
Package ‘semTools’
May 27, 2020

Version 0.5-3

Title Useful Tools for Structural Equation Modeling

Description Provides useful tools for structural equation modeling.

Depends R(>= 3.4), utils, stats, graphics, lavaan(>= 0.6-6)

Imports methods

Suggests MASS, foreign, parallel, boot, Amelia, mice, GPArotation,
mnormt, blavaan, emmeans, testthat

License GPL (>= 2)

LazyData yes

LazyLoad yes

URL https://github.com/simsem/semTools/wiki

BugReports https://github.com/simsem/semTools/issues

Date/Publication 2020-05-27 17:00:02 UTC

RoxygenNote 7.1.0

NeedsCompilation no

Author Terrence D. Jorgensen [aut, cre]
(<https://orcid.org/0000-0001-5111-6773>),
Sunthud Pornprasertmanit [aut],
Alexander M. Schoemann [aut] (<https://orcid.org/0000-0002-8479-8798>),
Yves Rosseel [aut] (<https://orcid.org/0000-0002-4129-4477>),
Patrick Miller [ctb],
Corbin Quick [ctb],
Mauricio Garnier-Villarreal [ctb]
(<https://orcid.org/0000-0002-2951-6647>),
James Selig [ctb],
Aaron Boulton [ctb],
Kristopher Preacher [ctb],
Donna Coffman [ctb],
Mijke Rhemtulla [ctb] (<https://orcid.org/0000-0003-2572-2424>),
Alexander Robitzsch [ctb] (<https://orcid.org/0000-0002-8226-3132>),
Craig Enders [ctb],

1

https://github.com/simsem/semTools/wiki
https://github.com/simsem/semTools/issues

2 R topics documented:

Ruben Arslan [ctb] (<https://orcid.org/0000-0002-6670-5658>),
Bell Clinton [ctb],
Pavel Panko [ctb],
Edgar Merkle [ctb] (<https://orcid.org/0000-0001-7158-0653>),
Steven Chesnut [ctb],
Jarrett Byrnes [ctb],
Jason D. Rights [ctb],
Ylenio Longo [ctb],
Maxwell Mansolf [ctb] (<https://orcid.org/0000-0001-6861-8657>),
Mattan S. Ben-Shachar [ctb] (<https://orcid.org/0000-0002-4287-4801>)

Maintainer Terrence D. Jorgensen <TJorgensen314@gmail.com>

Repository CRAN

R topics documented:
auxiliary . 4
BootMiss-class . 6
bsBootMiss . 7
calculate.D2 . 9
chisqSmallN . 11
clipboard . 13
combinequark . 14
compareFit . 16
dat2way . 17
dat3way . 18
datCat . 19
discriminantValidity . 20
EFA-class . 21
efa.ekc . 23
efaUnrotate . 24
exLong . 26
findRMSEApower . 27
findRMSEApowernested . 28
findRMSEAsamplesize . 29
findRMSEAsamplesizenested . 30
FitDiff-class . 32
fmi . 33
htmt . 35
imposeStart . 37
indProd . 40
kd . 42
kurtosis . 44
lavaan.mi-class . 45
lavaan2emmeans . 49
lavTestLRT.mi . 54
lavTestScore.mi . 56
lavTestWald.mi . 60

R topics documented: 3

loadingFromAlpha . 62
mardiaKurtosis . 63
mardiaSkew . 64
maximalRelia . 65
measEq.syntax . 68
measEq.syntax-class . 76
miPowerFit . 79
modindices.mi . 82
monteCarloMed . 85
moreFitIndices . 88
mvrnonnorm . 91
net . 92
Net-class . 94
nullRMSEA . 95
orthRotate . 96
parcelAllocation . 98
partialInvariance . 102
PAVranking . 107
permuteMeasEq . 110
permuteMeasEq-class . 119
plausibleValues . 122
plotProbe . 124
plotRMSEAdist . 127
plotRMSEApower . 129
plotRMSEApowernested . 131
poolMAlloc . 132
probe2WayMC . 137
probe2WayRC . 140
probe3WayMC . 143
probe3WayRC . 146
quark . 150
reliability . 152
reliabilityL2 . 156
residualCovariate . 158
runMI . 159
semTools . 162
simParcel . 163
singleParamTest . 164
skew . 166
splitSample . 168
SSpower . 169
tukeySEM . 172
twostage . 173
twostage-class . 175

Index 179

4 auxiliary

auxiliary Implement Saturated Correlates with FIML

Description

Automatically add auxiliary variables to a lavaan model when using full information maximum
likelihood (FIML) to handle missing data

Usage

auxiliary(model, data, aux, fun, ...)

lavaan.auxiliary(model, data, aux, ...)

cfa.auxiliary(model, data, aux, ...)

sem.auxiliary(model, data, aux, ...)

growth.auxiliary(model, data, aux, ...)

Arguments

model The analysis model can be specified with 1 of 2 objects:

1. lavaan model.syntax specifying a hypothesized model without mention of
auxiliary variables in aux

2. a parameter table, as returned by parTable, specifying the target model
without auxiliary variables. This option requires these columns (and silently
ignores all others): c("lhs","op","rhs","user","group","free","label","plabel","start")

data data.frame that includes auxiliary variables as well as any observed variables
in the model

aux character. Names of auxiliary variables to add to model

fun character. Name of a specific lavaan function used to fit model to data (i.e.,
"lavaan", "cfa", "sem", or "growth"). Only required for auxiliary.

... additional arguments to pass to lavaan.

Details

These functions are wrappers around the corresponding lavaan functions. You can use them the
same way you use lavaan, but you must pass your full data.frame to the data argument. Because
the saturated-correlates approaches (Enders, 2008) treates exogenous variables as random, fixed.x
must be set to FALSE. Because FIML requires continuous data (although nonnormality corrections
can still be requested), no variables in the model nor auxiliary variables specified in aux can be
declared as ordered.

auxiliary 5

Value

a fitted lavaan object. Additional information is stored as a list in the @external slot:

• baseline.model. a fitted lavaan object. Results of fitting an appropriate independence
model for the calculation of incremental fit indices (e.g., CFI, TLI) in which the auxiliary
variables remain saturated, so only the target variables are constrained to be orthogonal. See
Examples for how to send this baseline model to fitMeasures.

• aux. The character vector of auxiliary variable names.

• baseline.syntax. A character vector generated within the auxiliary function, specifying
the baseline.model syntax.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2008). A note on the use of missing auxiliary variables in full information maxi-
mum likelihood-based structural equation models. Structural Equation Modeling, 15(3), 434–448.
doi:10.1080/10705510802154307

Examples

dat1 <- lavaan::HolzingerSwineford1939
set.seed(12345)
dat1$z <- rnorm(nrow(dat1))
dat1$x5 <- ifelse(dat1$z < quantile(dat1$z, .3), NA, dat1$x5)
dat1$x9 <- ifelse(dat1$z > quantile(dat1$z, .8), NA, dat1$x9)

targetModel <- "
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

"

works just like cfa(), but with an extra "aux" argument
fitaux1 <- cfa.auxiliary(targetModel, data = dat1, aux = "z",

missing = "fiml", estimator = "mlr")

with multiple auxiliary variables and multiple groups
fitaux2 <- cfa.auxiliary(targetModel, data = dat1, aux = c("z","ageyr","grade"),

group = "school", group.equal = "loadings")

calculate correct incremental fit indices (e.g., CFI, TLI)
fitMeasures(fitaux2, fit.measures = c("cfi","tli"))
NOTE: lavaan will use the internally stored baseline model, which
is the independence model plus saturated auxiliary parameters
lavInspect(fitaux2@external$baseline.model, "free")

6 BootMiss-class

BootMiss-class Class For the Results of Bollen-Stine Bootstrap with Incomplete Data

Description

This class contains the results of Bollen-Stine bootstrap with missing data.

Usage

S4 method for signature 'BootMiss'
show(object)

S4 method for signature 'BootMiss'
summary(object)

S4 method for signature 'BootMiss'
hist(x, ..., alpha = 0.05, nd = 2,
printLegend = TRUE, legendArgs = list(x = "topleft"))

Arguments

object, x object of class BootMiss

... Additional arguments to pass to hist

alpha alpha level used to draw confidence limits

nd number of digits to display

printLegend logical. If TRUE (default), a legend will be printed with the histogram

legendArgs list of arguments passed to the legend function. The default argument is a list
placing the legend at the top-left of the figure.

Value

The hist method returns a list of length == 2, containing the arguments for the call to hist and
the arguments to the call for legend, respectively.

Slots

time A list containing 2 difftime objects (transform and fit), indicating the time elapsed for
data transformation and for fitting the model to bootstrap data sets, respectively.

transData Transformed data

bootDist The vector of chi2 values from bootstrap data sets fitted by the target model

origChi The chi2 value from the original data set

df The degree of freedom of the model

bootP The p value comparing the original chi2 with the bootstrap distribution

bsBootMiss 7

Objects from the Class

Objects can be created via the bsBootMiss function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

bsBootMiss

Examples

See the example from the bsBootMiss function

bsBootMiss Bollen-Stine Bootstrap with the Existence of Missing Data

Description

Implement the Bollen and Stine’s (1992) Bootstrap when missing observations exist. The imple-
mented method is proposed by Savalei and Yuan (2009). This can be used in two ways. The first
and easiest option is to fit the model to incomplete data in lavaan using the FIML estimator, then
pass that lavaan object to bsBootMiss.

Usage

bsBootMiss(x, transformation = 2, nBoot = 500, model, rawData, Sigma, Mu,
group, ChiSquared, EMcov, writeTransData = FALSE, transDataOnly = FALSE,
writeBootData = FALSE, bootSamplesOnly = FALSE, writeArgs, seed = NULL,
suppressWarn = TRUE, showProgress = TRUE, ...)

Arguments

x A target lavaan object used in the Bollen-Stine bootstrap

transformation The transformation methods in Savalei and Yuan (2009). There are three meth-
ods in the article, but only the first two are currently implemented here. Use
transformation = 1 when there are few missing data patterns, each of which
has a large size, such as in a planned-missing-data design. Use transformation
= 2 when there are more missing data patterns. The currently unavailable transformation
= 3 would be used when several missing data patterns have n = 1.

nBoot The number of bootstrap samples.

model Optional. The target model if x is not provided.

rawData Optional. The target raw data set if x is not provided.

8 bsBootMiss

Sigma Optional. The model-implied covariance matrix if x is not provided.

Mu Optional. The model-implied mean vector if x is not provided.

group Optional character string specifying the name of the grouping variable in rawData
if x is not provided.

ChiSquared Optional. The model’s χ2 test statistic if x is not provided.

EMcov Optional, if x is not provided. The EM (or Two-Stage ML) estimated covariance
matrix used to speed up Transformation 2 algorithm.

writeTransData Logical. If TRUE, the transformed data set is written to a text file, transDataOnly
is set to TRUE, and the transformed data is returned invisibly.

transDataOnly Logical. If TRUE, the result will provide the transformed data only.

writeBootData Logical. If TRUE, the stacked bootstrap data sets are written to a text file, bootSamplesOnly
is set to TRUE, and the list of bootstrap data sets are returned invisibly.

bootSamplesOnly

Logical. If TRUE, the result will provide bootstrap data sets only.

writeArgs Optional list. If writeBootData = TRUE or writeBootData = TRUE, user can
pass arguments to the write.table function as a list. Some default values are
provided: file = "bootstrappedSamples.dat", row.names = FALSE, and na = "-
999", but the user can override all of these by providing other values for those
arguments in the writeArgs list.

seed The seed number used in randomly drawing bootstrap samples.

suppressWarn Logical. If TRUE, warnings from lavaan function will be suppressed when fitting
the model to each bootstrap sample.

showProgress Logical. Indicating whether to display a progress bar while fitting models to
bootstrap samples.

... The additional arguments in the lavaan function. See also lavOptions

Details

The second is designed for users of other software packages (e.g., LISREL, EQS, Amos, or Mplus).
Users can import their data, χ2 value, and model-implied moments from another package, and they
have the option of saving (or writing to a file) either the transformed data or bootstrapped samples
of that data, which can be analyzed in other programs. In order to analyze the bootstrapped samples
and return a p value, users of other programs must still specify their model using lavaan syntax.

Value

As a default, this function returns a BootMiss object containing the results of the bootstrap samples.
Use show, summary, or hist to examine the results. Optionally, the transformed data set is returned
if transDataOnly = TRUE. Optionally, the bootstrap data sets are returned if bootSamplesOnly =
TRUE.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Syntax for transformations borrowed from http://www2.psych.ubc.ca/~vsavalei/

calculate.D2 9

References

Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation
models. Sociological Methods & Research, 21(2), 205–229. doi:10.1177/0049124192021002004

Savalei, V., & Yuan, K.-H. (2009). On the model-based bootstrap with missing data: Obtaining a p-
value for a test of exact fit. Multivariate Behavioral Research, 44(6), 741–763. doi:10.1080/00273170903333590

See Also

BootMiss

Examples

Not run:
dat1 <- HolzingerSwineford1939
dat1$x5 <- ifelse(dat1$x1 <= quantile(dat1$x1, .3), NA, dat1$x5)
dat1$x9 <- ifelse(is.na(dat1$x5), NA, dat1$x9)

targetModel <- "
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
"
targetFit <- sem(targetModel, dat1, meanstructure = TRUE, std.lv = TRUE,

missing = "fiml", group = "school")
summary(targetFit, fit = TRUE, standardized = TRUE)

The number of bootstrap samples should be much higher.
temp <- bsBootMiss(targetFit, transformation = 1, nBoot = 10, seed = 31415)

temp
summary(temp)
hist(temp)
hist(temp, printLegend = FALSE) # suppress the legend
user can specify alpha level (default: alpha = 0.05), and the number of
digits to display (default: nd = 2). Pass other arguments to hist(...),
or a list of arguments to legend() via "legendArgs"
hist(temp, alpha = .01, nd = 3, xlab = "something else", breaks = 25,

legendArgs = list("bottomleft", box.lty = 2))

End(Not run)

calculate.D2 Calculate the "D2" statistic

10 calculate.D2

Description

This is a utility function used to calculate the "D2" statistic for pooling test statistics across multi-
ple imputations. This function is called by several functions used for lavaan.mi objects, such as
lavTestLRT.mi, lavTestWald.mi, and lavTestScore.mi. But this function can be used for any
general scenario because it only requires a vector of χ2 statistics (one from each imputation) and the
degrees of freedom for the test statistic. See Li, Meng, Raghunathan, & Rubin (1991) and Enders
(2010, chapter 8) for details about how it is calculated.

Usage

calculate.D2(w, DF = 0L, asymptotic = FALSE)

Arguments

w numeric vector of Wald χ2 statistics. Can also be Wald z statistics, which will
be internally squared to make χ2 statistics with one df (must set DF = 0L).

DF degrees of freedom (df) of the χ2 statistics. If DF = 0L (default), w is assumed to
contain z statistics, which will be internally squared.

asymptotic logical. If FALSE (default), the pooled test will be returned as an F-distributed
statistic with numerator (df1) and denominator (df2) degrees of freedom. If
TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that
its df2 is sufficiently large enough that the statistic will be asymptotically χ2

distributed with df1.

Value

A numeric vector containing the test statistic, df, its p value, and 2 missing-data diagnostics: the
relative invrease in variance (RIV, or average for multiparameter tests: ARIV) and the fraction
missing information (FMI = ARIV / (1 + ARIV)).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from
https://www.jstor.org/stable/24303994

See Also

lavTestLRT.mi, lavTestWald.mi, lavTestScore.mi

chisqSmallN 11

Examples

generate a vector of chi-squared values, just for example
DF <- 3 # degrees of freedom
M <- 20 # number of imputations
CHI <- rchisq(M, DF)

pool the "results"
calculate.D2(CHI, DF) # by default, an F statistic is returned
calculate.D2(CHI, DF, asymptotic = TRUE) # asymptotically chi-squared

generate standard-normal values, for an example of Wald z tests
Z <- rnorm(M)
calculate.D2(Z) # default DF = 0 will square Z to make chisq(DF = 1)
F test is equivalent to a t test with the denominator DF

chisqSmallN Small-N correction for chiˆ2 test statistic

Description

Calculate small-N corrections for chi2 model-fit test statistic to adjust for small sample size (relative
to model size).

Usage

chisqSmallN(fit0, fit1 = NULL, smallN.method = if (is.null(fit1))
c("swain", "yuan.2015") else "yuan.2005", ..., omit.imps = c("no.conv",
"no.se"))

Arguments

fit0, fit1 lavaan object(s) provided after running the cfa, sem, growth, or lavaan func-
tions. lavaan.mi object(s) also accepted.

smallN.method character indicating the small-N correction method to use. Multiple may be
chosen (all of which assume normality), as described in Shi et al. (2018):
c("swain","yuan.2015","yuan.2005","bartlett"). Users may also sim-
ply select "all".

... Additional arguments to the lavTestLRT or lavTestLRT.mi functions. Ignored
when is.null(fit1).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit0 (and optionally fit1) is a lavaan.mi object. See
lavTestLRT.mi for a description of options and defaults.

12 chisqSmallN

Details

Four finite-sample adjustments to the chi-squared statistic are currently available, all of which are
described in Shi et al. (2018). These all assume normally distributed data, and may not work well
with severely nonnormal data. Deng et al. (2018, section 4) review proposed small-N adjustments
that do not assume normality, which rarely show promise, so they are not implemented here. This
function currently will apply small-N adjustments to scaled test statistics with a warning that they
do not perform well (Deng et al., 2018).

