrelated, but which can not be assigned be-
cause the sex or age difference is unknown or incompatible, or because the LLR is just
below the assignment threshold (e.g. about equally likely PO and FS). Similarly, during
pedigree reconstruction not all pairs of almost-certainly-relatives can be assigned, e.g.
because half-siblings, full avuncular and grandparent–grand-offspring cannot always be
distinguished. Distinguishing different kinds of second degree relatives relies on either
both individuals already having at least one parent assigned, or very strong support
based on the age diference of the pair. When neither is the case, the output indicates
‘2nd’ as most likely relationship, and the LLR is between being 2nd degree relatives ver-
sus the most likely of PO (parent-offspring), FS (full siblings), HA (3rd degree relative)
or U (unrelated).

These pairs can be identified by function GetMaybeRel with as argument a sequoia
output list or any pedigree. It will also identify parent-parent-offspring trios which could
not be assigned because the sex for both parents is unknown.

7.2 Unusual relationships

Pedigree inference is often applied in small, (semi-)closed populations, and regularly to
test for inbreeding. In such cases, pairs of individuals may be related via more than
one route. For example, maternal half-siblings may also be niece and aunt via the
paternal side, and be mistaken for full-siblings. A range of such double relationships is
considered explicitly (Table 3) to minimise such mistakes. If such a type is common in

29

your population but not yet considered by sequoia, and seems to be causing problems,
please send an email to jisca.huisman@gmail.com as adding additional relationships is
relatively straightforward.

Table 3: Double relationships between pairs of individuals; – = impossible, Y = explicitly considered,
empty = not (yet) explicitly considered (but possible to be inferred in two steps). Abbreviations as
before, and GGG=great-grandparent, F1C=full first cousins, H1C=half first cousins (parents are HS).

PO FS HS GP FA HA GGG F1C H1C U

PO – – Y Y Y
FS – – – – – Y – Y Y
HS Y – (FS) Y Y Y[2] Y
GP Y – Y [1] Y
FA – Y Y
HA Y Y[2] Y
F1C Y
GGG – [3] Y

1: Can not be considered explicitly, as likelihood identical to PO

2: Including the special case were one is inbred

3: Can not be considered explicitly, as likelihood identical to GP

7.3 Hermaphrodites

Hermaphrodites can be specified in LifeHistData with sex ‘4’, which then ‘under the
hood’ are treated as two individuals with opposite sex, and identical genotypes. When
running as usual, and all candidate parents are hermaphrodites, no parents will be as-
signed at all, as the configuration where A is the dam and B the sire is as likely as B being
the dam and A the sire. Likely parent-offspring pairs can be found in MaybeParent, and
parent-parent-offspring trios in MaybeTrio.

7.3.1 Pedigree prior

To chose between A being the dam or the sire, additional information is required on the
probable dam. This can e.g. the plant from which the seed was collected. This pedigree
‘prior’ can be provided as follows:
cand.dams <- read.table("Candidate_dams.txt", header=TRUE,

stringsAsFactors=FALSE)

cdam has columns 'id' and 'dam', and does not need entries for all ids

cand.par <- cbind(cand.dams, sire=NA)

par.herm <- sequoia(GenoM = Geno,

LifeHistData = LH,

SeqList = list(PedigreePar = cand.par),

MaxSibIter=0)

In combination with maxSibIter=0, PedigreePar is a pedigree prior

re-use all settings (including the newly assigned parents):

seq.herm <- sequoia(GenoM = Geno,

LifeHistData = LH,

SeqList = par.herm,

MaxSibIter = 10)

30

jisca.huisman @ gmail.com

Then, when two configurations are genetically equally likely, the one that matches
the prior pedigree is assigned. Parent–offspring pairs in the pedigree prior that are not
genetically a match will never be assigned.

Note that the functionality for hermaphrodites has not been as extensively tested
as the rest of the program, and especially the option to cluster sibships has not been
exhaustively tested - use with caution.

7.4 Cluster families

Certain analyses, such as the Mendelian error check in PLINK, are done on a family-
by-family basis. The function FindFamilies takes a pedigree as input and clusters the
individuals in as few families as possible, by repeatedly searching all ancestors and all
descendants of each individual and ensuring those all have the same family ID.

This function does not take separate FID and IID columns in the input pedigree,
rather these need to be joined together before running FindFamilies, and then split
afterwards using PedStripFID.

8 FAQ

8.1 Error messages when reading in data

For smaller datasets (say up to 1000 individuals) it may be useful to read in the data with
read.table (using header=TRUE or FALSE, as appropriate, and typically row.names=1),
and inspect the data with table(as.matrix(mydata)) for odd entries that weren’t caught
by CheckGeno to give an informative error message. For very large datasets, specialist
tools may be required to get the data in a standardised format.

