Package 'sequence'

February 11, 2020

Version 2.0

Date 2020-01-11

Title Analysis of Sequences of Events

Author Jean-Sebastien Pierre < jean-sebastien.pierre@univ-rennes1.fr>

Maintainer Jean-Sebastien Pierre < jean-sebastien.pierre@univ-rennes1.fr>

Depends R (>= 3.5.0)

Description Pierre, J. S. and Kasper, C.,(1990), "The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship." Biology of Behaviour 15(3-4): 125-151.(in french). Includes the calculation of transition matrices, their manipulation (symmetrization and diagonal loading), their analysis by CA (Correspondence Analysis), their comparison by likelihood ratio tests, the graphic plot of flow charts on the factorial axes of the CA.

License GPL (>= 2)

URL none

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-11 10:00:02 UTC

R topics documented:

quence-package	2
helinus	3
hmat	4
	5
mpmat	6
mpseq	8
purtil	9
1X	11
neseq	13
omoth	14
akedico	15
akeSeries	16

matrcom	17
mattrans	18
multMatrans	19
read.old.seq	20
read.series.seq	21
rotation	22
seriseq	23
seriseq2	24
smartArrow	25
symet	27
wiepkema	28
xcsa	29
3	31

Index

sequence-package

Analysis of behavioral (or of any other type) sequences.

Description

Builds transition/succession matrices (lag analysis), compares several matrices. Plane drawing of flow charts obtained from those matrices by a method based on a modified Correspondence Analysis (CA). The modification consists in symmetrising the matrix and loading its diagonal following Foucart (1985) and Van der Heijden (1986). This leads to a 'nice' positionning of the edges of the graph, representing the different items in succession. 'Smart' arrows are drawn as vertices.

Details

read.series.seq reads a series of sequences, each of them considered as an identifiers list. compseq compares the sequences by likelihood ratio tests (LRT) with a Bonferroni correction. The LRT serve to build a distance matrix of the sequences two-by-two. This matrix of distance is used both for a clustering of them and for a mapping by Principal Coordinates Analysis (PCA) also called Multidimensional Scaling (MDS).

From the sequences a transition matrix is obtained. symet symmetrises and/or loads its diagonal. ca makes a Correspondence Analysis and saves the factorial coordinates as an object. flux draws the transition graph. The complete analysis chain is the following: read.series.seq -> compseq -> symet -> ca -> flux

A sketch of the method is given in Pierre and Kasper (1990).

Author(s)

Jean-Sebastien Pierre < Jean-sebastien.pierre@univ-rennes1.fr>

aphelinus

References

Pierre, J. S. and C. Kasper (1990). "The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship." Biology of Behaviour 15(3-4): 125-151.

Foucart, T. (1985). "Tableaux symetriques et tableaux d'echanges." Revue statistiques appliquee 33: 37-53.

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

aphelinus

Flight behaviour of Aphelinus abdominalis

Description

Flight behaviour of the parasitic hymenoptera Aphelinus abdominalis in flight tunnel.

Usage

data(aphelinus)

Format

The format is: List of 10 sequences on the following pattern: aphelinus[[1]] =list("%1","B","TD","TH") and so on until aphelinus[[10]]

Details

A sequences of 10 individuals

Source

Anne Le Ralec, personnal communication.

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.(in French)

Examples

```
data(aphelinus)
u=compseq(aphelinus)
mat=u$mcom
print(mat)
```

aphmat

Description

10 succession matrices extracted from the object aphelinus. Matrices are provided as data.frames

Usage

data(aphmat)

Format

The format is: List of 10 data.frames aphmat[[1]] :'data.frame': 5 obs. of 5 variables: B : num [1:5] 0 0 0 0 0 E0: num [1:5] 0 0 0 0 0 TD: num [1:5] 1 0 0 0 0 TH: num [1:5] 0 0 1 0 0 V: num [1:5] 0 0 0 0 0 and so on until aphmat[[10]]

Source

Personal communication by courtesy of Anne Le Ralec

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.(in French)

Examples

data(aphmat)
compmat(aphmat)

Description

Achieves a Correspondence Analysis (CA) on a numeric table of class data.frame

Usage

```
ca(x, nfac = 3, isup = 0, jsup = 0, histev = FALSE, grr = FALSE, grc = FALSE,
grrc = FALSE, grlist = rbind(c(1, 2), c(1, 3), c(2, 3)), prtm = FALSE,
prtevr = FALSE, prtevc = FALSE, eps = 1e-09)
```