Value

A list of numeric vectors: one for the originally requested statistic(s), along with one per re-
quested smallN.method. All include the the (un)adjusted test statistic, its df, and the p value for the
test under the null hypothesis that the model fits perfectly (or that the 2 models have equivalent fit).
The adjusted chi-squared statistic(s) also include(s) the scaling factor for the small-N adjustment.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Deng, L., Yang, M., & Marcoulides, K. M. (2018). Structural equation modeling with many
variables: A systematic review of issues and developments. Frontiers in Psychology, 9, 580.
doi:10.3389/fpsyg.2018.00580

Shi, D., Lee, T., & Terry, R. A. (2018). Revisiting the model size effect in structural equation
modeling. Structural Equation Modeling, 25(1), 21–40. doi:10.1080/10705511.2017.1369088

Examples

HS.model <- '
visual =~ x1 + b1*x2 + x3
textual =~ x4 + b2*x5 + x6
speed =~ x7 + b3*x8 + x9

'
fit1 <- cfa(HS.model, data = HolzingerSwineford1939[1:50,])
test a single model (implicitly compared to a saturated model)
chisqSmallN(fit1)

fit a more constrained model
fit0 <- cfa(HS.model, data = HolzingerSwineford1939[1:50,],

orthogonal = TRUE)
compare 2 models
chisqSmallN(fit1, fit0)

clipboard 13

clipboard Copy or save the result of lavaan or FitDiff objects into a clipboard
or a file

Description

Copy or save the result of lavaan or FitDiff object into a clipboard or a file. From the clipboard,
users may paste the result into the Microsoft Excel or spreadsheet application to create a table of
the output.

Usage

clipboard(object, what = "summary", ...)

saveFile(object, file, what = "summary", tableFormat = FALSE,
fit.measures = "default", writeArgs = list(), ...)

Arguments

object The lavaan or FitDiff object

what The attributes of the lavaan object to be copied in the clipboard. "summary"
is to copy the screen provided from the summary function. "mifit" is to copy
the result from the miPowerFit function. Other attributes listed in the inspect
method in the lavaan-class could also be used, such as "coef", "se", "fit",
"samp", and so on. For the The FitDiff object, this argument is not active yet.

... Additional argument listed in the miPowerFit function (for lavaan object only).

file A file name used for saving the result

tableFormat If TRUE, save the result in the table format using tabs for seperation. Otherwise,
save the result as the output screen printed in the R console.

fit.measures character vector specifying names of fit measures returned by fitMeasures
to be copied/saved. Only relevant if object is class FitDiff.

writeArgs list of additional arguments to be passed to write.table

Value

The resulting output will be saved into a clipboard or a file. If using the clipboard function, users
may paste it in the other applications.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

14 combinequark

Examples

Not run:
library(lavaan)
HW.model <- ' visual =~ x1 + c1*x2 + x3

textual =~ x4 + c1*x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HW.model, data=HolzingerSwineford1939, group="school", meanstructure=TRUE)

Copy the summary of the lavaan object
clipboard(fit)

Copy the modification indices and the model fit from the miPowerFit function
clipboard(fit, "mifit")

Copy the parameter estimates
clipboard(fit, "coef")

Copy the standard errors
clipboard(fit, "se")

Copy the sample statistics
clipboard(fit, "samp")

Copy the fit measures
clipboard(fit, "fit")

Save the summary of the lavaan object
saveFile(fit, "out.txt")

Save the modification indices and the model fit from the miPowerFit function
saveFile(fit, "out.txt", "mifit")

Save the parameter estimates
saveFile(fit, "out.txt", "coef")

Save the standard errors
saveFile(fit, "out.txt", "se")

Save the sample statistics
saveFile(fit, "out.txt", "samp")

Save the fit measures
saveFile(fit, "out.txt", "fit")

End(Not run)

combinequark Combine the results from the quark function

combinequark 15

Description

This function builds upon the quark function to provide a final dataset comprised of the original
dataset provided to quark and enough principal components to be able to account for a certain level
of variance in the data.

Usage

combinequark(quark, percent)

Arguments

quark Provide the quark object that was returned. It should be a list of objects. Make
sure to include it in its entirety.

percent Provide a percentage of variance that you would like to have explained. That
many components (columns) will be extracted and kept with the output dataset.
Enter this variable as a number WITHOUT a percentage sign.

Value

The output of this function is the original dataset used in quark combined with enough principal
component scores to be able to account for the amount of variance that was requested.

Author(s)

Steven R. Chesnut (University of Southern Mississippi <Steven.Chesnut@usm.edu>)

See Also

quark

Examples

set.seed(123321)
dat <- HolzingerSwineford1939[,7:15]
misspat <- matrix(runif(nrow(dat) * 9) < 0.3, nrow(dat))
dat[misspat] <- NA
dat <- cbind(HolzingerSwineford1939[,1:3], dat)

quark.list <- quark(data = dat, id = c(1, 2))

final.data <- combinequark(quark = quark.list, percent = 80)

16 compareFit

compareFit Build an object summarizing fit indices across multiple models

Description

This function will create the template to compare fit indices across multiple fitted lavaan objects.
The results can be exported to a clipboard or a file later.

Usage

compareFit(..., nested = TRUE, argsLRT = list(), indices = TRUE,
baseline.model = NULL)

Arguments

... fitted lavaan models or list(s) of lavaan objects. lavaan.mi objects are also
accepted, but all models must belong to the same class.

nested logical indicating whether the models in ... are nested. See net for an em-
pirical test of nesting.

argsLRT list of arguments to pass to lavTestLRT, as well as to lavTestLRT.mi and
fitMeasures when comparing lavaan.mi models.

indices logical indicating whether to return fit indices from the fitMeasures function.

baseline.model optional fitted lavaan model passed to fitMeasures to calculate incremental
fit indices.

Value

A FitDiff object that saves model fit comparisons across multiple models. If the models are not
nested, only fit indices for each model are returned. If the models are nested, the differences in fit
indices are additionally returned, as well as test statistics comparing each sequential pair of models
(ordered by their degrees of freedom).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

FitDiff, clipboard

dat2way 17

Examples

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit1 <- cfa(HS.model, data = HolzingerSwineford1939)

non-nested model
m2 <- ' f1 =~ x1 + x2 + x3 + x4

f2 =~ x5 + x6 + x7 + x8 + x9 '
fit2 <- cfa(m2, data = HolzingerSwineford1939)
compareFit(fit1, fit2, nested = FALSE)

nested model comparisons:
out <- measurementInvariance(model = HS.model, data = HolzingerSwineford1939,

group = "school", quiet = TRUE)
compareFit(out)

Not run:
also applies to lavaan.mi objects (fit model to multiple imputations)
set.seed(12345)
HSMiss <- HolzingerSwineford1939[, paste("x", 1:9, sep = "")]
HSMiss$x5 <- ifelse(HSMiss$x1 <= quantile(HSMiss$x1, .3), NA, HSMiss$x5)
HSMiss$x9 <- ifelse(is.na(HSMiss$x5), NA, HSMiss$x9)
HSMiss$school <- HolzingerSwineford1939$school
HS.amelia <- amelia(HSMiss, m = 20, noms = "school")
imps <- HS.amelia$imputations

request robust test statistics
mgfit2 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm")
mgfit1 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm",

group.equal = "loadings")
mgfit0 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm",

group.equal = c("loadings","intercepts"))

request the strictly-positive robust test statistics
compareFit(scalar = mgfit0, metric = mgfit1, config = mgfit2,

argsLRT = list(asymptotic = TRUE,
method = "satorra.bentler.2010"))

End(Not run)

dat2way Simulated Dataset to Demonstrate Two-way Latent Interaction

18 dat3way

Description

A simulated data set with 2 independent factors and 1 dependent factor where each factor has three
indicators

Usage

dat2way

Format

A data.frame with 500 observations of 9 variables.

x1 The first indicator of the first independent factor

x2 The second indicator of the first independent factor

x3 The third indicator of the first independent factor

x4 The first indicator of the second independent factor

x5 The second indicator of the second independent factor

x6 The third indicator of the second independent factor

x7 The first indicator of the dependent factor

x8 The second indicator of the dependent factor

x9 The third indicator of the dependent factor

Source

Data were generated by the mvrnorm function in the MASS package.

Examples

head(dat2way)

dat3way Simulated Dataset to Demonstrate Three-way Latent Interaction

Description

A simulated data set with 3 independent factors and 1 dependent factor where each factor has three
indicators

Usage

dat3way

datCat 19

Format

A data.frame with 500 observations of 12 variables.

x1 The first indicator of the first independent factor

x2 The second indicator of the first independent factor

x3 The third indicator of the first independent factor

x4 The first indicator of the second independent factor

x5 The second indicator of the second independent factor

x6 The third indicator of the second independent factor

x7 The first indicator of the third independent factor

x8 The second indicator of the third independent factor

x9 The third indicator of the third independent factor

x10 The first indicator of the dependent factor

x11 The second indicator of the dependent factor

x12 The third indicator of the dependent factor

Source

Data were generated by the mvrnorm function in the MASS package.

Examples

head(dat3way)

datCat Simulated Data set to Demonstrate Categorical Measurement Invari-
ance

Description

A simulated data set with 2 factors with 4 indicators each separated into two groups

Usage

datCat

Format

A data.frame with 200 observations of 9 variables.

g Sex of respondents

u1 Indicator 1

u2 Indicator 2

u3 Indicator 3

20 discriminantValidity

u4 Indicator 4

u5 Indicator 5

u6 Indicator 6

u7 Indicator 7

u8 Indicator 8

Source

Data were generated using the lavaan package.

Examples

head(datCat)

discriminantValidity Calculate discriminant validity statistics

Description

Calculate discriminant validity statistics based on a fitted lavaan object

Usage

discriminantValidity(object, cutoff = 0.9, merge = FALSE, level = 0.95)

Arguments

object The lavaan model object returned by the cfa function.

cutoff A cutoff to be used in the constrained models in likelihood ratio tests.

merge Whether the constrained models should be constructed by merging two factors
as one. Implies cutoff = 1.

level The confidence level required.

Details

Evaluated on the measurement scale level, discriminant validity is commonly evaluated by checking
if each pair of latent correlations is sufficiently below one (in absolute value) that the latent variables
can be thought of representing two distinct constructs.

discriminantValidity function calculates two sets of statistics that are commonly used in dis-
criminant validity evaluation. The first set are factor correlation estimates and their confidence
intervals. The second set is a series of nested model tests, where the baseline model is compared
against as set of constrained models that are constructed by constraining each factor correlation to
the specified cutoff one at a time.

The function assume that the object is set of confirmatory factor analysis results where the latent
variables are scaled by fixing their variances to 1s. If the model is not a CFA model, the function will

EFA-class 21

calculate the statistics for the correlations among exogenous latent variables, but for the residual
variances with endogenous variables. If the latent variables are scaled in some other way (e.g.
fixing the first loadings), the function issues a warning and re-estimates the model by fixing latent
variances to 1 (and estimating all loadings) so that factor covariances are already estimated as
correlations.

The likelihood ratio tests are done by comparing the original baseline model against more con-
strained alternatives. By default, these alternatives are constructed by fixing each correlation at a
time to a cutoff value. The typical purpose of this test is to demonstrate that the estimated factor
correlation is well below the cutoff and a significant chi2 statistic thus indicates support for dis-
criminant validity. In some cases, the original correlation estimate may already be greater than the
cutoff, making it redundant to fit a "restricted" model. When this happens, the likelihood ratio test
will be replaced by comparing the baseline model against itself. For correlations that are estimated
to be negative, a negation of the cutoff is used in the constrained model.

Another alternative is to do a nested model comparison against a model where two factors are
merged as one by setting the merge argument to TRUE. In this comparison, the constrained model is
constructed by removing one of the correlated factors from the model and assigning its indicators
to the factor that remains in the model.

Value

A data.frame of latent variable correlation estimates, their confidence intervals, and a likelihood
ratio tests against constrained models. with the following attributes:

baseline The baseline model after possible rescaling.

constrained A list of the fitted constrained models used in the likelihood ratio test.

Examples

library(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
discriminantValidity(fit)
discriminantValidity(fit, merge = TRUE)

EFA-class Class For Rotated Results from EFA

Description

This class contains the results of rotated exploratory factor analysis

22 EFA-class

Usage

S4 method for signature 'EFA'
show(object)

S4 method for signature 'EFA'
summary(object, suppress = 0.1, sort = TRUE)

Arguments

object object of class EFA

suppress any standardized loadings less than the specified value will not be printed to the
screen

sort logical. If TRUE (default), factor loadings will be sorted by their size in the
console output

Slots

loading Rotated standardized factor loading matrix

rotate Rotation matrix

gradRotate gradient of the objective function at the rotated loadings

convergence Convergence status

phi: Factor correlation matrix. Will be an identity matrix if orthogonal rotation is used.

se Standard errors of the rotated standardized factor loading matrix

method Method of rotation

call The command used to generate this object

Objects from the Class

Objects can be created via the orthRotate or oblqRotate function.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

efaUnrotate; orthRotate; oblqRotate

Examples

unrotated <- efaUnrotate(HolzingerSwineford1939, nf = 3,
varList = paste0("x", 1:9), estimator = "mlr")

summary(unrotated, std = TRUE)
lavInspect(unrotated, "std")

Rotated by Quartimin

efa.ekc 23

rotated <- oblqRotate(unrotated, method = "quartimin")
summary(rotated)

efa.ekc Empirical Kaiser criterion

Description

Identify the number of factors to extract based on the Empirical Kaiser Criterion (EKC). The anal-
ysis can be run on a data.frame or data matrix (data), or on a correlation or covariance matrix
(sample.cov) and the sample size (sample.nobs). A data.frame is returned with two columns:
the eigenvalues from your data or covariance matrix and the reference eigenvalues. The number of
factors suggested by the Empirical Kaiser Criterion (i.e. the sample eigenvalues greater than the
reference eigenvalues), and the number of factors suggested by the original Kaiser Criterion (i.e.
sample eigenvalues > 1) is printed above the output.

Usage

efa.ekc(data = NULL, sample.cov = NULL, sample.nobs = NULL,
missing = "default", ordered = NULL, plot = TRUE)

Arguments

data A data.frame or data matrix containing columns of variables to be factor-
analyzed.

sample.cov A covariance or correlation matrix can be used, instead of data, to estimate the
eigenvalues.

sample.nobs Number of observations (i.e. sample size) if is.null(data) and sample.cov
is used.

missing If "listwise", cases with missing values are removed listwise from the data frame.
If "direct" or "ml" or "fiml" and the estimator is maximum likelihood, an EM al-
gorithm is used to estimate the unrestricted covariance matrix (and mean vector).
If "pairwise", pairwise deletion is used. If "default", the value is set depending
on the estimator and the mimic option (see details in lavCor).

ordered Character vector. Only used if object is a data.frame. Treat these variables
as ordered (ordinal) variables. Importantly, all other variables will be treated as
numeric (unless is.ordered == TRUE in data). (see also lavCor)

plot logical. Whether to print a scree plot comparing the sample eigenvalues with
the reference eigenvalues.

Value

A data.frame showing the sample and reference eigenvalues.
The number of factors suggested by the Empirical Kaiser Criterion (i.e. the sample eigenvalues
greater than the reference eigenvalues) is returned as an attribute (see Examples).
The number of factors suggested by the original Kaiser Criterion (i.e. sample eigenvalues > 1) is
also printed as a header to the data.frame

24 efaUnrotate

Author(s)

Ylenio Longo (University of Nottingham; <yleniolongo@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Braeken, J., & van Assen, M. A. L. M. (in press). An empirical Kaiser criterion. Psychological
Methods, 22(3), 450–466. doi:10.1037/met0000074

Examples

Simulate data with 3 factors
model <- '

f1 =~ .3*x1 + .5*x2 + .4*x3
f2 =~ .3*x4 + .5*x5 + .4*x6
f3 =~ .3*x7 + .5*x8 + .4*x9

'
dat <- simulateData(model, seed = 123)
save summary statistics
myCovMat <- cov(dat)
myCorMat <- cor(dat)
N <- nrow(dat)

Run the EKC function
(out <- efa.ekc(dat))

To extract the recommended number of factors using the EKC:
attr(out, "nfactors")

If you do not have raw data, you can use summary statistics
(x1 <- efa.ekc(sample.cov = myCovMat, sample.nobs = N, plot = FALSE))
(x2 <- efa.ekc(sample.cov = myCorMat, sample.nobs = N, plot = FALSE))

efaUnrotate Analyze Unrotated Exploratory Factor Analysis Model

Description

This function will analyze unrotated exploratory factor analysis model. The unrotated solution can
be rotated by the orthRotate and oblqRotate functions.

Usage

efaUnrotate(data = NULL, nf, varList = NULL, start = TRUE, aux = NULL, ...)

efaUnrotate 25

Arguments

data A target data.frame

nf The desired number of factors

varList Target observed variables. If not specified, all variables in data will be used (or
sample.cov if is.null(data); see cfa for argument descriptions).

start Use starting values in the analysis from the factanal function. If FALSE, the
starting values from the lavaan package will be used. TRUE is ignored with a
warning if the aux argument is used.

aux The list of auxiliary variables. These variables will be included in the model by
the saturated-correlates approach to account for missing information.

... Other arguments in the cfa function in the lavaan package, such as ordered,
se, estimator, or sample.cov and sample.nobs.

Details

This function will generate a lavaan script for unrotated exploratory factor analysis model such that
(1) all factor loadings are estimated, (2) factor variances are fixed to 1, (3) factor covariances are
fixed to 0, and (4) the dot products of any pairs of columns in the factor loading matrix are fixed to
zero (Johnson & Wichern, 2002). The reason for creating this function to supplement the factanal
function is that users can enjoy some advanced features from the lavaan package, such as scaled χ2,
diagonally weighted least squares estimation for ordinal indicators, or full-information maximum
likelihood (FIML) to handle incomplete data.

