
Package ‘sequoia’
May 18, 2020

Type Package

Title Pedigree Inference from SNPs

Version 2.0.7

Date 2020-05-17

Author Jisca Huisman [aut, cre]

Maintainer Jisca Huisman <jisca.huisman@gmail.com>

Description Fast multi-generational pedigree inference from incomplete data on
hundreds of SNPs, including parentage assignment and sibship clustering.
See Huisman (2017) (<DOI:10.1111/1755-0998.12665>, citation('sequoia')) for
more information.

License GPL-2

LazyData TRUE

Imports plyr (>= 1.8.0), stats, utils, graphics

RoxygenNote 7.1.0

Suggests xlsx, knitr, rmarkdown, bookdown

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-05-18 18:30:09 UTC

R topics documented:
CalcMaxMismatch . 2
CalcOHLLR . 3
CheckGeno . 6
ComparePairs . 7
DyadCompare . 11
ErrToM . 12
EstConf . 13
FindFamilies . 16
GenoConvert . 17

1

2 CalcMaxMismatch

getAssignCat . 19
GetMaybeRel . 21
GetRelCat . 23
Inherit . 25
LHConvert . 26
LH_HSg5 . 27
MakeAgePrior . 28
MkGenoErrors . 31
PedCompare . 33
PedPolish . 36
PedStripFID . 37
Ped_griffin . 38
Ped_HSg5 . 39
PlotAgePrior . 39
SeqOUT_griffin . 40
sequoia . 41
SimGeno . 46
SimGeno_example . 49
SnpStats . 50
SummarySeq . 51
writeColumns . 53
writeSeq . 54

Index 56

CalcMaxMismatch Maximum number of mismatches

Description

Calculate the maximum expected number of mismatches for duplicate samples, parent-offspring
pairs, and parent-parent-offspring trios.

Usage

CalcMaxMismatch(Err, MAF, ErrFlavour = "version2.0", qntl = 1 - 1e-05)

Arguments

Err estimated genotyping error rate, as a single number or 3x3 matrix. If a matrix,
this should be the probability of observed genotype (columns) conditional on
actual genotype (rows). Each row must therefore sum to 1.

MAF vector with minor allele frequency at each SNP.

ErrFlavour function that takes Err as input, and returns a 3x3 matrix of observed (columns)
conditional on actual (rows) genotypes, or choose from inbuilt ones as used in
sequoia ’version2.0’, ’version1.3’, or ’version1.1’. Ignored if Err is a matrix.
See ErrToM.

CalcOHLLR 3

qntl quantile of binomial distribution to be used as the maximum, of individual-
level probability. For a desired dataset-level probability quantile Q, use qntl =
Q(1/N), where N is the number of individuals.

Details

The thresholds for maximum number of mismatches calculated here aim to minimise false nega-
tives, i.e. to minimise the chance that any true duplicates or true parent-offspring pairs are already
excluded during the filtering steps where these MaxMismatch values are used. Consequently, there
is a high probability of false positives, i.e. it is likely that some sample pairs with fewer mismatches
than the MaxMismatch threshold, are in fact not duplicate samples or parent-offspring pairs. Use of
these MaxMismatch thresholds is therefore only the first step of pedigree reconstruction by sequoia.

Value

a vector with three integers:

DUP Maximum number of differences between 2 samples from the same individual

OH Maximum number of Opposing Homozygous SNPs between a true parent-offspring
pair

ME Maximum number of Mendelian Errors among a true parent-parent- offspring
trio

See Also

SnpStats

CalcOHLLR calculate OH and LLR

Description

Count opposite homozygous (OH) loci between parent-offspring pairs and Mendelian errors (ME)
between parent-parent-offspring trios, and calculate the parental log-likelihood ratios (LLR).

Usage

CalcOHLLR(
Pedigree = NULL,
GenoM = NULL,
CalcLLR = TRUE,
LifeHistData = NULL,
AgePrior = FALSE,
Err = 1e-04,
ErrFlavour = "version2.0",
Tassign = 0.5,
Complex = "full",

4 CalcOHLLR

GDX = TRUE,
quiet = FALSE

)

Arguments

Pedigree dataframe with columns id-dam-sire. May include non-genotyped individuals,
which will be treated as dummy individuals.

GenoM the genotype matrix

CalcLLR calculate log-likelihood ratios for all assigned parents (genotyped + dummy/non-
genotyped; parent vs. otherwise related). If FALSE, only number of mismatching
SNPs are counted (OH & ME), and parameters LifeHistData, AgePrior, Err,
Tassign, and Complex are ignored. Note also that calculating likelihood ratios
is much more time consuming than counting OH & ME.

LifeHistData Dataframe with columns ID - Sex - BirthYear, and optionally columns BY.min
and BY.max. If provided, used to delimit possible alternative relationships.

AgePrior logical (TRUE/FALSE) to estimate the ageprior from Pedigree and LifeHist-
Data, or an agepriors matrix (see MakeAgePrior). Affects which alternative
relationships are considered (only those where P (A|R)/P (A) > 0). When
TRUE, MakeAgePrior is called using its default values.

Err estimated genotyping error rate, as a single number or 3x3 matrix. If a matrix,
this should be the probability of observed genotype (columns) conditional on
actual genotype (rows). Each row must therefore sum to 1.

ErrFlavour function that takes Err as input, and returns a 3x3 matrix of observed (columns)
conditional on actual (rows) genotypes, or choose from inbuilt ones as used in
sequoia ’version2.0’, ’version1.3’, or ’version1.1’. Ignored if Err is a matrix.
See ErrToM.

Tassign used to determine whether or not to consider some more exotic relationships
when Complex="full".

Complex determines which relationships are considered as alternatives. Either "full" (de-
fault), "simp" (simplified, ignores inbred relationships), or "mono" (monoga-
mous).

GDX call getAssignCat to classify individuals as genotyped (G), substitutable by a
dummy (D) or neither (X).

quiet logical, suppress messages

Details

Any individuals in Pedigree that do not occur in GenoM are substituted by dummy individuals; a
value of ’0’ in column ’SNPd.id.dam’ in the output means that either the focal individual or the dam
was thus substituted, or both were. Use getAssignCat to distinguish between these cases.

The birth years in LifeHistData and the AgePrior are not used in the calculation and do not affect
the value of the likelihoods for the various relationships, but they _are_ used during some filtering
steps, and may therefore affect the likelihood _ratio_. The default (AgePrior=FALSE) assumes all
age-relationship combinations are possible, which may mean that some additional alternatives are
considered compared to the sequoia default, resulting in somewhat lower LLR values.

CalcOHLLR 5

A negative LLR for A’s parent B indicates either that B is not truely the parent of A, or that B’s
parents are incorrect. The latter may cause B’s presumed true, unobserved genotype to greatly divert
from its observed genotype, with downstream consequences for its offspring. In rare cases it may
also be due to ’weird’, non-implemented double or triple relationships between A and B.

Value

the Pedigree dataframe with additional columns:

LLRdam Log10-Likelihood Ratio (LLR) of this female being the mother, versus the next
most likely relationship between the focal individual and this female (see Details
for relationships considered)

LLRsire idem, for male parent

LLRpair LLR for the parental pair, versus the next most likely configuration between the
three individuals (with one or neither parent assigned)

OHdam Number of loci at which the offspring and mother are opposite homozygotes

OHsire idem, for father

MEpair Number of Mendelian errors between the offspring and the parent pair, includes
OH as well as e.g. parents being opposing homozygotes, but the offspring not
being a heterozygote. The offspring being OH with both parents is counted as 2
errors.

SNPd.id.dam Number of SNPs scored (non-missing) for both individual and dam

SNPd.id.sire Number of SNPs scored for both individual and sire

id.cat Character denoting whether the focal individual is genotyped (G), substitutable
by a dummy (D), or neither (X).

dam.cat as id.cat, for dams. If id.cat and/or dam.cat is ’X’, the dam cannot be assigned.

sire.cat as dam.cat, for sires

Sexx Sex in LifeHistData, or inferred Sex when assigned as part of parent-pair

BY.est mode of birth year probability distribution

BY.lo lower limit of 95% highest density region of birth year probability distribution

BY.hi higher limit

The columns ’LLRdam’, ’LLRsire’ and ’LLRpair’ are only included when CalcLLR=TRUE. The
columns ’dam.cat’ and ’sire.cat’ are only included when GDX=TRUE. The columns ’Sexx’, ’BY.est’,
’BY.lo’ and ’BY.hi’ are only included when LifeHistData is provided, and at least one genotyped
individual has an unknown birthyear or unknown sex.

See Also

SummarySeq for visualisation of OH & LLR distributions; GenoConvert to read in various genotype
data formats, CheckGeno; PedPolish to check and ’polish’ the pedigree; getAssignCat to find
which id-parent pairs are both genotyped or can be substituted by dummy individuals; sequoia for
pedigree reconstruction

6 CheckGeno

Examples

Not run:
have a quick look for errors in an existing pedigree,
without running pedigree reconstruction
PedA <- CalcOHLLR(Pedigree = MyOldPedigree, GenoM = MyNewGenotypes,

CalcLLR=FALSE)

or run sequoia with CalcLLR=FALSE, and add OH + LLR later
SeqOUT <- sequoia(Genotypes, LifeHist, CalcLLR=FALSE)
PedA <- CalcOHLLR(Pedigree = SeqoUT$Pedigree[, 1:3], GenoM = Genotypes,

LifeHistData = LIfeHist, AgePrior = TRUE, Complex = "full")

visualise
SummarySeq(PedA, Panels=c("LLR", "OH"))

End(Not run)

CheckGeno check GenoM

Description

Check that the provided genotype matrix is in the correct format, and check for low call rate samples
and SNPs

Usage

CheckGeno(GenoM, quiet = FALSE, Plot = FALSE)

Arguments

GenoM the genotype matrix
quiet suppress messages
Plot display the plots of SnpStats

Value

a list with, if any are found:

ExcludedSNPs SNPs scored for <10 excluded when running sequoia
ExcludedSnps-mono

monomorphic (fixed) SNPs; automatically excluded when running sequoia.
Column numbers are *after* removal of ExcludedSNPs, if any.

ExcludedIndiv Individuals scored for <5 reliably included during pedigree reconstruction. In-
dividual call rate is calculated after removal of ’Excluded SNPs’

Snps-LowCallRate

SNPs scored for 10 recommended to be filtered out
Indiv-LowCallRate

individuals scored for <50 recommended to be filtered out

ComparePairs 7

Thresholds

Appropriate call rate thresholds for SNPs and individuals depend on the total number of SNPs,
distribution of call rates, genotyping errors, and the proportion of candidate parents that are SNPd
(sibship clustering is more prone to false positives). Note that filtering first on SNP call rate tends
to keep more individuals in.

See Also

SnpStats to calculate SNP call rates; CalcOHLLR to count the number of SNPs scored in both focal
individual and parent

Examples

Not run:
GenoM <- SimGeno(Ped_HSg5, nSnp=400, CallRate = runif(400, 0.2, 0.8))
Excl <- CheckGeno(GenoM)
GenoM.orig <- GenoM # make a 'backup' copy
if ("ExcludedSnps" %in% names(Excl))

GenoM <- GenoM[, -Excl[["ExcludedSnps"]]]
if ("ExcludedInd" %in% names(Excl))

GenoM <- GenoM[!rownames(GenoM) %in% Excl[["ExcludedInd"]],]
if ("ExcludedIndiv" %in% names(Excl))

GenoM <- GenoM[!rownames(GenoM) %in% Excl[["ExcludedIndiv"]],]

warning about SNPs scored for <50% of individuals ?
SnpCallRate <- apply(GenoM, MARGIN=2,

FUN = function(x) sum(x!=-9)) / nrow(GenoM)
hist(SnpCallRate, breaks=50, col="grey")
GenoM <- GenoM[, SnpCallRate > 0.6]

to be on the safe side, filter out low call rate individuals
IndivCallRate <- apply(GenoM, MARGIN=1,

FUN = function(x) sum(x!=-9)) / ncol(GenoM)
hist(IndivCallRate, breaks=50, col="grey")
GoodSamples <- rownames(GenoM)[IndivCallRate > 0.8]

End(Not run)

ComparePairs Comparison of all pairwise relationships in 2 pedigrees

Description

Compare, count and identify different types of relative pairs between two pedigrees. The matrix
returned by DyadCompare [Deprecated] is a subset of the matrix returned here using default settings.