5

Arguments

x	data.frame minimal dimension 4×3 . The first column must contain the char- acter strings of the identifiers of raws any other type, class or dimension re- sults in an error and in the program break.
nfac	Number of factors to retain (maximum 7)
isup	list of illustrative rows. $0 = no$ illustrative rows (default)
jsup	List of illustrative columns. Same as isup.
histev	Boolean : whether to plot or not the histogram of eigenvalues.
grr	Boolean : plot the graph of rows on the axes defined by grlist.
grc	Boolean : Plot the graph of columns on the axes defined by grlist.
grrc	Boolean : Plot the simultaneous graph of rows and columns on the axes defined by grlist. Labels of rows in black, labels of columns in red.
grlist	matrix: defines the factorial plans to plot. See details for an example.
prtm	Boolean: Print or not the data frame. Default = FALSE
prtevr	Boolean: Print or not the rows eigenvectors. Default = FALSE
prtevc	Boolean: Print or not the columns eigenvectors. Default = FALSE
eps	numeric: (tolerance) Precision for null eigenvalues. Default = 10E-09

Details

grlist: the successive plots to draw are defined by a matrix of dimension k,2. k = number of plans to plot. Example: to plot the plans 1-2, 1-3 and 2-3 enter sometning as matrix(1,2,1,3,2,3,nrow=3,ncol=2,byrow=2) or rbind(c(1,2),c(1,3),c(2,3)). **Markovian matrix:** In the case of a Markovian or of a transition matrix, one can symetrise (X + t(X)) and load it (sum of the margins added to the diagonal, before applying CA (cf See Also).

In the case of a markovian square matrix (succession or transition matrix) one can symmetrize and load it (symet) before representing it by a graph (flux)

са

Value

An object of class ca with attributes

fr	data.frame: weight and factorial coordinates of each row (principal and illustra- tive). The attribute type has the value "pri" for principal and "ill" for illustrative
fc	data.frame: weight and factorial coordinates of each column (principal and il- lustrative). type as in fr

Author(s)

Jean-Sebastien Pierre < Jean-sebastien.pierre@univ-rennes1.fr>

References

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

See Also

princomp, compseq to build a transition matrix, symet to modify it (symmetrization and diagonal loading), flux for the design of a graph.

Examples

```
# On Csa data (xcsa)
library(sequence)
    data(xcsa)
    ca(xcsa)
```

compmat

Comparison of transition (or succession) matrices

Description

Compares statistically succession matrices by likelihood ratio tests. Performs also a cluster analysis of the sequences and a Pricipal Coordinates Analysis (PCA) on the distance matrix between them.

Usage

```
compmat(serMat, alpha = 0.05, meth = "ward.D", printdata = FALSE, printdico = FALSE,
printmat = FALSE, eps = 1e-07, clust = TRUE, pca = TRUE)
```

compmat

Arguments

serMat	List of data.frames. Each of them must contain a matrix of identical dimension with the same row.names.
alpha	numeric: global risk threshold for pairwise comparisons. Default = 0.05
meth	character: Clustering method. cf hclust.
printdata	Boolean: Print original list of matrices.
printdico	Boolean:Print the dictionnary of states from ser.
printmat	Boolean: print all transition matrices and the consensus matrix.
eps	numeric: precision for the convergence of cmdscale.
clust	Boolean: performs cluster analysis.
рса	Boolean: performs a Principal Coordinates Analysis.

Details

The log likelihood ratio times -2 is used both for tests (Chi-Square approximation followed by Bonferroni post hoc tests) and as a distance to cluster the sequences and to represent them on factorial plans (Principal Coordinates Analysis). Warning: not a metric distance. Susceptible to give incoherent clustering with some methods (meth).

Value

an object of class compseq with attributes

- · dico Dictionnary of states
- mdist Matrix of pairwise distances between sequences
- msign Matrix of pairwise significance levels between sequences
- mcom Common or consensus transition matrix

Author(s)

Jean-Sebastien Pierre < Jean-sebastien.pierre@univ-rennes1.fr>

References

a Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

See Also

hclust, cmdscale, ca

compseq

Examples

```
# Compares 10 transition matrices in \code{aphmat}
data(aphmat)
compmat(aphmat,clust=FALSE,pca=FALSE)
```

compseq

Comparison of behavioral (or any) sequences

Description

Compares statistically sequences of states (behavior, texts, molecular data) by likelihood ratio tests on their markovian transition matrices. Performs also a cluster analysis of the sequences and a Principal Coordinates Analysis on the distance matrix between them.

Usage

compseq(ser,alpha=0.05,meth="ward.D",printdata=FALSE,printdico=TRUE,printmat=FALSE, eps=1e-07,clust=TRUE,pca=TRUE)

Arguments

ser	list of list: set of sequences
alpha	numeric: global risk threshold for pairwise comparisons.
meth	character:Clustering method. cf hclust.
printdata	Boolean:Print original data.
printdico	Boolean:Print the dictionnary of states from ser.
printmat	Boolean: print all transition matrices and the consensus matrix.
eps	numeric: precision for the convergence of cmdscale.
clust	Boolean: do the cluster analysis.
рса	Boolean: do the principal coordinates analysis.