Value

A lavaan output of unrotated exploratory factor analysis solution.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Examples

unrotated <- efaUnrotate(HolzingerSwineford1939, nf = 3,
varList = paste0("x", 1:9), estimator = "mlr")

summary(unrotated, std = TRUE)
inspect(unrotated, "std")

dat <- data.frame(HolzingerSwineford1939,
z = rnorm(nrow(HolzingerSwineford1939), 0, 1))

unrotated2 <- efaUnrotate(dat, nf = 2, varList = paste0("x", 1:9), aux = "z")

26 exLong

exLong Simulated Data set to Demonstrate Longitudinal Measurement Invari-
ance

Description

A simulated data set with 1 factors with 3 indicators in three timepoints

Usage

exLong

Format

A data.frame with 200 observations of 10 variables.

sex Sex of respondents

y1t1 Indicator 1 in Time 1

y2t1 Indicator 2 in Time 1

y3t1 Indicator 3 in Time 1

y1t2 Indicator 1 in Time 2

y2t2 Indicator 2 in Time 2

y3t2 Indicator 3 in Time 2

y1t3 Indicator 1 in Time 3

y2t3 Indicator 2 in Time 3

y3t3 Indicator 3 in Time 3

Source

Data were generated using the simsem package.

Examples

head(exLong)

findRMSEApower 27

findRMSEApower Find the statistical power based on population RMSEA

Description

Find the proportion of the samples from the sampling distribution of RMSEA in the alternative
hypothesis rejected by the cutoff dervied from the sampling distribution of RMSEA in the null hy-
pothesis. This function can be applied for both test of close fit and test of not-close fit (MacCallum,
Browne, & Suguwara, 1996)

Usage

findRMSEApower(rmsea0, rmseaA, df, n, alpha = 0.05, group = 1)

Arguments

rmsea0 Null RMSEA

rmseaA Alternative RMSEA

df Model degrees of freedom

n Sample size of a dataset

alpha Alpha level used in power calculations

group The number of group that is used to calculate RMSEA.

Details

This function find the proportion of sampling distribution derived from the alternative RMSEA that
is in the critical region derived from the sampling distribution of the null RMSEA. If rmseaA is
greater than rmsea0, the test of close fit is used and the critical region is in the right hand side of the
null sampling distribution. On the other hand, if rmseaA is less than rmsea0, the test of not-close fit
is used and the critical region is in the left hand side of the null sampling distribution (MacCallum,
Browne, & Suguwara, 1996).

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.
doi:10.1037/1082-989X.1.2.130

28 findRMSEApowernested

See Also

• plotRMSEApower to plot the statistical power based on population RMSEA given the sample
size

• plotRMSEAdist to visualize the RMSEA distributions

• findRMSEAsamplesize to find the minium sample size for a given statistical power based on
population RMSEA

Examples

findRMSEApower(rmsea0 = .05, rmseaA = .08, df = 20, n = 200)

findRMSEApowernested Find power given a sample size in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is
just over the specified power.

Usage

findRMSEApowernested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A,
rmsea1B = NULL, dfA, dfB, n, alpha = 0.05, group = 1)

Arguments

rmsea0A The H0 baseline RMSEA

rmsea0B The H0 alternative RMSEA (trivial misfit)

rmsea1A The H1 baseline RMSEA

rmsea1B The H1 alternative RMSEA (target misfit to be rejected)

dfA degree of freedom of the more-restricted model

dfB degree of freedom of the less-restricted model

n Sample size

alpha The alpha level

group The number of group in calculating RMSEA

Author(s)

Bell Clinton

Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

findRMSEAsamplesize 29

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19–35.
doi:10.1037/1082-989X.11.1.19

See Also

• plotRMSEApowernested to plot the statistical power for nested model comparison based on
population RMSEA given the sample size

• findRMSEAsamplesizenested to find the minium sample size for a given statistical power in
nested model comparison based on population RMSEA

Examples

findRMSEApowernested(rmsea0A = 0.06, rmsea0B = 0.05, rmsea1A = 0.08,
rmsea1B = 0.05, dfA = 22, dfB = 20, n = 200,
alpha = 0.05, group = 1)

findRMSEAsamplesize Find the minimum sample size for a given statistical power based on
population RMSEA

Description

Find the minimum sample size for a specified statistical power based on population RMSEA. This
function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, &
Suguwara, 1996)

Usage

findRMSEAsamplesize(rmsea0, rmseaA, df, power = 0.8, alpha = 0.05, group = 1)

Arguments

rmsea0 Null RMSEA

rmseaA Alternative RMSEA

df Model degrees of freedom

power Desired statistical power to reject misspecified model (test of close fit) or retain
good model (test of not-close fit)

alpha Alpha level used in power calculations

group The number of group that is used to calculate RMSEA.

30 findRMSEAsamplesizenested

Details

This function find the minimum sample size for a specified power based on an iterative routine.
The sample size keep increasing until the calculated power from findRMSEApower function is just
over the specified power. If group is greater than 1, the resulting sample size is the sample size per
group.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.
doi:10.1037/1082-989X.1.2.130

See Also

• plotRMSEApower to plot the statistical power based on population RMSEA given the sample
size

• plotRMSEAdist to visualize the RMSEA distributions

• findRMSEApower to find the statistical power based on population RMSEA given a sample
size

Examples

findRMSEAsamplesize(rmsea0 = .05, rmseaA = .08, df = 20, power = 0.80)

findRMSEAsamplesizenested

Find sample size given a power in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is
just over the specified power.

Usage

findRMSEAsamplesizenested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A,
rmsea1B = NULL, dfA, dfB, power = 0.8, alpha = 0.05, group = 1)

findRMSEAsamplesizenested 31

Arguments

rmsea0A The H0 baseline RMSEA

rmsea0B The H0 alternative RMSEA (trivial misfit)

rmsea1A The H1 baseline RMSEA

rmsea1B The H1 alternative RMSEA (target misfit to be rejected)

dfA degree of freedom of the more-restricted model.

dfB degree of freedom of the less-restricted model.

power The desired statistical power.

alpha The alpha level.

group The number of group in calculating RMSEA.

Author(s)

Bell Clinton

Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19-35.
doi:10.1037/1082-989X.11.1.19

See Also

• plotRMSEApowernested to plot the statistical power for nested model comparison based on
population RMSEA given the sample size

• findRMSEApowernested to find the power for a given sample size in nested model comparison
based on population RMSEA

Examples

findRMSEAsamplesizenested(rmsea0A = 0, rmsea0B = 0, rmsea1A = 0.06,
rmsea1B = 0.05, dfA = 22, dfB = 20, power = 0.80,
alpha = .05, group = 1)

32 FitDiff-class

FitDiff-class Class For Representing A Template of Model Fit Comparisons

Description

This class contains model fit measures and model fit comparisons among multiple models

Usage

S4 method for signature 'FitDiff'
show(object)

S4 method for signature 'FitDiff'
summary(object, fit.measures = "default", nd = 3)

Arguments

object object of class FitDiff

fit.measures character vector naming fit indices the user can request from fitMeasures. If
"default", the fit measures will be c("chisq","df","pvalue","cfi","tli","rmsea","srmr","aic","bic").
If "all", all available fit measures will be returned.

nd number of digits printed

Slots

name character. The name of each model

model.class character. One class to which each model belongs

nested data.frame. Model fit comparisons between adjacently nested models that are ordered by
their degrees of freedom (df)

fit data.frame. Fit measures of all models specified in the name slot, ordered by their df

Objects from the Class

Objects can be created via the compareFit function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

compareFit; clipboard

fmi 33

Examples

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

out <- measurementInvariance(model = HS.model, data = HolzingerSwineford1939,
group = "school", quiet = TRUE)

modelDiff <- compareFit(out)
summary(modelDiff)
summary(modelDiff, fit.measures = "all")
summary(modelDiff, fit.measures = c("aic", "bic"))

Not run:
Save results to a file
saveFile(modelDiff, file = "modelDiff.txt")

Copy to a clipboard
clipboard(modelDiff)

End(Not run)

fmi Fraction of Missing Information.

Description

This function estimates the Fraction of Missing Information (FMI) for summary statistics of each
variable, using either an incomplete data set or a list of imputed data sets.

Usage

fmi(data, method = "saturated", group = NULL, ords = NULL,
varnames = NULL, exclude = NULL, fewImps = FALSE)

Arguments

data Either a single data.frame with incomplete observations, or a list of imputed
data sets.

method character. If "saturated" or "sat" (default), the model used to estimate FMI
is a freely estimated covariance matrix and mean vector for numeric variables,
and/or polychoric correlations and thresholds for ordered categorical variables,
for each group (if applicable). If "null", only means and variances are esti-
mated for numeric variables, and/or thresholds for ordered categorical variables
(i.e., covariances and/or polychoric correlations are constrained to zero). See
Details for more information.

34 fmi

group character. The optional name of a grouping variable, to request FMI in each
group.

ords character. Optional vector of names of ordered-categorical variables, which are
not already stored as class ordered in data.

varnames character. Optional vector of variable names, to calculate FMI for a subset of
variables in data. By default, all numeric and ordered variables will be in-
cluded, unless data is a single incomplete data.frame, in which case only
numeric variables can be used with FIML estimation. Other variable types will
be removed.

exclude character. Optional vector of variable names to exclude from the analysis.

fewImps logical. If TRUE, use the estimate of FMI that applies a correction to the esti-
mated between-imputation variance. Recommended when there are few impu-
tations; makes little difference when there are many imputations. Ignored when
data is not a list of imputed data sets.

Details

The function estimates a saturated model with lavaan for a single incomplete data set using FIML,
or with lavaan.mi for a list of imputed data sets. If method = "saturated", FMI will be estiamted
for all summary statistics, which could take a lot of time with big data sets. If method = "null", FMI
will only be estimated for univariate statistics (e.g., means, variances, thresholds). The saturated
model gives more reliable estimates, so it could also help to request a subset of variables from a
large data set.

Value

fmi returns a list with at least 2 of the following:

Covariances A list of symmetric matrices: (1) the estimated/pooled covariance matrix, or
a list of group-specific matrices (if applicable) and (2) a matrix of FMI, or
a list of group-specific matrices (if applicable). Only available if method =
"saturated".

Variances The estimated/pooled variance for each numeric variable. Only available if
method = "null" (otherwise, it is on the diagonal of Covariances).

Means The estimated/pooled mean for each numeric variable.

Thresholds The estimated/pooled threshold(s) for each ordered-categorical variable.

message A message indicating caution when the null model is used.

Author(s)

Mauricio Garnier Villarreal (University of Kansas; <mauricio.garniervillarreal@marquette.edu>)
Terrence Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.

htmt 35

Savalei, V. & Rhemtulla, M. (2012). On obtaining estimates of the fraction of missing informa-
tion from full information maximum likelihood. Structural Equation Modeling, 19(3), 477–494.
doi:10.1080/10705511.2012.687669

Wagner, J. (2010). The fraction of missing information as a tool for monitoring the quality of survey
data. Public Opinion Quarterly, 74(2), 223–243. doi:10.1093/poq/nfq007

Examples

HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
"ageyr","agemo","school")]

set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

calculate FMI (using FIML, provide partially observed data set)
(out1 <- fmi(HSMiss, exclude = "school"))
(out2 <- fmi(HSMiss, exclude = "school", method = "null"))
(out3 <- fmi(HSMiss, varnames = c("x5","x6","x7","x8","x9")))
(out4 <- fmi(HSMiss, group = "school"))

Not run:
ordered-categorical data
data(datCat)
lapply(datCat, class)
impose missing values
set.seed(123)
for (i in 1:8) datCat[sample(1:nrow(datCat), size = .1*nrow(datCat)), i] <- NA
impute data m = 3 times
library(Amelia)
set.seed(456)
impout <- amelia(datCat, m = 3, noms = "g", ords = paste0("u", 1:8), p2s = FALSE)
imps <- impout$imputations
calculate FMI, using list of imputed data sets
fmi(imps, group = "g")

End(Not run)

htmt Assessing Discriminant Validity using Heterotrait-Monotrait Ratio

Description

This function assesses discriminant validity through the heterotrait-monotrait ratio (HTMT) of the
correlations (Henseler, Ringlet & Sarstedt, 2015). Specifically, it assesses the geometric-mean
correlation among indicators across constructs (i.e. heterotrait-heteromethod correlations) relative

36 htmt

to the geometric-mean correlation among indicators within the same construct (i.e. monotrait-
heteromethod correlations). The resulting HTMT values are interpreted as estimates of inter-
construct correlations. Absolute values of the correlations are recommended to calculate the HTMT
matrix. Correlations are estimated using the lavCor function in the lavaan package.

Usage

htmt(model, data = NULL, sample.cov = NULL, missing = "listwise",
ordered = NULL, absolute = TRUE)

Arguments

model lavaan model.syntax of a confirmatory factor analysis model where at least two
factors are required for indicators measuring the same construct.

data A data.frame or data matrix

sample.cov A covariance or correlation matrix can be used, instead of data, to estimate the
HTMT values.

missing If "listwise", cases with missing values are removed listwise from the data frame.
If "direct" or "ml" or "fiml" and the estimator is maximum likelihood, an EM al-
gorithm is used to estimate the unrestricted covariance matrix (and mean vector).
If "pairwise", pairwise deletion is used. If "default", the value is set depending
on the estimator and the mimic option (see details in lavCor).

ordered Character vector. Only used if object is a data.frame. Treat these variables
as ordered (ordinal) variables. Importantly, all other variables will be treated as
numeric (unless is.ordered in data). (see also lavCor)

absolute logical. Whether HTMT values should be estimated based on absolute correla-
tions (recommended and default is TRUE)

Value

A matrix showing HTMT values (i.e., discriminant validity) between each pair of factors

Author(s)

Ylenio Longo (University of Nottingham; <yleniolongo@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant valid-
ity in variance-based structural equation modeling. Journal of the Academy of Marketing Science,
43(1), 115–135. doi:10.1007/s11747-014-0403-8

Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing
in marketing: an analysis, causes for concern, and proposed remedies. Journal of the Academy of
Marketing Science, 44(1), 119–134. doi:10.1007/s11747-015-0455-4

imposeStart 37

Examples

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

dat <- HolzingerSwineford1939[, paste0("x", 1:9)]
htmt(HS.model, dat)

imposeStart Specify starting values from a lavaan output

Description

This function will save the parameter estimates of a lavaan output and impose those parameter
estimates as starting values for another analysis model. The free parameters with the same names
or the same labels across two models will be imposed the new starting values. This function may
help to increase the chance of convergence in a complex model (e.g., multitrait-multimethod model
or complex longitudinal invariance model).

Usage

imposeStart(out, expr, silent = TRUE)

Arguments

out The lavaan output that users wish to use the parameter estimates as staring
values for an analysis model

expr The original code that users use to run a lavaan model

silent Logical to print the parameter table with new starting values

Value

A fitted lavaan model

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

The following example show that the longitudinal weak invariance model
using effect coding was not convergent with three time points but convergent
with two time points. Thus, the parameter estimates from the model with
two time points are used as starting values of the three time points.
The model with new starting values is convergent properly.

38 imposeStart

weak2time <- '
Loadings
f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1

f1t2 =~ LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2

Factor Variances
f1t1 ~~ f1t1
f1t2 ~~ f1t2

Factor Covariances
f1t1 ~~ f1t2

Error Variances
y1t1 ~~ y1t1
y2t1 ~~ y2t1
y3t1 ~~ y3t1
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2

Error Covariances
y1t1 ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2

Factor Means
f1t1 ~ NA*1
f1t2 ~ NA*1

Measurement Intercepts
y1t1 ~ INT1*1
y2t1 ~ INT2*1
y3t1 ~ INT3*1
y1t2 ~ INT4*1
y2t2 ~ INT5*1
y3t2 ~ INT6*1

Constraints for Effect-coding Identification
LOAD1 == 3 - LOAD2 - LOAD3
INT1 == 0 - INT2 - INT3
INT4 == 0 - INT5 - INT6
'
model2time <- lavaan(weak2time, data = exLong)

weak3time <- '
Loadings
f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1

f1t2 =~ LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2
f1t3 =~ LOAD1*y1t3 + LOAD2*y2t3 + LOAD3*y3t3

Factor Variances
f1t1 ~~ f1t1

imposeStart 39

f1t2 ~~ f1t2
f1t3 ~~ f1t3

Factor Covariances
f1t1 ~~ f1t2 + f1t3
f1t2 ~~ f1t3

Error Variances
y1t1 ~~ y1t1
y2t1 ~~ y2t1
y3t1 ~~ y3t1
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2
y1t3 ~~ y1t3
y2t3 ~~ y2t3
y3t3 ~~ y3t3

Error Covariances
y1t1 ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2
y1t1 ~~ y1t3
y2t1 ~~ y2t3
y3t1 ~~ y3t3
y1t2 ~~ y1t3
y2t2 ~~ y2t3
y3t2 ~~ y3t3

Factor Means
f1t1 ~ NA*1
f1t2 ~ NA*1
f1t3 ~ NA*1

Measurement Intercepts
y1t1 ~ INT1*1
y2t1 ~ INT2*1
y3t1 ~ INT3*1
y1t2 ~ INT4*1
y2t2 ~ INT5*1
y3t2 ~ INT6*1
y1t3 ~ INT7*1
y2t3 ~ INT8*1
y3t3 ~ INT9*1

Constraints for Effect-coding Identification
LOAD1 == 3 - LOAD2 - LOAD3
INT1 == 0 - INT2 - INT3
INT4 == 0 - INT5 - INT6
INT7 == 0 - INT8 - INT9
'
The following command does not provide convergent result
model3time <- lavaan(weak3time, data = exLong)

40 indProd

Use starting values from the model with two time points
model3time <- imposeStart(model2time, lavaan(weak3time, data = exLong))
summary(model3time)

indProd Make products of indicators using no centering, mean centering,
double-mean centering, or residual centering

Description

The indProd function will make products of indicators using no centering, mean centering, double-
mean centering, or residual centering. The orthogonalize function is the shortcut of the indProd
function to make the residual-centered indicators products.