8 ComparePairs

Usage

ComparePairs(
Ped1 = NULL,
Ped2 = NULL,
Pairs2 = NULL,
GenBack = 1,
patmat = FALSE,
DumPrefix = c("F0", "M0"),
Return = "Counts"

)

Arguments

Ped1 (Original/reference) pedigree, dataframe with 3 columns: id-dam-sire

Ped2 Second (inferred) pedigree

Pairs2 dataframe with relationships categories between pairs of individuals, instead of
or in addition to Ped2, e.g. as returned by GetMaybeRel. First three columns:
ID1-ID2-relationship, column names and any additional columns are ignored.

GenBack Number of generations back to consider; 1 returns parent-offspring and sibling
relationships, 2 also returns grandparental, avuncular and first cousins. GenBack
>2 is not implemented.

patmat logical, distinguish between paternal versus maternal relative pairs?

DumPrefix character vector of length 2 with the dummy prefixes in Ped1 and/or Ped2. IDs
starting with these prefixes will not be excluded, but individuals with dummy
parents are compared. Use GetRelCat on a single pedigree to find relationships
with dummies.

Return Return a matrix with Counts or a Summary of the number of identical relation-
ships and mismatches per relationship, or detailed results as a 2xNxN Array or
as a Dataframe. All returns a list with all four.

Details

If Pairs2 is as returned by GetMaybeRel (identified by the additional column names ’LLR’ and
’OH’), these relationship categories are appended with an ’?’ in the output, to distinguish them
from those derived from Ped2.

When Pairs2$TopRel contains values other than the ones listed among the return values for the
combination of patmat and GenBack, they are prioritised in decreasing order of factor levels, or in
decreasing alphabetical order, and before the default (ped2 derived) levels.

Value

a matrix with counts, a 3D array or a 4-column dataframe, depending on Return, with by default
(GenBack=1,patmat=FALSE) the following 7 relationships:

S Self (not in counts)

MP Parent

ComparePairs 9

O Offspring (not in counts)
FS Full sibling
HS Half sibling
U Unrelated, or otherwise related
X Either or both individuals not occurring in both pedigrees

Where in the array and dataframe, ’MP’ indicates that the second (column) individual is the parent
of the first (row) individual, and ’O’ indicates the reverse.

When GenBack=2,patmat=TRUE, the following relationships are distinguished:

S Self (not in counts)
M Mother
P Father
O Offspring (not in counts)
FS Full sibling
MHS Maternal half-sibling
PHS Paternal half-sibling
MGM Maternal grandmother
MGF Maternal grandfather
PGM Paternal grandmother
PGF Paternal grandfather
GO Grand-offspring (not in counts
FA Full avuncular; maternal or paternal aunt or uncle
HA Half avuncular
FN Full nephew/niece (not in counts
HN Half nephew/niece (not in counts
FC1 Full first cousin
DFC1 Double full first cousin
U Unrelated, or otherwise related
X Either or both individuals not occurring in both pedigrees

Note that for avuncular and cousin relationships no distinction is made between paternal versus
maternal, as this may differ between the two individuals and would generate a large number of
subclasses. When a pair is related via multiple paths, the first-listed relationship is returned.

When GenBack=1,patmat=TRUE the categories are (S)-M-P-(O)-FS-MHS-PHS- U-X. When GenBack=2,patmat=FALSE,
MGM, MGF, PGM and PGF are combined into GP, with the rest of the categories analogous to the
above.

Note that in the dataframe each pair is listed twice, e.g. once as P and once as O, or twice as FS.

When Return = "Counts" (the default), a matrix with counts is returned, with the classification in
Ped1 on rows and that in Ped2 in columns. Counts for ’symmetrical’ pairs ("FS", "HS", "MHS",
"PHS", "FC1", "DFC1", "U","X") are divided by two.

When Return = 'Summary', the counts table is distilled down into a matrix with four columns,
which names assuming Ped1 is the true pedigree:

10 ComparePairs

n total number of pairs with that relationship in Ped1

OK Number of pairs with same relationship in Ped2 as in Ped1

lo Number of pairs with ’lower’ relationship in Ped2 as in Ped1 (see ranking above),
but not unrelated in Ped2

hi Number of pairs with ’higher’ relationship in Ped2 as in Ped1

When Return = "Array", the first dimension is 1=Ped1, 2=Ped2, the 2nd and 3rd dimension are
the two individuals of the pair.

When Return = "Dataframe", the columns are

id.A First individual of the pair

id.B Second individual of the pair

RC1 the relationship category in Ped1, as a factor with all considered categories as
levels, including those with 0 count

RC2 the relationship category in Ped2

See Also

PedCompare for individual-based comparison; GetRelCat for pairs of relatives within a single pedi-
gree.

Examples

Not run:
data(Ped_HSg5, SimGeno_example, LH_HSg5, package="sequoia")
SeqOUT <- sequoia(GenoM = SimGeno_example, LifeHistData = LH_HSg5,

MaxSibIter = 0)
ComparePairs(Ped1=Ped_HSg5, Ped2=SeqOUT$Pedigree, Return="Counts")
matrix with counts of pairs
RC.A <- ComparePairs(Ped1=Ped_HSg5, Ped2=SeqOUT$Pedigree, Return="Array")
RC.A[, "a05017", "b05018"] # check specific pairs

RC.DF <- ComparePairs(Ped1=Ped_HSg5, Ped2=SeqOUT$Pedigree,
Return="Dataframe")

RC.DF[RC.DF$id.A=="a05017" & RC.DF$id.B=="b05018",] # check specific pairs
table(RC.DF$Ped1, RC.DF$Ped2)
incl. S,O,GO,FN,HN; duplicated counts for FS,HS,FC1,DFC1,U,X
Mismatches <- RC.DF[RC.DF$Ped1 != RC.DF$Ped2,]

Maybe <- GetMaybeRel(SimGeno_example, SeqList=SeqOUT, ParSib="sib")
cp <- ComparePairs(Ped1=Ped_HSg5, Ped2=SeqOUT$Pedigree,

Pairs2=Maybe$MaybeRel, Return="All")
cp$Counts[, colSums(cp$Counts)>0]
cp$Summary[,"OK"] / cp$Summary[,"n"] # pairwise assignment rate

End(Not run)

DyadCompare 11

DyadCompare Compare dyads

Description

Count the number of half and full sibling pairs correctly and incorrectly assigned. DEPRECATED
- SEE ComparePairs

Usage

DyadCompare(Ped1 = NULL, Ped2 = NULL, na1 = c(NA, "0"))

Arguments

Ped1 Original pedigree, dataframe with 3 columns: id-dam-sire

Ped2 Second (inferred) pedigree

na1 the value for missing parents in Ped1.

Value

A 3x3 table with the number of pairs assigned as full siblings (FS), half siblings (HS) or unrelated
(U, including otherwise related) in the two pedigrees, with the classification in Ped1 on rows and
that in Ped2 in columns

See Also

PedCompare

Examples

Not run:
data(Ped_HSg5, SimGeno_example, LH_HSg5, package="sequoia")
SeqOUT <- sequoia(GenoM = SimGeno_example, LifeHistData = LH_HSg5,

MaxSibIter = 0)
DyadCompare(Ped1=Ped_HSg5, Ped2=SeqOUT$Pedigree)

End(Not run)

12 ErrToM

ErrToM Generate error matrix

Description

Generate a matrix with the probabilities of observed genotypes (columns) conditional on actual
genotypes (rows), or return a function to generate such matrices (using a single value Err as input
to that function)

Usage

ErrToM(Err = NA, flavour = "version2.0", Return = "matrix")

Arguments

Err estimated genotyping error rate, as a single number or 3x3 or 4x4 matrix. If a
single number, an error model is used that aims to deal with scoring errors typi-
cal for SNP arrays. If a matrix, this should be the probability of observed geno-
type (columns) conditional on actual genotype (rows). Each row must therefore
sum to 1. If Return='function', this may be NA.

flavour matrix-generating function, or one of ’version2.0’, ’version1.3’ (=’SNPchip’),
’version1.1’ (=’version111’), referring to the sequoia version in which it was
used as default. Ignored if Err is a matrix and Return='matrix' (in which case
the matrix will only be checked for validity).

Return output, ’matrix’ (always 3x3) or ’function’.

Details

By default (flavour = "SNPchip"), Err is interpreted as a locus-level error rate (rather than allele-
level), and equals the probability that an actual heterozygote is observed as either homozygote (i.e.,
the probability that it is observed as AA = probability that observed as aa = Err/2). The probability
that one homozygote is observed as the other is (Err/2)2.

The inbuilt ’flavours’ correspond to the presumed and simulated error structures, which have changed
with sequoia versions. The most appropriate error structure will depend on the genotyping platform;
’version0.9’ and ’version1.1’ were inspired by SNP array genotyping while ’version1.3’ and ’ver-
sion2.0’ are intended to be more general.

version2.0:

0 1 2
0 (1− E/2)2 E(1− E/2) (E/2)2

1 E/2 1− E E/2
2 (E/2)2 E(1− E/2) (1− E/2)2

version1.3

EstConf 13

0 1 2
0 1− E − (E/2)2 E (E/2)2

1 E/2 1− E E/2
2 (E/2)2 E 1− E − (E/2)2

version1.1

0 1 2
0 1− E E/2 E/2
1 E/2 1− E E/2
2 E/2 E/2 1− E

version0.9 (not recommended)

0 1 2
0 1− E E 0
1 E/2 1− E E/2
2 0 E 1− E

Value

either a 3x3 matrix, or a function generating a 3x3 matrix.

EstConf Estimate confidence probability

Description

Estimate confidence and assignment error rate by repeatedly simulating genotype data from a refer-
ence pedigree using SimGeno, reconstruction a pedigree from this using sequoia, and counting the
number of mismatches using PedCompare.

Usage

EstConf(
Pedigree = NULL,
LifeHistData = NULL,
args.sim = list(nSnp = 400, SnpError = 0.001, ParMis = c(0.4, 0.4)),
args.seq = list(MaxSibIter = 10, Err = 0.001, Tassign = 0.5),
nSim = 10,
quiet = TRUE

)

14 EstConf

Arguments

Pedigree Reference pedigree from which to simulate, dataframe with columns id-dam-
sire. Additional columns are ignored

LifeHistData Dataframe with id, sex (1=female, 2=male, 3=unknown), and birth year.

args.sim list of arguments to pass to SimGeno, such as nSnp (number of SNPs), SnpError
(genotyping error rate) and ParMis (proportion of non-genotyped parents). Set
to NULL to use all default values.

args.seq list of arguments to pass to sequoia, such as MaxSibIter (max no. sibship clus-
tering iterations, ’0’ for parentage assignment only) and Err (assumed genotyp-
ing error rate). May include (part of) SeqList, the list of sequoia output (i.e. as
a list-within-a-list). Set to NULL to use all default values.

nSim number of rounds of simulations to perform.

quiet suppress messages. ‘very’ also suppresses simulation counter, TRUE just runs
SimGeno and sequoia quietly.

Details

The confidence probability is taken as the number of correct (matching) assignments, divided by
all assignments made in the observed (inferred-from-simulated) pedigree. In contrast, the false
negative & false positive assignment rates are proportions of the number of parents in the true
(reference) pedigree. Each rate is calculated separatedly for dams & sires, and separately for each
category (Genotyped/Dummy(fiable)/X (none)) of individual, parent and co-parent.

This function does not know which individuals in Pedigree are genotyped, so the confidence prob-
abilities need to be added to the Pedigree by the user as shown in the example at the bottom.

A confidence of ‘1’ assignments on simulated data were correct for that category-combination. It
should be interpreted as (and perhaps modified to) > 1− 1/N , where sample size N is given in the
last column of the ConfProb and PedErrors dataframes in the output. The same applies for a false
negative/positive rate of ‘0’.

Value

a list, with the main results in dataframe ConfProb and array PedErrors. ConfProb has 7 columns:

id.cat, dam.cat, sire.cat

Category of the focal individual, dam, and sire, in the pedigree inferred based
on the simulated data. Coded as G=genotyped, D=dummy, X=none

dam.conf Probability that the dam is correct, given the categories of the assigned dam
and sire (ignoring whether or not the sire is correct). Rounded to nchar(N)
significant digits

sire.conf as dam.conf, for the sire

pair.conf Probability that both dam and sire are correct, given their categories

N Number of individuals per category-combination, across all nSim simulations

array PedErrors has three dimensions:

class • FalseNeg(atives): could have been assigned but was not (individual + parent
both genotyped or dummyfiable; P1only in PedCompare).