8.2 Why is the assignment rate so low?

In many cases, assignment rate can be boosted without increasing the number of SNPs:
by assuming a higher genotyping error rate, providing sex or birth year information on
more individuals, or fine-tuning the ageprior. Sometimes reducing the number of SNPs
may increase assignment rate, by removing those with the highest error rate and/or
SNPs in close LD.

Not enough SNPs As opposed to most other pedigree assignment programs, Sequoia
does not rely on MCMC to explore many different pedigree possibilities, but instead
sequentially assigns highly likely relationships, and expands the pedigree step by step.
For a relationship to be highly likely, a substantial number of SNPs is necessary, larger
than for MCMC methods: at least 100-200 for parentage assignment, or full sibling
clustering in a monogamous population, and at least 400-500 otherwise.

Genotyping errors A few SNPs with a high (apparent) error rate may throw off
pedigree reconstruction if their erroneous signal is not sufficiently offset out by a large
number of more accurate SNPs. Such SNPs can be identified with function SnpStats,
using an existing pedigree or one from an preliminary round of parentage assignment. If
there are clear outliers with regards to estimated error rate, it may be worth exploring
pedigree reconstruction without these SNPs.

31

Lacking sex information Currently Sequoia cannot handle sex-linked markers, and
therefore cannot distinguish between maternal versus paternal relatives. Sometimes the
sex of an individual can be inferred, if it forms a complementary parent-pair with an
individual of known sex. This is also the manner in which the sex of dummy parents is
determined; half-sibships sharing a parent of unknown sex are not currently implemented.

Pairs of relatives for which it is unclear whether they are maternal or paternal rela-
tives, can be identified with GetMaybeRel.

Insufficient age information A parent will only be assigned if it is known to be
older than the individual with which it genetically forms a parent–offspring pair, or
if a complementary co-parent is identified. Purely genetically, it is impossible to tell
who the parent is in a parent–offspring pair. But once an individual has been assigned
parents, any remaining individuals with which it forms a parent-offspring pair must be
its offspring, and will be assigned as such. Thus, a high proportion of sampled parents
may somewhat compensate for unknown birth years.

Providing minimum and maximum possible birth years can substantially increase as-
signment rate. The risk is that when intervals are taken too narrowly, parent–offspring
pairs are flipped the wrong way around, which in turn may lead to other wrong assign-
ments. This may especially be a problem in long-lived species which start breeding at
an early age.

Age information will also help to distinguish between the three different types of
second degree relatives (half siblings, grandparent – grand-offspring and full avuncular
(aunt/uncle – niece/nephew). These are genetically indistinguishable, unless both in-
dividuals of the pair already have a parent assigned. In most species, there is limited
overlap between the age-difference of half siblings versus grandparents, and only partial
overlap of either with the age distribution of avuncular relationships.

Uninformative age prior Informative age priors may increase assignment rate when
the power of the genetic data is limited, and to help distinguish between different types
of second degree relatives. The ageprior used for full pedigree reconstruction is esti-
mated from the birth year differences of parent-offspring pairs assigned during the initial
parentage assignment. When only few parents are assigned, or when many birth years
are unknown, this ageprior may not be very informative. If a large pedigree is available
from the same or a similar population (e.g. based on observations and microsatellite
paternity assignments), it can be useful to estimate the agepriors from that pedigree.

Mating system When the population has a complex mating system, with overlapping
generations and many double relatives, a large number of SNPs is needed to distinguish
between various plausible alternatives. When the power of the SNP panel is insufficient
to make the distinction, no assignment will be made.

When inbreeding and complex relationships (e.g. paternal half-sibling as well as ma-
ternal half-aunt) are rare, ignoring these typically increases assignment rate (Complex="simp").
Similarly, when polygamy is rare and not of particular interest, assuming a monogamous
mating system typically increases assignment rate (Complex="mono"). However, these
choices will risk erroneous assignments when complex relationships or polygamy, respec-
tively, do occur.

32

8.3 Why does it not use year of death?

The year of death forms an upper limit to when an individual could have reproduced, and
is used by e.g. FRANZ during parentage assignment. It is not used by sequoia, because
it is mainly focussed on populations of wild animals, where it is often impossible to tell
whether an individual has emigrated or died, and identification of dead individuals is not
always reliable. Emigrants are still candidate parents, as they may reside just outside
the study area boundaries, or return briefly and unseen during the breeding season.