Usage

indProd(data, var1, var2, var3 = NULL, match = TRUE, meanC = TRUE,
residualC = FALSE, doubleMC = TRUE, namesProd = NULL)

orthogonalize(data, var1, var2, var3 = NULL, match = TRUE, namesProd = NULL)

Arguments

data The desired data to be transformed.
var1 Names or indices of the variables loaded on the first factor
var2 Names or indices of the variables loaded on the second factor
var3 Names or indices of the variables loaded on the third factor (for three-way inter-

action)
match Specify TRUE to use match-paired approach (Marsh, Wen, & Hau, 2004). If

FALSE, the resulting products are all possible products.
meanC Specify TRUE for mean centering the main effect indicator before making the

products
residualC Specify TRUE for residual centering the products by the main effect indicators

(Little, Bovaird, & Widaman, 2006).
doubleMC Specify TRUE for centering the resulting products (Lin et. al., 2010)
namesProd The names of resulting products

Value

The original data attached with the products.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>) Alexander Schoemann (East Carolina Uni-
versity; <schoemanna@ecu.edu>)

indProd 41

References

Marsh, H. W., Wen, Z. & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275–300. doi:10.1037/1082-989X.9.3.275

Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). Structural equation models of latent interac-
tions: Clarification of orthogonalizing and double-mean-centering strategies. Structural Equation
Modeling, 17(3), 374–391. doi:10.1080/10705511.2010.488999

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing pow-
ered and product terms: Implications for modeling interactions among latent variables. Structural
Equation Modeling, 13(4), 497–519. doi:10.1207/s15328007sem1304_1

See Also

• probe2WayMC For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering.

• probe3WayMC For probing the three-way latent interaction when the results are obtained from
mean-centering, or double-mean centering.

• probe2WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• probe3WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• plotProbe Plot the simple intercepts and slopes of the latent interaction.

Examples

Mean centering / two-way interaction / match-paired
dat <- indProd(attitude[, -1], var1 = 1:3, var2 = 4:6)

Residual centering / two-way interaction / match-paired
dat2 <- indProd(attitude[, -1], var1 = 1:3, var2 = 4:6, match = FALSE,

meanC = FALSE, residualC = TRUE, doubleMC = FALSE)

Double-mean centering / two-way interaction / match-paired
dat3 <- indProd(attitude[, -1], var1 = 1:3, var2 = 4:6, match = FALSE,

meanC = TRUE, residualC = FALSE, doubleMC = TRUE)

Mean centering / three-way interaction / match-paired
dat4 <- indProd(attitude[, -1], var1 = 1:2, var2 = 3:4, var3 = 5:6)

Residual centering / three-way interaction / match-paired
dat5 <- orthogonalize(attitude[, -1], var1 = 1:2, var2 = 3:4, var3 = 5:6,

match = FALSE)

Double-mean centering / three-way interaction / match-paired
dat6 <- indProd(attitude[, -1], var1 = 1:2, var2 = 3:4, var3 = 5:6,

match = FALSE, meanC = TRUE, residualC = TRUE,
doubleMC = TRUE)

42 kd

To add product-indicators to multiple-imputed data sets
Not run:
HSMiss <- HolzingerSwineford1939[, c(paste0("x", 1:9), "ageyr","agemo")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 3, p2s = FALSE)
imps <- HS.amelia$imputations # extract a list of imputations
apply indProd() to the list of data.frames
imps2 <- lapply(imps, indProd,

var1 = c("x1","x2","x3"), var2 = c("x4","x5","x6"))
verify:
lapply(imps2, head)

End(Not run)

kd Generate data via the Kaiser-Dickman (1962) algorithm.

Description

Given a covariance matrix and sample size, generate raw data that correspond to the covariance
matrix. Data can be generated to match the covariance matrix exactly, or to be a sample from the
population covariance matrix.

Usage

kd(covmat, n, type = c("exact", "sample"))

Arguments

covmat a symmetric, positive definite covariance matrix

n the sample size for the data that will be generated

type type of data generation. exact generates data that exactly correspond to covmat.
sample treats covmat as a poulation covariance matrix, generating a sample of
size n.

Details

By default, R’s cov() function divides by n-1. The data generated by this algorithm result in a
covariance matrix that matches covmat, but you must divide by n instead of n-1.

kd 43

Value

kd returns a data matrix of dimension n by nrow(covmat).

Author(s)

Ed Merkle (University of Missouri; <merklee@missouri.edu>)

References

Kaiser, H. F. and Dickman, K. (1962). Sample and population score matrices and sample corre-
lation matrices from an arbitrary population correlation matrix. Psychometrika, 27(2), 179–182.
doi:10.1007/BF02289635

Examples

First Example

Get data
dat <- HolzingerSwineford1939[, 7:15]
hs.n <- nrow(dat)

Covariance matrix divided by n
hscov <- ((hs.n-1)/hs.n) * cov(dat)

Generate new, raw data corresponding to hscov
newdat <- kd(hscov, hs.n)

Difference between new covariance matrix and hscov is minimal
newcov <- (hs.n-1)/hs.n * cov(newdat)
summary(as.numeric(hscov - newcov))

Generate sample data, treating hscov as population matrix
newdat2 <- kd(hscov, hs.n, type = "sample")

Another example

Define a covariance matrix
covmat <- matrix(0, 3, 3)
diag(covmat) <- 1.5
covmat[2:3,1] <- c(1.3, 1.7)
covmat[3,2] <- 2.1
covmat <- covmat + t(covmat)

Generate data of size 300 that have this covariance matrix
rawdat <- kd(covmat, 300)

Covariances are exact if we compute sample covariance matrix by
dividing by n (vs by n - 1)
summary(as.numeric((299/300)*cov(rawdat) - covmat))

Generate data of size 300 where covmat is the population covariance matrix

44 kurtosis

rawdat2 <- kd(covmat, 300)

kurtosis Finding excessive kurtosis

Description

Finding excessive kurtosis (g2) of an object

Usage

kurtosis(object, population = FALSE)

Arguments

object A vector used to find a excessive kurtosis

population TRUE to compute the parameter formula. FALSE to compute the sample statistic
formula.

Details

The excessive kurtosis computed is g2. The parameter excessive kurtosis γ2 formula is

γ2 =
µ4

µ2
2

− 3,

where µi denotes the i order central moment.

The excessive kurtosis formula for sample statistic g2 is

g2 =
k4
k22
,

where ki are the i order k-statistic.

The standard error of the excessive kurtosis is

V ar(ĝ2) =
24

N

where N is the sample size.

Value

A value of an excessive kurtosis with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

lavaan.mi-class 45

References

Weisstein, Eric W. (n.d.). Kurtosis. Retrived from MathWorld–A Wolfram Web Resource: http:
//mathworld.wolfram.com/Kurtosis.html

See Also

• skew Find the univariate skewness of a variable

• mardiaSkew Find the Mardia’s multivariate skewness of a set of variables

• mardiaKurtosis Find the Mardia’s multivariate kurtosis of a set of variables

Examples

kurtosis(1:5)

lavaan.mi-class Class for a lavaan Model Fitted to Multiple Imputations

Description

This class extends the lavaanList class, created by fitting a lavaan model to a list of data sets. In
this case, the list of data sets are multiple imputations of missing data.

Usage

S4 method for signature 'lavaan.mi'
show(object)

S4 method for signature 'lavaan.mi'
summary(object, se = TRUE, ci = FALSE,
level = 0.95, standardized = FALSE, rsquare = FALSE, fmi = FALSE,
scale.W = !asymptotic, omit.imps = c("no.conv", "no.se"),
asymptotic = FALSE, header = TRUE, output = "text",
fit.measures = FALSE)

S4 method for signature 'lavaan.mi'
nobs(object, total = TRUE)

S4 method for signature 'lavaan.mi'
coef(object, type = "free", labels = TRUE, omit.imps = c("no.conv", "no.se"))

S4 method for signature 'lavaan.mi'
vcov(object, type = c("pooled", "between", "within",
"ariv"), scale.W = TRUE, omit.imps = c("no.conv", "no.se"))

http://mathworld.wolfram.com/Kurtosis.html
http://mathworld.wolfram.com/Kurtosis.html

46 lavaan.mi-class

S4 method for signature 'lavaan.mi'
anova(object, ...)

S4 method for signature 'lavaan.mi'
fitMeasures(object, fit.measures = "all",
baseline.model = NULL, output = "vector", omit.imps = c("no.conv",
"no.se"), ...)

S4 method for signature 'lavaan.mi'
fitmeasures(object, fit.measures = "all",
baseline.model = NULL, output = "vector", omit.imps = c("no.conv",
"no.se"), ...)

S4 method for signature 'lavaan.mi'
fitted(object, omit.imps = c("no.conv", "no.se"))

S4 method for signature 'lavaan.mi'
fitted.values(object, omit.imps = c("no.conv", "no.se"))

S4 method for signature 'lavaan.mi'
residuals(object, type = c("raw", "cor"), omit.imps = c("no.conv", "no.se"))

S4 method for signature 'lavaan.mi'
resid(object, type = c("raw", "cor"), omit.imps = c("no.conv", "no.se"))

Arguments

object An object of class lavaan.mi
se, ci, level, standardized, rsquare, header, output

See parameterEstimates. output can also be passed to fitMeasures.

fmi logical indicating whether to include the Fraction Missing Information (FMI)
for parameter estimates in the summary output (see Value section).

scale.W logical. If TRUE (default), the vcov method will calculate the pooled covari-
ance matrix by scaling the within-imputation component by the ARIV (see En-
ders, 2010, p. 235, for definition and formula). Otherwise, the pooled ma-
trix is calculated as the weighted sum of the within-imputation and between-
imputation components (see Enders, 2010, ch. 8, for details). This in turn af-
fects how the summary method calcualtes its pooled standard errors, as well as
the Wald test (lavTestWald.mi).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD

lavaan.mi-class 47

solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion. Specific imputation numbers can also be included in this argument, in case
users want to apply their own custom omission criteria (or simulations can use
different numbers of imputations without redundantly refitting the model).

asymptotic logical. If FALSE (typically a default, but see Value section for details using
various methods), pooled tests (of fit or pooled estimates) will be F or t statistics
with associated degrees of freedom (df). If TRUE, the (denominator) df are as-
sumed to be sufficiently large for a t statistic to follow a normal distribution, so
it is printed as a z statisic; likewise, F times its numerator df is printed, assumed
to follow a χ2 distribution.

fit.measures, baseline.model

See fitMeasures. summary(object,fit.measures = TRUE) will print (but not
return) a table of fit measures to the console.

total logical (default: TRUE) indicating whether the nobs method should return the
total sample size or (if FALSE) a vector of group sample sizes.

type The meaning of this argument varies depending on which method it it used
for. Find detailed descriptions in the Value section under coef, vcov, and
residuals.

labels logical indicating whether the coef output should include parameter labels.
Default is TRUE.

... Additional arguments passed to lavTestLRT.mi, or subsequently to lavTestLRT.

Value

coef signature(object = "lavaan.mi",type = "free",labels = TRUE,omit.imps
= c("no.conv","no.se")): See lavaan. Returns the pooled point estimates
(i.e., averaged across imputed data sets; see Rubin, 1987).

vcov signature(object = "lavaan.mi",scale.W = TRUE,omit.imps = c("no.conv","no.se"),type
= c("pooled","between","within","ariv")): By default, returns the pooled
covariance matrix of parameter estimates (type = "pooled"), the within-imputations
covariance matrix (type = "within"), the between-imputations covariance ma-
trix (type = "between"), or the average relative increase in variance (type =
"ariv") due to missing data.

fitted.values signature(object = "lavaan.mi",omit.imps = c("no.conv","no.se")): See
lavaan. Returns model-implied moments, evaluated at the pooled point esti-
mates.

fitted alias for fitted.values

residuals signature(object = "lavaan.mi",type = c("raw","cor"),omit.imps = c("no.conv","no.se")):
See lavaan. By default (type = "raw"), returns the difference between the
model-implied moments from fitted.values and the pooled observed mo-
ments (i.e., averaged across imputed data sets). Standardized residuals are also
available, using Bollen’s (type = "cor" or "cor.bollen") or Bentler’s (type =
"cor.bentler") formulas.

resid alias for residuals

48 lavaan.mi-class

nobs signature(object = "lavaan.mi",total = TRUE): either the total (default) sam-
ple size or a vector of group sample sizes (total = FALSE).

anova signature(object = "lavaan.mi",...): Returns a test of model fit for a sin-
gle model (object) or test(s) of the difference(s) in fit between nested models
passed via See lavTestLRT.mi and compareFit for details.

fitMeasures signature(object = "lavaan.mi",fit.measures = "all",baseline.model
= NULL,output = "vector",omit.imps = c("no.conv","no.se"),...): See
lavaan’s fitMeasures for details. Pass additional arguments to lavTestLRT.mi
via

fitmeasures alias for fitMeasures.

show signature(object = "lavaan.mi"): returns a message about convergence rates
and estimation problems (if applicable) across imputed data sets.

summary signature(object = "lavaan.mi",se = TRUE,ci = FALSE,level = .95,standardized
= FALSE,rsquare = FALSE,fmi = FALSE,scale.W = !asymptotic,omit.imps =
c("no.conv","no.se"),asymptotic = FALSE,header = TRUE,output = "text",fit.measures
= FALSE): see parameterEstimates for details. By default, summary returns
pooled point and SE estimates, along with t test statistics and their associated
df and p values. If ci = TRUE, confidence intervales are returned with the spec-
ified confidence level (default 95% CI). If asymptotic = TRUE, z instead of
t tests are returned. standardized solution(s) can also be requested by name
("std.lv" or "std.all") or both are returned with TRUE. R-squared for endoge-
nous variables can be requested, as well as the Fraction Missing Information
(FMI) for parameter estimates. By default, the output will appear like lavaan’s
summary output, but if output == "data.frame", the returned data.frame will
resemble the parameterEstimates output. The scale.W argument is passed to
vcov (see description above). Setting fit.measures=TRUE will additionally
print fit measures to the console, but they will not be returned.

Slots

coefList list of estimated coefficients in matrix format (one per imputation) as output by lavInspect(fit,"est")

phiList list of model-implied latent-variable covariance matrices (one per imputation) as output
by lavInspect(fit,"cov.lv")

miList list of modification indices output by modindices

seed integer seed set before running imputations

lavListCall call to lavaanList used to fit the model to the list of imputed data sets in @DataList,
stored as a list of arguments

imputeCall call to imputation function (if used), stored as a list of arguments

convergence list of logical vectors indicating whether, for each imputed data set, (1) the model
converged on a solution, (2) SEs could be calculated, (3) the (residual) covariance matrix of
latent variables (Ψ) is non-positive-definite, and (4) the residual covariance matrix of observed
variables (Θ) is non-positive-definite.

lavaanList_slots All remaining slots are from lavaanList, but runMI only populates a subset
of the list slots, two of them with custom information:

DataList The list of imputed data sets

lavaan2emmeans 49

SampleStatsList List of output from lavInspect(fit,"sampstat") applied to each fitted model
ParTableList See lavaanList

vcovList See lavaanList

testList See lavaanList

h1List See lavaanList. An additional element is added to the list: $PT is the "saturated"
model’s parameter table, returned by lav_partable_unrestricted.

baselineList See lavaanList

Objects from the Class

See the runMI function for details. Wrapper functions include lavaan.mi, cfa.mi, sem.mi, and
growth.mi.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Asparouhov, T., & Muthen, B. (2010). Chi-square statistics with multiple imputation. Technical
Report. Retrieved from www.statmodel.com

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from
https://www.jstor.org/stable/24303994

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data
sets. Biometrika, 79(1), 103–111. doi:10.2307/2337151

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.

Examples

See ?runMI help page

lavaan2emmeans emmeans Support Functions for lavaan Models

Description

Provide emmeans support for lavaan objects

Usage

recover_data.lavaan(object, lavaan.DV, ...)

emm_basis.lavaan(object, trms, xlev, grid, lavaan.DV, ...)

50 lavaan2emmeans

Arguments

object An object of class lavaan. See Details.

lavaan.DV character string maming the variable(s) for which expected marginal means /
trends should be produced. A vector of names indicates a multivariate outcome,
treated by default as repeated measures.

... Further arguments passed to emmeans::recover_data.lm or emmeans::emm_basis.lm
trms, xlev, grid

See emmeans::emm_basis

Details

Supported DVs: lavaan.DV must be an endogenous variable, by appearing on the left-hand
side of either a regression operator ("~") or an intercept operator ("~1"), or both.

lavaan.DV can also be a vector of endogenous variable, in which case they will be treated by
emmeans as a multivariate outcome (often, this indicates repeated measures) represented by an
additional factor named rep.meas by default. The rep.meas= argument can be used to overwrite
this default name.

Unsupported Models: This functionality does not support the following models:

• Multi-level models are not supported.
• Models not fit to a data.frame (i.e., models fit to a covariance matrix).

Dealing with Fixed Parameters: Fixed parameters (set with lavaan’s modifiers) are treated
as-is: their values are set by the users, and they have a SE of 0 (as such, they do not co-vary with
any other parameter).

Dealing with Multigroup Models: If a multigroup model is supplied, a factor is added to the
reference grid, the name matching the group argument supplied when fitting the model. Note that
you must set nesting = NULL.

Dealing with Missing Data: Limited testing suggests that these functions do work when the
model was fit to incomplete data.

Dealing with Factors: By default emmeans recognizes binary variables (0,1) as a "factor" with
two levels (and not a continuous variable). With some clever contrast defenitions it should be
possible to get the desired emmeans / contasts. See example below.