EstConf 15

• FalsePos(itives): no parent in reference pedigree, but one was assigned
based on the simulated data (P2only)

• Mismatch: different parents between the pedigrees

cat Category of individual + parent, as a two-letter code where the first letter indi-
cates the focal individual and the second the parent; G=Genotyped, D=Dummy,
T=Total

parent dam or sire

The other list elements are:

Pedigree.reference

the pedigree from which data was simulated
Pedigree.inferred

a list with for each iteration the inferred pedigree based on the simulated data

SimSNPd a list with for each iteration the IDs of the individuals simulated to have been
genotyped

RunParams a list with the current call to EstConf, as well as the default parameter values for
EstConf,SimGeno, and sequoia.

RunTime sequoia runtime per simulation in seconds, as measured by system.time()['elapsed'].

Assumptions

Because the actual true pedigree is (typically) unknown, the provided reference pedigree is used as
a stand-in and assumed to be the true pedigree, with unrelated founders. It is also assumed that the
probability to be genotyped is equal for all parents; in each iteration, a new random set of parents
(proportion set by ParMis) is mimicked to be non-genotyped. In addition, SNPs are assumed to
segregate independently.

See Also

SimGeno,sequoia,PedCompare

Examples

Not run:
data(Ped_HSg5, LH_HSg5, package="sequoia")

Example A: parentage assignment only
conf.A <- EstConf(Pedigree = Ped_HSg5, LifeHistData = LH_HSg5,

args.sim = list(nSnp = 100, SnpError = 5e-3, ParMis=c(0.2, 0.5)),
args.seq = list(MaxSibIter = 0, Err=1e-3, Tassign=0.5),
nSim = 2)

parent-pair confidence, per category:
conf.A$ConfProb

calculate (correct) assignment rates (ignores co-parent)
1 - apply(conf.A$PedErrors, c(1,3), sum, na.rm=TRUE)

16 FindFamilies

Example B: with sibship clustering, based on sequoia inferred pedigree
RealGenotypes <- SimGeno(Ped = Ped_HSg5, nSnp = 100,

ParMis=c(0.19,0.53), SnpError = 6e-3)
SeqOUT <- sequoia(GenoM = RealGenotypes,

LifeHistData = LH_HSg5,
Err=5e-3, MaxSibIter=10)

conf.B <- EstConf(Pedigree = SeqOUT$Pedigree,
LifeHistData = LH_HSg5,
args.sim = list(nSnp = 100, SnpError = 5e-3,

ParMis=c(0.2, 0.5)),
args.seq = list(Err=5e-3, MaxSibIter = 10),
nSim = 3)

Ped.withConf <- getAssignCat(Pedigree = SeqOUT$Pedigree,
Genotyped = rownames(RealGenotypes))

Ped.withConf <- merge(Ped.withConf, conf.B$ConfProb, all.x=TRUE)
Ped.withConf <- Ped.withConf[, c("id","dam","sire", "dam.conf", "sire.conf",

"id.cat", "dam.cat", "sire.cat")]

End(Not run)

FindFamilies Assign family IDs

Description

Add a column with family IDs (FIDs) to a pedigree, with each number denoting a cluster of con-
nected individuals.

Usage

FindFamilies(Ped = NULL, SeqList = NULL, UseMaybeRel = FALSE)

Arguments

Ped dataframe with columns id - parent1 - parent2; only the first 3 columns will be
used.

SeqList list as returned by sequoia. If ’Ped’ is not provided, the element ’Pedigree’
from this list will be used if present, and element ’Pedigreepar’ otherwise.

UseMaybeRel use SeqList$MaybeRel, the dataframe with probable but non-assigned relatives,
to assign additional family IDs?

Details

This function repeatedly finds all ancestors and all descendants of each individual in turn, and
ensures they all have the same Family ID. Not all connected individuals are related, e.g. all grand-
parents of an individual will have the same FID, but will typically be unrelated.

When UseMaybeRel = TRUE, probable relatives are added to existing family clusters, or existing
family clusters may be linked together. Currently no additional family clusters are created.

GenoConvert 17

Value

A dataframe with the provided pedigree, with a column ’FID’ added.

GenoConvert Convert genotype data

Description

Convert genotype data in various formats to sequoia’s 1-column-per-marker format or Colony’s
2-column-per-marker format.

Usage

GenoConvert(
InFile = NULL,
InFormat = "raw",
OutFile = NA,
OutFormat = "seq",
InData = NULL,
Missing = c("-9", "??", "?", "NA", "NULL", c("0")[InFormat %in% c("col", "ped")]),
sep = c(" ", "\t", ",", ";"),
header = NA,
IDcol = NA,
FIDcol = NA,
FIDsep = "__",
dropcol = NA,
quiet = FALSE

)

Arguments

InFile character string with name of genotype file to be converted

InFormat One of ’single’, ’double’, ’col’, ’ped’, ’raw’, or ’seq’, see Details.

OutFile character string with name of converted file. If NA, return matrix with genotypes
in console (default); if NULL, write to ’GenoForSequoia.txt’ in current working
directory.

OutFormat as InFormat, currently only ’seq’ and ’col’ are implemented.

InData dataframe or matrix with genotypes to be converted

Missing vector with symbols interpreted as missing data.

sep vector with field separator strings that will be tried on InFile. The OutFile
separator uses the write.table default, i.e. one blank space

header a logical value indicating whether the file contains the names of the variables as
its first line. If NA (default), set to TRUE for ’raw’, and FALSE otherwise.

18 GenoConvert

IDcol single number giving the column which contains the individual IDs; 0 indicates
the rownames (for InData only). If NA (default), set to 2 for InFormat ’raw’ and
’ped’, and otherwise to 1 for InFile and 0 (rownames) for InData, except when
InData has a column labeled ’ID’.

FIDcol column which contains the individual IDs, if any are wished to be used. This is
column 1 for InFormat ’raw’ and ’seq’, but those are by default not used.

FIDsep string used to paste FID and IID together into a composite-ID (value passed to
paste’s collapse). This joining can be reversed using PedStripFID.

dropcol columns to exclude from the output data, on top of IDcol and FIDcol (which
become rownames). When NA, defaults to columns 3-6 for InFormat ’raw’ and
’seq’. Can also be used to drop some SNPs, see example below on how to do
this for the 2-columns-per-SNP input formats.

quiet suppress messages and warnings

Value

A genotype matrix in the specified output format. If ’OutFile’ is specified, the matrix is written to
this file and nothing is returned inside R. When converting to 0/1/2 format, 2 is the homozygote for
the minor allele, and 0 the homozygote for the major allele.

Input formats

The following formats can be specified by InFormat:

single 1 column per marker, otherwise unspecified

double 2 columns per marker, otherwise unspecified

col (Colony) genotypes are coded as numeric values, missing as 0, in 2 columns per marker. Col-
umn 1 contains IDs.

ped (PLINK) genotypes are coded as A, C, T, G, missing as 0, in 2 columns per marker. The first
6 columns are descriptive (1:FID, 2:IID, 3 to 6 ignored).

raw (PLINK) genotypes are coded as 0, 1, 2, missing as NA, in 1 column per marker. The first 6
columns are descriptive (1:FID, 2:IID, 3 to 6 ignored), and there is a header row.

seq (sequoia) genotypes are coded as 0, 1, 2, missing as −9, in 1 column per marker. Column 1
contains IDs, there is no header row.

For each InFormat, its default values for Missing,header,IDcol,FIDcol, and dropcol can be
overruled by specifying the corresponding input parameters.

Error messages

An occasional error when reading in a file with GenoConvert is that ’rows have unequal length’.
GenoConvert makes use of readLines and strsplit, which is much faster than read.table for
large datafiles, but also more sensitive to unusual line endings, unusual end-of-file characters, or
invisible characters (spaces or tabs) after the end of some lines. In these cases, try to read the data
from file using read.table or read.csv, and then use GenoConvert on the matrix, see example.

getAssignCat 19

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

CheckGeno,SnpStats,LHConvert

Examples

Not run:
Requires PLINK installed & in system PATH:

tinker with window size, window overlap and VIF to get a set of
400 - 800 markers (100-200 enough for just parentage):
system("cmd", input = "plink --file mydata --indep 50 5 2")
system("cmd", input = "plink --file mydata --extract plink.prune.in

--recodeA --out PlinkOUT")

GenoM <- GenoConvert(InFile = "PlinkOUT.raw")

save time on file conversion next time:
write.table(GenoM, file="Geno_for_sequoia.txt", quote=FALSE,

col.names=FALSE)
GenoM <- read.table("Geno_for_sequoia.txt", row.names=1, header=FALSE)

drop some SNPs, e.g. after a warning of >2 alleles:
dropSNP <- c(5,68,101,128)
GenoM <- GenoConvert(ColonyFile, InFormat = "col",

dropcol = 1 + c(2*dropSNP-1, 2*dropSNP))

circumvent a 'rows have unequal length' error:
GenoTmp <- as.matrix(read.table("mydata.txt", header=TRUE, row.names=1))
GenoM <- GenoConvert(InData=GenoTmp, InFormat="single", IDcol=0)

End(Not run)

getAssignCat Assignability of reference pedigree

Description

Identify which individuals are genotyped, and which can potentially be substituted by a dummy
individual. ’Dummifiable’ are those non-genotyped individuals with at least 2 genotyped offspring,
or at least 1 genotyped offspring and 1 genotyped parent.

Usage

getAssignCat(Pedigree, Genotyped)

20 getAssignCat

Arguments

Pedigree dataframe with columns id-dam-sire. Reference pedigree.

Genotyped character vector with ids of genotyped individuals.

Details

It is assumed that all individuals in Genotyped have been genotyped for a sufficient number of
SNPs. To identify samples with a too-low call rate, use CheckGeno. To calculate the call rate for all
samples, see the examples below.

Some parents indicated here as assignable may never be assigned by sequoia, for example parent-
offspring pairs where it cannot be determined which is the older of the two, or grandparents that
are indistinguishable from full avuncular (i.e. genetics inconclusive because the candidate has no
parent assigned, and ageprior inconclusive).

Value

the Pedigree dataframe with 2 additional columns, dam.cat and sire.cat, with coding similar to
that used by PedCompare:

GG Genotyped individual, genotyped parent

GD Genotyped individual, Dummy parent; i.e. ’id’ has at least 1 genotyped sibling
or a genotyped grandparent

DG Dummy individual, Genotyped parent; i.e. ’id’ has at least 1 genotyped off-
spring, and parent is assignable as grandparent of the dummy-substituted-individual’s
offspring

DD Dummy individual, Dummy parent

X Either or both id and parent is/are not genotyped, and has/have no genotyped
offspring, and therefore the parent- offspring link cannot be assigned.

NA No parent in Pedigree

Examples

data(Ped_HSg5, SimGeno_example, package="sequoia")
PedA <- getAssignCat(Ped_HSg5, rownames(SimGeno_example))
table(PedA$dam.cat, PedA$sire.cat, useNA="ifany")

calculate call rate
Not run:
CallRates <- apply(MyGenotypes, MARGIN=1,

FUN = function(x) sum(x!=-9)) / ncol(MyGenotypes)
hist(CallRates, breaks=50, col="grey")
GoodSamples <- rownames(MyGenotypes)[CallRates > 0.8]
threshold depends on total number of SNPs, genotyping errors, proportion of
candidate parents that are SNPd (sibship clustering is more prone to false
positives).
PedA <- getAssignCat(MyOldPedigree, rownames(GoodSamples))

End(Not run)

GetMaybeRel 21

GetMaybeRel Find putative relatives

Description

Identify pairs of individuals likely to be related, but not assigned as such in the provided pedigree.

Usage

GetMaybeRel(
GenoM = NULL,
SeqList = NULL,
Pedigree = NULL,
LifeHistData = NULL,
ParSib = "par",
Complex = "full",
Err = 1e-04,
ErrFlavour = "version2.0",
MaxMismatch = NA,
Tassign = 0.5,
MaxPairs = 7 * nrow(GenoM),
DumPrefix = c("F0", "M0"),
quiet = FALSE

)

Arguments

GenoM matrix with genotype data, size nInd x nSnp

SeqList list with output from sequoia. If provided, the elements ‘Specs’, ‘AgePriors’
and ’LifeHist’ are used, and all other input parameters except ’GenoM’, ’ParSib’
and ’quiet’ are ignored.

