
Package ‘sequenza’
May 9, 2019

Title Copy Number Estimation from Tumor Genome Sequencing Data

Description Tools to analyze genomic sequencing data from
paired normal-tumor samples, including cellularity and ploidy estimation; mutation
and copy number (allele-specific and total copy number) detection, quantification
and visualization.

Version 3.0.0

Date 2019-05-09

Depends R (>= 3.2.0)

Imports pbapply, squash, iotools, readr, seqminer, copynumber

Suggests testthat, knitr, rmarkdown, rmdformats

License GPL-3

URL https://sequenzatools.bitbucket.io, Mailing list:

https://groups.google.com/forum/#!forum/sequenza-user-group

BugReports https://bitbucket.org/sequenzatools/sequenza/issues

SystemRequirements pandoc (>= 1.12.3)

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

NeedsCompilation no

Author Francesco Favero [aut, cre] (<https://orcid.org/0000-0003-3684-2659>),
Andrea Marion Marquard [rev] (<https://orcid.org/0000-0003-2928-6017>),
Tejal Joshi [rev] (<https://orcid.org/0000-0002-0939-2982>),
Aron Charles Eklund [aut, ths]
(<https://orcid.org/0000-0003-0861-1001>)

Maintainer Francesco Favero <favero.francesco@gmail.com>

Repository CRAN

Date/Publication 2019-05-09 13:50:04 UTC

1

https://sequenzatools.bitbucket.io
https://groups.google.com/forum/#!forum/sequenza-user-group
https://bitbucket.org/sequenzatools/sequenza/issues

2 baf.bayes

R topics documented:
baf.bayes . 2
baf.model.fit . 5
chromosome.view . 7
CP.example . 10
cp.plot . 10
example.seqz . 12
find.breaks . 13
gc.sample.stats . 14
model.points . 16
mutation.table . 17
plotWindows . 19
read.seqz . 20
sequenza . 22
theoretical.baf . 25
types.matrix . 27
windowValues . 28

Index 30

baf.bayes Model allele-specific copy numbers with specified cellularity and
ploidy parameters

Description

Given a pair of cellularity and ploidy parameters, the function returns the most likely allele-specific
copy numbers with the corresponding log-posterior probability of the fit, for given values of B-allele
frequency and depth ratio.

Usage

baf.bayes(Bf, depth.ratio, cellularity, ploidy, avg.depth.ratio,
sd.Bf = 0.1, sd.ratio = 0.5, weight.Bf = 1, weight.ratio = 1,
CNt.min = 0, CNt.max = 7, CNn = 2,
priors.table = data.frame(CN = CNt.min:CNt.max, value = 1),
ratio.priority = FALSE)

mufreq.bayes(mufreq, depth.ratio, cellularity, ploidy, avg.depth.ratio,
weight.mufreq = 100, weight.ratio = 100, CNt.min = 1, CNt.max = 7, CNn = 2,

priors.table = data.frame(CN = CNt.min:CNt.max, value = 1))

Arguments

Bf vector of B-allele frequencies (values can range from 0 to 0.5).

mufreq vector of mutation frequencies (values can range from 0 to 1).

depth.ratio vector of depth ratios.

baf.bayes 3

sd.ratio standard deviation observed in the depth ratio measures in a segment

sd.Bf standard deviation observed in the B-allele frequency measures in a segment

weight.Bf vector of weights for B-allele frequency values.

weight.mufreq vector of weights for the mutation frequency values.

weight.ratio vector of weights for the depth ratio values.

cellularity fraction of tumor cells in the sample.

ploidy 2 * ratio between total DNA content in a tumor cell and a normal cell.
avg.depth.ratio

average normalized depth ratio.

CNt.min minimum copy number to consider in the model.

CNt.max maximum copy number to consider in the model.

CNn copy number of the normal genome.

priors.table data frame with columns CN and value, containing the copy numbers and the
corresponding weights. To every copy number is assigned the value 1 as default,
so any values different from 1 will change the corresponding weight.

ratio.priority logical, if TRUE only the depth ratio will be used to determine the copy number
state, while the Bf value will be used to determine the number of B-alleles.

Details

baf.bayes and mufreq.bayes use a naive Bayesian approach to calculate the posterior probability
of fitness of the data point with the model point resulting from the given values of cellularity and
DNA-content.

Value

CNt copy number of the tumor cell at the tested point.

A number of A-alleles at the tested point.

B number of B-alleles at the tested point.

CNn copy number of the normal cell at the tested point (equal to CNn given as argu-
ment).

Mt number of mutated alleles at the tested point.

LPP log-posterior probability of model fitting at the given point/segment.

See Also

baf.model.fit, mufreq.model.fit.

Examples

Not run:
data.file <- system.file("extdata", "example.seqz.txt.gz", package = "sequenza")
read all the chromosomes:
seqz.data <- read.seqz(data.file)
Gather genome wide GC-stats from raw file:

4 baf.bayes

gc.stats <- gc.sample.stats(data.file)
gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values)
Read only one chromosome:
seqz.data <- read.seqz(data.file, chr.name = 1)

Correct the coverage of the loaded chromosome:
seqz.data$adjusted.ratio <- seqz.data$depth.ratio /

gc.vect[as.character(seqz.data$GC.percent)]
Select the heterozygous positions
seqz.hom <- seqz.data$zygosity.normal == 'hom'
seqz.het <- seqz.data[!seqz.hom,]
Detect breakpoints
breaks <- find.breaks(seqz.het, gamma = 80, kmin = 10, baf.thres = c(0, 0.5))
use heterozygous and homozygous position to measure segment values
seg.s1 <- segment.breaks(seqz.data, breaks = breaks)

filter out small ambiguous segments, and conveniently weight the segments by size:
seg.filtered <- seg.s1[(seg.s1$end.pos - seg.s1$start.pos) > 10e6,]
weights.seg <- 150 + round((seg.filtered$end.pos -

seg.filtered$start.pos) / 1e6, 0)
get the genome wide mean of the normalized depth ratio:
avg.depth.ratio <- mean(gc.stats$adj[,2])
run the BAF model fit

CP <- baf.model.fit(Bf = seg.filtered$Bf, depth.ratio = seg.filtered$depth.ratio,
weight.ratio = weights.seg,
weight.Bf = weights.seg,
avg.depth.ratio = avg.depth.ratio,
cellularity = seq(0.1,1,0.01),
ploidy = seq(0.5,3,0.05))

confint <- get.ci(CP)
ploidy <- confint$max.ploidy
cellularity <- confint$max.cellularity