Author(s)

Mattan S. Ben-Shachar (Ben-Gurion University of the Negev; <matanshm@post.bgu.ac.il>)

Examples

Not run:

library(lavaan)
library(emmeans)

lavaan2emmeans 51

Moderation Analysis

mean_sd <- function(x) mean(x) + c(-sd(x), 0, sd(x))

model <- '
regressions
Sepal.Length ~ b1 * Sepal.Width + b2 * Petal.Length + b3 * Sepal.Width:Petal.Length

define mean parameter label for centered math for use in simple slopes
Sepal.Width ~ Sepal.Width.mean * 1

define variance parameter label for centered math for use in simple slopes
Sepal.Width ~~ Sepal.Width.var * Sepal.Width

simple slopes for condition effect
SD.below := b2 + b3 * (Sepal.Width.mean - sqrt(Sepal.Width.var))
mean := b2 + b3 * (Sepal.Width.mean)
SD.above := b2 + b3 * (Sepal.Width.mean + sqrt(Sepal.Width.var))
'

semFit <- sem(model = model,
data = iris)

Compare simple slopes
From `emtrends`
test(

emtrends(semFit, ~ Sepal.Width, "Petal.Length",
lavaan.DV = "Sepal.Length",
cov.red = mean_sd)

)

From lavaan
parameterEstimates(semFit, output = "pretty")[13:15,]
Identical slopes.
SEs differ due to lavaan estimating uncertainty of the mean / SD
of Sepal.Width, whereas emmeans uses the mean+-SD as is (fixed).

Latent DV

model <- '
LAT1 =~ Sepal.Length + Sepal.Width

LAT1 ~ b1 * Petal.Width + 1 * Petal.Length

Petal.Length ~ Petal.Length.mean * 1

V1 := 1 * Petal.Length.mean + 1 * b1
V2 := 1 * Petal.Length.mean + 2 * b1
'

semFit <- sem(model = model,

52 lavaan2emmeans

data = iris, std.lv = TRUE)

Compare emmeans
From emmeans
test(
emmeans(semFit, ~ Petal.Width,

lavaan.DV = "LAT1",
at = list(Petal.Width = 1:2))

)

From lavaan
parameterEstimates(semFit, output = "pretty")[15:16,]
Identical means.
SEs differ due to lavaan estimating uncertainty of the mean
of Petal.Length, whereas emmeans uses the mean as is.

Multi-Variate DV

model <- '
ind60 =~ x1 + x2 + x3

metric invariance
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

scalar invariance
y1 + y5 ~ d*1
y2 + y6 ~ e*1
y3 + y7 ~ f*1
y4 + y8 ~ g*1

regressions (slopes differ: interaction with time)
dem60 ~ b1*ind60
dem65 ~ b2*ind60 + NA*1 + Mean.Diff*1

residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

conditional mean differences (besides mean(ind60) == 0)
low := (-1*b2 + Mean.Diff) - (-1*b1) # 1 SD below M
high := (b2 + Mean.Diff) - b1 # 1 SD above M

'

semFit <- sem(model, data = PoliticalDemocracy)

Compare contrasts
From emmeans
emmeans(semFit, pairwise ~ rep.meas|ind60,

lavaan2emmeans 53

lavaan.DV = c("dem60","dem65"),
at = list(ind60 = c(-1,1)))[[2]]

From lavaan
parameterEstimates(semFit, output = "pretty")[49:50,]

Multi Group

model <- 'x1 ~ c(int1, int2)*1 + c(b1, b2)*ageyr
diff_11 := (int2 + b2*11) - (int1 + b1*11)
diff_13 := (int2 + b2*13) - (int1 + b1*13)
diff_15 := (int2 + b2*15) - (int1 + b1*15)

'
semFit <- sem(model, group = "school", data = HolzingerSwineford1939)

Compare contrasts
From emmeans (note `nesting = NULL`)
emmeans(semFit, pairwise ~ school | ageyr, lavaan.DV = "x1",

at = list(ageyr = c(11, 13, 15)), nesting = NULL)[[2]]

From lavaan
parameterEstimates(semFit, output = "pretty")

Dealing with factors

warpbreaks <- cbind(warpbreaks,
model.matrix(~ wool + tension, data = warpbreaks))

model <- "
Split for convenience
breaks ~ 1
breaks ~ woolB
breaks ~ tensionM + tensionH
breaks ~ woolB:tensionM + woolB:tensionH
"

semFit <- sem(model, warpbreaks)

Compare contrasts
From lm -> emmeans
lmFit <- lm(breaks ~ wool * tension, data = warpbreaks)
lmEM <- emmeans(lmFit, ~ tension + wool)
contrast(lmEM, method = data.frame(L_all = c(-1, .05, 0.5),

M_H = c(0, 1, -1)), by = "wool")

From lavaan -> emmeans
lavEM <- emmeans(semFit, ~ tensionM + tensionH + woolB,

lavaan.DV = "breaks")
contrast(lavEM,

method = list(
"L_all|A" = c(c(-1, .05, 0.5, 0), rep(0, 4)),

54 lavTestLRT.mi

"M_H |A" = c(c(0, 1, -1, 0), rep(0, 4)),
"L_all|A" = c(rep(0, 4), c(-1, .05, 0.5, 0)),
"M_H |A" = c(rep(0, 4), c(0, 1, -1, 0))

))

End(Not run)

lavTestLRT.mi Likelihood Ratio Test for Multiple Imputations

Description

Likelihood ratio test (LRT) for lavaan models fitted to multiple imputed data sets. Statistics for
comparing nested models can be calculated by pooling the likelihood ratios across imputed data
sets, as described by Meng & Rubin (1992), or by pooling the LRT statistics from each imputation,
as described by Li, Meng, Raghunathan, & Rubin (1991).

Usage

lavTestLRT.mi(object, h1 = NULL, test = c("D3", "D2"),
omit.imps = c("no.conv", "no.se"), asymptotic = FALSE,
pool.robust = FALSE, ...)

Arguments

object, h1 An object of class lavaan.mi. object should be nested within (more con-
strained than) h1.

test character indicating which pooling method to use. "D3", "mr", or "meng.rubin"
(default) requests the method described by Meng & Rubin (1992). "D2", "LMRR",
or "Li.et.al" requests the complete-data LRT statistic should be calculated
using each imputed data set, which will then be pooled across imputations, as
described in Li, Meng, Raghunathan, & Rubin (1991). Find additional details in
Enders (2010, chapter 8).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

asymptotic logical. If FALSE (default), the pooled test will be returned as an F-distributed
statistic with numerator (df1) and denominator (df2) degrees of freedom. If
TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that
its df2 is sufficiently large enough that the statistic will be asymptotically χ2

distributed with df1.

lavTestLRT.mi 55

pool.robust logical. Ignored unless test = "D2" and a robust test was requested. If pool.robust
= TRUE, the robust test statistic is pooled, whereas pool.robust = FALSE will
pool the naive test statistic (or difference statistic) and apply the average scale/shift
parameter to it (unavailable for mean- and variance-adjusted difference statis-
tics, so pool.robust will be set TRUE).

... Additional arguments passed to lavTestLRT, only if test = "D2" and pool.robust
= TRUE

Details

The Meng & Rubin (1992) method, also referred to as the "D3" statistic, is only applicable when
using a likelihood-based estimator. Otherwise (e.g., DWLS for categorical outcomes), users are
notified that test was set to "D2".

test = "Mplus" implies "D3" and asymptotic = TRUE (see Asparouhov & Muthen, 2010).

Note that unlike lavTestLRT, lavTestLRT can only be used to compare a single pair of models,
not a longer list of models. To compare several nested models fitted to multiple imputations, see
examples on the compareFit help page.

Value

A vector containing the LRT statistic (either an F or χ2 statistic, depending on the asymptotic
argument), its degrees of freedom (numerator and denominator, if asymptotic = FALSE), its p value,
and 2 missing-data diagnostics: the relative invrease in variance (RIV, or average for multiparameter
tests: ARIV) and the fraction missing information (FMI = ARIV / (1 + ARIV)). Robust statistics
will also include the average (across imputations) scaling factor and (if relevant) shift parameter(s),
unless pool.robust = TRUE.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from
https://www.jstor.org/stable/24303994

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data
sets. Biometrika, 79(1), 103–111. doi:10.2307/2337151

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.

See Also

lavTestLRT, compareFit

56 lavTestScore.mi

Examples

Not run:
impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),

"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

specify CFA model from lavaan's ?cfa help page
HS.model <- '

visual =~ x1 + b1*x2 + x3
textual =~ x4 + b2*x5 + x6
speed =~ x7 + b3*x8 + x9

'

fit1 <- cfa.mi(HS.model, data = imps, estimator = "mlm")
fit0 <- cfa.mi(HS.model, data = imps, estimator = "mlm", orthogonal = TRUE)

By default, use D3.
Must request a chi-squared statistic to be robustified.
lavTestLRT.mi(fit1, h1 = fit0, asymptotic = TRUE)

Using D2, you can either robustify the pooled naive statistic ...
lavTestLRT.mi(fit1, h1 = fit0, asymptotic = TRUE, test = "D2")
... or pool the robust chi-squared statistic
lavTestLRT.mi(fit1, h1 = fit0, asymptotic = TRUE, test = "D2",

pool.robust = TRUE)

End(Not run)

lavTestScore.mi Score Test for Multiple Imputations

Description

Score test (or "Lagrange multiplier" test) for lavaan models fitted to multiple imputed data sets.
Statistics for releasing one or more fixed or constrained parameters in model can be calculated
by pooling the gradient and information matrices pooled across imputed data sets in a method
proposed by Mansolf, Jorgensen, & Enders (in press)—analogous to the "D1" Wald test proposed
by Li, Meng, Raghunathan, & Rubin’s (1991)—or by pooling the complete-data score-test statistics
across imputed data sets (i.e., "D2"; Li et al., 1991).

lavTestScore.mi 57

Usage

lavTestScore.mi(object, add = NULL, release = NULL, test = c("D2", "D1"),
scale.W = !asymptotic, omit.imps = c("no.conv", "no.se"),
asymptotic = is.null(add), univariate = TRUE, cumulative = FALSE,
epc = FALSE, standardized = epc, cov.std = epc, verbose = FALSE,
warn = TRUE, information = "expected")

Arguments

object An object of class lavaan.mi.
add Either a character string (typically between single quotes) or a parameter table

containing additional (currently fixed-to-zero) parameters for which the score
test must be computed.

release Vector of integers. The indices of the equality constraints that should be re-
leased. The indices correspond to the order of the equality constraints as they
appear in the parameter table.

test character indicating which pooling method to use. "D1" requests Mansolf,
Jorgensen, & Enders’ (in press) proposed Wald-like test for pooling the gradient
and information, which are then used to calculate score-test statistics in the usual
manner. "D2" (default because it is less computationall intensive) requests to
pool the complete-data score-test statistics from each imputed data set, then pool
them across imputations, described by Li et al. (1991) and Enders (2010).

scale.W logical. If FALSE, the pooled information matrix is calculated as the weighted
sum of the within-imputation and between-imputation components. Otherwise,
the pooled information is calculated by scaling the within-imputation compo-
nent by the average relative increase in variance (ARIV; Enders, 2010, p. 235),
which is only consistent when requesting the F test (i.e., asymptotic = FALSE.
Ignored (irrelevant) if test = "D2".

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

asymptotic logical. If FALSE (default when using add to test adding fixed parameters to
the model), the pooled test will be returned as an F-distributed variable with
numerator (df1) and denominator (df2) degrees of freedom. If TRUE, the pooled
F statistic will be multiplied by its df1 on the assumption that its df2 is suffi-
ciently large enough that the statistic will be asymptotically χ2 distributed with
df1. When using the release argument, asymptotic will be set to TRUE be-
cause (A)RIV can only be calculated for added parameters.

univariate logical. If TRUE, compute the univariate score statistics, one for each con-
straint.

58 lavTestScore.mi

cumulative logical. If TRUE, order the univariate score statistics from large to small, and
compute a series of multivariate score statistics, each time including an addi-
tional constraint in the test.

epc logical. If TRUE, and we are releasing existing constraints, compute the ex-
pected parameter changes for the existing (free) parameters (and any specified
with add), if all constraints were released. For EPCs associated with a partic-
ular (1-df) constraint, only specify one parameter in add or one constraint in
release.

standardized If TRUE, two extra columns (sepc.lv and sepc.all) in the $epc table will con-
tain standardized values for the EPCs. See lavTestScore.

cov.std logical. See standardizedSolution.

verbose logical. Not used for now.

warn logical. If TRUE, print warnings if they occur.

information character indicating the type of information matrix to use (check lavInspect
for available options). "expected" information is the default, which provides
better control of Type I errors.

Value

A list containing at least one data.frame:

• $test: The total score test, with columns for the score test statistic (X2), its degrees of freedom
(df), its p value under the χ2 distribution (p.value), and if asymptotic=FALSE, the average
relative invrease in variance (ARIV) used to calculate the denominator df is also returned as
a missing-data diagnostic, along with the fraction missing information (FMI = ARIV / (1 +
ARIV)).

• $uni: Optional (if univariate=TRUE). Each 1-df score test, equivalent to modification in-
dices. Also includes EPCs if epc=TRUE, and RIV and FMI if asymptotic=FALSE.

• $cumulative: Optional (if cumulative=TRUE). Cumulative score tests, with ARIV and FMI
if asymptotic=FALSE.

• $epc: Optional (if epc=TRUE). Parameter estimates, expected parameter changes, and expected
parameter values if ALL the tested constraints were freed.

See lavTestScore for details.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Adapted from lavaan source code, written by Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

test = "D1" method proposed by Maxwell Mansolf (University of California, Los Angeles; <mamansolf@gmail.com>)

References

Bentler, P. M., & Chou, C.-P. (1992). Some new covariance structure model improvement statistics.
Sociological Methods & Research, 21(2), 259–282. doi:10.1177/0049124192021002006

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

lavTestScore.mi 59

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from
https://www.jstor.org/stable/24303994

Mansolf, M., Jorgensen, T. D., & Enders, C. K. (in press). A multiple imputation score test for
model modification in structural equation models. Psychological Methods. doi:10.1037/met0000243

See Also

lavTestScore

Examples

Not run:
impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),

"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

specify CFA model from lavaan's ?cfa help page
HS.model <- '

speed =~ c(L1, L1)*x7 + c(L1, L1)*x8 + c(L1, L1)*x9
'

out <- cfa.mi(HS.model, data = imps, group = "school", std.lv = TRUE)

Mode 1: Score test for releasing equality constraints

default test: Li et al.'s (1991) "D2" method
lavTestScore.mi(out, cumulative = TRUE)
Li et al.'s (1991) "D1" method
lavTestScore.mi(out, test = "D1")

Mode 2: Score test for adding currently fixed-to-zero parameters
lavTestScore.mi(out, add = 'x7 ~~ x8 + x9')

End(Not run)

60 lavTestWald.mi

lavTestWald.mi Wald Test for Multiple Imputations

Description

Wald test for testing a linear hypothesis about the parameters of lavaan models fitted to multiple
imputed data sets. Statistics for constraining one or more free parameters in a model can be calcu-
lated from the pooled point estimates and asymptotic covariance matrix of model parameters using
Rubin’s (1987) rules, or by pooling the Wald test statistics across imputed data sets (Li, Meng,
Raghunathan, & Rubin, 1991).

Usage

lavTestWald.mi(object, constraints = NULL, test = c("D1", "D2"),
asymptotic = FALSE, scale.W = !asymptotic, omit.imps = c("no.conv",
"no.se"), verbose = FALSE, warn = TRUE)

Arguments

object An object of class lavaan.mi.

constraints A character string (typically between single quotes) containing one or more
equality constraints. See examples for more details

test character indicating which pooling method to use. "D1" or "Rubin" (default)
indicates Rubin’s (1987) rules will be applied to the point estimates and the
asymptotic covariance matrix of model parameters, and those pooled values
will be used to calculate the Wald test in the usual manner. "D2", "LMRR", or
"Li.et.al" indicate that the complete-data Wald test statistic should be calcu-
lated using each imputed data set, which will then be pooled across imputations,
as described in Li, Meng, Raghunathan, & Rubin (1991) and Enders (2010,
chapter 8).

asymptotic logical. If FALSE (default), the pooled test will be returned as an F-distributed
statistic with numerator (df1) and denominator (df2) degrees of freedom. If
TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that
its df2 is sufficiently large enough that the statistic will be asymptotically χ2

distributed with df1.

scale.W logical. If FALSE, the pooled asymptotic covariance matrix of model param-
eters is calculated as the weighted sum of the within-imputation and between-
imputation components. Otherwise, the pooled asymptotic covariance matrix
of model parameters is calculated by scaling the within-imputation component
by the average relative increase in variance (ARIV; see Enders, 2010, p. 235),
which is only consistent when requesting the F test (i.e., asymptotic = FALSE.
Ignored (irrelevant) if test = "D2".

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option

lavTestWald.mi 61

("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

verbose logical. If TRUE, print the restriction matrix and the estimated restricted values.

warn logical. If TRUE, print warnings if they occur.

Details

The constraints are specified using the "==" operator. Both the left-hand side and the right-hand side
of the equality can contain a linear combination of model parameters, or a constant (like zero). The
model parameters must be specified by their user-specified labels from the link[lavaan]{model.syntax}.
Names of defined parameters (using the ":=" operator) can be included too.

Value

A vector containing the Wald test statistic (either an F or χ2 statistic, depending on the asymptotic
argument), the degrees of freedom (numerator and denominator, if asymptotic = FALSE), and a p
value. If asymptotic = FALSE, the relative invrease in variance (RIV, or average for multiparameter
tests: ARIV) used to calculate the denominator df is also returned as a missing-data diagnostic,
along with the fraction missing information (FMI = ARIV / (1 + ARIV)).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Adapted from lavaan source code, written by Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from
https://www.jstor.org/stable/24303994

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.

See Also

lavTestWald

Examples

Not run:
impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),

"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)

62 loadingFromAlpha

age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

specify CFA model from lavaan's ?cfa help page
HS.model <- '

visual =~ x1 + b1*x2 + x3
textual =~ x4 + b2*x5 + x6
speed =~ x7 + b3*x8 + x9

'

fit <- cfa.mi(HS.model, data = imps)

Testing whether a single parameter equals zero yields the 'chi-square'
version of the Wald z statistic from the summary() output, or the
'F' version of the t statistic from the summary() output, depending
whether asymptotic = TRUE or FALSE
lavTestWald.mi(fit, constraints = "b1 == 0") # default D1 statistic
lavTestWald.mi(fit, constraints = "b1 == 0", test = "D2") # D2 statistic

The real advantage is simultaneously testing several equality
constraints, or testing more complex constraints:
con <- '

2*b1 == b3
b2 - b3 == 0

'
lavTestWald.mi(fit, constraints = con) # default F statistic
lavTestWald.mi(fit, constraints = con, asymptotic = TRUE) # chi-squared

End(Not run)

loadingFromAlpha Find standardized factor loading from coefficient alpha

Description

Find standardized factor loading from coefficient alpha assuming that all items have equal loadings.