Pedigree dataframe with id - dam - sire in columns 1-3

LifeHistData dataframe with columns id - sex (1=female, 2=male, 3=unknown) - birth year

ParSib either ’par’ to check for putative parent-offspring pairs only, or ’sib’ to check for
all types of first and second degree relatives. When ’par’, all pairs are returned
that are more likely parent-offspring than unrelated, including pairs that are even
more likely to be otherwise related.

Complex either "full" (default), "simp" (simplified, no explicit consideration of inbred re-
lationships), "mono" (monogamous) or "herm" (hermaphrodites, otherwise like
"full").

Err estimated genotyping error rate, as a single number or 3x3 matrix. If a matrix,
this should be the probability of observed genotype (columns) conditional on
actual genotype (rows). Each row must therefore sum to 1.

22 GetMaybeRel

ErrFlavour function that takes Err as input, and returns a 3x3 matrix of observed (columns)
conditional on actual (rows) genotypes, or choose from inbuilt ones as used in
sequoia ’version2.0’, ’version1.3’, or ’version1.1’. Ignored if Err is a matrix.
See ErrToM.

MaxMismatch DEPRECATED AND IGNORED. Now calculated using CalcMaxMismatch.

Tassign minimum LLR required for acceptance of proposed relationship, relative to next
most likely relationship. Higher values result in more conservative assignments.
Must be zero or positive.

MaxPairs The maximum number of putative pairs to return.

DumPrefix character vector of length 2 with prefixes for dummy dams (mothers) and sires
(fathers) used in Pedigree.

quiet suppress messages

Value

A list with

MaybeParent or MaybeRel

A dataframe with non-assigned likely relatives, with columns ID1 - ID2 - TopRel
- LLR - OH - BirthYear1 - BirthYear2 - AgeDif - Sex1 - Sex2 - SNPdBoth

MaybeTrio A dataframe with non-assigned parent-parent-offspring trios, with columns id -
parent1 - parent2 - LLRparent1 - LLRparent2 - LLRpair - OHparent1 - OHpar-
ent2 - MEpair - SNPd.id.parent1 - SNPd.id.parent2

The following categories are used in column ’TopRel’, indicating the most likely relationship cate-
gory:

PO Parent-Offspring

FS Full Siblings

HS Half Siblings

GP GrandParent - grand-offspring

FA Full Avuncular (aunt/uncle)

2nd 2nd degree relatives, not enough information to distinguish between HS,GP and
FA

Q Unclear, but probably 1st, 2nd or 3rd degree relatives

Examples

Not run:
data(SimGeno_example, LH_HSg5, package="sequoia")
SeqOUT <- sequoia(GenoM = SimGeno_example,

LifeHistData = LH_HSg5, MaxSibIter = 0)
MaybePO <- GetMaybeRel(GenoM = SimGeno_example,

SeqList = SeqOUT)

Maybe <- GetMaybeRel(GenoM = SimGeno_example,
Pedigree = SeqOUT$PedigreePar, ParSib="sib")

GetRelCat 23

End(Not run)

GetRelCat Pairwise relationship

Description

Determine the relationship between individual X and all other individuals in the pedigree, going up
to 1 or 2 generations back.

Usage

GetRelCat(x, Pedigree, GenBack = 2, patmat = TRUE)

Arguments

x The focal individual, either its rownumber in the pedigree or ID.

Pedigree dataframe columns id - dam - sire.

GenBack Number of generations back to consider; 1 returns parent-offspring and sibling
relationships, 2 also returns grandparental, avuncular and first cousins.

patmat logical, distinguish between paternal versus maternal relative pairs?

Value

A named vector of length equal to the number of rows in Ped, with for each ID its relationship to
the focal individual:

S Self

M Mother

P Father

O Offspring

FS Full sibling

MHS Maternal half-sibling

PHS Paternal half-sibling

MGM Maternal grandmother

MGF Maternal grandfather

PGM Paternal grandmother

PGF Paternal grandfather

GO Grand-offspring

FA Full avuncular; maternal or paternal aunt or uncle

HA Half avuncular

24 GetRelCat

FN Full nephew/niece

HN Half nephew/niece

FC1 Full first cousin

DFC1 Double full first cousin

U Unrelated (or otherwise related)

See Also

ComparePairs to compare pairwise relationships between 2 pedigrees.

Examples

data(Ped_griffin)
find all relatives of a specific individual
Rel42 <- GetRelCat("i042_2003_F", Ped_griffin)
Rel42[Rel42 != "U"]

make NxN matrix with relationship categories:
Ped_griffin_sub <- Ped_griffin[Ped_griffin$birthyear<2003,] # quicker
RCM <- sapply(seq_along(Ped_griffin_sub$id), GetRelCat, Ped_griffin_sub)
table(RCM)
M MHS O P S U
10 6 16 6 40 1522
note that sibling & cousin pairs are counted twice!
Parent-offspring pairs are counted directionally:
once as offspring (O), once as mother (M) or father (P)

for large pedigrees, table(factor()) is much faster:
table(factor(RCM, levels=c("M","P","FS","MHS","PHS","U")))

list the maternal half-siblings:
these <- which(RCM=="MHS", arr.ind=TRUE)
data.frame(id1 = Ped_griffin_sub$id[these[,1]],

id2 = Ped_griffin_sub$id[these[,2]])

Get Colony-style lists of full sibs & half sibs dyads:
Not run:
RCM <- sapply(seq_along(MyPedigree$id), GetRelCat, Pedigree = MyPedigree,

GenBack = 1, patmat = FALSE)
rownumbers of pairs of FS & HS
FullSibDyads <- which(RCM == "FS", arr.ind=TRUE)
HalfSibDyads <- which(RCM == "HS", arr.ind=TRUE)

each pair is listed 2x - fix:
FullSibDyads <- FullSibDyads[FullSibDyads[,1] < FullSibDyads[,2],]
HalfSibDyads <- HalfSibDyads[HalfSibDyads[,1] < HalfSibDyads[,2],]

translate rownumbers into IDs
MyPedigree$id <- as.character(MyPedigree$id)
FullSibDyads <- cbind(MyPedigree$id[FullSibDyads[,1]],

Inherit 25

MyPedigree$id[FullSibDyads[,2]])
HalfSibDyads <- cbind(MyPedigree$id[HalfSibDyads[,1]],

MyPedigree$id[HalfSibDyads[,2]])

End(Not run)

Inherit Inheritance patterns

Description

Inheritance patterns used by SimGeno for non-autosomal SNPs, identical to those in Inherit.xlsx

Usage

data(Inherit)

Format

An array with the following dimensions:

d1 type: autosomal, x-chromosome, y-chromosome, or mtDNA

d2 offspring sex: female, male, or unknown

d3 offspring genotype: aa (0), aA (1), Aa (1), or AA (2)

d4 mother genotype

d5 father genotype

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

SimGeno

26 LHConvert

LHConvert Extract sex and birthyear from PLINK file

Description

Convert the first six columns of a PLINK .fam, .ped or .raw file into a three-column lifehistory file
for sequoia. Optionally FID and IID are combined.

Usage

LHConvert(
PlinkFile = NULL,
UseFID = FALSE,
SwapSex = TRUE,
FIDsep = "__",
LifeHistData = NULL

)

Arguments

PlinkFile character string with name of genotype file to be converted

UseFID Use the family ID column. The resulting ids (rownames of GenoM) will be in
the form FID__IID

SwapSex change the coding from PLINK default (1=male, 2=female) to sequoia default
(1=female, 2=male); any other numbers are set to NA

FIDsep characters inbetween FID and IID in composite-ID. By default a double under-
score is used, to avoid problems when some IIDs contain an underscore. Only
used when UseFID=TRUE.

LifeHistData dataframe with additional sex and birth year info. In case of conflicts, LifeHist-
Data takes priority, with a warning. If UseFID=TRUE, IDs in LifeHistData are
assumed to be already as FID__IID.

Details

The first 6 columns of PLINK .fam, .ped and .raw files are by default FID - IID - father ID (ignored)
- mother ID (ignored) - sex - phenotype.

When additionally a

Value

a dataframe with id, sex and birth year, which can be used as input for sequoia

See Also

GenoConvert, PedStripFID to reverse UseFID

LH_HSg5 27

Examples

Not run:
combine FID and IID in dataframe with additional sex & birth years
ExtraLH$FID_IID <- paste(ExtraLH$FID, ExtraLH$IID, sep = "__")
LH.new <- LHConvert(PlinkFile, UseFID = TRUE, FIDsep = "__",

LifeHistData = ExtraLH)

End(Not run)

LH_HSg5 Example life history file

Description

This is the lifehistory file associated with Ped_HSg5, which is Pedigree II in the paper.

Usage

data(LH_HSg5)

Format

A data frame with 1000 rows and 3 variables: ID, Sex (1=female, 2=male), and BirthYear

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

References

Huisman, J. (2017) Pedigree reconstruction from SNP data: Parentage assignment, sibship cluster-
ing, and beyond. Molecular Ecology Resources 17:1009–1024.

See Also

Ped_HSg5 sequoia

28 MakeAgePrior

MakeAgePrior Age priors

Description

For various categories of pairwise relatives (R), calculate age-difference (A) based probability ratios
P (A|R)/P (A) .

Usage

MakeAgePrior(
Pedigree = NULL,
LifeHistData = NULL,
MaxAgeParent = NULL,
Discrete = NULL,
Flatten = NULL,
lambdaNW = -log(0.5)/100,
Smooth = TRUE,
Plot = TRUE,
Return = "LR",
quiet = FALSE

)

Arguments

Pedigree dataframe with id - dam - sire in columns 1-3, and optional column with birth
years. Other columns are ignored.

LifeHistData dataframe with 3 or 5 columns: id - sex (not used) - birth year (- BY.min -
BY.max), with unknown birth years coded as negative numbers or NA. Column
names are ignored, so the column order is important. "Birth year" may be in any
arbitrary discrete time unit relevant to the species (day, month, decade), as long
as parents are never born in the same time unit as their offspring. It may include
individuals not in the pedigree, and not all individuals in the pedigree need to be
in LifeHistData.

MaxAgeParent maximum age of a parent, a single number (max across dams and sires) or
a vector of length two (dams, sires). If NULL, it will be estimated from the
data. If there are fewer than 20 parents of either sex assigned, MaxAgeParent
is set to the maximum age difference in the birth year column of Pedigree or
LifeHistData.

Discrete Discrete generations? By default (NULL), discrete generations are assumed if
all parent-offspring pairs have an age difference of 1, and all siblings an age
difference of 0, and there are at least 20 pairs of each category (mother, father,
maternal sibling, paternal sibling). Otherwise, overlapping generations are pre-
sumed. When Discrete=TRUE (explicitly or deduced), Smooth and Flatten are
always automatically set to FALSE. Use Discrete=FALSE to enforce (potential
for) overlapping generations.

MakeAgePrior 29

Flatten To deal with small sample sizes for some or all relationships, calculate weighed
average between the observed age difference distribution among relatives and
a flat (0/1) distribution. When Flatten=NULL (the default) automatically set
to TRUE when there are fewer than 20 parents with known age of either sex
assigned, or fewer than 20 maternal or paternal siblings with known age differ-
ence. Also advisable if the sampled relative pairs with known age difference are
non-typical of the pedigree as a whole.

lambdaNW Control weighing factors when Flatten=TRUE. Weights are calculated as W (R) =
1 − exp(−lambdaNW ∗ N(R)), where N(R) is the number of pairs with re-
lationship R for which the age difference is known. Large values (>0.2) put
strong emphasis on the pedigree, small values (<0.0001) cause the pedigree to
be ignored. Default results in W = 0.5 for N = 100.

Smooth Smooth the tails of and any dips in the distribution? Sets dips (<10% of average
of neighbouring ages) to the average of the neighbouring ages, sets the age after
the end (oldest observed age) to LR(end)/2, and assigns a small value (0.001) to
the ages before the front (youngest observed age) and after the new end. Peaks
are not smoothed out, as these are less likely to cause problems than dips, and
are more likely to be genuine characteristics of the species. Is set to FALSE when
generations do not overlap (Discrete=TRUE).

Plot plot a heatmap of the results? Only when Pedigree is provided

Return return only a matrix with the likelihood-ratio P (A|R)/P (A) ("LR") or a list
including also various intermediate statistics ("all") ?

quiet suppress messages

Details

The ratio P (A|R)/P (A) is the ratio between the observed counts of pairs with age difference
A and relationship R (NA,R), and the expected counts if age and relationship were independent
(N.,. ∗ pA ∗ pR).