#detect copy number alteration on the segments:

cn.alleles <- baf.bayes(Bf = seg.s1$Bf, depth.ratio = seg.s1$depth.ratio,
cellularity = cellularity, ploidy = ploidy,
avg.depth.ratio = 1)

head(cbind(seg.s1, cn.alleles))

create mutation table:
mut.tab <- mutation.table(seqz.data, mufreq.treshold = 0.15,

min.reads = 40, max.mut.types = 1,
min.type.freq = 0.9, segments = seg.s1)

mut.tab.clean <- na.exclude(mut.tab)

Detect mutated alleles:
mut.alleles <- mufreq.bayes(mufreq = mut.tab.clean$F,

depth.ratio = mut.tab.clean$adjusted.ratio,

baf.model.fit 5

cellularity = cellularity, ploidy = ploidy,
avg.depth.ratio = avg.depth.ratio)

head(cbind(mut.tab.clean[,c("chromosome","position","F",
"adjusted.ratio", "mutation")],

mut.alleles))

End(Not run)

baf.model.fit Model fitting using maximum a posteriori inference

Description

Computes the log-posterior probability distribution for the specified range of cellularity and ploidy
parameters

Usage

mufreq.model.fit(cellularity = seq(0.3, 1, by = 0.01),
ploidy = seq(1, 7, by = 0.1), mc.cores = getOption("mc.cores", 2L),
...)

baf.model.fit(cellularity = seq(0.3, 1, by = 0.01),
ploidy = seq(1, 7, by = 0.1), mc.cores = getOption("mc.cores", 2L),
...)

Arguments

cellularity vector of cellularity values to be tested.

ploidy vector of ploidy values to be tested.

mc.cores number of cores to use, defined as in pblapply.

... any argument accepted by mufreq.bayes or baf.bayes.

Details

baf.model.fit uses the function baf.bayes to infer the log-posterior probability of the model fit
using the possible combinations of cellularity and ploidy values provided in the arguments. Sim-
ilarly mufreq.model.fit fits the mutation/depth ratio model using the function mufreq.bayes.
baf.model.fit is the defalt method used to infer cellularity and ploidy on segmented chromo-
somes. The mufreq.model.fit function estimates cellularity and ploidy using mutation frequency
and depth ratio, however, the mutation data is more affected to background noise compared to the
segmented B-allele frequency, hence it may give less accurate results.

6 baf.model.fit

Value

A list of three items:

ploidy tested values of the ploidy parameter

cellularity tested values of the cellularity parameter

lpp log-posterior probability of each pair of cellularity/ploidy parameters.

See Also

cp.plot for visualization of the resulting object, and get.ci to extract confidence intervals.

Examples

Not run:

data.file <- system.file("extdata", "example.seqz.txt.gz",
package = "sequenza")

read all the chromosomes:
seqz.data <- read.seqz(data.file)
Gather genome wide GC-stats from raw file:
gc.stats <- gc.sample.stats(data.file)
gc.normal.vect <- mean_gc(gc.stats$normal)
gc.tumor.vect <- mean_gc(gc.stats$tumor)
Read only one chromosome:
seqz.data <- read.seqz(data.file, chr_name = "1")

Correct the coverage of the loaded chromosome:
seqz.data$adjusted.ratio <- round((seqz.data$depth.tumor /

gc.tumor.vect[as.character(seqz.data$GC.percent)]) /
(seqz.data$depth.normal /
gc.normal.vect[as.character(seqz.data$GC.percent)]), 3)

Select the heterozygous positions
seqz.hom <- seqz.data$zygosity.normal == 'hom'
seqz.het <- seqz.data[!seqz.hom,]
Detect breakpoints
breaks <- find.breaks(seqz.het, gamma = 80, kmin = 10,

baf.thres = c(0, 0.5))
use heterozygous and homozygous position to measure segment values
seg.s1 <- segment.breaks(seqz.data, breaks = breaks)

filter out small ambiguous segments, and conveniently weight
the segments by size:
seg.filtered <- seg.s1[(seg.s1$end.pos - seg.s1$start.pos) > 3e6,]
weights.seg <- (seg.filtered$end.pos - seg.filtered$start.pos) / 1e6
Set the average depth ratio to 1:
avg.depth.ratio <- 1
run the BAF model fit
CP <- baf.model.fit(Bf = seg.filtered$Bf,

depth.ratio = seg.filtered$depth.ratio, weight.ratio = weights.seg,
weight.Bf = weights.seg, sd.ratio = seg.filtered$sd.ratio,
sd.Bf = seg.filtered$sd.BAF, avg.depth.ratio = avg.depth.ratio,

chromosome.view 7

cellularity = seq(0.1, 1, 0.01), ploidy = seq(0.5, 3, 0.05))

confint <- get.ci(CP)
ploidy <- confint$max.ploidy
cellularity <- confint$max.cellularity

End(Not run)

chromosome.view A graphical representation of multiple chromosomal features

Description

A graphical representation of depth ratio, allele frequency and mutation frequency in multiple pan-
els allineated by the coordinate of the same chromosome.

Usage

chromosome.view(baf.windows, ratio.windows, mut.tab = NULL,
segments = NULL, min.N.baf = 1, min.N.ratio = 10000, main = "",
vlines = FALSE, legend.inset = c(-20 * strwidth("a", units = "figure"),
0), CNn = 2, cellularity = NULL, ploidy = NULL, avg.depth.ratio = NULL,
model.lwd = 1, model.lty = "24", model.col = 1, x.chr.space = 10)

genome.view(seg.cn, info.type = "AB", ...)

Arguments

baf.windows matrix containing the windowed B-allele frequency values for one chromosome.

ratio.windows matrix containing the windowed depth ratio values for one chromosome.

mut.tab mutation table of one chromosome. If specified, the mutations will be drawn in
a top panel. mut.tab must be output from the mutation.table function.

segments segmentation for one chromosome. If specified, the segmented B-allele fre-
quency and depth ratio values will be shown as red lines.

min.N.baf minimum number of observations required in a BAF window for plotting.

min.N.ratio minimum number of observations required in a depth ratio window for plotting.

CNn copy number of the germline genome.

vlines logical, if TRUE the plot will include dotted vertical lines corresponding to seg-
ment breaks.

cellularity fraction of tumor cells in the sample.

ploidy value of the estimated ploidy parameter.
avg.depth.ratio

the average value of the normalized depth ratio.

main main title of the plot.

8 chromosome.view

legend.inset the inset argument to pass to the legend function. Defines the distance between
the mutation legend and the plot border.

model.lwd width of the theoretical lines, if the segments matrix contains the columns A, B
and CNt.

model.lty line type of the theoretical lines, if the segments matrix contains the columns A,
B and CNt.

model.col color of the theoretical lines, if the segments matrix contains the columns A, B
and CNt.

x.chr.space step in megabase on the positions to visualize on the x-axis.

seg.cn genome wide segments, with the columns A, B and CNt.

info.type information to plot in genome.view. Available options are "CNt" for total copy
numbers and "AB" (default) for the alleles specific copy number.