Usage

loadingFromAlpha(alpha, ni)

mardiaKurtosis 63

Arguments

alpha A desired coefficient alpha value.

ni A desired number of items.

Value

result The standardized factor loadings that make desired coefficient alpha with speci-
fied number of items.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

loadingFromAlpha(0.8, 4)

mardiaKurtosis Finding Mardia’s multivariate kurtosis

Description

Finding Mardia’s multivariate kurtosis of multiple variables

Usage

mardiaKurtosis(dat, use = "everything")

Arguments

dat The target matrix or data frame with multiple variables

use Missing data handling method from the cov function.

Details

The Mardia’s multivariate kurtosis formula (Mardia, 1970) is

b2,d =
1

n

n∑
i=1

[(
Xi − X̄

)′
S−1

(
Xi − X̄

)]2
,

where d is the number of variables, X is the target dataset with multiple variables, n is the sample
size, S is the sample covariance matrix of the target dataset, and X̄ is the mean vectors of the
target dataset binded in n rows. When the population multivariate kurtosis is normal, the b2,d
is asymptotically distributed as normal distribution with the mean of d(d + 2) and variance of
8d(d+ 2)/n.

64 mardiaSkew

Value

A value of a Mardia’s multivariate kurtosis with a test statistic

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika,
57(3), 519-530. doi:10.2307/2334770

See Also

• skew Find the univariate skewness of a variable

• kurtosis Find the univariate excessive kurtosis of a variable

• mardiaSkew Find the Mardia’s multivariate skewness of a set of variables

Examples

library(lavaan)
mardiaKurtosis(HolzingerSwineford1939[, paste0("x", 1:9)])

mardiaSkew Finding Mardia’s multivariate skewness

Description

Finding Mardia’s multivariate skewness of multiple variables

Usage

mardiaSkew(dat, use = "everything")

Arguments

dat The target matrix or data frame with multiple variables

use Missing data handling method from the cov function.

maximalRelia 65

Details

The Mardia’s multivariate skewness formula (Mardia, 1970) is

b1,d =
1

n2

n∑
i=1

n∑
j=1

[(
Xi − X̄

)′
S−1

(
Xj − X̄

)]3
,

where d is the number of variables, X is the target dataset with multiple variables, n is the sample
size, S is the sample covariance matrix of the target dataset, and X̄ is the mean vectors of the
target dataset binded in n rows. When the population multivariate skewness is normal, the n

6 b1,d is
asymptotically distributed as χ2 distribution with d(d+ 1)(d+ 2)/6 degrees of freedom.

Value

A value of a Mardia’s multivariate skewness with a test statistic

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika,
57(3), 519-530. doi:10.2307/2334770

See Also

• skew Find the univariate skewness of a variable

• kurtosis Find the univariate excessive kurtosis of a variable

• mardiaKurtosis Find the Mardia’s multivariate kurtosis of a set of variables

Examples

library(lavaan)
mardiaSkew(HolzingerSwineford1939[, paste0("x", 1:9)])

maximalRelia Calculate maximal reliability

Description

Calculate maximal reliability of a scale

Usage

maximalRelia(object, omit.imps = c("no.conv", "no.se"))

66 maximalRelia

Arguments

object A lavaan or lavaan.mi object, expected to contain only exogenous common
factors (i.e., a CFA model).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion.

Details

Given that a composite score (W) is a weighted sum of item scores:

W = w′x,

where x is a k × 1 vector of the scores of each item, w is a k × 1 weight vector of each item,
and k represents the number of items. Then, maximal reliability is obtained by finding w such that
reliability attains its maximum (Li, 1997; Raykov, 2012). Note that the reliability can be obtained
by

ρ =
w′STw

w′SXw

where ST is the covariance matrix explained by true scores and SX is the observed covariance
matrix. Numerical method is used to find w in this function.

For continuous items, ST can be calculated by

ST = ΛΨΛ′,

where Λ is the factor loading matrix and Ψ is the covariance matrix among factors. SX is directly
obtained by covariance among items.

For categorical items, Green and Yang’s (2009) method is used for calculating ST and SX . The
element i and j of ST can be calculated by

[ST]ij =

Ci−1∑
ci=1

Cj−1∑
cj−1

Φ2

(
τxci

, τxcj
, [ΛΨΛ′]ij

)
−
Ci−1∑
ci=1

Φ1(τxci
)

Cj−1∑
cj−1

Φ1(τxcj
),

where Ci and Cj represents the number of thresholds in Items i and j, τxci
represents the threshold

ci of Item i, τxcj
represents the threshold ci of Item j, Φ1(τxci

) is the cumulative probability of

maximalRelia 67

τxci
given a univariate standard normal cumulative distribution and Φ2

(
τxci

, τxcj
, ρ
)

is the joint
cumulative probability of τxci

and τxcj
given a bivariate standard normal cumulative distribution

with a correlation of ρ

Each element of SX can be calculated by

[ST]ij =

Ci−1∑
ci=1

Cj−1∑
cj−1

Φ2

(
τVci

, τVcj
, ρ∗ij

)
−
Ci−1∑
ci=1

Φ1(τVci
)

Cj−1∑
cj−1

Φ1(τVcj
),

where ρ∗ij is a polychoric correlation between Items i and j.

Value

Maximal reliability values of each group. The maximal-reliability weights are also provided. Users
may extracted the weighted by the attr function (see example below).

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Li, H. (1997). A unifying expression for the maximal reliability of a linear composite. Psychome-
trika, 62(2), 245–249. doi:10.1007/BF02295278

Raykov, T. (2012). Scale construction and development using structural equation modeling. In
R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 472–494). New York, NY:
Guilford.

See Also

reliability for reliability of an unweighted composite score

Examples

total <- 'f =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 '
fit <- cfa(total, data = HolzingerSwineford1939)
maximalRelia(fit)

Extract the weight
mr <- maximalRelia(fit)
attr(mr, "weight")

68 measEq.syntax

measEq.syntax Syntax for measurement equivalence

Description

Automatically generates lavaan model syntax to specify a confirmatory factor analysis (CFA)
model with equality constraints imposed on user-specified measurement (or structural) parame-
ters. Optionally returns the fitted model (if data are provided) representing some chosen level of
measurement equivalence/invariance across groups and/or repeated measures.

Usage

measEq.syntax(configural.model, ..., ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016", ID.thr = c(1L, 2L), group = NULL,
group.equal = "", group.partial = "", longFacNames = list(),
longIndNames = list(), long.equal = "", long.partial = "",
auto = "all", warn = TRUE, debug = FALSE, return.fit = FALSE)

Arguments

configural.model

A model with no measurement-invariance constraints (i.e., representing only
configural invariance), unless required for model identification. configural.model
can be either:

• lavaan model.syntax or a parameter table (as returned by parTable) spec-
ifying the configural model. Using this option, the user can also provide
either raw data or summary statistics via sample.cov and (optionally)
sample.mean. See argument descriptions in lavaan. In order to include
thresholds in the generated syntax, either users must provide raw data, or
the configural.model syntax must specify all thresholds (see first exam-
ple). If raw data are not provided, the number of blocks (groups, levels, or
combination) must be indicated using an arbitrary sample.nobs argument
(e.g., 3 groups could be specified using sample.nobs=rep(1,3)).

• a fitted lavaan model (e.g., as returned by cfa) estimating the configural
model

Note that the specified or fitted model must not contain any latent structural pa-
rameters (i.e., it must be a CFA model), unless they are higher-order constructs
with latent indicators (i.e., a second-order CFA).

... Additional arguments (e.g., data, ordered, or parameterization) passed to
the lavaan function. See also lavOptions.

ID.fac character. The method for identifying common-factor variances and (if meanstructure
= TRUE) means. Three methods are available, which go by different names in the
literature:

• Standardize the common factor (mean = 0, SD = 1) by specifying any of:
"std.lv", "unit.variance", "UV", "fixed.factor", "fixed-factor"

measEq.syntax 69

• Choose a reference indicator by specifying any of: "auto.fix.first",
"unit.loading", "UL", "marker", "ref", "ref.indicator", "reference.indicator",
"reference-indicator", "marker.variable", "marker-variable"

• Apply effects-code constraints to loadings and intercepts by specifying any
of: "FX", "EC", "effects", "effects.coding", "effects-coding", "effects.code",
"effects-code"

See Kloessner & Klopp (2019) for details about all three methods.

ID.cat character. The method for identifying (residual) variances and intercepts of la-
tent item-responses underlying any ordered indicators. Four methods are avail-
able:

• To follow Wu & Estabrook’s (2016) guidelines (default), specify any of:
"Wu.Estabrook.2016", "Wu.2016", "Wu.Estabrook", "Wu", "Wu2016".

• To use the default settings of Mplus and lavaan, specify any of: "default",
"Mplus", "Muthen". Details provided in Millsap & Tein (2004).

• To use the constraints recommended by Millsap & Tein (2004; see also
Liu et al., 2017, for the longitudinal case) specify any of: "millsap",
"millsap.2004", "millsap.tein.2004"

• To use the default settings of LISREL, specify "LISREL" or "Joreskog".
Details provided in Millsap & Tein (2004).

See Details and References for more information.

ID.thr integer. Only relevant when ID.cat = "Millsap.Tein.2004". Used to indi-
cate which thresholds should be constrained for identification. The first integer
indicates the threshold used for all indicators, the second integer indicates the
additional threshold constrained for a reference indicator (ignored if binary).

group optional character indicating the name of a grouping variable. See cfa.

group.equal optional character vector indicating type(s) of parameter to equate across groups.
Ignored if is.null(group). See lavOptions.

group.partial optional character vector or a parameter table indicating exceptions to group.equal
(see lavOptions). Any variables not appearing in the configural.model will
be ignored, and any parameter constraints needed for identification (e.g., two
thresholds per indicator when ID.cat = "Millsap") will be removed.

longFacNames optional named list of character vectors, each indicating multiple factors in
the model that are actually the same construct measured repeatedly. See Details
and Examples.

longIndNames optional named list of character vectors, each indicating multiple indicators
in the model that are actually the same indicator measured repeatedly. See De-
tails and Examples.

long.equal optional character vector indicating type(s) of parameter to equate across re-
peated measures. Ignored if no factors are indicated as repeatedly measured in
longFacNames.

long.partial optional character vector or a parameter table indicating exceptions to long.equal.
Any longitudinal variable names not appearing in names(longFacNames) or
names(longIndNames) will be ignored, and any parameter constraints needed
for identification will be removed.

70 measEq.syntax

auto Used to automatically included autocorrelated measurement errors among re-
peatedly measured indicators in longIndNames. Specify a single integer to
set the maximum order (e.g., auto = 1L indicates that an indicator’s unique fac-
tors should only be correlated between adjacently measured occasions). auto
= TRUE or "all" will specify residual covariances among all possible lags per
repeatedly measured indicator in longIndNames.

warn, debug logical. Passed to lavaan and lavParseModelString. See lavOptions.

return.fit logical indicating whether the generated syntax should be fitted to the provided
data (or summary statistics, if provided via sample.cov). If configural.model
is a fitted lavaan model, the generated syntax will be fitted using the update
method (see lavaan), and . . . will be passed to lavaan. If neither data nor a
fitted lavaan model were provided, this must be FALSE. If TRUE, the generated
measEq.syntax object will be included in the lavaan object’s @external slot,
accessible by fit@external$measEq.syntax.

Details

This function is a pedagogical and analytical tool to generate model syntax representing some level
of measurement equivalence/invariance across any combination of multiple groups and/or repeated
measures. Support is provided for confirmatory factor analysis (CFA) models with simple or com-
plex structure (i.e., cross-loadings and correlated residuals are allowed). For any complexities that
exceed the limits of automation, this function is intended to still be useful by providing a means to
generate syntax that users can easily edit to accommodate their unique situations.

Limited support is provided for bifactor models and higher-order constructs. Because bifactor mod-
els have cross-loadings by definition, the option ID.fac = "effects.code" is unavailable. ID.fac
= "UV" is recommended for bifactor models, but ID.fac = "UL" is available on the condition that
each factor has a unique first indicator in the configural.model. In order to maintain generality,
higher-order factors may include a mix of manifest and latent indicators, but they must therefore
require ID.fac = "UL" to avoid complications with differentiating lower-order vs. higher-order (or
mixed-level) factors. The keyword "loadings" in group.equal or long.equal constrains fac-
tor loadings of all manifest indicators (including loadings on higher-order factors that also have
latent indicators), whereas the keyword "regressions" constrains factor loadings of latent indica-
tors. Users can edit the model syntax manually to adjust constraints as necessary, or clever use of
the group.partial or long.partial arguments could make it possible for users to still automated
their model syntax. The keyword "intercepts" constrains the intercepts of all manifest indicators,
and the keyword "means" constrains intercepts and means of all latent common factors, regardless
of whether they are latent indicators of higher-order factors. To test equivalence of lower-order and
higher-order intercepts/means in separate steps, the user can either manually edit their generated
syntax or conscientiously exploit the group.partial or long.partial arguments as necessary.

ID.fac: If the configural.model fixes any (e.g., the first) factor loadings, the generated syntax
object will retain those fixed values. This allows the user to retain additional constraints that might
be necessary (e.g., if there are only 1 or 2 indicators). Some methods must be used in conjunction
with other settings:

• ID.cat = "Millsap" requires ID.fac = "UL" and parameterization = "theta".

• ID.cat = "LISREL" requires parameterization = "theta".

• ID.fac = "effects.code" is unavailable when there are any cross-loadings.

measEq.syntax 71

ID.cat: Wu & Estabrook (2016) recommended constraining thresholds to equality first, and doing
so should allow releasing any identification constraints no longer needed. For each ordered indica-
tor, constraining one threshold to equality will allow the item’s intercepts to be estimated in all but
the first group or repeated measure. Constraining a second threshold (if applicable) will allow the
item’s (residual) variance to be estimated in all but the first group or repeated measure. For binary
data, there is no independent test of threshold, intercept, or residual-variance equality. Equivalence
of thresholds must also be assumed for three-category indicators. These guidelines provide the least
restrictive assumptions and tests, and are therefore the default.

The default setting in Mplus is similar to Wu & Estabrook (2016), except that intercepts are always
constrained to zero (so they are assumed to be invariant without testing them). Millsap & Tein
(2004) recommended parameterization = "theta" and identified an item’s residual variance in
all but the first group (or occasion; Liu et al., 2017) by constraining its intercept to zero and one of
its thresholds to equality. A second threshold for the reference indicator (so ID.fac = "UL") is used
to identify the common-factor means in all but the first group/occasion. The LISREL software fixes
the first threshold to zero and (if applicable) the second threshold to 1, and assumes any remaining
thresholds to be equal across groups / repeated measures; thus, the intercepts are always identified,
and residual variances (parameterization = "theta") are identified except for binary data, when
they are all fixed to one.

Repeated Measures: If each repeatedly measured factor is measured by the same indicators (speci-
fied in the same order in the configural.model) on each occasion, without any cross-loadings, the
user can let longIndNames be automatically generated. Generic names for the repeatedly measured
indicators are created using the name of the repeatedly measured factors (i.e., names(longFacNames))
and the number of indicators. So the repeatedly measured first indicator ("ind") of a longitudinal
construct called "factor" would be generated as "._factor_ind.1".

The same types of parameter can be specified for long.equal as for group.equal (see lavOptions
for a list), except for "residual.covariances" or "lv.covariances". Instead, users can con-
strain autocovariances using keywords "resid.autocov" or "lv.autocov". Note that group.equal
= "lv.covariances" or group.equal = "residual.covariances" will constrain any autocovari-
ances across groups, along with any other covariances the user specified in the configural.model.
Note also that autocovariances cannot be specified as exceptions in long.partial, so anything
more complex than the auto argument automatically provides should instead be manually specified
in the configural.model.

When users set orthogonal=TRUE in the configural.model (e.g., in bifactor models of repeat-
edly measured constructs), autocovariances of each repeatedly measured factor will still be freely
estimated in the generated syntax.

Missing Data: If users wish to utilize the auxiliary function to automatically include auxil-
iary variables in conjunction with missing = "FIML", they should first generate the hypothesized-
model syntax, then submit that syntax as the model to auxiliary(). If users utilized runMI
to fit their configural.model to multiply imputed data, that model can also be passed to the
configural.model argument, and if return.fit = TRUE, the generated model will be fitted to
the multiple imputations.

Value

By default, an object of class measEq.syntax. If return.fit = TRUE, a fitted lavaan model, with
the measEq.syntax object stored in the @external slot, accessible by fit@external$measEq.syntax.