Details

The log likelihood ratio times -2 is used both for tests (Chi-Square approximation followed by Bonferroni post hoc tests) and as a distance to cluster the sequences and to represent them on factorial plans (Principal Coordinates Analysis). Warning: not a metric distance. Susceptible to give incoherent clustering with some methods (meth).

This function does essentially the same work as compmat but with matrices instead of sequences entry.

8

courtil

Value

an object of class compseq with attributes

- · dico Dictionnary of states
- mdist Matrix of pairwise distances between sequences
- msign Matrix of pairwise significance levels between sequences
- mcom Common or consensus transition matrix

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

See Also

hclust, cmdscale, ca, flux

Examples

data(seriseq)
compseq(seriseq)

courtil

Sexual courtship of the male molecricket

Description

Succession matrix of the patterns of male molecricket (Gryllotalpa gryllotalpa orthoptera)

Usage

data(courtil)

Format

A data frame with 28 observations on the following 29 variables.

id a factor with levels

AA AA+ AAB ACC ACQ BAL CH CP1 DIV E FR FUI IMM INV LA M MB P1 PLP PRJ R RET RV SP1 TR VAV VC VCH

- DIV diverse (walking, feeding, grooming)
- VAV go to
- AA. lowers wings
- ACQ antenna-cerques contact
- P1 rise P1
- CP1 kicking with forelegs (P1)
- SP1 joins and rises forelegs
- LA rises antennae and rehects them backward
- PRJ projection of liquid from anus
- RET returns
- FUI escapes
- ${\tt IMM} \ freezes$
- R steps back
- BAL rocking
- FR wings rustling
- TR short and acute sound ("treets")
- CH call song
- PLP palpation of the female
- E avoids
- INV turns around and approaches
- AA lowers wings at maximum
- VCH vibers and sings
- AAB lowers wings and abdomen
- VC vibration of cerques
- RV steps back lowering wings and abdomen
- M inserts backward under the female which climbs on the mail
- ACC mating
- MB 'masturbation' rubbing of genitalia with p3 tarsa

Details

Matrix of succession of patterns, provided as a data.frame. The code of the rows, character values of the levels of the factor id are the same as the names of the columns after id. The elements of the matrix. The value of each element reflects the number of times the pattern id[i] is followed by the pattern names(courtil)[j+1].

References

flux

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.(in french)

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

Examples

```
data(courtil)
symet(courtil,ident=TRUE)->scourtil
ca(scourtil,grr=TRUE)
```

flux

Draws a flow chart from a transition matrix

Description

Draws a flow chart from a transition matrix on the projection plans of a CA (Correspondence Analysis). requires two objects of class data.frame: tabcoord a table of axis coordinates on up to 7 columns, and tabtr the transition matrix.

Usage

```
flux(tabcoord, tabtr, dic = NULL, fac = c(1, 2), Sort = NULL, threshold = 0,
scale = 0.1, cscale = 0.1,main="Transition graph", ...)
```

Arguments

data.frame: nfac + 3 columns
• id factor: identifier of individuals
• w numeric: weight
• f1 numeric: coordinates on axis 1
• f2,numeric: next coordinates until nfact
• type factor: "pri" for principal, "ill" for illustrative (or 'supplementary')
data.frame: transition matrix. Either frequencies or probabilities. Caution this data.frame must contain the row identifiers as first column
character vector: list of items labels. If NULL (default) must be extractible from tabtr column names
vector: two elements: the numbers of the two factors to use in tabcoord
numeric: number of the factor used to sort the drawing of the elements. Default = NULL (sorting in the order of the dictionary. Otherwise must be comprised between 1 et nfac. If positive, sort in ascending order. If negative, sort in decreasing order

threshold	numeric: minimal threshold to draw the arrows. Represent a oroportion of the weight of the element used as origin of the arrow.
scale	numeric: Controls the width of the arrows
cscale	numeric: Controls the radius of the circles.
main	character:title of the plot
	supplementary arguments for smartArrow

Details

tabcoord must be an the attribute \$fl or \$fc of an object of class ca

Value

An object of class graph.

Note

The correct definition of fac is under the user's responsability. **Must know** how many coordinates exist in the object tabcoord. Use summary(<tabcoord>) in case of doubt.