During pedigree reconstruction, the ratios P (A|R)/P (A) calculated here are multiplied by the age-
independent genetic-only P (R|G) to obtain a probability that the pair are relatives of type R con-
ditional on both their age difference and their genotypes (i.e. using Bayes’ theorem, P (R|A,G) =
P (A|R)/P (A) ∗ P (R|G)).

The age-difference prior is used for pairs of genotyped individuals, as well as for dummy individu-
als. This assumes that the propensity for a pair with a given age difference to both be sampled does
not depend on their relationship, so that the ratio P (A|R)/P (A) does not differ between sampled
and unsampled pairs.

Value

A matrix with the probability ratio of the age difference between two individuals conditional on
them being a certain type of relative (P (A|R)) versus being a random draw from the sample (P (A)).
For siblings and avuncular pairs, this is the absolute age difference.

The matrix has one row per age difference (0 - nAgeClasses) and five columns, one for each rela-
tionship type, with abbreviations:

M Mothers

30 MakeAgePrior

P Fathers

FS Full siblings

MS Maternal half-siblings

PS Paternal half-siblings

When Return=’all’, a list is returned with in addition to this matrix (’LR.RU.A’) the following
elements:

BirthYearRange vector length 2

MaxAgeParent single number, estimated from the data or provided

tblA.R matrix with the counts per age difference (0 - nAgeClasses) and the five rela-
tionship types as for ’LR.RU.A’, plus a column ’X’ with age differences across
all pairs of individuals, including those in LifeHistData but not in Pedigree.

Weights vector length 4, the weights used to flatten the distributions
LR.RU.A.unweighed

matrix with nAgeClasses+1 rows and 5 columns; LR.RU.A prior to flattening
and smoothing

Specs.AP the names of the input Pedigree and LifeHistData (or NULL), the ’effective’
settings of Discrete, Smooth, and Flatten, and the value of lambdaNW

CAUTION

The small sample correction with Smooth and/or Flatten prevents errors in one dataset, but may
introduce errors in another; a single solution that fits to the wide variety of life histories and datasets
is impossible. Please do inspect the matrix, e.g. with PlotAgePrior.

Single cohort

When no birth year information is given, or all individuals have the same birth year, it is as-
sumed that a single cohort has been analysed and a matrix with 0’s and 1’s is returned. When
Discrete=FALSE, avuncular pairs are assumed potentially present, while when Discrete=TRUE
avuncular is not considered as a relationship possibility.

Other time units

"Birth year" may be in any arbitrary time unit relevant to the species (day, month, decade), as long
as parents are never born in the same time unit as their offspring, but always before their putative
offspring (e.g. parent’s BirthYear= 1 (or 2001) and offspring BirthYear=5 (or 2005)). Negative
numbers and NA’s are interpreted as unknown, and fractional numbers are not allowed.

Maximum parental age

The number of rows in the output ageprior matrix equals the maximum parental age +1 (the first
row is for age difference 0). The maximum parental age equals:

• the maximum age of parents if a pedigree is provided, or

• the (largest) value of MaxAgeParent, or

MkGenoErrors 31

• 1, if generations are discrete, or

• the maximum range of birth years in LifeHistData (including BY.min and BY.max, when
provided)

Exception is when MaxAgeParent is larger than the maximum age of parents in the provided skele-
ton pedigree, then MaxAgeParent is used. Thus, MaxAgeParent can be used when the birth year
range in LifeHistData and/or the age distribution of assigned parents does not capture the absolutely
maximum age of parents. Not adjusting this may hinder subsequent assignment of both dummy par-
ents and grandparents.

See Also

sequoia (and its argument args.AP), PlotAgePrior for visualisation. The age vignette gives
further details, mathematical justification, and some examples.

Examples

data(LH_HSg5, Ped_HSg5, package="sequoia")

no pedigree available:
MakeAgePrior(LifeHistData = LH_HSg5)
MakeAgePrior(LifeHistData = LH_HSg5, Discrete=TRUE)
MakeAgePrior(LifeHistData = LH_HSg5, MaxAgeParent = c(2,3))
Not run:
with pedigree:
MakeAgePrior(Pedigree=Ped_HSg5[1:100,], LifeHistData = LH_HSg5)
MakeAgePrior(Ped_HSg5[1:100,], LH_HSg5, Discrete=FALSE)
With 'Flatten', the value depens on the no. pairs per relationship:
MakeAgePrior(Ped_HSg5[1:100,], LH_HSg5, Flatten=TRUE)
AP.all <- MakeAgePrior(Ped_HSg5[1:200,], LH_HSg5, Flatten=TRUE)
AP.all$tblA.R

End(Not run)

MkGenoErrors Simulate genotyping errors

Description

Generate errors and missing values in a (simulated) genotype matrix

Usage

MkGenoErrors(
SGeno,
CallRate = 0.99,
SnpError = 5e-04,
ErrorFM = function(E) { matrix(c(1 - E - (E/2)^2, E, (E/2)^2, E/2, 1 - E, E/2,

32 MkGenoErrors

(E/2)^2, E, 1 - E - (E/2)^2), 3, 3, byrow = TRUE) },
Error.shape = 0.5,
CallRate.shape = 1

)

Arguments

SGeno Matrix with genotype data in Sequoia’s format: 1 row per individual, 1 column
per SNP, and genotypes coded as 0/1/2.

CallRate Either a single number for the mean call rate (genotyping success), OR a vector
with the call rate at each SNP, OR a named vector with the call rate for each
individual. In the third case, ParMis is ignored, and individuals in the pedigree
(as id or parent) not included in this vector are presumed non-genotyped.

SnpError mean per-locus genotyping error rate across SNPs, and a beta-distribution will
be used to simulate the number of missing cases per SNP, OR a vector with the
genotyping error for each SNP.

ErrorFM function taking the error rate (scalar) as argument and returning a 4x4 or 3x3
matrix with probabilities that actual genotype i (rows) is observed as genotype j
(columns).

Error.shape first shape parameter (alpha) of beta-distribution of per-SNP error rates. A
higher value results in a flatter distribution.

CallRate.shape as Error.shape, for per-SNP call rates.

Value

The input genotype matrix, with some genotypes replaced, and some set to missing (-9)

Examples

data(Ped_HSg5)
GenoM <- SimGeno(Ped = Ped_HSg5, nSnp = 100, ParMis = 0.2,

SnpError=0, CallRate=1)
GenoM.actual <- GenoM
LowQ <- sample.int(nrow(GenoM), 42) # low-quality samples
GenoM[LowQ,] <- MkGenoErrors(GenoM[LowQ,], SnpError = 0.05)
GenoM[-LowQ,] <- MkGenoErrors(GenoM[-LowQ,], SnpError = 0.001)
ErrorCount <- sapply(1:nrow(GenoM), function(i) {

sum(GenoM.actual[i,] != GenoM[i,] & GenoM[i,] != -9) })
mean(ErrorCount[LowQ])
mean(ErrorCount[-LowQ])

PedCompare 33

PedCompare Compare two Pedigrees

Description

Compare an inferred pedigree (Ped2) to a previous or simulated pedigree (Ped1), including com-
parison of sibship clusters and sibship grandparents.

Usage

PedCompare(
Ped1 = NULL,
Ped2 = NULL,
DumPrefix = c("F0", "M0"),
SNPd = NULL,
Symmetrical = TRUE

)

Arguments

Ped1 original pedigree, dataframe with columns id-dam-sire; only the first 3 columns
will be used.

Ped2 inferred pedigree, e.g. SeqOUT$Pedigree or SeqOUT$PedigreePar, with columns
id-dam-sire.

DumPrefix character vector of length 2 with the dummy prefixes in Pedigree 2; all IDs not
starting with the Dummy prefix are taken as genotyped if SNPd=NULL.

SNPd character vector with IDs of genotyped individuals.

Symmetrical When determining the category of individuals (Genotyped/Dummy/X), use the
’highest’ category across the two pedigrees (TRUE, default) or only consider
Ped1 (Symmetrical = FALSE).

Details

The comparison is divided into different classes of ‘assignable’ parents (getAssignCat). This
includes cases where the focal individual and parent according to Ped1 are both Genotyped (G-G),
as well as cases where the non-genotyped parent according to Ped1 can be lined up with a sibship
Dummy parent in Ped2 (G-D), or where the non-genotyped focal individual in Ped1 can be matched
to a dummy individual in Ped2 (D-G and D-D). If SNPd is NULL (the default), and DumPrefix is
set to NULL, the intersect between the IDs in Pedigrees 1 and 2 is taken as the vector of genotyped
individuals.

Value

A list with

Counts A 7 x 5 x 2 named numeric array with the number of matches and mismatches,
see below

34 PedCompare

Counts.detail a large numeric array with number of matches and mismatches, with more detail
for all possible combination of categories

MergedPed A dataframe with side-by-side comparison of the two pedigrees

ConsensusPed A consensus pedigree, with Pedigree 2 taking priority over Pedigree 1

DummyMatch Dataframe with all dummy IDs in Pedigree 2 (id.2), and the best-matching indi-
vidual in Pedigree 1 (id.1)

Mismatch A subset of MergedPed with mismatches between Ped1 and Ped2, as defined
below

Ped1only as Mismatches, with parents in Ped1 that were not assigned in Ped2

Ped2only as Mismatches, with parents in Ped2 that were missing in Ped1

’MergedPed’, ’Mismatch’, ’Ped1only’ and ’Ped2only’ provide the following columns:

id All ids in both Pedigree 1 and 2. For dummy individuals, this is the id in pedi-
gree 2

dam.1, sire.1 parents in Pedigree 1

dam.2, sire.2 parents in Pedigree 2
id.r, dam.r, sire.r

The real id of dummy individuals or parents in Pedigree 2, i.e. the best-matching
non-genotyped individual in Pedigree 1, or "nomatch". If a sibship in Pedigree
1 is divided over 2 sibships in Pedigree 2, the smaller one will be denoted as
"nomatch"

id.dam.cat, id.sire.cat

the category of the individual (first letter) and highest category of the dam (sire)
in Pedigree 1 or 2: G=Genotyped, D=(potential) dummy, X=none. Individual,
one-letter categories are generated by getAssignCat. Using the ’best’ category
from both pedigrees makes comparison between two inferred pedigrees sym-
metrical and more intuitive.

dam.class, sire.class

classification of dam and sire: Match, Mismatch, P1only, P2only, or ’_’ when
no parent is assigned in either pedigree

The first dimension of Counts denotes the following categories:

GG Genotyped individual, assigned a genotyped parent in either pedigree

GD Genotyped individual, assigned a dummy parent, or at least 1 genotyped sibling
or a genotyped grandparent in Pedigree 1)

GT Genotyped individual, total

DG Dummy individual, assigned a genotyped parent (i.e., grandparent of the sibship
in Pedigree 2)

DD Dummy individual, assigned a dummy parent (i.e., avuncular relationship be-
tween sibships in Pedigree 2)

DT Dummy total

TT Total total, includes all genotyped individuals, plus non-genotyped individuals
in Pedigree 1, plus non-replaced dummy individuals (see below) in Pedigree 2

PedCompare 35

The second dimension of Counts gives the outcomes:

Total The total number of individuals with a parent assigned in either or both pedigrees
Match The same parent is assigned in both pedigrees (non-missing). For dummy par-

ents, it is considered a match if the inferred sibship which contains the most
offspring of a non-genotyped parent, consists for more than half of this individ-
ual’s offspring.

Mismatch Different parents assigned in the two pedigrees. When a sibship according to
Pedigree 1 is split over two sibships in Pedigree 2, the smaller fraction is in-
cluded in the count here.

P1only Parent in Pedigree 1 but not 2; includes non-assignable parents (e.g. not geno-
typed and no genotyped offspring).

P2only Parent in Pedigree 2 but not 1.

The third dimension Counts separates between maternal and paternal assignments, where e.g. pa-
ternal ’DT’ is the assignment of fathers to both maternal and paternal sibships (i.e., to dummies of
both sexes).