72 measEq.syntax

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Kloessner, S., & Klopp, E. (2019). Explaining constraint interaction: How to interpret estimated
model parameters under alternative scaling methods. Structural Equation Modeling, 26(1), 143–
155. doi:10.1080/10705511.2018.1517356

Liu, Y., Millsap, R. E., West, S. G., Tein, J.-Y., Tanaka, R., & Grimm, K. J. (2017). Testing measure-
ment invariance in longitudinal data with ordered-categorical measures. Psychological Methods,
22(3), 486–506. doi:10.1037/met0000075

Millsap, R. E., & Tein, J.-Y. (2004). Assessing factorial invariance in ordered-categorical measures.
Multivariate Behavioral Research, 39(3), 479–515. doi:10.1207/S15327906MBR3903_4

Wu, H., & Estabrook, R. (2016). Identification of confirmatory factor analysis models of dif-
ferent levels of invariance for ordered categorical outcomes. Psychometrika, 81(4), 1014–1045.
doi:10.1007/s11336-016-9506-0

See Also

compareFit

Examples

mod.cat <- ' FU1 =~ u1 + u2 + u3 + u4
FU2 =~ u5 + u6 + u7 + u8 '

the 2 factors are actually the same factor (FU) measured twice
longFacNames <- list(FU = c("FU1","FU2"))

CONFIGURAL model: no constraints across groups or repeated measures
syntax.config <- measEq.syntax(configural.model = mod.cat,

NOTE: data provides info about numbers of
groups and thresholds
data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames)

print lavaan syntax to the Console
cat(as.character(syntax.config))
print a summary of model features
summary(syntax.config)

THRESHOLD invariance:
only necessary to specify thresholds if you have no data
mod.th <- '

u1 | t1 + t2 + t3 + t4
u2 | t1 + t2 + t3 + t4
u3 | t1 + t2 + t3 + t4
u4 | t1 + t2 + t3 + t4
u5 | t1 + t2 + t3 + t4

measEq.syntax 73

u6 | t1 + t2 + t3 + t4
u7 | t1 + t2 + t3 + t4
u8 | t1 + t2 + t3 + t4

'
syntax.thresh <- measEq.syntax(configural.model = c(mod.cat, mod.th),

NOTE: data not provided, so syntax must
include thresholds, and number of
groups == 2 is indicated by:
sample.nobs = c(1, 1),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", group.equal = "thresholds",
longFacNames = longFacNames,
long.equal = "thresholds")

notice that constraining 4 thresholds allows intercepts and residual
variances to be freely estimated in all but the first group & occasion
cat(as.character(syntax.thresh))
print a summary of model features
summary(syntax.thresh)

Fit a model to the data either in a subsequent step (recommended):
mod.config <- as.character(syntax.config)
fit.config <- cfa(mod.config, data = datCat, group = "g",

ordered = paste0("u", 1:8), parameterization = "theta")
or in a single step (not generally recommended):
fit.thresh <- measEq.syntax(configural.model = mod.cat, data = datCat,

ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", group.equal = "thresholds",
longFacNames = longFacNames,
long.equal = "thresholds", return.fit = TRUE)

compare their fit to test threshold invariance
anova(fit.config, fit.thresh)

--
RECOMMENDED PRACTICE: fit one invariance model at a time
--

- A downside of setting return.fit=TRUE is that if the model has trouble
converging, you don't have the opportunity to investigate the syntax,
or even to know whether an error resulted from the syntax-generator or
from lavaan itself.
- A downside of automatically fitting an entire set of invariance models
(like the old measurementInvariance() function did) is that you might
end up testing models that shouldn't even be fitted because less
restrictive models already fail (e.g., don't test full scalar
invariance if metric invariance fails! Establish partial metric
invariance first, then test equivalent of intercepts ONLY among the
indicators that have invariate loadings.)

74 measEq.syntax

The recommended sequence is to (1) generate and save each syntax object,
(2) print it to the screen to verify you are fitting the model you expect
to (and potentially learn which identification constraints should be
released when equality constraints are imposed), and (3) fit that model
to the data, as you would if you had written the syntax yourself.

Continuing from the examples above, after establishing invariance of
thresholds, we proceed to test equivalence of loadings and intercepts
(metric and scalar invariance, respectively)
simultaneously across groups and repeated measures.

Not run:

metric invariance
syntax.metric <- measEq.syntax(configural.model = mod.cat, data = datCat,

ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames,
group.equal = c("thresholds","loadings"),
long.equal = c("thresholds","loadings"))

summary(syntax.metric) # summarize model features
mod.metric <- as.character(syntax.metric) # save as text
cat(mod.metric) # print/view lavaan syntax
fit model to data
fit.metric <- cfa(mod.metric, data = datCat, group = "g",

ordered = paste0("u", 1:8), parameterization = "theta")
test equivalence of loadings, given equivalence of thresholds
anova(fit.thresh, fit.metric)

scalar invariance
syntax.scalar <- measEq.syntax(configural.model = mod.cat, data = datCat,

ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames,
group.equal = c("thresholds","loadings",

"intercepts"),
long.equal = c("thresholds","loadings",

"intercepts"))
summary(syntax.scalar) # summarize model features
mod.scalar <- as.character(syntax.scalar) # save as text
cat(mod.scalar) # print/view lavaan syntax
fit model to data
fit.scalar <- cfa(mod.scalar, data = datCat, group = "g",

ordered = paste0("u", 1:8), parameterization = "theta")
test equivalence of intercepts, given equal thresholds & loadings
anova(fit.metric, fit.scalar)

For a single table with all results, you can pass the models to
summarize to the compareFit() function
compareFit(fit.config, fit.thresh, fit.metric, fit.scalar)

measEq.syntax 75

--
NOT RECOMMENDED: fit several invariance models at once
--
test.seq <- c("thresholds","loadings","intercepts","means","residuals")
meq.list <- list()
for (i in 0:length(test.seq)) {

if (i == 0L) {
meq.label <- "configural"
group.equal <- ""
long.equal <- ""

} else {
meq.label <- test.seq[i]
group.equal <- test.seq[1:i]
long.equal <- test.seq[1:i]

}
meq.list[[meq.label]] <- measEq.syntax(configural.model = mod.cat,

data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016",
group = "g",
group.equal = group.equal,
longFacNames = longFacNames,
long.equal = long.equal,
return.fit = TRUE)

}

compareFit(meq.list)

Binary indicators

borrow example data from Mplus user guide
myData <- read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")
names(myData) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")
bin.mod <- '

FU1 =~ u1 + u2 + u3
FU2 =~ u4 + u5 + u6

'
Must SIMULTANEOUSLY constrain thresholds, loadings, and intercepts
test.seq <- list(strong = c("thresholds","loadings","intercepts"),

means = "means",
strict = "residuals")

meq.list <- list()
for (i in 0:length(test.seq)) {

if (i == 0L) {
meq.label <- "configural"

76 measEq.syntax-class

group.equal <- ""
long.equal <- ""

} else {
meq.label <- names(test.seq)[i]
group.equal <- unlist(test.seq[1:i])
long.equal <- unlist(test.seq[1:i])

}
meq.list[[meq.label]] <- measEq.syntax(configural.model = bin.mod,

data = myData,
ordered = paste0("u", 1:6),
parameterization = "theta",
ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016",
group = "g",
group.equal = group.equal,
#longFacNames = longFacNames,
#long.equal = long.equal,
return.fit = TRUE)

}

compareFit(meq.list)

Multilevel Invariance

To test invariance across levels in a MLSEM, specify syntax as though
you are fitting to 2 groups instead of 2 levels.

mlsem <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6 '

metric invariance
syntax.metric <- measEq.syntax(configural.model = mlsem, meanstructure = TRUE,

ID.fac = "std.lv", sample.nobs = c(1, 1),
group = "cluster", group.equal = "loadings")

by definition, Level-1 means must be zero, so fix them
syntax.metric <- update(syntax.metric,

change.syntax = paste0("y", 1:6, " ~ c(0, NA)*1"))
save as a character string
mod.metric <- as.character(syntax.metric, groups.as.blocks = TRUE)
convert from multigroup to multilevel
mod.metric <- gsub(pattern = "group:", replacement = "level:",

x = mod.metric, fixed = TRUE)
fit model to data
fit.metric <- lavaan(mod.metric, data = Demo.twolevel, cluster = "cluster")
summary(fit.metric)

End(Not run)

measEq.syntax-class Class for Representing a Measurement-Equivalence Model

measEq.syntax-class 77

Description

This class of object stores information used to automatically generate lavaan model syntax to rep-
resent user-specified levels of measurement equivalence/invariance across groups and/or repeated
measures. See measEq.syntax for details.

Usage

S4 method for signature 'measEq.syntax'
as.character(x, package = "lavaan",
params = NULL, single = TRUE, groups.as.blocks = FALSE)

S4 method for signature 'measEq.syntax'
show(object)

S4 method for signature 'measEq.syntax'
summary(object, verbose = TRUE)

S4 method for signature 'measEq.syntax'
update(object, ..., evaluate = TRUE, change.syntax = NULL)

Arguments

x, object an object of class measEq.syntax

package character indicating the package for which the model syntax should be gener-
ated. Currently, only "lavaan" and "mplus" are supported.

params character vector indicating which type(s) of parameter to print syntax for.
Must match a type that can be passed to group.equal or long.equal, but
"residual.covariances" and "lv.covariances" will be silently ignored.
Instead, requesting "residuals" or "lv.variances" will return covariances
along with variances. By default (NULL), all types are printed.

single logical indicating whether to concatenate lavaan model.syntax into a single
character string. Setting FALSE will return a vector of strings, which may be
convenient (or even necessary to prevent an error) in models with long variable
names, many variables, or many groups.

groups.as.blocks

logical indicating whether to write lavaan model.syntax using vectors of la-
bels and values for multiple groups (the default: FALSE), or whether to write
a separate "block" of syntax per group. The block structure could allow users
to apply the generated multigroup syntax (after some editing) to test invariance
across levels in a multilevel SEM (see final example on measEq.syntax help
page).

verbose logical indicating whether to print a summary to the screen (default). If FALSE,
only a pattern matrix is returned.

... Additional arguments to the call, or arguments with changed values.

evaluate If TRUE, evaluate the new call; otherwise, return the new call.

78 measEq.syntax-class

change.syntax lavaan model.syntax specifying labels or fixed/free values of parameters in
object. These provide some flexibility to customize existing parameters with-
out having to copy/paste the output of as.character(object) into an R script.
For example, group.partial will free a parameter across all groups, but update
allows users to free the parameter in just one group while maintaining equality
constraints among other groups.

Value

summary signature(object = "measEq.syntax",verbose = TRUE): A character ma-
trix indicating the pattern of numeric, ordered, or latent indicators loading on
common factors. By default (verbose = TRUE), summary also prints descriptive
details about the model, including the numbers of indicators and factors, and
which parameters are constrained to equality.

show signature(object = "measEq.syntax"): Prints a message about how to use
the object for model fitting. Invisibly returns the object.

update signature(object = "measEq.syntax"),...,evaluate = TRUE,change.syntax
= NULL: Creates a new object with updated arguments in ..., or updated pa-
rameter labels or fixed/free specifications in object.

as.character signature(x = "measEq.syntax",package = "lavaan"): Converts the measEq.syntax
object to model syntax that can be copy/pasted or written to a syntax file to
be edited before analysis, or simply passed to lavaan to fit the model to data.
Generated Mplus syntax could also be utilized using the MplusAuthomation
package.

Slots

package character indicating the software package used to represent the model. Currently, only
"lavaan" is available, which uses the LISREL representation (see lavOptions). In the future,
"OpenMx" may become available, using RAM representation.

model.type character. Currently, only "cfa" is available. Future versions may allow for MIMIC
/ RFA models, where invariance can be tested across levels of exogenous variables explicitly
included as predictors of indicators, controlling for their effects on (or correlation with) the
common factors.

call The function call as returned by match.call(), with some arguments updated if necessary
for logical consistency.

meanstructure logical indicating whether a mean structure is included in the model.

numeric character vector naming numeric manifest indicators.

ordered character vector naming ordered indicators.

parameterization character. See lavOptions.

specify list of parameter matrices, similar in form to the output of lavInspect(fit,"free").
These matrices are logical, indicating whether each parameter should be specified in the
model syntax.

values list of parameter matrices, similar in form to the output of lavInspect(fit,"free").
These matrices are numeric, indicating whether each parameter should be freely estimated
(indicated by NA) or fixed to a particular value.

miPowerFit 79

labels list of parameter matrices, similar in form to the output of lavInspect(fit,"free").
These matrices contain character labels used to constrain parameters to equality.

constraints character vector containing additional equality constraints used to identify the
model when ID.fac = "fx".

ngroups integer indicating the number of groups.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Examples

See ?measEq.syntax help page for examples using lavaan

miPowerFit Modification indices and their power approach for model fit evaluation

Description

The model fit evaluation approach using modification indices and expected parameter changes.

Usage

miPowerFit(lavaanObj, stdLoad = 0.4, cor = 0.1, stdBeta = 0.1,
intcept = 0.2, stdDelta = NULL, delta = NULL, cilevel = 0.9)

Arguments

lavaanObj The lavaan model object used to evaluate model fit

stdLoad The amount of standardized factor loading that one would like to be detected
(rejected). The default value is 0.4, which is suggested by Saris and colleagues
(2009, p. 571).

cor The amount of factor or error correlations that one would like to be detected
(rejected). The default value is 0.1, which is suggested by Saris and colleagues
(2009, p. 571).

stdBeta The amount of standardized regression coefficients that one would like to be
detected (rejected). The default value is 0.1, which is suggested by Saris and
colleagues (2009, p. 571).

intcept The amount of standardized intercept (similar to Cohen’s d that one would like
to be detected (rejected). The default value is 0.2, which is equivalent to a low
effect size proposed by Cohen (1988, 1992).

80 miPowerFit

stdDelta The vector of the standardized parameters that one would like to be detected
(rejected). If this argument is specified, the value here will overwrite the other
arguments above. The order of the vector must be the same as the row order
from modification indices from the lavaan object. If a single value is specified,
the value will be applied to all parameters.

delta The vector of the unstandardized parameters that one would like to be detected
(rejected). If this argument is specified, the value here will overwrite the other
arguments above. The order of the vector must be the same as the row order
from modification indices from the lavaan object. If a single value is specified,
the value will be applied to all parameters.

cilevel The confidence level of the confidence interval of expected parameter changes.
The confidence intervals are used in the equivalence testing.

Details

In the lavaan object, one can inspect the modification indices and expected parameter changes.
Those values can be used to evaluate model fit by two methods.

First, Saris, Satorra, and van der Veld (2009, pp. 570-573) used the power to detect modification
indices and expected parameter changes to evaluate model fit. First, one should evaluate whether
the modification index of each parameter is significant. Second, one should evaluate whether the
power to detect a target expected parameter change is high enough. If the modification index is not
significant and the power is high, there is no misspecification. If the modification index is significant
and the power is low, the fixed parameter is misspecified. If the modification index is significant and
the power is high, the expected parameter change is investigated. If the expected parameter change
is large (greater than the the target expected parameter change), the parameter is misspecified. If the
expected parameter change is low (lower than the target expected parameter change), the parameter
is not misspecificied. If the modification index is not significant and the power is low, the decision
is inconclusive.

Second, the confidence intervals of the expected parameter changes are formed. These confidence
intervals are compared with the range of trivial misspecification, which could be (-delta, delta)
or (0, delta) for nonnegative parameters. If the confidence intervals are outside of the range of
trivial misspecification, the fixed parameters are severely misspecified. If the confidence intervals
are inside the range of trivial misspecification, the fixed parameters are trivially misspecified. If
confidence intervals are overlapped the range of trivial misspecification, the decision is inconclu-
sive.

Value

A data frame with these variables:

1. lhs: The left-hand side variable, with respect to the operator in in the lavaan model.syntax

2. op: The lavaan syntax operator: "~~" represents covariance, "=~" represents factor loading,
"~" represents regression, and "~1" represents intercept.

3. rhs: The right-hand side variable

4. group: The level of the group variable for the parameter in question

5. mi: The modification index of the fixed parameter

6. epc: The expected parameter change if the parameter is freely estimated

miPowerFit 81

7. target.epc: The target expected parameter change that represents the minimum size of mis-
specification that one would like to be detected by the test with a high power

8. std.epc: The standardized expected parameter change if the parameter is freely estimated

9. std.target.epc: The standardized target expected parameter change

10. significant.mi: Represents whether the modification index value is significant

11. high.power: Represents whether the power is enough to detect the target expected parameter
change

12. decision.pow: The decision whether the parameter is misspecified or not based on Saris et
al’s method: "M" represents the parameter is misspecified, "NM" represents the parameter is
not misspecified, "EPC:M" represents the parameter is misspecified decided by checking the
expected parameter change value, "EPC:NM" represents the parameter is not misspecified de-
cided by checking the expected parameter change value, and "I" represents the decision is
inconclusive.

13. se.epc: The standard errors of the expected parameter changes.

14. lower.epc: The lower bound of the confidence interval of expected parameter changes.

15. upper.epc: The upper bound of the confidence interval of expected parameter changes.

16. lower.std.epc: The lower bound of the confidence interval of standardized expected parameter
changes.

17. upper.std.epc: The upper bound of the confidence interval of standardized expected parameter
changes.

18. decision.ci: The decision whether the parameter is misspecified or not based on the confidence
interval method: "M" represents the parameter is misspecified, "NM" represents the parameter
is not misspecified, and "I" represents the decision is inconclusive.

The row numbers matches with the results obtained from the inspect(object,"mi") function.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Erlbaum.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. doi:10.1037/0033-
2909.112.1.155

Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detec-
tion of misspecifications? Structural Equation Modeling, 16(4), 561–582. doi:10.1080/10705510903203433

See Also

moreFitIndices For the additional fit indices information

82 modindices.mi

Examples

library(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939,
group = "sex", meanstructure = TRUE)

miPowerFit(fit)

model <- '
latent variable definitions

ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

'
fit2 <- sem(model, data = PoliticalDemocracy, meanstructure = TRUE)
miPowerFit(fit2, stdLoad = 0.3, cor = 0.2, stdBeta = 0.2, intcept = 0.5)

modindices.mi Modification Indices for Multiple Imputations

Description

Modification indices (1-df Lagrange multiplier tests) from a latent variable model fitted to multiple
imputed data sets. Statistics for releasing one or more fixed or constrained parameters in model can
be calculated by pooling the gradient and information matrices across imputed data sets in a method
proposed by Mansolf, Jorgensen, & Enders (in press)—analogous to the "D1" Wald test proposed
by Li, Meng, Raghunathan, & Rubin (1991)—or by pooling the complete-data score-test statistics
across imputed data sets (i.e., "D2"; Li et al., 1991).