... optional arguments passed to plot.

Details

chromosome.view is a plotting function based on the default plot function and par to display
multiple panels. The plotting function plotWindows is used to plot the binned data of depth-ratio
and b-allele frequency. The function displays the observations reulting from the sequencing
post-procssing as well the results of the model.

See Also

windowValues, find.breaks.

Examples

Not run:

data.file <- system.file("extdata", "example.seqz.txt.gz",
package = "sequenza")

read all the chromosomes:
seqz.data <- read.seqz(data.file)
Gather genome wide GC-stats from raw file:
gc.stats <- gc.sample.stats(data.file)
gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values)
Read only one chromosome:
seqz.data <- read.seqz(data.file, chr.name = 1)

Correct the coverage of the loaded chromosome:
seqz.data$adjusted.ratio <- seqz.data$depth.ratio /

gc.vect[as.character(seqz.data$GC.percent)]
Select the heterozygous positions
seqz.hom <- seqz.data$zygosity.normal == 'hom'
seqz.het <- seqz.data[!seqz.hom,]
Detect breakpoints
breaks <- find.breaks(seqz.het, gamma = 80, kmin = 10, baf.thres = c(0, 0.5))
use heterozygous and homozygous position to measure segment values
seg.s1 <- segment.breaks(seqz.data, breaks = breaks)

chromosome.view 9

Binning the values of depth ratio and B allele frequency
seqz.r.win <- windowValues(x = seqz.data$adjusted.ratio,

positions = seqz.data$position, chromosomes = seqz.data$chromosome,
window = 1e6, overlap = 1, weight = seqz.data$depth.normal)

seqz.b.win <- windowValues(x = seqz.het$Bf,
positions = seqz.het$position, chromosomes = seqz.het$chromosome,
window = 1e6, overlap = 1, weight = round(x = seqz.het$good.reads,

digits = 0))
create mutation table:
mut.tab <- mutation.table(seqz.data, mufreq.treshold = 0.15,

min.reads = 40, max.mut.types = 1, min.type.freq = 0.9,
segments = seg.s1)

chromosome view without parametes:
chromosome.view(mut.tab = mut.tab[mut.tab$chromosome == "1",],

baf.windows = seqz.b.win[[1]], ratio.windows = seqz.r.win[[1]],
min.N.ratio = 1, segments = seg.s1[seg.s1$chromosome == "1",],
main = "Chromosome 1")

filter out small ambiguous segments, and weight the segments by size:
seg.filtered <- seg.s1[(seg.s1$end.pos - seg.s1$start.pos) > 10e6,]
weights.seg <- 150 + round((seg.filtered$end.pos -

seg.filtered$start.pos) / 1e6, 0)
get the genome wide mean of the normalized depth ratio:
avg.depth.ratio <- mean(gc.stats$adj[,2])
run the BAF model fit

CP <- baf.model.fit(Bf = seg.filtered$Bf, depth.ratio = seg.filtered$depth.ratio,
weight.ratio = weights.seg, weight.Bf = weights.seg,
avg.depth.ratio = avg.depth.ratio, cellularity = seq(0.1,1,0.01),
ploidy = seq(0.5,3,0.05))

confint <- get.ci(CP)
ploidy <- confint$max.ploidy
cellularity <- confint$max.cellularity
#detect copy number alteration on the segments:
cn.alleles <- baf.bayes(Bf = seg.s1$Bf, depth.ratio = seg.s1$depth.ratio,

cellularity = cellularity, ploidy = ploidy, avg.depth.ratio = 1)

seg.s1 <- cbind(seg.s1, cn.alleles)

Chromosome view with estimated paramenters:
chromosome.view(mut.tab = mut.tab[mut.tab$chromosome == "1",],

baf.windows = seqz.b.win[[1]], ratio.windows = seqz.r.win[[1]],
min.N.ratio = 1, segments = seg.s1[seg.s1$chromosome == "1",],
main = "Chromosome 1", cellularity = cellularity, ploidy = ploidy,
avg.depth.ratio = 1, BAF.style = "lines")

End(Not run)

10 cp.plot

CP.example Example of cellularity and ploidy results

Description

Examples of results from the maximum a posteriori estimation from a set of cellularity and ploidy
values, as returned by the functions baf.model.fit and mufreq.model.fit.

Usage

data(CP.example)

Format

A list containing three items:

ploidy numeric vector of tested ploidy values.

cellularity numeric vector of tested cellularity values.

lpp numeric matrix of log-posterior probability for each (ploidy, cellularity) pair.

Examples

data(CP.example)
str(CP.example)

Visualization of the object
image(x = CP.example$ploidy,

y = CP.example$cellularity,
z = CP.example$lpp)

A better plot
cp.plot(CP.example)
cp.plot.contours(CP.example, add = TRUE)

cp.plot Plot log-posterior probability for the output of the sequenza.fit
function

Description

This function uses the colorgram function from the package squash to plot log-posterior probabil-
ity for the tested combinations of cellularity and ploidy

cp.plot 11

Usage

cp.plot(cp.table, xlab = "Ploidy", ylab = "Cellularity",
zlab = "Scaled rank LPP",
colFn = colorRampPalette(c('white', 'lightblue')), ...)

cp.plot.contours(cp.table, likThresh = c(0.95), alternative = TRUE,
col = palette(), legend.pos = "bottomright", pch = 18,
alt.pch = 3, ...)

get.ci(cp.table, level = 0.95)

Arguments

cp.table list, as output from baf.model.fit or mufreq.model.fit.

xlab xlab parameter as in the function colorgram.

ylab ylab parameter as in the function colorgram.

zlab zlab parameter as in the function colorgram.

colFn colFn parameter as in the function colorgram.

likThresh vector of quantiles to define tresholds for the confindent regions.

alternative boolean parameter, if TRUE the alternative solutions are computed and plotted.

col vector of colors.

legend.pos position for placing the legend.

pch character used to indicate the point estimate.

alt.pch if alternative is set to TRUE defines the character to indicate alternative solu-
tions.

... additional arguments accepted by the function colorgram for cp.plot, or contour
for cp.plot.contours.

level decimal value of the confidence interval

Value

The get.ci function returns a list with 6 items:

values.ploidy matrix of ploidy values with respective posterior probability.

confint.ploidy boundaries of the confidence interval of the estimated ploidy.

max.ploidy point estimate of the ploidy value that has the maximum posterior probability.
values.cellularity

matrix of cellularity values with respective posterior probability.

confint.cellularity

boundaries of the confidence interval of the estimated cellularity.
max.cellularity

point estimate of the cellularity value that has the maximum posterior probabil-
ity.