In ’ConsensusPed’, the priority used is parent.r (if not "nomatch") > parent.2 > parent.1. The
columns ’id.cat’, dam.cat’ and ’sire.cat’ have two additional levels compared to ’MergedPed’:

G Genotyped
D Dummy individual (in Pedigree 2)
R Dummy individual in pedigree 2 replaced by best matching non-genotyped in-

dividual in pedigree 1
U Ungenotyped, Unconfirmed (parent in Pedigree 1, with no dummy match in

Pedigree 2)
X No parent in either pedigree

Assignable

Note that ’assignable’ may be overly optimistic. Some parents from Ped1 indicated as assignable
may never be assigned by sequoia, for example parent-offspring pairs where it cannot be determined
which is the older of the two, or grandparents that are indistinguishable from full avuncular (i.e.
genetics inconclusive because the candidate has no parent assigned, and ageprior inconclusive).

Dummifiable

Considered as potential dummy individuals are all non-genotyped individuals in Pedigree 1 who
have, according to either pedigree, at least 2 genotyped offspring, or at least one genotyped offspring
and a genotyped parent.

Genotyped ’mystery samples’

If Pedigree 2 includes samples for which the ID is unknown, the behaviour of PedCompare depends
on whether the temporary IDs for these samples are included in SNPd. If they are included, matching
(actual) IDs in Pedigree 1 will be flagged as mismatches (because the IDs differ). If they are
not included in SNPd, or SNPd is not explicitly provided, matches are accepted, as the situation is
indistinguishable from comparing dummy parents across pedigrees.

This is of course all conditional on relatives of the mystery sample being assigned in Pedigree 2.

36 PedPolish

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

ComparePairs for comparison of all pairwise relationships in 2 pedigrees, EstConf for repeated
simulate-reconstruct-compare, sequoia for the main pedigree reconstruction function, getAssignCat
for all parents in the reference pedigree that could have been assigned.

Examples

Not run:
data(Ped_HSg5, SimGeno_example, LH_HSg5, package="sequoia")
SeqOUT <- sequoia(GenoM = SimGeno_example, LifeHistData = LH_HSg5, Err=0.001)
compare <- PedCompare(Ped1=Ped_HSg5, Ped2=SeqOUT$Pedigree)
compare$Counts # 2 non-assigned, due to simulated genotyping errors
compare$Counts["TT",,] # totals only
compare$Counts[,,"dam"] # dams only

inspect 'assignable but non-assigned in Ped2'
compare$P1only[compare$P1only$Cat=="GG",]
further inspection:
head(compare$MergedPed)
compare$MergedPed[which(compare$MergedPed$dam.1=="a00001"),]

get an overview of all non-genotyped -- dummy matches
BestMatch <- compare$MergedPed[!is.na(compare$MergedPed$id.r),

c("id", "id.r")]

success of paternity assignment, if genotyped mother correctly assigned
dimnames(compare$Counts.detail)
compare$Counts.detail["G","G",,"Match",]

End(Not run)

PedPolish Pedigree fix

Description

Ensure all parents & all genotyped individuals are included, remove duplicates, rename columns,
and replace 0 by NA or v.v.

Usage

PedPolish(
Ped,
GenoNames = NULL,
ZeroToNA = TRUE,

PedStripFID 37

NAToZero = FALSE,
DropNonSNPd = TRUE,
FillParents = FALSE

)

Arguments

Ped dataframe where the first 3 columns are id, dam, sire

GenoNames character vector with ids of genotyped individuals (rownames of genotype ma-
trix)

ZeroToNA logical, replace 0’s for missing values by NA’s (defaults to TRUE)

NAToZero logical, replace NA’s for missing values by 0’s. If TRUE, ZeroToNA is automati-
cally set to FALSE

DropNonSNPd logical, remove any non-genotyped individuals (but keep non-genotyped par-
ents), & sort pedigree in order of GenoNames

FillParents logical, for individuals with only 1 parent assigned, set the other parent to a
dummy (without assigning siblings or grandparents). Makes the pedigree com-
patible with R packages and software that requires individuals to have either 2
or 0 parents, such as kinship.

Details

recognized column names are any that contain:

dam "dam", "mother", "mot", "mom", "mum", "mat"

sire "sire", "father", "fat", "dad", "pat"

sequoia requires the column order id - dam - sire; columns 2 and 3 are swapped if necessary.

PedStripFID backtransform IDs

Description

Reverse the joining of FID and IID in GenoConvert and LHConvert

Usage

PedStripFID(Ped, FIDsep = "__")

Arguments

Ped Pedigree as returned by sequoia (e.g. SeqOUT$Pedigree)

FIDsep characters inbetween FID and IID in composite-ID

38 Ped_griffin

Details

Note that the family IDs are the ones provided, and not automatically updated. New, numeric ones
can be obtained with FindFamilies

Value

a pedigree with 6 columns

FID family ID of focal individual (offspring).

id within-family of focal individual

dam.FID original family ID of assigned dam

dam within-family of dam

sire.FID original family ID of assigned sire

sire within-family of sire

Ped_griffin Example pedigree: griffins

Description

Example Pedigree used in the ageprior vignette, with overlapping generations.

Usage

data(Ped_griffin)

Format

A data frame with 200 rows and 4 variables (id, dam, sire, birthyear)

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

SeqOUT_griffin for a sequoia run on simulated genotype data based on this pedigree; Ped_HSg5
for another pedigree, sequoia

Ped_HSg5 39

Ped_HSg5 Example pedigree

Description

This is Pedigree II in the paper, with discrete generations and considerable inbreeding

Usage

data(Ped_HSg5)

Format

A data frame with 1000 rows and 3 variables (id, dam, sire)

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

References

Huisman, J. (2017) Pedigree reconstruction from SNP data: Parentage assignment, sibship cluster-
ing, and beyond. Molecular Ecology Resources 17:1009–1024.

See Also

LH_HSg5 SimGeno_example sequoia

PlotAgePrior Plot age priors

Description

visualise the age-difference based prior probability ratios as a heatmap

Usage

PlotAgePrior(AP = NULL, legend = TRUE)

Arguments

AP matrix with age priors (P(A|R)/P(A)) with age differences in rows and relation-
ships in columns; by default M: maternal parent (mother), P: paternal parent
(father), FS: full siblings, MS: maternal siblings (full + half), PS: paternal sib-
lings.

legend if TRUE, a new plotting window is started and layout is used to plot a legend
next to the main plot. Set to FALSE if you want to add it as panel to an existing
plot (e.g. with par(mfcol=c(2,2))).

40 SeqOUT_griffin

Value

a heatmap

See Also

MakeAgePrior, SummarySeq

Examples

Not run:
PlotAgePrior(SeqOUT$AgePriors)

End(Not run)

SeqOUT_griffin Example sequoia output (griffins)

Description

Example output of a sequoia run including sibship clustering, based on the griffin pedigree.

Usage

data(SeqOUT_griffin)

Format

a list, see sequoia

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

Ped_griffin,sequoia

Examples

Not run:
GenoS <- SimGeno(Ped.griffin, nSnp=400, ParMis=0.4)
griffin.sex <- sapply(Ped.griffin$ID,

function(x) substr(x, start=nchar(x), stop=nchar(x)))
LH_griffin <- data.frame(ID = Ped_griffin$ID,

Sex = ifelse(griffin.sex=="F", 1, 2),
BirthYear = Ped_griffin$BY)

SeqOUT_griffin <- sequoia(GenoS, LH_griffin,
MaxSibIter = 10,

sequoia 41

args.AP = list(Smooth = FALSE))
End(Not run)

sequoia Pedigree Reconstruction

Description

Perform pedigree reconstruction based on SNP data, including parentage assignment and sibship
clustering.

Usage

sequoia(
GenoM = NULL,
LifeHistData = NULL,
SeqList = NULL,
MaxSibIter = 10,
Err = 1e-04,
ErrFlavour = "version2.0",
MaxMismatch = NA,
Tfilter = -2,
Tassign = 0.5,
MaxSibshipSize = 100,
DummyPrefix = c("F", "M"),
Complex = "full",
UseAge = "yes",
args.AP = list(Flatten = NULL, Smooth = TRUE),
FindMaybeRel = FALSE,
CalcLLR = TRUE,
quiet = FALSE,
Plot = NULL

)

Arguments

GenoM numeric matrix with genotype data: One row per individual, and one column
per SNP, coded as 0, 1, 2 or -9 (missing). Use GenoConvert to convert genotype
files created in PLINK using –recodeA or in Colony’s 2-column format to this
format.

LifeHistData Dataframe with 3 columns (optionally 5):

ID max. 30 characters long,
Sex 1 = females, 2 = males, other = unknown, except 4 = hermaphrodite,
BirthYear birth or hatching year, integer, with missing values as NA or any

negative value.
BY.min minimum birth year, only used if BirthYear is missing

42 sequoia

BY.max maximum birth year, only used if BirthYear is missing

If the species has multiple generations per year, use an integer coding such that
the candidate parents’ ‘Birth year’ is at least one smaller than their putative
offspring’s. Column names are ignored, so ensure column order is ID - sex -
birth year (- BY.min - BY.max).

SeqList list with output from a previous run, containing the elements ‘Specs’, ‘AgePri-
ors’ and/or ‘PedigreePar’, as described below, to be used in the current run. If
SeqList$Specs is provided, all other input parameter values except MaxSibIter
are ignored.

MaxSibIter number of iterations of sibship clustering, including assignment of grandpar-
ents to sibships and avuncular relationships between sibships. Set to 0 to not
(yet) perform this step, which is by far the most time consuming and may take
several hours for large datasets. Clustering continues until convergence or until
MaxSibIter is reached.

Err estimated genotyping error rate, as a single number or 3x3 matrix. If a matrix,
this should be the probability of observed genotype (columns) conditional on
actual genotype (rows). Each row must therefore sum to 1.

ErrFlavour function that takes Err as input, and returns a 3x3 matrix of observed (columns)
conditional on actual (rows) genotypes, or choose from inbuilt ones as used in
sequoia ’version2.0’, ’version1.3’, or ’version1.1’. Ignored if Err is a matrix.
See ErrToM.

MaxMismatch DEPRECATED AND IGNORED. Now calculated using CalcMaxMismatch.

Tfilter threshold log10-likelihood ratio (LLR) between a proposed relationship versus
unrelated, to select candidate relatives. Typically a negative value, related to the
fact that unconditional likelihoods are calculated during the filtering steps. More
negative values may decrease non-assignment, but will increase computational
time.

Tassign minimum LLR required for acceptance of proposed relationship, relative to next
most likely relationship. Higher values result in more conservative assignments.
Must be zero or positive.

MaxSibshipSize maximum number of offspring for a single individual (a generous safety margin
is advised).

DummyPrefix character vector of length 2 with prefixes for dummy dams (mothers) and sires
(fathers); maximum 20 characters each.

Complex either "full" (default), "simp" (simplified, no explicit consideration of inbred re-
lationships), "mono" (monogamous) or "herm" (hermaphrodites, otherwise like
"full").

UseAge either "yes" (default), "no", or "extra" (additional rounds with extra reliance on
ageprior, may boost assignments but increased risk of erroneous assignments);
used during full reconstruction only.

args.AP list with arguments to be passed on to MakeAgePrior.

FindMaybeRel DEPRECATED, advised to run GetMaybeRel separately. TRUE/FALSE to iden-
tify pairs of non-assigned likely relatives after pedigree reconstruction. Can be
time-consuming in large datasets.

sequoia 43

CalcLLR calculate log-likelihood ratios for all assigned parents (genotyped + dummy;
parent vs. otherwise related). Time-consuming in large datasets. Can be done
separately with CalcOHLLR.

quiet suppress messages: TRUE/FALSE/"verbose".

Plot display plots from SnpStats,MakeAgePrior, and SummarySeq. Defaults (NULL)
to TRUE when quiet=FALSE or "verbose", and FALSE when quiet=TRUE. If
you get errors an error ’figure margins too large’, enlarge the plotting area (drag
with mouse). ’invalid graphics state’ error can be dealt with by clearing the
plotting area with dev.off().

Details

Dummy parents of sibships are denoted by F0001, F0002, ... (mothers) and M0001, M0002, ...
(fathers), are appended to the bottom of the pedigree, and may have been assigned real or dummy
parents themselves (i.e. sibship-grandparents). A dummy parent is not assigned to singletons.

For each pair of candidate relatives, the likelihoods are calculated of them being parent-offspring
(PO), full siblings (FS), half siblings (HS), grandparent-grandoffspring (GG), full avuncular (niece/nephew
- aunt/uncle; FA), half avuncular/great-grandparental/cousins (HA), or unrelated (U). Assignments
are made if the likelihood ratio (LLR) between the focal relationship and the most likely alternative
exceed the threshold Tassign.

Further explanation of the various options and interpretation of the output is provided in the vignette.