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.(in french) Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In:

Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

See Also

compseq to create transition matrices, compmat to compare transition matrices, read.series.seq to read a file of sequences, ca to perform a Correspondence Analysis

Examples

```
# Analysis of Wiepkema's data
data(wiepkema)
# Symmetrisation and diagonal loading
symet(wiepkema,ident=TRUE)->swiepkema
# Correspondence Analysis
ca(wiepkema,isup=c(5,11),jsup=c(5,11))->afcwiepk
# Flow chart / transition graph
```

geneseq

flux(tabcoord=afcwiepk\$fr,tabtr=wiepkema,threshold=0.025,scale=2)

geneseq

Generation aof random sequences

Description

Generates nseq random sequences of items represented by codes, either by random sampling (order 0), either using a Discrete Time Markov Chain (DTMC) transition matrix (order 1).

Usage

```
geneseq(nseq, lmin, lmax, order = 0, dico = NULL, mattrans = NULL)
```

Arguments

nseq	numeric: number of sequences to generate.
lmin	numeric: minimum length of sequences
lmax	numeric: maximum length of sequences
order	numeric: order of the Markov Process, 0 or 1. See details.
dico	character vector: dictionnary of items.
mattrans	data.frame: transition matrix with identifiers as first column.

Details

Generates random sequences of states according to a Markov process of order 0 or 1.

order 0: the following state is drawn with equal probabilities in the item list, no influence of previous state.

order 1: the following state is drawn with a probability proportional to the product of the transition matrix by the vector of states.

nseq sequences of random size are generated. The size of each sequence is a random integer drawn under uniform probability between lmin and lmax (both included).

Value

A list of nseq items

A1	list: first sequence
A2	list: second sequence

... and so on until nseq.

Note

The transition matrix must be square and Markovian. A non-square matrix produces an error and program break. Its columns must all sum to 1. No verification is done for this last point. A matrix in which the columns do not sum to 1 may lead to spurious or unpredictible results.

homoth

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

See Also

compseq

Examples

```
# 1 - generates 5 random sequences of length from 1 to 15 with
# symbols a,b,c,d.(order = 0)
geneseq(5,1,15,dico=letters[1:4])
mat<-data.frame(id=letters[1:3],a=c(0,0.75,0.25),b=c(0.5,0.25,0.25),
c=c(0.1,0.8,0.1))
# 2 - generates 2 random sequences of length 10 with symbols a,b,c,d
# according to the transition matrix mat
geneseq(2,10,10,order=1,mattrans=mat)
```

homoth

Homothety

Description

Homothety (scaling) of center centre and of factor scale on an object form

Usage

```
homoth(form = rbind(c(0, 1), c(1, 1)), centre = c(0, 1), scale = 0.5)
```

Arguments

form	matrix: with two columns x and y. Set of points making the shape
centre	vector: Coordinates of the homothety center
scale	numeric: Homothety ratio

Details

Utilitary used by smartArrow

Value

A matrix, transformed from form after homothety.

14

makedico

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

See Also

smartArrow

Examples

homoth(rbind(c(0,sqrt(2)/2),c(0,sqrt(2)/2)),c(0,0),2)

makedico

Build the dictionary of the sequences

Description

Assesses the dictionnary common to various sequences, counts the occurences of each word (item, state)

Usage

makedico(x, printdata = FALSE, printdico = FALSE)

Arguments

Х	sequence: an object of class sequence
printdata	printdata logical: print sequences or not.
printdico	printdico logical: print or not the resulting dictionnary

Value

A list of character strings

Author(s)

Jean-Sebastien Pierre email: Jean-sebastien.pierre@univ-rennes1.fr

Examples

```
data(seriseq)
dic=makedico(seriseq,printdico=TRUE)
```

makeSeries

Description

Builds an object of class list of lists, from two columns, of a data.frame. The first one contains the succession of codes to use, the second is a factor adequate to split the series into separate bouts.

Usage

makeSeries(x, fac)

Arguments

Х	character vector: the record of item codes under study
fac	factor: a factor, of same length as x, indicating how to split the sequences into
	separate bouts.

Details

Suppose we observe the succession a,c,d,a,a,f on the subject A and b,d,f,e,c,c,a,d on the subject B. This can be coded as the concatenation x: a,c,d,a,a,f,b,d,f,e,c,c,a,d fac: A,A,A,A,A,B,B,B,B,B,B,B,B,B

fac indicating that the 6 first itms were successively emitted by A and the 8 following by B. See example.

Value

a list of lists, one per level of the factor fac

Author(s)

Jean-Sebastien Pierre

See Also

read.old.seq,read.series.seq,compseq

Examples

```
ser=sample(letters[1:6],100,replace=TRUE)
fact=as.factor(c(rep("one",30),rep("two",20),rep("three",10),rep("four",40)))
print(rbind(ser,fact)) # Facultative to see the structure
seq=makeSeries(ser,fact)
print(seq)
compseq(seq) # Facultative, compares the sequences obtained.
```

matrcom

Description

Computes the succession matrix common to a set of sequences.