12 example.seqz

Examples

data(CP.example)
cp.plot(CP.example)
cp.plot.contours(CP.example, add = TRUE)

Plot more contours
cp.plot(CP.example)
cp.plot.contours(CP.example, likThresh = c(0.95, 0.9999), add = TRUE)

Return the 95% confidence interval
CP.example.ci <- get.ci(CP.example)
str(CP.example.ci)

example.seqz Example “seqz” data

Description

The “seqz” file is produced by sequenza-utils and typically has the file extension ‘.seqz’. The
data here is representative of a seqz file derived from an exome-sequenced tumor sample, such as
could be obtained from TCGA.

Usage

data(example.seqz)

Format

A data frame with 53937 rows and 14 columns:

[,1] chromosome Chromosome name
[,2] position Base position
[,3] base.ref Base in the reference genome
[,4] depth.normal Read depth in the normal sample
[,5] depth.tumor Read depth in the tumor sample
[,6] depth.ratio Ratio of depth.tumor and depth.normal
[,7] Af A-allele frequency in the tumor sample
[,8] Bf B-allele frequency in the tumor sample, in heterozygous positions only
[,9] zygosity.normal Zygosity of the normal sample: "hom" for homozygous or "het" for heterozygous

[,10] GC.percent % GC content
[,11] good.reads Number of reads from the tumor sample which pass the quality threshold
[,12] AB.normal Base(s) found in the normal sample, sorted by allele frequency if more than one
[,13] AB.tumor Base(s) found in the tumor sample but not in the normal specimen, with their observed frequencies, separated by colons
[,14] tumor.strand Identical to AB.tumor but indicating, for each variant base, the fraction of reads oriented in the forward direction

find.breaks 13

Details

example.seqz can be loaded in the standard R way via data(example.seqz), or it can be read
from a text file using read.seqz. The former is useful for examples and testing, whereas the latter
is representative of the standard workflow.

Source

This is derived from a TCGA specimen, but has been scrambled to anonymize the source. The
reference genome is hg19. The GC content was calculated in 50-base windows.

find.breaks Segmentation of sequencing data using an allele-specific copy number
algorithm

Description

This function uses aspcf or pcf from the package copynumber to segment depth ratio and B-allele
frequency obtained from sequencing data.

Usage

find.breaks(seqz.baf, gamma = 80, kmin = 10, baf.thres = c(0, 0.5),
verbose = FALSE, seg.algo = "aspcf", ...)

segment.breaks(seqz.tab, breaks, min.reads.baf = 1, weighted.mean = TRUE)

Arguments

seqz.baf an seqz file containing only the heterozygous positions.

seqz.tab a complete seqz file.
gamma, kmin, baf.thres, verbose

arguments passed to the segmentation algorithm.

breaks breaks as output by find.breaks.

min.reads.baf threshold on the depth of the positions included to calculate the average BAF
for segment.

weighted.mean boolean to select if the segments have to calculated using the read depth as a
weights to calculate depth ratio and B-allele frequency means.

seg.algo Selects the algorithm used for the segmentation. Available options are aspcf of
pcf.

... additional arguments passed to aspcf.

Details

copynumber is a package to perform efficient segmentation of SNP-array data. The function
find.breaks uses the algorithms from the copynumber package to find break points, where the
default parameters have been optimized for sequencing data, but a careful choice of an optimal
gamma value is advised.

14 gc.sample.stats

Examples

Not run:

data.file <- system.file("extdata", "example.seqz.txt.gz", package = "sequenza")
read all the chromosomes:
seqz.data <- read.seqz(data.file)
Gather genome wide GC-stats from raw file:
gc.stats <- gc.sample.stats(data.file)
gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values)
Read only one chromosome:
seqz.data <- read.seqz(data.file, chr.name = 12)

Correct the coverage of the loaded chromosome:
seqz.data$adjusted.ratio <- seqz.data$depth.ratio /

gc.vect[as.character(seqz.data$GC.percent)]
Select the heterozygous positions
seqz.hom <- seqz.data$zygosity.normal == 'hom'
seqz.het <- seqz.data[!seqz.hom,]
Detect breakpoints
breaks <- find.breaks(seqz.het, gamma = 80, kmin = 10, baf.thres = c(0, 0.5))
use heterozygous and homozygous position to measure segment values
segment.breaks(seqz.data, breaks = breaks)

End(Not run)

gc.sample.stats Collect display and correct GC-content related coverage bias

Description

Collect information and perform statistics of depth of coverage in relation with GC-content.

Usage

gc.sample.stats(file, col_types = "c--dd----d----", buffer = 33554432,
parallel = 2L, verbose = TRUE)

gc.summary.plot(gc_list, mean.col = 1, median.col = 2,
scale.subset = 1.5, ...)

mean_gc(gc_list)
median_gc(gc_list)

Arguments

file name of a file in the seqz format.

col_types a string describing the classes of each columns of the input file (see read_tsv).
The default value corresponds to the columns of a seqz file used for carculating
GC statistics.

gc.sample.stats 15

buffer maximal size of each chunk in bytes(see chunk.apply).

parallel integer, number of threads used to process a seqz file (see chunk.apply).

verbose logical. If TRUE (the default) the function retuns information in the console.

gc_list a normal or tumor list resulting from the gc.sample.stats function.

mean.col color for the mean in the summary plot.

median.col color for the median in the summary plot.

scale.subset scale the depth values to sho in the plot. A value of 1 will show the average
depth at the center of the plot.

... additional parametrers from colorgram.

Details

gc.sample.stats extracts depths and GC-content inforation for the tumor and the control samples
from an seqz file it returns a list with 3 elements: file.metrics, normal and tumor.

file.metrics is a data.frame serving as index of the seqz file; the normal and tumor objects
contains each 3 ojects: gc, depth and n.

gc and depth are vectors containing the recorded values of, respectively, GC and coverage depth.
the n object is a matrix gcxdepth, recording the number of time a certain gc/depth pairs is observed
in the data.

Value

A list with the following elements:

file.metrics index of the seqz file.

tumor GC and coverage depth observations in the tumor sample.

normal GC and coverage depth observations in the control sample.

Examples

Not run:

data.file <- system.file("extdata", "example.seqz.txt.gz", package = "sequenza")
read all the chromosomes:
gc_info <- gc.sample.stats(data.file)

mean values of depth coverage vs GC content

mean_gc(gc_info$normal)

plot the information for the tumor and normal samples
par(mfrow=c(1, 2))
gc.summary.plot(gc_info$normal, main = "Normal GC stats")
gc.summary.plot(gc_info$tumor, main = "Tumor GC stats")

End(Not run)

16 model.points

model.points Generate B-allele frequency, mutation frequency and depth ratios at
given model points, cellularity and ploidy values

Description

The baf.model.points and mufreq.model.points functions combine theoretical_baf, theoretical_mufreq
and theoretical_depth_ratio to model the theoretical respective values at known values of cel-
lularity and ploidy.