Value

A list with some or all of the following components:

AgePriors Matrix with age-difference based probability ratios for each relationship, used
for full pedigree reconstruction; see MakeAgePrior for details. When running
only parentage assignment (MaxSibIter=0) the returned AgePriors has been up-
dated to incorporate the information of the assigned parents, and is ready for use
during full pedigree reconstruction.

DummyIDs Dataframe with pedigree for dummy individuals, as well as their sex, estimated
birth year (point estimate, upper and lower bound of 95% confidence interval),
number of offspring, and offspring IDs (genotyped offspring only).

DupGenotype Dataframe, duplicated genotypes (with different IDs, duplicate IDs are not al-
lowed). The specified number of maximum mismatches is used here too. Note
that this dataframe may include pairs of closely related individuals, and monozy-
gotic twins.

DupLifeHistID Dataframe, row numbers of duplicated IDs in life history dataframe. For conve-
nience only, but may signal a problem. The first entry is used.

ErrM Error matrix; probability of observed genotype (columns) conditional on actual
genotype (rows)

ExcludedInd Individuals in GenoM which were excluded because of a too low genotyping
success rate (<50%).

ExcludedSNPs Column numbers of SNPs in GenoM which were excluded because of a too low
genotyping success rate (<10%).

44 sequoia

LifeHist Provided dataframe with sex and birth year data.

LifeHistPar LifeHist with additional columns ’Sexx’ (inferred Sex when assigned as part
of parent-pair), ’BY.est’ (mode of birth year probability distribution), ’BY.lo’
(lower limit of 95% highest density region), ’BY.hi’ (higher limit), inferred after
parentage assignment. ’BY.est’ is NA when the probability distribution is flat
between ’BY.lo’ and ’BY.hi’.

LifeHistSib as LifeHistPar, but estimated after full pedigree reconstruction

MaybeParent Dataframe with pairs of individuals who are more likely parent-offspring than
unrelated, but which could not be phased due to unknown age difference or sex,
or for whom LLR did not pass Tassign.

MaybeRel Dataframe with pairs of individuals who are more likely to be first or second
degree relatives than unrelated, but which could not be assigned.

MaybeTrio Dataframe with non-assigned parent-parent-offspring trios (both parents are of
unknown sex), with similar columns as the pedigree

NoLH Vector, IDs in genotype data for which no life history data is provided.

Pedigree Dataframe with assigned genotyped and dummy parents from Sibship step; en-
tries for dummy individuals are added at the bottom.

PedigreePar Dataframe with assigned parents from Parentage step.

Specs Named vector with parameter values.

TotLikParents Numeric vector, Total likelihood of the genotype data at initiation and after each
iteration during Parentage.

TotLikSib Numeric vector, Total likelihood of the genotype data at initiation and after each
iteration during Sibship clustering.

AgePriorExtra As AgePriors, but including columns for grandparents and avuncular pairs. NOT
updated after parentage assignment, but returned as used during the run.

List elements PedigreePar and Pedigree both have the following columns:

id Individual ID

dam Assigned mother, or NA

sire Assigned father, or NA

LLRdam Log10-Likelihood Ratio (LLR) of this female being the mother, versus the next
most likely relationship between the focal individual and this female (see Details
for relationships considered)

LLRsire idem, for male parent

LLRpair LLR for the parental pair, versus the next most likely configuration between the
three individuals (with one or neither parent assigned)

OHdam Number of loci at which the offspring and mother are opposite homozygotes

OHsire idem, for father

MEpair Number of Mendelian errors between the offspring and the parent pair, includes
OH as well as e.g. parents being opposing homozygotes, but the offspring not
being a heterozygote. The offspring being OH with both parents is counted as 2
errors.

sequoia 45

Disclaimer

While every effort has been made to ensure that sequoia provides what it claims to do, there is
absolutely no guarantee that the results provided are correct. Use of sequoia is entirely at your own
risk.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

References

Huisman, J. (2017) Pedigree reconstruction from SNP data: Parentage assignment, sibship cluster-
ing, and beyond. Molecular Ecology Resources 17:1009–1024.

See Also

GenoConvert to read in various data formats, CheckGeno, SnpStats to calculate missingness and
allele frequencies, MakeAgePrior to estimate effect of age on relationships, GetMaybeRel to find
pairs of potential relatives, SummarySeq and PlotAgePrior to visualise results, GetRelCat to turn
a pedigree into pairwise relationships, CalcOHLLR to calculate OH and LLR, PedCompare and
ComparePairs to compare to a previous pedigree, EstConf and SimGeno to estimate assignment
errors, writeSeq to save results, vignette("sequoia") for further details & FAQ.

Examples

=== EXAMPLE 1: simulate data ===
data(SimGeno_example, LH_HSg5, package="sequoia")
head(SimGeno_example[,1:10])
head(LH_HSg5)
SeqOUT <- sequoia(GenoM = SimGeno_example, Err = 0.005,

LifeHistData = LH_HSg5, MaxSibIter = 0)
names(SeqOUT)
SeqOUT$PedigreePar[34:42,]

compare to true (or old) pedigree:
PC <- PedCompare(Ped_HSg5, SeqOUT$PedigreePar)
PC$Counts["GG",,]

Not run:
SeqOUT2 <- sequoia(GenoM = SimGeno_example, Err = 0.005,

LifeHistData = LH_HSg5, MaxSibIter = 10)
SeqOUT2$Pedigree[34:42,]

PC2 <- PedCompare(Ped_HSg5, SeqOUT2$Pedigree)
PC2$Counts["GT",,]

important to run with (approx.) correct genotyping error rate:
SeqOUT2.b <- sequoia(GenoM = SimGeno_example, # Err = 1e-4 by default

LifeHistData = LH_HSg5, MaxSibIter = 10)
PC2.b <- PedCompare(Ped_HSg5, SeqOUT2.b$Pedigree)
PC2.b$Counts["GT",,]

46 SimGeno

=== EXAMPLE 2: real data ===
ideally, select 400-700 SNPs: high MAF & low LD
save in 0/1/2/NA format (PLINK's --recodeA)
GenoM <- GenoConvert(InFile = "inputfile_for_sequoia.raw",

InFormat = "raw") # can also do Colony format
SNPSTATS <- SnpStats(GenoM)
perhaps after some data-cleaning:
write.table(GenoM, file="MyGenoData.txt", row.names=T, col.names=F)

later:
GenoM <- as.matrix(read.table("MyGenoData.txt", row.names=1, header=F))
LHdata <- read.table("LifeHistoryData.txt", header=T) # ID-Sex-birthyear
SeqOUT <- sequoia(GenoM, LHdata, Err=0.005)
SummarySeq(SeqOUT)

writeSeq(SeqOUT, folder="sequoia_output") # several text files

runtime:
SeqOUT$Specs$TimeEnd - SeqOUT$Specs$TimeStart

End(Not run)

SimGeno Simulated genotypes

Description

Simulate SNP genotype data from a pedigree, with optional missingess and errors.

Usage

SimGeno(
Pedigree,
nSnp = 400,
ParMis = 0.4,
MAF = 0.3,
CallRate = 0.99,
SnpError = 5e-04,
ErrorFM = "version2.0",
ReturnStats = FALSE,
OutFile = NA,
Inherit = "autosomal",
InheritFile = NA,
quiet = FALSE,
PropLQ,
MisHQ,

SimGeno 47

MisLQ,
ErHQ,
ErLQ

)

Arguments

Pedigree Dataframe, pedigree with the first three columns being id - dam - sire. Column
names are ignored, as are additional columns, with the exception of a ’Sex’
column when Inherit is not ’autosomal’.

nSnp number of SNPs to simulate.

ParMis Single number or vector length two with proportion of parents with fully missing
genotype. Ignored if CallRate is a named vector.

MAF minimum minor allele frequency, and allele frequencies will be sampled uni-
formly between this minimum and 0.5, OR a vector with minor allele frequency
at each locus. In both cases, this is the MAF among pedigree founders, the MAF
in the sample will deviate due to drift.

CallRate Either a single number for the mean call rate (genotyping success), OR a vector
with the call rate at each SNP, OR a named vector with the call rate for each
individual. In the third case, ParMis is ignored, and individuals in the pedigree
(as id or parent) not included in this vector are presumed non-genotyped.

SnpError mean per-locus genotyping error rate across SNPs, and a beta-distribution will
be used to simulate the number of missing cases per SNP, OR a vector with the
genotyping error for each SNP.

ErrorFM function taking the error rate (scalar) as argument and returning a 3x3 ma-
trix with probabilities that actual genotype i (rows) is observed as genotype j
(columns). Inbuilt ones are as used in sequoia ’version2.0’, ’version1.3’, or
’version1.1’. See details.

ReturnStats in addition to the genotype matrix, return the input parameters and mean &
quantiles of MAF, error rate and call rates.

OutFile file name for simulated genotypes. If NA (default), return results within R.

Inherit inheritance pattern, scalar or vector of length nSnp, Defaults to ’autosomal’.
An excel file included in the package has inheritance patterns for the X and Y
chromosome and mtDNA, and allows custom inheritance patterns. Note that
these are NOT currently supported by the pedigree reconstruction with sequoia
!

InheritFile file name for excel file with inheritance patterns, requires library xlsx.

quiet suppress messages.

PropLQ [deprecated] proportion of low-quality samples.

MisHQ [deprecated] average missingness for high-quality samples, assuming a beta-
distribution with alpha = 1.

MisLQ [deprecated] average missingness in low-quality samples.

ErHQ [deprecated] error rate in high quality samples (defaults to 0.005).

ErLQ [deprecated] error rate in low quality samples.

48 SimGeno

Details

Please ensure the pedigree is a valid pedigree, for example by first running PedPolish. For
founders, i.e. individuals with no known parents, genotypes are drawn according to the provided
MAF and assuming Hardy-Weinberg equilibrium. Offspring genotypes are generated following
Mendelian inheritance, assuming all loci are completely independent. Individuals with one known
parent are allowed: at each locus, one allele is inherited from the known parent, and the other drawn
from the genepool according to the provided MAF.

Genotyping errors are generated following a user-definable 3x3 matrix with probabilities that actual
genotype i (rows) is observed as genotype j (columns). This is specified as ErrorFM, which is a
function of SnpError. By default (ErrorFM = "version2.0"), SnpError is interpreted as a locus-
level error rate (rather than allele-level), and equals the probability that a homozygote is observed
as heterozygote, and the probability that a heterozygote is observed as either homozygote (i.e.,
the probability that it is observed as AA = probability that observed as aa = SnpError/2). The
probability that one homozygote is observed as the other is (SnpError/2)2.

Note that this differs from versions up to 1.1.1, where a proportion of SnpError*3/2 of genotypes
were replaced with random genotypes. This corresponds to ErrorFM = "Version111".

Error rates differ between SNPs, but the same error pattern is used across all SNPs, even when
inheritance patterns vary. When two or more different error patterns are required, SimGeno should
be run on the different SNP subsets separately, and results combined.

Variation in call rates is assumed to follow a highly skewed (beta) distribution, with many samples
having call rates close to 1, and a narrowing tail of lower call rates. The first shape parameter
defaults to 1 (but see MkGenoErrors), and the second shape parameter is defined via the mean as
CallRate. For 99.9 rate of 0.8 (0.9; 0.95) or higher, use a mean call rate of 0.969 (0.985; 0.993).

Variation in call rate between samples can be specified by providing a named vector to CallRate,
which supersedes PropLQ in versions up to 1.1.1. Otherwise, variation in call rate and error rate
between samples occurs only as side-effect of the random nature of which individuals are hit by
per-SNP errors and drop-outs. Finer control is possible by first generating an error-free genotype
matrix, and then calling MkGenoErrors directly on subsets of the matrix.

Value

if ReturnStats=FALSE (the default), a matrix with genotype data in sequoia’s input format, encoded
as 0/1/2/-9.

If ReturnStats=TRUE, a named list with three elements: list ’ParamsIN’, matrix ’SGeno’, and list
’StatsOUT’:

AF Frequency in ’observed’ genotypes of ’1’ allele

AF.act Allele frequency in ’actual’ (without genotyping errors & missingness)

SnpError Error rate per SNP (actual /= observed AND observed /= missing)

SnpCallRate Non-missing per SNP

IndivError Error rate per individual

IndivCallRate Non-missing per individual

SimGeno_example 49

Disclaimer

This simulation is highly simplistic and assumes that all SNPs segregate completely independently,
that the SNPs are in Hardy-Weinberg equilibrium in the pedigree founders. It assumes that geno-
typing errors are not due to heritable mutations of the SNPs, and that missingness is random and
not e.g. due to heritable mutations of SNP flanking regions. Results based on this simulated data
will provide an minimum estimate of the number of SNPs required, and an optimistic estimate of
pedigree reconstruction performance.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

the wrapper EstConf for repeated simulation and pedigree reconstruction; MkGenoErrors for fine
control over the distribution of genotyping errors in simulated data.