Usage

```
matrcom(x, printdata = FALSE, printdico = FALSE, printmat = FALSE, printcom = TRUE)
```

Arguments

х	seq: list of lists of class character. The sequences to analyse.
printdata	logical: print all sequences.
printdico	logical: print the dictionary.
printmat	logical: print each individual matrix.
printcom	logical: print the common succession matrix.

Details

The resulting matrix (succession: matrix) gives the number of times the element i (row) is followed by the element j (column).

Value

data.frame: the succession matrix with the label of items as first column.

Author(s)

Jean-Sebastien Pierre < Jean-sebastien.pierre@univ-rennes1.fr>

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.(in french)

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

See Also

flux, ca

mattrans

Examples

data(seriseq)
matrcom(seriseq)

mattrans

Creates of a succession matrix

Description

Creates a succession matrix of order 1 from an object of class sequence.

Usage

mattrans(x, dico = NULL, print = FALSE)

Arguments

Х	Cseq: sequence
dico	character: list of items codes
print	logical: print the matrix. Default = FALSE

Details

Creates a succession, not a transition matrix. Integer numbers (frequencies) and not conditional probabilities. Function used by compseq

Value

a matrix: the succession matrix.

Note

Not supposed to be used alone; if needed, the user is invited to use rather matrcom

Author(s)

Jean-Sebastien Pierre < Jean-sebastien.pierre@univ-rennes1.fr>

See Also

compseq ,matrcom

Examples

```
data(seriseq)
mattrans(unlist(seriseq))
```

18

multMatrans

Description

Converts a list of sequences into a list of transition matrices. Matrices are square, of same size, and provided as data.frame.

Usage

```
multMatrans(ser, printdata = FALSE, printdico = TRUE, printmat = FALSE)
```

Arguments

ser	The list of sequences
printdata	: print the input sequences
printdico	: Prints the dictionary of items
printmat	: Print the list of transition matrices

Value

An object of class lmat

dico	: dictionnary of sequences components
listmat	The list of data.frames

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.(in french)

Examples

```
data(aphelinus)
aphMat=multMatrans(aphelinus)
aphMat$listmat
```

read.old.seq

Description

Used to recover the sequence files used in a former DOS version of the program.

Usage

read.old.seq(file = "NULL")

Arguments

file Fichier texte a lire

Details

Only used for compatibility with the old format *.SEQ of program graflux: Items coded by at most 4 characters, One code per line. The separator of sequences is a code of 4 characters beginning by %.

Example:

%001 AAAA BBBB EEEE DDDD AAAA FFFF CCCC FFFF %002 FFFF BBBB CCCC

Value

An object de classe sequence, i.e. a list of lists.

Author(s)

Jean-Sebastien Pierre < Jean-sebastien.pierre \@univ-rennes1.fr>

read.series.seq

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the Male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.(in french)

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

See Also

read.series.seq for a more convenient format, compseq for the analysis

Examples

```
sink("old-seq")
cat("%001\n")
cat("aaa\n")
cat("bbb \n")
cat("aaa\n")
cat("ccc\n")
cat("%002\n")
cat("ccc\n")
cat("ccc\n")
cat("aaa\n")
cat("aaa\n")
cat("bbb\n")
sink()
seq1<-read.old.seq("old-seq")</pre>
seq1
file.remove("old-seq")
```

read.series.seq Reads a series of sequences.

Description

Input from a text file of a series of behavioral (or any other type) sequences. Builds an object of class sequence

Usage

```
read.series.seq(fich = NULL)
```

Arguments

fich character: name of the text file to read

Details

The text file must have one line by sequence. Each line must begin by a character identifier of the sequence, followed by a tab character or a space, followed by the series of item codes, separated also by tabs or spaces. example:

A1 A B A C D A B C A2 A D D C A B A3 B D C A D A B C A4 C B C A A5 C D A B C

Value

An object of class sequence

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

See Also

compseq

Examples

```
sink("series-seq")
cat("A1 A B A C D A B C\n")
cat("A2 A D D C A B\n")
cat("A3 B D C A D A B C\n")
cat("A4 C B C A\n")
cat("A5 C D A B C\n")
sink()
read.series.seq("series-seq")
file.remove("series-seq")
```

```
rotation
```

Plane rotation

Description

Rotation of the object form around a center center, of angle angle. Angle in radians in the direct (trigonometric) direction.