Usage

baf.model.points(cellularity, ploidy, baf_types, avg.depth.ratio)
mufreq.model.points(cellularity, ploidy, mufreq_types, avg.depth.ratio)

Arguments

cellularity fraction of tumor cells in the sample.

ploidy 2 * ratio between total DNA content in a tumor cell and a normal cell.

baf_types matrix with the sets of copy numbers and number of mutated alleles over which
to model mutation frequency and depth ratio. The matrix can be generated with
baf.types.matrix.

mufreq_types matrix with the sets of copy numbers and number of mutated alleles over which
to model mutation frequency and depth ratio. The matrix can be generated with
mufreq.types.matrix.

avg.depth.ratio

average normalized depth ratio.

Details

The baf.model.points and mufreq.model.points functions generate the theoretical values of
B-allele frequency, mutation frequency and depth ratio for the given type tags. To learn more about
type tags see types.matrix.

Value

For baf.model.points a data.frame with two columns:

BAF modelled values of B-allele frequency.

depth_ratio modelled values of depth ratio.

For mufreq.model.points a data.frame with two columns:

mufreqs modelled values of mutation frequency.

depth_ratio modelled values of depth ratio.

mutation.table 17

See Also

types.matrix, theoretical.depth.ratio, theoretical.baf theoretical.mufreq.

Examples

Simulate a cellularity of 0.5, ploidy of 2 and types from min CNt 0
and max = 4 on an originally diploid genome:
types <- baf.types.matrix(CNt.min = 0, CNt.max = 4, CNn = 2)
cbind(types, baf.model.points(cellularity = 0.5, ploidy = 2,

baf_types = types, avg.depth.ratio = 1))
Simulate a cellularity of 0.5, ploidy of 2 and types from min CNt 0
and max = 4 on an originally monoallelic genome:
types <- mufreq.types.matrix(CNt.min = 0, CNt.max = 4, CNn = 1)
cbind(types, mufreq.model.points(cellularity = 0.5, ploidy = 2,

mufreq_types = types, avg.depth.ratio = 1))

mutation.table Identify mutations

Description

This function extracts positions from an seqz file that differ from the normal genome, applying
various filters.

Usage

mutation.table(seqz.tab, mufreq.treshold = 0.15, min.reads = 40, min.reads.normal = 10,
max.mut.types = 3, min.type.freq = 0.9, min.fw.freq = 0, segments = NULL)

Arguments

seqz.tab an seqz table, as output from read.seqz.
mufreq.treshold

mutation frequency threshold.

min.reads minimum number of reads above the quality threshold to accept the mutation
call.

min.reads.normal

minimum number of reads used to determine the genotype in the normal sample.

max.mut.types maximum number of different base substitutions per position. Integer from 1 to
3 (since there are only 4 different bases). Default is 3, to accept “noisy” mutation
calls.

min.type.freq minimum frequency of aberrant types.

min.fw.freq minimum frequency of variant reads detected in the forward strand. Setting it
to 0, all the variant calls with strand frequency in the interval outside 0 and 1,
margin not comprised, would be discarded.

segments if specified, the values of depth ratio would be taken from the segments rather
than from the raw data.

18 mutation.table

Details

Calling mutations in impure tumor samples is a difficult task, because the degree of contamination
by normal cells affects the measured mutation frequency. In highly impure samples, where the
normal cells comprise the major component of the sample, mutations can be so diluted that it can
be difficult to distinguish them from sequencing errors.

The function mutation.table tries to separate true mutations from sequencing errors, based on the
given threshold. In samples with low contamination, it should even be possible to catch sub-clonal
mutations using this function.

This function identifes only those mutations occuring in positions that are homozygous in the nor-
mal genome.

Value

A data frame, which in addition to some of the columns of the seqz table, contains the following
two columns:

F the mutation frequency

mutation a character representation of the mutation. For example, a mutation from ‘A’ in
the normal to ‘G’ in the tumor is annotated as ‘A>G’.

Examples

Not run:

data.file <- system.file("extdata", "example.seqz.txt.gz", package = "sequenza")
seqz.data <- read.seqz(data.file)

Normalize coverage by GC-content
gc.stats <- gc.norm(x = seqz.data$depth.ratio,

gc = seqz.data$GC.percent)
gc.vect <- setNames(gc.stats$raw.mean, gc.stats$gc.values)
seqz.data$adjusted.ratio <- seqz.data$depth.ratio /

gc.vect[as.character(seqz.data$GC.percent)]

Extract mutations
mut.tab <- mutation.table(seqz.data, mufreq.treshold = 0.15,

min.reads = 40, max.mut.types = 1,
min.type.freq = 0.9)

mut.tab <- na.exclude(mut.tab)

End(Not run)

plotWindows 19

plotWindows Plot a binned values of a chromosome

Description

The plotWindows function visualizes a data.frame produced by the windowValues or windowBf
functions.

Usage

plotWindows(seqz.window, m.lty = 1, m.lwd = 3, m.col = "black",
q.bg = "lightblue", log2.plot = FALSE, n.min = 1, xlim, ylim,
add = FALSE, ...)

Arguments

seqz.window data frame of base-pair windows and corresponding quartiles to be plotted. A
list of such data frames can be output from windowValues or windowBf.

m.lty line type used for plotting mean values.

m.lwd line width used for plotting mean values.

m.col line color used for plotting mean values.

q.bg background color for the area between the 0.25 and 0.75 quartiles.

log2.plot logical, if TRUE values are log2 scaled.

n.min minimum number of data points required for a binned window to be plotted.

xlim limits of the x axis.

ylim limits of the y axis.

add logical, if TRUE the plot will be added to an existing opened device.

... any other arguments accepted by plot.

See Also

chromosome.view,

Examples

data.file <- system.file("extdata", "example.seqz.txt.gz",
package = "sequenza")

seqz.data <- read.seqz(data.file)
1Mb windows, each window is overlapping with 1 other adjacent
window: depth ratio
seqz.ratio <- windowValues(x = seqz.data$depth.ratio,

positions = seqz.data$position, chromosomes = seqz.data$chromosome,
window = 1e6, weight = seqz.data$depth.normal, start.coord = 1,
overlap = 1)

20 read.seqz

plotWindows(seqz.ratio[[1]], log2.plot = FALSE, ylab = "Depth ratio",
xlab = "Position (bases)", main = names(seqz.ratio)[1], las = 1,
n.min = 1, ylim = c(0, 2.5))

plotWindows(seqz.ratio[[17]], log2.plot = FALSE, ylab = "Depth ratio",
xlab = "Position (bases)", main = names(seqz.ratio)[1], las = 1,
n.min = 1, ylim = c(0, 2.5))

read.seqz Read a seqz or acgt format file

Description

Efficiently reads a seqz file into R.