Examples

data(Ped_HSg5)
GenoM <- SimGeno(Pedigree = Ped_HSg5, nSnp = 100, ParMis = c(0.2, 0.7))

Not run:
Alternative genotyping error model
EFM <- function(E) { # Whalen, Gorjanc & Hickey 2018
matrix(c(1-E*3/4, E/4, E/4,

E/4, 1/2-E/4, 1/2-E/4, E/4,
E/4, E/4, 1-E*3/4),
3,3, byrow=TRUE) }

EFM(0.01)
GenoM <- SimGeno(Pedigree = Ped_HSg5, nSnp = 100, ParMis = 0.2,
SnpError = 5e-3, ErrorFM = EFM)

End(Not run)

SimGeno_example Example genotype file

Description

Simulated genotype data for cohorts 1+2 in Pedigree Ped_HSg5

Usage

data(SimGeno_example)

50 SnpStats

Format

A genotype matrix with 214 rows (ids) and 200 columns (SNPs). Each SNP is coded as 0/1/2 copies
of the reference allele, with -9 for missing values. Ids are stored as rownames.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

Ped_HSg5,SimGeno

SnpStats SNP summary statistics

Description

Estimate allele frequency (AF), missingness and Mendelian errors per SNP.

Usage

SnpStats(GenoM, Pedigree = NULL, ErrFlavour = "version2.0", Plot = TRUE)

Arguments

GenoM Genotype matrix, in sequoia’s format: 1 column per SNP, 1 row per individual,
genotypes coded as 0/1/2/-9, and rownames giving individual IDs.

Pedigree a dataframe with 3 columns: ID - parent1 - parent2. Additional columns and
non-genotyped individuals are ignored. Used to estimate the error rate.

ErrFlavour function that takes the genotyping error rate Err as input, and returns a 3x3
matrix of observed (columns) conditional on actual (rows) genotypes, or choose
from inbuilt ones as used in sequoia ’version2.0’, ’version1.3’, or ’version1.1’.
See ErrToM.

Plot show histograms of the results?

Details

Calculation of these summary statistics can be done in PLINK, and SNPs with low minor allele
frequency or high missingness should be filtered out prior to pedigree reconstruction. This function
is provided as an aid to inspect the relationship between AF, missingness and genotyping error to
find a suitable combination of SNP filtering thresholds to use.

SummarySeq 51

Value

a matrix with a number of rows equal to the number of SNPs (=number of columns of GenoM), and
when no Pedigree is provided 2 columns:

AF Allele frequency of the ’second allele’ (the one for which the homozygote is
coded 2)

Mis Proportion of missing calls

When a Pedigree is provided, there are 7 additional columns:

n.dam, n.sire, n.pair

Number of dams, sires, parent-pairs succesfully genotyped for the SNP

OHdam, OHsire Count of number of opposing homozygous cases

MEpair Count of Mendelian errors, includes opposing homozygous cases

Err.hat Error rate, as estimated from the joined offspring-parent (-parent) genotypes and
the presumed error structure (ErrFlavour)

Estimated genotyping error

The error rate is estimated from the number of opposing homozygous cases (OH, parent is AA and
offspring is aa) Mendelian errors (ME, e.g. parents AA and aa, but offspring not Aa) in parent-
parent-offspring trios, and OH cases for offspring with a single genotyped parent.

The estimated error rates will not be as accurate as from duplicate samples, since a single error in
an individual with many offspring will be counted many times, while errors in individuals without
parents or offspring will not be counted at all. Moreover, a high error rate may interfere with
pedigree reconstruction, and succesful assignment will be biased towards parents with lower error
count. Nonetheless, it will provide a ballpark estimate for the average error rate, which will be
useful for subsequent (rerun of) pedigree reconstruction.

See Also

GenoConvert to convert from various data formats; CheckGeno to check the data is in valid format
for sequoia and exclude monomorphic SNPs etc., CalcOHLLR to calculate OH & ME per individual

SummarySeq Summarise sequoia output or pedigree

Description

Number of assigned parents and grandparents and sibship sizes, split by genotyped, dummy, and
’observed’.

52 SummarySeq

Usage

SummarySeq(
SeqList = NULL,
Pedigree = NULL,
DumPrefix = c("F0", "M0"),
SNPd = NULL,
Plot = TRUE,
Panels = "all"

)

Arguments

SeqList the list returned by sequoia. Only elements ’Pedigree’ or ’PedigreePar’ and
’AgePriors’ are used.

Pedigree Dataframe, pedigree with the first three columns being id - dam - sire. Column
names are ignored, as are additional columns.

DumPrefix character vector of length 2 with prefixes for dummy dams (mothers) and sires
(fathers). Will be read from SeqList’s ’Specs’ if provided. Used to distinguish
between dummies and non-dummies.

SNPd character vector with ids of SNP genotyped individuals. Only when Pedigree
is provided instead of SeqList, then used to distinguish between genetically
assigned parents and ’observed’ parents (e.g. observed in the field, or assigned
previously using microsatellites). Will be read from SeqList’s ’PedigreePar’ if
provided.

Plot Show barplots and histograms of the results, as well as of the parental LLRs,
Mendelian errors, and agepriors, if present.

Panels character vector with panel(s) to plot. Choose from ’all’, ’G.parents’ (parents of
genotyped individuals), ’D.parents’ (parents of dummy individuals), ’sibships’
(distribution of sibship sizes), ’LLR’ (log10-likelihood ratio parent/otherwise
related), ’OH’ (count of opposite homozygote SNPs).

Value

A list with the following elements:

PedSummary a 1-column dataframe with basic summary statistics, as used to be returned by
Pedantics’ pedStatSummary (now archived on CRAN)

ParentCount a 2x3x2x4 array with the number of assigned parents, split by D1: genotyped vs
dummy individuals; D2: female, male and unknown-sex individuals; D3: dams
vs sires; D4: genotyped, dummy, observed vs no parent

GPCount a 4x4 matrix with for all genotyped individuals the number of assigned grandpar-
ents, split by D1: Maternal grandmother, maternal grandfather, paternal grand-
mother, paternal grandfather; D2: genotyped, dummy, observed vs no grandpar-
ent

SibSize a list with as first element a table of maternal sibship sizes, and as second ele-
ment a table of paternal sibship sizes. Each table is a matrix with a number of
rows equal to the maximum sibship size, and 3 columns, splitting by the type of
parent: genotyped, dummy, or observed.

writeColumns 53

See Also

sequoia for pedigree reconstruction; CalcOHLLR to (re-)calculate opposite homozygosity & parental
LLR; PlotAgePrior to visualise just the ageprior.

Examples

Not run:
data(SimGeno_example, LH_HSg5, package="sequoia")
SeqOUT <- sequoia(GenoM = SimGeno_example,

LifeHistData = LH_HSg5, MaxSibIter = 10)
Ped_example <- SeqOUT$Pedigree
Ped_example$dam[1:20] <- paste0("Mum", 1:20) # some field mums
SummarySeq(SeqOUT, Pedigree=Ped_example)

End(Not run)

writeColumns write data to a file column-wise

Description

write data.frame or matrix to a text file, using white space padding to keep columns aligned as in
print

Usage

writeColumns(x, file = "", row.names = TRUE, col.names = TRUE)

Arguments

x the object to be written, preferably a matrix or data frame. If not, it is attempted
to coerce x to a matrix.

file a character string naming a file.

row.names a logical value indicating whether the row names of x are to be written along
with x.

col.names a logical value indicating whether the column names of x are to be written along
with x

54 writeSeq

writeSeq write sequoia output to excel or text files

Description

The various list elements returned by sequoia are each written to text files in the specified folder,
or to separate sheets in a single excel file (requires library xlsx).

Usage

writeSeq(
SeqList,
GenoM = NULL,
MaybeRel = NULL,
PedComp = NULL,
OutFormat = "txt",
folder = "Sequoia-OUT",
file = "Sequoia-OUT.xlsx",
ForVersion = 2,
quiet = FALSE

)

Arguments

SeqList the list returned by sequoia, to be written out.

GenoM the matrix with genetic data (optional). Ignored if OutFormat=’xls’, as the re-
sulting file could become too large for excel.

MaybeRel a list with results from GetMaybeRel (optional).

PedComp a list with results from PedCompare (optional). SeqList$DummyIDs is combined
with PedComp$DummyMatch if both are provided.

OutFormat ’xls’ or ’txt’.

folder the directory where the text files will be written; will be created if it does not
already exists. Relative to the current working directory, or NULL for current
working directory. Ignored if OutFormat=’xls’.

file the name of the excel file to write to, ignored if OutFormat=’txt’.

ForVersion choose ’1’ for back-compatibility with stand-alone sequoia versions 1.x

quiet suppress messages.

Details

The text files can be used as input for the stand-alone Fortran version of #’ sequoia, e.g. when the
genotype data is too large for R. See vignette('sequoia') for further details.

See Also

writeColumns to write to a text file, using white space padding to keep columns aligned

writeSeq 55

Examples

Not run:
writeSeq(SeqList, OutFormat="xls", file="MyFile.xlsx")

add additional sheets to the excel file:
library(xlsx)
write.xlsx(MyData, file = "MyFile.xlsx", sheetName="ExtraData",

col.names=TRUE, row.names=FALSE, append=TRUE, showNA=FALSE)

End(Not run)

Index

∗Topic datasets
Inherit, 25
LH_HSg5, 27
Ped_griffin, 38
Ped_HSg5, 39
SeqOUT_griffin, 40
SimGeno_example, 49

∗Topic inherit
Inherit, 25

∗Topic sequoia
Inherit, 25
LH_HSg5, 27
Ped_griffin, 38
Ped_HSg5, 39
SeqOUT_griffin, 40
SimGeno_example, 49

CalcMaxMismatch, 2, 22, 42
CalcOHLLR, 3, 7, 43, 45, 51, 53
CheckGeno, 5, 6, 19, 20, 45, 51
ComparePairs, 7, 11, 24, 36, 45

DyadCompare, 7, 11

ErrToM, 2, 4, 12, 22, 42, 50
EstConf, 13, 36, 45, 49

FindFamilies, 16, 38

GenoConvert, 5, 17, 26, 37, 41, 45, 51
getAssignCat, 4, 5, 19, 33, 34, 36
GetMaybeRel, 8, 21, 42, 45, 54
GetRelCat, 8, 10, 23, 45

Inherit, 25

kinship, 37

layout, 39
LH_HSg5, 27, 39
LHConvert, 19, 26, 37

MakeAgePrior, 4, 28, 40, 42, 43, 45
MkGenoErrors, 31, 48, 49

Ped_griffin, 38, 40
Ped_HSg5, 27, 38, 39, 50
PedCompare, 10, 11, 13, 15, 20, 33, 45, 54
PedPolish, 5, 36, 48
PedStripFID, 18, 26, 37
PlotAgePrior, 31, 39, 45, 53

read.table, 18
readLines, 18

SeqOUT_griffin, 38, 40
sequoia, 3–6, 13–16, 21, 26, 27, 31, 36,

38–40, 41, 47, 52–54
SimGeno, 13–15, 25, 45, 46, 50
SimGeno_example, 39, 49
SnpStats, 3, 6, 7, 19, 43, 45, 50
strsplit, 18
SummarySeq, 5, 40, 43, 45, 51
system.time, 15

writeColumns, 53, 54
writeSeq, 45, 54

56

	CalcMaxMismatch
	CalcOHLLR
	CheckGeno
	ComparePairs
	DyadCompare
	ErrToM
	EstConf
	FindFamilies
	GenoConvert
	getAssignCat
	GetMaybeRel
	GetRelCat
	Inherit
	LHConvert
	LH_HSg5
	MakeAgePrior
	MkGenoErrors
	PedCompare
	PedPolish
	PedStripFID
	Ped_griffin
	Ped_HSg5
	PlotAgePrior
	SeqOUT_griffin
	sequoia
	SimGeno
	SimGeno_example
	SnpStats
	SummarySeq
	writeColumns
	writeSeq
	Index