Usage

rotation(form, center, angle)

seriseq

Arguments

form	matrix: two columns, x and y, giving the coordinates of the points composing the object.
center	vector: coordinates of the rotation center.
angle	numeric: rotation angle in radians

Details

A geometric function used by smartArrow

Value

matrix: form object rotated.

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

See Also

smartArrow

Examples

rotation(cbind(c(0,1),c(0,0)),c(0,0),pi/3)

seriseq

Random series

Description

5 random series made of letters "a" to "f"

Usage

data(seriseq)

Format

The format is: List of 5 lists

[[1]]	chr	[1:9]	"A1"	"d"	"e"	"a"	
[[2]]	chr	[1:8]	"A2"	"f"	"d"	"b"	
[[3]]	chr	[1:9]	"A3"	"c"	"e"	"b"	
[[4]]	chr	[1:8]	"A4"	"e"	"d"	"b"	
[[5]]	chr	[1:8]	"A5"	"d"	"b"	"f"	

Details

Example of format used by compseq and built from a text file by the function read.series.seq. List of lists. Each elementary list represents a particular sequence which must be compared to all others.

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

Source

Random simulation made by J.S. Pierre.

See Also

read.series.seq

Examples

data(seriseq)
compseq(seriseq)

seriseq2

random series

Description

25 random series made of letters "a" to "f".

Usage

data(seriseq2)

Format

List of 25 lists

[[1]]	chr	[1:23]	"A1"	"d"	"d"	"d"	
[[2]]	chr	[1:31]	"A2"	"b"	"b"	"c"	
[[3]]	chr	[1:27]	"A3"	"f"	"e"	"e"	
[[4]]	chr	[1:12]	"A4"	"a"	"c"	"a"	
[[5]]	chr	[1:9]	"A5"	"a"	"b"	"e"	
[[6]]	chr	[1:11]	"A6"	"e"	"f"	"a"	
[[7]]	chr	[1:30]	"A7"	"f"	"d"	"f"	
[[8]]	chr	[1:29]	"A8"	"b"	"a"	"e"	
[[9]]	chr	[1:24]	"A9"	"d"	"b"	"a"	
[[10]]	chr	[1:12]	"A10"	"a"	"f"	"b"	
[[11]]	chr	[1:18]	"A11"	"d"	"d"	"e"	

smartArrow

chr	[1:22]	"A12"	"e"	"c"	"e"	
chr	[1:25]	"A13"	"e"	"f"	"f"	
chr	[1:20]	"A14"	"c"	"f"	"a"	
chr	[1:29]	"A15"	"e"	"c"	"c"	
chr	[1:19]	"A16"	"c"	"a"	"f"	
chr	[1:25]	"A17"	"f"	"e"	"d"	
chr	[1:18]	"A18"	"d"	"c"	"e"	
chr	[1:25]	"A19"	"c"	"a"	"b"	
chr	[1:8]	"A20"	"f"	"d"	"a"	
chr	[1:14]	"A21"	"c"	"e"	"e"	
chr	[1:13]	"A22"	"f"	"c"	"e"	
chr	[1:28]	"A23"	"b"	"e"	"d"	
chr	[1:18]	"A24"	"e"	"f"	"a"	
chr	[1:29]	"A25"	"e"	"a"	"b"	
	chr chr chr chr chr chr chr chr chr chr	chr [1:22] chr [1:25] chr [1:20] chr [1:29] chr [1:19] chr [1:25] chr [1:25] chr [1:25] chr [1:25] chr [1:25] chr [1:25] chr [1:3] chr [1:13] chr [1:28] chr [1:18] chr [1:29]	chr [1:22] "A12" chr [1:25] "A13" chr [1:20] "A14" chr [1:29] "A15" chr [1:29] "A15" chr [1:19] "A16" chr [1:25] "A17" chr [1:18] "A18" chr [1:25] "A19" chr [1:8] "A20" chr [1:14] "A21" chr [1:13] "A22" chr [1:28] "A23" chr [1:18] "A24" chr [1:29] "A25"	chr [1:22] "A12" "e" chr [1:25] "A13" "e" chr [1:20] "A14" "c" chr [1:29] "A15" "e" chr [1:29] "A15" "e" chr [1:29] "A16" "c" chr [1:25] "A17" "f" chr [1:25] "A17" "d" chr [1:25] "A19" "c" chr [1:25] "A19" "c" chr [1:25] "A19" "c" chr [1:25] "A19" "c" chr [1:13] "A20" "f" chr [1:13] "A22" "f" chr [1:28] "A23" "b" chr [1:28] "A24" "e" chr [1:29] "A25" "e"	chr [1:22] "A12" "e" "c" chr [1:25] "A13" "e" "f" chr [1:20] "A14" "c" "f" chr [1:29] "A15" "e" "c" chr [1:29] "A16" "c" "a" chr [1:25] "A17" "f" "e" chr [1:25] "A18" "d" "c" chr [1:25] "A19" "c" "a" chr [1:8] "A20" "f" "d" chr [1:13] "A22" "f" "c" chr [1:28] "A23" "b" "e" chr [1:28] "A24" "e" "f" chr [1:29] "A25" "e" "a" <td>chr [1:22] "A12" "e" "c" "e" chr [1:25] "A13" "e" "f" "f" chr [1:20] "A14" "c" "f" "a" chr [1:29] "A15" "e" "c" "a" chr [1:29] "A16" "c" "a" "f" chr [1:25] "A17" "f" "e" "d" chr [1:25] "A19" "c" "e" "d" chr [1:25] "A19" "c" "a" "b" chr [1:8] "A20" "f" "d" "a" chr [1:13] "A22" "f" "c" "e" chr [1:28] "A23" "b" "e" "d" chr [1:29] "A25" "e" "a"</td>	chr [1:22] "A12" "e" "c" "e" chr [1:25] "A13" "e" "f" "f" chr [1:20] "A14" "c" "f" "a" chr [1:29] "A15" "e" "c" "a" chr [1:29] "A16" "c" "a" "f" chr [1:25] "A17" "f" "e" "d" chr [1:25] "A19" "c" "e" "d" chr [1:25] "A19" "c" "a" "b" chr [1:8] "A20" "f" "d" "a" chr [1:13] "A22" "f" "c" "e" chr [1:28] "A23" "b" "e" "d" chr [1:29] "A25" "e" "a"