Usage

read.seqz(file, n_lines = NULL, col_types = "ciciidddcddccc", chr_name = NULL,
buffer = 33554432, parallel = 1,
col_names = c("chromosome", "position", "base.ref", "depth.normal",

"depth.tumor", "depth.ratio", "Af", "Bf", "zygosity.normal",
"GC.percent", "good.reads", "AB.normal", "AB.tumor",
"tumor.strand"),...)

Arguments

file file name

col_types a string describing the classes of each columns of the input file (see read_tsv).
The default value corresponds to the columns of a seqz file.

chr_name if specified, only the selected chromosome will be extracted instead of the en-
tire file. For tabix-indexed files this argument can also be used to extract
coordinated-selected genomic regions. E.g. chr_name="5:1-1000000" will se-
lect the first megabase of chromosome 5.

n_lines vector of length 2 specifying the first and last line to read from the file. If
specified, only the selected portion of the file will be used.

buffer maximal size of each chunk in bytes(see chunk.apply).

parallel integer, number of threads used to process a seqz file (see chunk.apply).

col_names names of the columns of the seqz file. The default corresponds to the column
names of a seqz file.

... any arguments accepted by read_tsv.

read.seqz 21

Format

A seqz file is a tab-separated text file with 14 columns and a header row. The first 3 columns are
derived from the original pileup file and contain:

chromosome the chromosome name

position the base position

base.ref the base in the reference genome. Note that this is NOT necessarily the same base as in
the normal specimen. The remaining 10 columns contain the following information:

depth.normal read depth observed in the normal sample

depth.tumor read depth observed in the tumor sample

depth.ratio ratio of depth.tumor and depth.normal

Af A-allele frequency observed in the tumor sample

Bf B-allele frequency observed in the tumor sample in heterozygous positions

zygosity.normal zygosity of the reference sample. "hom" corresponds to AA or BB, whereas "het"
corresponds to AB or BA

GC.percent GC-content (percent), calculated from the reference genome in fixed nucleotide win-
dows

good.reads number of reads that passed the quality threshold (threshold specified in the pre-processing
software), in the tumor specimen

AB.normal base(s) found in the germline sample; for heterozygous positions AB are sorted using
the values of Af and Bf respectively

AB.tumor base(s) found in the tumor sample not present in the normal specimen. The field include
all the variants found in the tumor alignment, separated by a colon. Each variant contains the
base and the observed frequency

tumor.strand frequency of the variant nucleotides detected on the forward orientation. The field
have a consistent structure with AB.tumor, indicating the fraction, relative to the total number
of reads presenting the specific variant, orientated in the forward direction

Details

read.seqz is a function that allows to efficiently access a seqz file by chromosome or by line
numbers. The function can also access coordinate specific regions with tabix-indexed seqz files.
The specific content of a seqz file is explained in the value section.

See Also

read_delim.

Examples

Not run:

data_file <- system.file("extdata", "example.seqz.txt.gz", package = "sequenza")

read chromosome 1 from an seqz file.

22 sequenza

seqz_data <- read.seqz(data_file, chr_name = 1)

Fast access to chromosome X using the file metrics
gc.stats <- gc.sample.stats(data_file)
chrX <- gc.stats$file.metrics[gc.stats$file.metrics$chr == "X",]
seqz.data <- read.seqz(data_file, n_lines = c(chrX$start, chrX$end))

Compare the running time of the two different methods.
system.time(seqz.data <- read.seqz(data_file, n_lines = c(chrX$start, chrX$end)))
system.time(seqz.data <- read.seqz(data_file, chr_name = "X"))

End(Not run)

sequenza Sequenza convenience functions for standard analysis

Description

These three functions are intended to be the main user interface of the package, to run several of the
functions of sequenza in a standardized pipeline.

Usage

sequenza.extract(file, window = 1e6, overlap = 1,
gamma = 80, kmin = 10, gamma.pcf = 140, kmin.pcf = 40,
mufreq.treshold = 0.10, min.reads = 40, min.reads.normal = 10,
min.reads.baf = 1, max.mut.types = 1, min.type.freq = 0.9,
min.fw.freq = 0, verbose = TRUE, chromosome.list = NULL,
breaks = NULL, breaks.method = "het", assembly = "hg19",
weighted.mean = TRUE, normalization.method = "mean",
ignore.normal = FALSE, parallel = 1, gc.stats = NULL,
segments.samples = FALSE)

sequenza.fit(sequenza.extract, female = TRUE, N.ratio.filter = 10,
N.BAF.filter = 1, segment.filter = 3e6,
mufreq.treshold = 0.10, XY = c(X = "X", Y = "Y"),
cellularity = seq(0.1,1,0.01), ploidy = seq(1, 7, 0.1),
ratio.priority = FALSE, method = "baf",
priors.table = data.frame(CN = 2, value = 2),
chromosome.list = 1:24, mc.cores = getOption("mc.cores", 2L))

sequenza.results(sequenza.extract, cp.table = NULL, sample.id, out.dir = getwd(),
cellularity = NULL, ploidy = NULL, female = TRUE, CNt.max = 20,
ratio.priority = FALSE, XY = c(X = "X", Y = "Y"),
chromosome.list = 1:24)

sequenza 23

Arguments

file the name of the seqz file to read.

window size of windows used when plotting mean and quartile ranges of depth ratios
and B-allele frequencies. Smaller windows will take more time to compute.

overlap integer specifying the number of overlapping windows.

gamma, kmin arguments passed to aspcf from the copynumber package.
gamma.pcf, kmin.pcf

arguments passed to pcf from the copynumber package. The arguments are
effective only when breaks.method is set to "full".

mufreq.treshold

mutation frequency threshold.

min.reads minimum number of reads above the quality threshold to accept the mutation
call.

min.reads.normal

minimum number of reads used to determine the genotype in the normal sample.

min.reads.baf threshold on the depth of the positions included to calculate the average BAF
for segment.

max.mut.types maximum number of different base substitutions per position. Integer from 1 to
3 (since there are only 4 bases). Default is 3, to accept "noisy" mutation calls.

min.type.freq minimum frequency of aberrant types.

min.fw.freq minimum frequency of variant reads detected in the forward strand. Setting it
to 0, all the variant calls with strand frequency in the interval outside 0 and 1,
margin not comprised, would be discarded.

verbose logical, indicating whether to print information about the chromosome being
processed.

chromosome.list

vector containing the index or the names of the chromosome to include in the
model fitting.

breaks Optional data.frame in the format chrom, start.pos, end.pos, defining a pre-
existing segmentation. When the argument is set the built-in segmentation will
be skipped in favor of the suggested breaks.

breaks.method Argument indicating the resolution of the segmentation. Possible values are
fast, het and full, where fast allows the lower resolution and full the
higher. Custom values of gamma and kmin need to be adjusted to have optimal
results.

assembly assembly version of the genome, see aspcf or pcf.

weighted.mean boolean to select if the segments should be calculated using the read depth as
weights to calculate depth ratio and B-allele frequency means.

normalization.method

string defining the operation to perform during the GC-normalization process.
Possible values are mean (default) and median. A median normalization is
preferable with noisy data.