The only way in which a known death date can inform pedigree reconstruction by
sequoia, is as an upper limit to the estimated birth year, when the exact birth year is
unknown.

8.4 How do I know if the assigned parents are correct?

Field pedigree available If the genetically assigned mother matches the mother car-
ing for the individual, or the plant from which the seed was collected, there is little
reason to doubt the assignment. Similarly, when the genetically assigned father matches
(one of) the observed mates of the mother, the assignment is most likely correct.

In rare other cases, the genetically assigned parent is impossible, for example because
the assigned parent was not alive at the time of birth (for mothers) or conception (for
fathers). The blame for such an erroneous assignment may be the pedigree reconstruction
software (due to genotyping errors, or a bug in the code), but may also be due to sample
mislabelling in the lab, or a case of mistaken identity in the field.

Genomic relatedness available When many thousands of SNPs are typed, it is pos-
sible to calculate the genomic relatedness (Rgrm) between all pairs of individuals (see
Section 6.3). Due to the random nature of Mendelian inheritance there is always consid-
erable scatter of genomic relatedness around pedigree relatedness, but when the pedigree
relatedness is considerably higher (say Rped − Rgrm > 0.2), this is often indicative of a
pedigree error. Note however that most estimators of Rgrm assume a large, panmic-
tic, non-inbred population, and deviations from these assumptions may contribute to
differences between Rped and Rgrm.

Data simulation Simulations as performed by ’EstConf’ do not tell which assignments
may be incorrect, but do give an estimate of the overall number of incorrect assignments.
The simulations are done presuming the inferred pedigree (or an existing pedigree) is
the true pedigree, i.e. for a pedigree that is (hopefully) very close to the actual true
pedigree.

8.5 I have genotyped additional individuals, how do I update
the pedigree?

When new individuals have been genotyped, such as a new cohort of offspring, it is best
to re-run pedigree for all genotyped individuals. This ensures that older siblings of the
new offspring are identified, as well as any grandparents. Exception is when all candidate
parents have been genotyped, although even then inclusion of their parents may correct
for any genotyping errors they may have.

33

References

[1] J Huisman. Pedigree reconstruction using snp data: parentage assignment, sibship clustering, and
beyond. Molecular Ecology Resources, 17(5):1009-1024.

[2] T C Marshall, J B K E Slate, L E B Kruuk, and J M Pemberton. Statistical confidence for
likelihood-based paternity inference in natural populations. Molecular ecology, 7(5):639–655, 1998.

[3] S Purcell, B Neale, K Todd-Brown, L Thomas, M A R Ferreira, D Bender, J Maller, P Sklar, PIW
De Bakker, MJ Daly, et al. PLINK: a tool set for whole-genome association and population-based
linkage analyses. The American Journal of Human Genetics, 81(3):559–575, 2007.

[4] E A Thompson and T R Meagher. Parental and sib likelihoods in genealogy reconstruction. Bio-
metrics, pages 585–600, 1987.

34

	Quick-start examples
	Example 1: Simulated data
	Example 2: Real data

	Background
	Key points
	Pedigree reconstruction – overview
	Package function overview
	Input check
	Simulate genotype data
	Age `prior'
	Pedigree reconstruction
	Pedigree check & comparisons
	Miscellaneous

	Opposite homozygosity (OH) & Mendelian errors (ME)
	MaxMismatch

	Genotyping errors
	Effect on pedigree inference
	ErrFlavour
	Estimation

	Birth years & Age difference based `prior'
	Definition & interpretation
	Implementation
	Grandparents, aunts & uncles
	Customising the ageprior
	Age-based excluded true relatives

	Parent log-likelihood ratios (LLR)
	Estimate confidence levels

	Input
	Genotype data
	Real data - Selection of SNP markers
	Exclusion of low call rate samples & SNPs
	Family IDs
	Very large datasets

	Life history data
	BY.min & BY.max

	sequoia parameters explained
	Re-use of previous output

	Running Sequoia
	Data check
	Check for duplicates
	Parentage assignment
	Sibship clustering & the rest
	Dummy Individuals
	Total likelihood

	Save output

	Output check
	Pedigree stats & plots
	Comparison with previous pedigree
	Dummy matching
	Example
	Comparison of pairwise relationships
	Colony

	Comparison pedigree-based and genomic relatedness

	Other
	Find non-assigned likely relatives
	Unusual relationships
	Hermaphrodites
	Pedigree prior

	Cluster families

	FAQ
	Error messages when reading in data
	Why is the assignment rate so low?
	Why does it not use year of death?
	How do I know if the assigned parents are correct?
	I have genotyped additional individuals, how do I update the pedigree?