Details

Example of format used by compseq and built from a text file by the function read.serie.seq. List of lists. Each elementary list represents a particular sequence which must be compared to all others.

Source

Random simulation made by J.S. Pierre

Examples

```
data(seriseq2)
compseq(seriseq2)
```

smartArrow

Draws a 'smart' arrow between two points.

Description

Draws a 'smart' arrow between two points surrounded by a circle of known radius. The arrow is arc shaped and ends with an arrowhead.

Usage

```
smartArrow(A = c(0, 2), B = c(2, 2), Ra = 0.2, Rb = 0.1, ClegA = "A",
ClegB = "B", width = 0.1, col = "lightgreen", ccol = "yellow",
density = NULL, angle = 0, marge = 1.3, debord = 1.4, plot = FALSE,
trace = TRUE)
```

Arguments

А	numeric vector: coordinates of point A.
В	numeric vector: coordinatess of point B.
Ra	numeric: Radius of circle A
Rb	numeric: Radius of circle B
ClegA	character: label of circle A
ClegB	character: label of circle B
width	numeric: width of the arrow
col	color to fill the arrow. Seepolygon
ccol	color to fill the circle. See symbols
density	numeric: density of shading lines per inch (default=NULL). See polygon
angle	numeric: angle of shading lines in radians (default = 0). See polygon
marge	numeric: Angular distance between each circle and the corresponding end of the arrow (default = 1.3).
debord	numeric: overflow of the arrowhead relatively to its body. (Default = 1.4)
plot	logical: to draw a first arrow on a new plot.(Default = FALSE)
trace	logical: if TRUE (default) the arrow is drawn, else it is simply calculated.

Details

SmartArrow can work both as a high level and a low level function, depending on the value of the argument plot.

Used in flux. Not supposed to be used directly by the user.

Value

An object of class smartarrow having attributes:

arrow	The polygon representing the arrow.
bg	Color of background
A	Coordinates of point A
В	Coordinates of point B
Ra	Radius of circle A
Rb	Radius of circle B
left	The most extreme left point of the set circles-arrows.
right	The most extreme right point of this set
up	The most extreme high point.
down	The most extreme low point
drawcircles	boolean : draw the circles or not.

symet

Author(s)

```
Jean-Sebastien Pierre
<Jean-sebastien.pierre@univ-rennes1.fr>
```

See Also

flux, polygon,symbols
arrows ~ for simple arrows

Examples

```
# For a quick illustration
    smartArrow(plot=TRUE)
# an arrow from a randomly drawn point on [0,2]x[0,2]
    smartArrow(B=runif(2,0,2),Rb=runif(1,0,0.5),ClegB="C")
```

symet

Symmetrization and diagonal loading of a transition matrix

Description

Adds the matrix to its transpose (X + t(X)) and loads its diagonal by the sum of each row.

Usage

symet(x, sym = TRUE, charge = TRUE, ident = FALSE)

Arguments

x	data.frame: The matrix to process as a data.frame
sym	logical: symmetrisation.
charge	logical: diagonal loading.
ident	logical: first column consists in identifiers.