24 sequenza

ignore.normal boolean, when set to TRUE the process will ignore the normal coverage and
perform the analysis by using the normalized tumor coverage.

parallel integer, number of threads used to process a seqz file (see chunk.apply).

gc.stats object returned from the function gc.sample.stats. If NULL the object will be
computed from the input file.

segments.samples

EXPERIMENTAL. Segment both tumor and normal samples separately, and
add it to the QC plots.

sequenza.extract

a list of objects as output from the sequenza.extract function.

method method to use to fit the data; possible values are baf to use baf.model.fit or
mufreq to use the mufreq.model.fit function to fit the data.

cp.table a list of objects as output from the sequenza.fit function.

female logical, indicating whether the sample is male or female, to properly handle
the X and Y chromosomes. Implementation only works for the human normal
karyotype.

CNt.max maximum copy number to consider in the model.

N.ratio.filter threshold of minimum number of observation of depth ratio in a segment.

N.BAF.filter threshold of minimum number of observation of B-allele frequency in a seg-
ment.

segment.filter threshold segment length (in base pairs) to filter out short segments, that can
cause noise when fitting the cellularity and ploidy parameters. The threshold
will not affect the allele-specific segmentation.

XY character vector of length 2 specifying the labels used for the X and Y chromo-
somes.

cellularity vector of candidate cellularity parameters.

ploidy vector candidate ploidy parameters.

priors.table data frame with the columns CN and value, containing the copy numbers and
the corresponding weights. To every copy number is assigned the value 1 as
default, so every values different then 1 will change the corresponding weight.

ratio.priority logical, if TRUE only the depth ratio will be used to determine the copy number
state, while the Bf value will be used to determine the number of B-alleles.

sample.id identifier of the sample, to be used as a prefix for saved objects.

out.dir output directory where the files and objects will be saved.

mc.cores legacy argument to set the number of cores, but it refers to the cl of pblapply.
It uses mclapply when set to an integer.

Details

The first function, sequenza.extract, utilizes a range of functions from the sequenza package to
read the raw data, normalize the depth.ratio for GC-content bias, perform allele-specific segmenta-
tion, filter for noisy mutations and bin the raw data for plotting. The computed objects are returned
as a single list object.

theoretical.baf 25

The segmentation by default is performed using only the heterozygous position and the aspcf
function from copynumber package. The full option in the breaks.method argument allow to
combine results of the segmentation of all the data available, using the pcf function, and the default
aspcf using only the heterozygous positions.

The second function, sequenza.fit, accepts the output from sequenza.extract and calls baf.model.fit
to calculate the log-posterior probability for all pairs of the candidate ploidy and cellularity param-
eters.

The third function, sequenza.results, saves a number of objects in a specified directory (default
is the working directory). The objects are:

• The list of segments with resulting copy numbers and major and minor alleles.

• The candidate mutation list with variant allele frequency, and copy number and number of
mutated allele, in relation of the clonal population (for sub-clonal population it needs to be
processed with further methods).

• A plot of all the chromosomes in one image, representing the major and minor alleles and the
absolute copy number changes (genome_view).

• Multiple plots with one chromosome per image, representing copy-number, B-allele frequency
and mutation in parallel (chromosome_view).

• Results of the model fitting (CP_contours and confints_CP)

• A summary of the copy number state of the sample (CN_bars).

See Also

genome.view, baf.bayes, cp.plot, get.ci.

Examples

Not run:

data.file <- system.file("extdata", "example.seqz.txt.gz",
package = "sequenza")

test <- sequenza.extract(data.file)
test.CP <- sequenza.fit(test)
sequenza.results(test, test.CP, out.dir = "example",

sample.id = "example")

End(Not run)

theoretical.baf Calculates cellularity and ploidy dependent model points

Description

Calculates the theoretically expected values of BAF, mutation frequency or depth ratio for given
values of cellularity, ploidy and copy number.

26 theoretical.baf

Usage

theoretical.depth.ratio(CNt, cellularity, ploidy, CNn = 2,
normal.ploidy = 2, avg.depth.ratio = 1)

theoretical.baf(CNt, B, cellularity, CNn = 2)
theoretical.mufreq(CNt, Mt, cellularity, CNn = 2)

Arguments

CNn copy number in the normal sample.

CNt copy number in the tumor sample.

B number of B-alleles in the tumor sample.

Mt number of alleles carrying a mutation in the tumor sample.

cellularity fraction of tumor cells in the sample.

ploidy 2 * ratio between total DNA content in a tumor cell and a normal cell.

normal.ploidy ploidy value in the normal sample. Default is 2 for a diploid cell.

avg.depth.ratio

average normalized depth ratio.

Details

The observed B-allele frequency, depth ratio and mutation frequency are affected by the cellularity
of the tumor sample, which is the inverse of the degree of contamination by normal cells. Three
functions are included, which for know values of cellularity and ploidy they produce the expected
values of B-allele frequency, mutation frequency or depth ratio.

theoretical.baf returns a dataframe with the possible copy numbers of A and B alleles, along
with their corresponding B-allele frequency and the total copy number state (always the sum of
A+B).

theoretical.depth.ratio returns the theoretical depth ratio at a single specific position, given
values of cellularity, ploidy, the ratio between the tumor copy number and the normal copy number
at that position, and the average depth ratio of the sample.

theoretical.mufreq returns the theoretical mutation frequency at a single specific position, given
values of cellularity, copy number in the normal and tumor samples at that position, and the number
of mutated alleles.

See Also

model.points

types.matrix 27

types.matrix Creates a matrix of type tags

Description

Type tags are a utensil to distinguish genomic positions by their copy number state, number A and
B alleles and the number of mutated alleles. This function creates a matrix of all possible type tags,
given the copy number of the normal sample and the range of possible copy numbers in the tumor
sample.

Usage

baf.types.matrix(CNt.min, CNt.max, CNn = 2)
mufreq.types.matrix(CNt.min, CNt.max, CNn = 2)

Arguments

CNt.min minimum copy number in the tumor.

CNt.max maximum copy number in the tumor.

CNn copy number of the normal sample.

Details

A type consists of 3 integers signifying the copy number in the normal and tumor samples and the
number of B alleles (baf.types.matrix) or mutated alleles (mufreq.types.matrix). The two
functions return all the possible types combination within the range of tumor copy numbers in the
arguments (CNt.min:CNt.max).

Value

baf.types.matrix returns a data.frame with the 3 columns:

CNn number of alleles in the normal sample.

CNt numbers of alleles in the tumor sample.

B number of B alleles in the tumor sample.

mufreq.types.matrix returns a data.frame with the 3 columns:

CNn number of alleles in the normal sample.

CNt numbers of alleles in the tumor sample.

Mt number of mutated alleles in the tumor sample.

See Also

theoretical_mufreq, theoretical_depth_ratio, theoretical_baf, model_points.

28 windowValues

Examples

Generate matrix types from 0 to 4 copy number, being the
non-tumor chromosome diploid.
baf.types.matrix(CNt.min = 0, CNt.max = 4, CNn = 2)

Generate matrix types from 0 to 4 copy number, being the
non-tumor chromosome monoploid.
mufreq.types.matrix(CNt.min = 0, CNt.max = 4, CNn = 1)

windowValues Bins sequencing data for plotting

Description

Given a variable with corresponding genomic positions, the function bins the values in windows of
a specified size and calculates weighted mean and 25th and 75th percentile for each window. The
resulting object are visualized by the function plotWindows.

Usage

windowValues(x, positions, chromosomes, window = 1e6, overlap = 0,
weight = rep.int(x = 1, times = length(x)), start.coord = 1)

windowBf(Af, Bf, good.reads, positions, chromosomes, window = 1e6,
overlap = 0, start.coord = 1, conf = 0.95)

Arguments

x variable to be windowed.

positions base-pair positions.

chromosomes names or numbers of the chromosomes.

window size of windows used for binning data. Smaller windows will take more time to
compute.

overlap integer defining the number of overlapping windows. Default is 0, no overlap.

weight weights to be assigned to each value of x, usually related to the read depth.

start.coord coordinate at which to start computing the windows. If NULL, will start at the
first position available.

Af A-allele frequency for the Bf calculation.

Bf B-allele frequency for the Bf calculation.

good.reads number of reads passing filter for the Bf calculation.

conf confidence intervals of the binned Bf value.

windowValues 29

Details

DNA sequencing produces an amount of data too large to be handled by standard graphical de-
vices. In addition, for samples analyzed with older machines and with low or middle coverage (20x
to 50x), measures such as read depth are subject to big variations due to technical noise. Using
windowValues prior to plotting reduces the noise and the amount of data to be plotted.

The binning of the B-allele frequency requires a separate function, windowBf, as the B-allele fre-
quency calculation uses multiple values: Af, Bf and good.reads.

The output of windowValues and windowBf can be used as input for plotWindows.

Value

a list of data.frame, one per chromosome. Each data.frame contains base-pair windows covering
the chromosome. Each row of the data.frame correspond to a window and its weighted mean, 25th
and 75th percentiles of the input values, and the number of data points within each window.

See Also

plotWindows

Examples

Not run:
data.file <- system.file("extdata", "example.seqz.txt.gz",

package = "sequenza")
seqz.data <- read.seqz(data.file)
1Mb windows, each window is overlapping with 1 other
adjacent window: depth ratio
seqz.ratio <- windowValues(x = seqz.data$depth.ratio,

positions = seqz.data$position, chromosomes = seqz.data$chromosome,
window = 1e6, weight = seqz.data$depth.normal, start.coord = 1,
overlap = 1)

seqz.hom <- seqz.data$zygosity.normal == 'hom'
seqz.het <- seqz.data[!seqz.hom,]
1Mb windows, each window is overlapping with 1 other adjacent window:
B-allele frequency
seqz.bafs <- windowValues(x = seqz.het$Bf, positions = seqz.het$position,

chromosomes = seqz.het$chromosome, window = 1e6,
weight = seqz.het$depth.tumor, start.coord = 1, overlap = 1)

Repeat the same operation using windowBf
seqz.bafs <- windowBf(Af = seqz.het$Bf, Bf = seqz.het$Bf,

good.reads = seqz.het$good.reads, positions = seqz.het$position,
chromosomes = seqz.het$chromosome, window = 1e6,
start.coord = 1, overlap = 1, conf = 0.95)

End(Not run)

Index

∗Topic datasets
CP.example, 10
example.seqz, 12

aspcf, 13, 23, 25

baf.bayes, 2, 5, 25
baf.model.fit, 5, 10, 11, 24, 25
baf.model.points (model.points), 16
baf.types.matrix, 16
baf.types.matrix (types.matrix), 27

chromosome.view, 7, 19
chunk.apply, 15, 20, 24
colorgram, 10, 11, 15
contour, 11
CP.example, 10
cp.plot, 6, 10, 25

example.seqz, 12

find.breaks, 8, 13

gc.sample.stats, 14, 15, 24
gc.summary.plot (gc.sample.stats), 14
genome.view, 25
genome.view (chromosome.view), 7
get.ci, 6, 25
get.ci (cp.plot), 10

legend, 8

mclapply, 24
mean_gc (gc.sample.stats), 14
median_gc (gc.sample.stats), 14
model.points, 16, 26
mufreq.bayes, 5
mufreq.bayes (baf.bayes), 2
mufreq.model.fit, 10, 11, 24
mufreq.model.fit (baf.model.fit), 5
mufreq.model.points (model.points), 16

mufreq.types.matrix, 16
mufreq.types.matrix (types.matrix), 27
mutation.table, 7, 17

par, 8
pblapply, 5, 24
pcf, 13, 23, 25
plot, 8, 19
plotWindows, 8, 19, 29

read.acgt (read.seqz), 20
read.seqz, 13, 17, 20
read_tsv, 14, 20

segment.breaks (find.breaks), 13
sequenza, 22
sequenza.fit, 10

theoretical.baf, 17, 25
theoretical.depth.ratio, 17
theoretical.depth.ratio

(theoretical.baf), 25
theoretical.mufreq, 17
theoretical.mufreq (theoretical.baf), 25
types.matrix, 16, 17, 27

windowBf, 19
windowBf (windowValues), 28
windowValues, 8, 19, 28

30

	baf.bayes
	baf.model.fit
	chromosome.view
	CP.example
	cp.plot
	example.seqz
	find.breaks
	gc.sample.stats
	model.points
	mutation.table
	plotWindows
	read.seqz
	sequenza
	theoretical.baf
	types.matrix
	windowValues
	Index