Value

a data.frame: the resulting matrix

Author(s)

Jean-Sebastien Pierre <Jean-sebastien.pierre@univ-rennes1.fr>

References

Pierre, J. S. and C. Kasper (1990). The Design of Ethological Flow-Charts on Factorial Analysis Representations - an Application to the Study of the male Mole-Cricket Sexual Courtship. Biology of Behaviour 15(3-4): 125-151.

Van der Heijden, P. G. M. 1986. Transition matrices, model fitting and correspondence analysis. In: Data Analysis and Informatics IV (Ed. by E. Diday), pp. 221-226. Elsevier Science Publishers.

See Also

flux,matrcom

Examples

data(wiepkema)
swiepkema<-symet(wiepkema,ident=TRUE)
print(swiepkema)</pre>

```
wiepkema
```

Wiepkema's (1961) historical data

Description

Succession matrix for the sexual courtship of the gorchak fish (Rhodeus sericeus, cyprinidae)

Usage

data(wiepkema)

Format

A data frame with 12 observations on the following 13 variables.

id factor: levels chf chs ffl fl hb hdp jk le qu sk sn tu

jk numeric: jerking

tu numeric: turning

hb numeric: head butting

chs numeric: chasing

f1 numeric: fleeing

qu numeric: quivering

le numeric: leading

hdp numeric: head-down

sk numerics: kimming

sn numeric: snapping

chf numeric: chafing

ffl numeric: finflickering

28

xcsa

Details

Historical data of Wipkema (1961) consisting in the succession of patterns in the sexual courtship of a fish. Treated by this author by Principal Component Analysis.

Source

Wiepkema, P. R. 1961. An ethological analysis of the reproductive behaviour of the bitterling. Arch Neerl Zool, 14, 103-199.

References

Van der Heijden, P. G. M. (1990). Correspondance analysis of transition matrices, with special attention to missing entries and asymmetry. Animal Behaviour, 39, 49-64.

Examples

```
data(wiepkema)
# Symmetrization and diagonal loading before a CA
swiepkema <- symet(wiepkema,ident=TRUE)
ca(swiepkema)</pre>
```

xcsa

French CSA (1976) data

Description

Medical attendence depending on socio-professional categories.

Usage

data(xcsa)

Format

A data frame with 15 observations on the following 7 variables.

- id factor: Socio-professional categories: levels: acm fcm fco fem foo foq fpl fse hco hem hma hoq hos hpl hse sup hcm fos
- ge1 visited a general practitioner during the previous year
- ge0 did not visit a general practitioner during the previous year
- sp1 visited a specialist during the previous year
- sp0 did not visite a specialist during the previous year
- de1 visited a dentist during the previous year
- de0 did not visite a dentist during the previous year

Details

Detail of socio-professional categories codes : First letter = h : man First letter = f : woman cm : middle manager co : manager, unprecised status pl : Senior executive or liberal profession oq : qualified worker se : unemployed os : specialised worker ma : unskilled worker

Source

Ronald Cehessat (1976) exercices de statistique et informatique appliquees Dunod (Paris)

Examples

data(xcsa) ca(xcsa)

30

Index

```
*Topic datasets
    aphelinus, 3
    aphmat, 4
    courtil,9
    seriseq, 23
    seriseq2, 24
    wiepkema, 28
    xcsa, 29
*Topic multivariate
    ca, 5
    compmat, 6
    compseq, 8
    flux, 11
    geneseq, 13
    homoth, 14
    makedico, 15
    makeSeries, 16
    matrcom. 17
    mattrans, 18
    multMatrans, 19
    read.old.seq, 20
    read.series.seq,21
    rotation, 22
    smartArrow, 25
    symet, 27
*Topic package
    sequence-package, 2
aphelinus, 3, 4
aphmat, 4
arrows, 27
ca, 2, 5, 7, 9, 12, 17
cmdscale, 7, 9
compmat, 6, 8, 12
compseq, 2, 6, 8, 12, 14, 16, 18, 21, 22
courtil,9
flux, 2, 5, 6, 9, 11, 17, 26-28
geneseq, 13
```

hclust, 7, 9 homoth, 14 makedico, 15 makeSeries, 16 matrcom, 17, 18, 28 mattrans, 18 multMatrans, 19 polygon, 26, 27 princomp, 6 read.old.seq, 16, 20 read.series.seq, 2, 12, 16, 21, 21, 24 rotation, 22sequence-package, 2 seriseq, 23 seriseq2, 24 smartArrow, 12, 14, 15, 23, 25 symbols, 26, 27 symet, 2, 5, 6, 27 wiepkema, 28 xcsa, 29