Usage

modindices.mi(object, test = c("D2", "D1"), omit.imps = c("no.conv",
"no.se"), standardized = TRUE, cov.std = TRUE,

modindices.mi 83

information = "expected", power = FALSE, delta = 0.1, alpha = 0.05,
high.power = 0.75, sort. = FALSE, minimum.value = 0,
maximum.number = nrow(LIST), na.remove = TRUE, op = NULL)

modificationIndices.mi(object, test = c("D2", "D1"),
omit.imps = c("no.conv", "no.se"), standardized = TRUE, cov.std = TRUE,
information = "expected", power = FALSE, delta = 0.1, alpha = 0.05,
high.power = 0.75, sort. = FALSE, minimum.value = 0,
maximum.number = nrow(LIST), na.remove = TRUE, op = NULL)

Arguments

object An object of class lavaan.mi
test character indicating which pooling method to use. "D1" requests Mansolf,

Jorgensen, & Enders’ (in press) proposed Wald-like test for pooling the gradient
and information, which are then used to calculate score-test statistics in the usual
manner. "D2" (default because it is less computationall intensive) requests to
pool the complete-data score-test statistics from each imputed data set, then pool
them across imputations, described by Li et al. (1991) and Enders (2010).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

standardized logical. If TRUE, two extra columns ($sepc.lv and $sepc.all) will contain
standardized values for the EPCs. In the first column ($sepc.lv), standardiziza-
tion is based on the variances of the (continuous) latent variables. In the second
column ($sepc.all), standardization is based on both the variances of both
(continuous) observed and latent variables. (Residual) covariances are standard-
ized using (residual) variances.

cov.std logical. TRUE if test == "D2". If TRUE (default), the (residual) observed co-
variances are scaled by the square-root of the diagonal elements of the Θ matrix,
and the (residual) latent covariances are scaled by the square-root of the diago-
nal elements of the Ψ matrix. If FALSE, the (residual) observed covariances are
scaled by the square-root of the diagonal elements of the model-implied covari-
ance matrix of observed variables (Σ), and the (residual) latent covariances are
scaled by the square-root of the diagonal elements of the model-implied covari-
ance matrix of the latent variables.

information character indicating the type of information matrix to use (check lavInspect
for available options). "expected" information is the default, which provides
better control of Type I errors.

power logical. If TRUE, the (post-hoc) power is computed for each modification index,
using the values of delta and alpha.

84 modindices.mi

delta The value of the effect size, as used in the post-hoc power computation, currently
using the unstandardized metric of the $epc column.

alpha The significance level used for deciding if the modification index is statistically
significant or not.

high.power If the computed power is higher than this cutoff value, the power is considered
’high’. If not, the power is considered ’low’. This affects the values in the
$decision column in the output.

sort. logical. If TRUE, sort the output using the values of the modification index
values. Higher values appear first.

minimum.value numeric. Filter output and only show rows with a modification index value
equal or higher than this minimum value.

maximum.number integer. Filter output and only show the first maximum number rows. Most
useful when combined with the sort. option.

na.remove logical. If TRUE (default), filter output by removing all rows with NA values for
the modification indices.

op character string. Filter the output by selecting only those rows with operator
op.

Value

A data.frame containing modification indices and (S)EPCs.

Note

When test = "D2", each (S)EPC will be pooled by taking its average across imputations. When
test = "D1", EPCs will be calculated in the standard way using the pooled gradient and infor-
mation, and SEPCs will be calculated by standardizing the EPCs using model-implied (residual)
variances.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Adapted from lavaan source code, written by Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

test = "D1" method proposed by Maxwell Mansolf (University of California, Los Angeles; <mamansolf@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from re-
peated p-values with multiply-imputed data.Statistica Sinica, 1(1), 65–92. Retrieved from https://www.jstor.org/stable/24303994

Mansolf, M., Jorgensen, T. D., & Enders, C. K. (in press). A multiple imputation score test for
model modification in structural equation models. Psychological Methods. doi:10.1037/met0000243

monteCarloMed 85

Examples

Not run:
impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),

"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

specify CFA model from lavaan's ?cfa help page
HS.model <- '

visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

'

out <- cfa.mi(HS.model, data = imps)

modindices.mi(out) # default: Li et al.'s (1991) "D2" method
modindices.mi(out, test = "D1") # Li et al.'s (1991) "D1" method

End(Not run)

monteCarloMed Monte Carlo Confidence Intervals to Test Complex Indirect Effects

Description

This function takes an expression for an indirect effect, the parameters and standard errors associ-
ated with the expression and returns a confidence interval based on a Monte Carlo test of mediation
(MacKinnon, Lockwood, & Williams, 2004).

Usage

monteCarloMed(expression, ..., ACM = NULL, object = NULL, rep = 20000,
CI = 95, plot = FALSE, outputValues = FALSE)

86 monteCarloMed

Arguments

expression A character scalar representing the computation of an indirect effect. Different
parameters in the expression should have different alphanumeric values. Ex-
pressions can use either addition (+) or multiplication (*) operators.

... Parameter estimates for all parameters named in expression. The order of pa-
rameters should follow from expression (the first parameter named in expression
should be the first parameter listed in . . .). Alternatively . . . can be a vector of
parameter estimates.

ACM A matrix representing the asymptotic covariance matrix of the parameters de-
scribed in expression. This matrix should be a symetric matrix with dimen-
sions equal to the number of parameters names in expression. Information on
finding the ACOV is popular SEM software is described below.)

object A lavaan model object fitted after running the running the cfa, sem, growth,
or lavaan functions. The model must have parameters labelled with the same
labels used in expression. When using this option do not specify values for
. . . or ACM

rep The number of replications to compute. Many thousand are reccomended.

CI Width of the confidence interval computed.

plot Should the function output a plot of simulated values of the indirect effect?

outputValues Should the function output all simulated values of the indirect effect?

Details

This function implements the Monte Carlo test of mediation first described in MacKinnon, Lock-
wood, & Williams (2004) and extends it to complex cases where the indirect effect is more than
a function of two parameters. The function takes an expression for the indirect effect, randomly
simulated values of the indirect effect based on the values of the parameters (and the associated
standard errors) comprising the indirect effect, and outputs a confidence interval of the indirect ef-
fect based on the simulated values. For further information on the Monte Carlo test of mediation
see MacKinnon, Lockwood, & Williams (2004) and Preacher & Selig (2012).

The asymptotic covariance matrix can be easily found in many popular SEM software applications.

• LISREL: Including the EC option on the OU line will print the ACM to a seperate file. The
file contains the lower triangular elements of the ACM in free format and scientific notation

• Mplus Include the command TECH3; in the OUTPUT section. The ACM will be printed in
the output.

• lavaan: Use the command vcov on the fitted lavaan object to print the ACM to the screen

Value

A list with two elements. The first element is the point estimate for the indirect effect. The second
element is a matrix with values for the upper and lower limits of the confidence interval generated
from the Monte Carlo test of mediation. If outputValues = TRUE, output will be a list with a list
with the point estimate and values for the upper and lower limits of the confidence interval as the
first element and a vector of simulated values of the indirect effect as the second element.

monteCarloMed 87

Author(s)

Corbin Quick (University of Michigan; <corbinq@umich.edu>)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)

James P. Selig (University of New Mexico; <selig@unm.edu>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect
effect: Distribution of the product and resampling methods. Multivariate Behavioral Research,
39(1) 99–128. doi:10.1207/s15327906mbr3901_4

Preacher, K. J., & Selig, J. P. (2010, July). Monte Carlo method for assessing multilevel mediation:
An interactive tool for creating confidence intervals for indirect effects in 1-1-1 multilevel models
[Computer software]. Available from http://quantpsy.org/.

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect
effects. Communication Methods and Measures, 6(2), 77–98. doi:10.1080/19312458.2012.679848

Selig, J. P., & Preacher, K. J. (2008, June). Monte Carlo method for assessing mediation: An
interactive tool for creating confidence intervals for indirect effects [Computer software]. Available
from http://quantpsy.org/.

Examples

Simple two path mediation
Write expression of indirect effect
med <- 'a*b'
Paramter values from analyses
aparam <- 1
bparam <- 2
Asymptotic covariance matrix from analyses
AC <- matrix(c(.01,.00002,

.00002,.02), nrow=2, byrow=TRUE)
Compute CI, include a plot
monteCarloMed(med, coef1 = aparam, coef2 = bparam, outputValues = FALSE,

plot = TRUE, ACM = AC)

Use a vector of parameter estimates as input
aparam <- c(1,2)
monteCarloMed(med, coef1 = aparam, outputValues = FALSE,

plot = TRUE, ACM = AC)

Complex mediation with two paths for the indirect effect
Write expression of indirect effect
med <- 'a1*b1 + a1*b2'
Paramter values and standard errors from analyses
aparam <- 1
b1param <- 2
b2param <- 1

http://quantpsy.org/
http://quantpsy.org/

88 moreFitIndices

Asymptotic covariance matrix from analyses
AC <- matrix(c(1, .00002, .00003,

.00002, 1, .00002,

.00003, .00002, 1), nrow = 3, byrow = TRUE)
Compute CI do not include a plot
monteCarloMed(med, coef1 = aparam, coef2 = b1param,

coef3 = b2param, ACM = AC)

WORKING WITH lavaan MODELS. From the mediation tutorial:
http://lavaan.ugent.be/tutorial/mediation.html

set.seed(1234)
X <- rnorm(100)
M <- 0.5*X + rnorm(100)
Y <- 0.7*M + rnorm(100)
Data <- data.frame(X = X, Y = Y, M = M)
model <- ' # direct effect
Y ~ c*X
mediator
M ~ a*X
Y ~ b*M
indirect effect (a*b)
ab := a*b
total effect
total := c + (a*b)
'
fit <- sem(model, data = Data)

med <- 'a*b'
Automatically extract information from lavaan object
monteCarloMed(med, object = fit)

or (unnecessary) manually extract the information first
myParams <- c("a","b")
myCoefs <- coef(fit)[myParams]
myACM <- vcov(fit)[myParams, myParams]
monteCarloMed(med, myCoefs, ACM = myACM)

moreFitIndices Calculate more fit indices

Description

Calculate more fit indices that are not already provided in lavaan.

Usage

moreFitIndices(object, fit.measures = "all", nPrior = 1)

moreFitIndices 89

Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan
functions.

fit.measures Additional fit measures to be calculated. All additional fit measures are calcu-
lated by default

nPrior The sample size on which prior is based. This argument is used to compute
BIC*.

Details

Gamma Hat (gammaHat; West, Taylor, & Wu, 2012) is a global fit index which can be computed
(assuming equal number of indicators across groups) by

gammaHat =
p

p+ 2× χ2
k
−dfk
N

,

where p is the number of variables in the model, χ2
k is the χ2 test statistic value of the target model,

dfk is the degree of freedom when fitting the target model, and N is the sample size (or sample size
minus the number of groups if mimic is set to "EQS").

Adjusted Gamma Hat (adjGammaHat; West, Taylor, & Wu, 2012) is a global fit index which can
be computed by

adjGammaHat =

(
1− K × p× (p+ 1)

2× dfk

)
× (1− gammaHat) ,

where K is the number of groups (please refer to Dudgeon, 2004 for the multiple-group adjustment
for agfi*).

Corrected Akaike Information Criterion (aic.smallN; Burnham & Anderson, 2003) is a corrected
version of AIC for small sample size, often abbreviated AICc:

aic.smallN = AIC +
2k(k + 1)

N − k − 1
,

where AIC is the original AIC: −2 × LL + 2k (where k = the number of estimated parameters
in the target model). Note that AICc is a small-sample correction derived for univariate regression
models, so it is probably not appropriate for comparing SEMs.

Corrected Bayesian Information Criterion (bic.priorN; Kuha, 2004) is similar to BIC but explicitly
specifying the sample size on which the prior is based (Nprior).

bic.priorN = f + k log (1 +N/Nprior),

Stochastic information criterion (SIC; Preacher, 2006) is similar to AIC or BIC. This index will
account for model complexity in the model’s function form, in addition to the number of free pa-
rameters. This index will be provided only when the χ2 value is not scaled. The SIC can be
computed by

90 moreFitIndices

sic =
1

2

(
f − log det I(θ̂)

)
,

where I(θ̂) is the information matrix of the parameters.

Hannan-Quinn Information Criterion (hqc; Hannan & Quinn, 1979) is used for model selection
similar to AIC or BIC.

hqc = f + 2k log (logN),

Note that if Satorra–Bentler or Yuan–Bentler’s method is used, the fit indices using the scaled χ2

values are also provided.

See nullRMSEA for the further details of the computation of RMSEA of the null model.

Value

1. gammaHat: Gamma Hat

2. adjGammaHat: Adjusted Gamma Hat

3. baseline.rmsea: RMSEA of the Baseline (Null) Model

4. aic.smallN: Corrected (for small sample size) Akaike Information Criterion

5. bic.priorN: Bayesian Information Criterion with specified prior sample size

6. sic: Stochastic Information Criterion

7. hqc: Hannan-Quinn Information Criterion

8. gammaHat.scaled: Gamma Hat using scaled χ2

9. adjGammaHat.scaled: Adjusted Gamma Hat using scaled χ2

10. baseline.rmsea.scaled: RMSEA of the Baseline (Null) Model using scaled χ2

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Aaron Boulton (University of North Carolina, Chapel Hill; <aboulton@email.unc.edu>)

Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)

Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References

Burnham, K., & Anderson, D. (2003). Model selection and multimodel inference: A practical–
theoretic approach. New York, NY: Springer–Verlag.

Dudgeon, P. (2004). A note on extending Steiger’s (1998) multiple sample RMSEA adjustment
to other noncentrality parameter-based statistic. Structural Equation Modeling, 11(3), 305–319.
doi:10.1207/s15328007sem1103_1

mvrnonnorm 91

Kuha, J. (2004). AIC and BIC: Comparisons of assumptions and performance. Sociological Meth-
ods Research, 33(2), 188–229. doi:10.1177/0049124103262065

Preacher, K. J. (2006). Quantifying parsimony in structural equation modeling. Multivariate Be-
havioral Research, 43(3), 227-259. doi:10.1207/s15327906mbr4103_1

West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation
modeling. In R. H. Hoyle (Ed.), Handbook of Structural Equation Modeling (pp. 209–231). New
York, NY: Guilford.

See Also

• miPowerFit For the modification indices and their power approach for model fit evaluation

• nullRMSEA For RMSEA of the null model

Examples

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
moreFitIndices(fit)

fit2 <- cfa(HS.model, data = HolzingerSwineford1939, estimator = "mlr")
moreFitIndices(fit2)

mvrnonnorm Generate Non-normal Data using Vale and Maurelli (1983) method

Description

Generate Non-normal Data using Vale and Maurelli (1983) method. The function is designed to be
as similar as the popular mvrnorm function in the MASS package. The codes are copied from mvrnorm
function in the MASS package for argument checking and lavaan package for data generation using
Vale and Maurelli (1983) method.

Usage

mvrnonnorm(n, mu, Sigma, skewness = NULL, kurtosis = NULL, empirical = FALSE)

Arguments

n Sample size

mu A mean vector. If elements are named, those will be used as variable names in
the returned data matrix.

92 net

Sigma A positive-definite symmetric matrix specifying the covariance matrix of the
variables. If rows or columns are named (and mu is unnamed), those will be
used as variable names in the returned data matrix.

skewness A vector of skewness of the variables

kurtosis A vector of excessive kurtosis of the variables

empirical If TRUE, mu and Sigma specify the empirical rather than population mean and
covariance matrix

Value

A data matrix

Author(s)

The original function is the simulateData function written by Yves Rosseel in the lavaan package.
The function is adjusted for a convenient usage by Sunthud Pornprasertmanit (<psunthud@gmail.com>).
Terrence D. Jorgensen added the feature to retain variable names from mu or Sigma.

References

Vale, C. D. & Maurelli, V. A. (1983). Simulating multivariate nonormal distributions. Psychome-
trika, 48(3), 465–471. doi:10.1007/BF02293687

Examples

set.seed(123)
mvrnonnorm(20, c(1, 2), matrix(c(10, 2, 2, 5), 2, 2),
skewness = c(5, 2), kurtosis = c(3, 3))
again, with variable names specified in mu
set.seed(123)
mvrnonnorm(20, c(a = 1, b = 2), matrix(c(10, 2, 2, 5), 2, 2),
skewness = c(5, 2), kurtosis = c(3, 3))

net Nesting and Equivalence Testing

Description

This test examines whether pairs of SEMs are nested or equivalent.

Usage

net(..., crit = 1e-04)

net 93

Arguments

... The lavaan objects used for test of nesting and equivalence

crit The upper-bound criterion for testing the equivalence of models. Models are
considered nested (or equivalent) if the difference between their χ2 fit statistics
is less than this criterion.

Details

The concept of nesting/equivalence should be the same regardless of estimation method. How-
ever, the particular method of testing nesting/equivalence (as described in Bentler & Satorra, 2010)
employed by the net function analyzes summary statistics (model-implied means and covariance
matrices, not raw data). In the case of robust methods like MLR, the raw data is only utilized for the
robust adjustment to SE and chi-sq, and the net function only checks the unadjusted chi-sq for the
purposes of testing nesting/equivalence. This method also applies to models for categorical data,
following the procedure described by Asparouhov & Muthen (2019).

Value

The Net object representing the outputs for nesting and equivalent testing, including a logical matrix
of test results and a vector of degrees of freedom for each model.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Bentler, P. M., & Satorra, A. (2010). Testing model nesting and equivalence. Psychological Meth-
ods, 15(2), 111–123. doi:10.1037/a0019625

Asparouhov, T., & Muthen, B. (2019). Nesting and equivalence testing for structural equation
models. Structural Equation Modeling, 26(2), 302–309. doi:10.1080/10705511.2018.1513795

Examples

Not run:
m1 <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

m2 <- ' f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8 + x9 '

m3 <- ' visual =~ x1 + x2 + x3
textual =~ eq*x4 + eq*x5 + eq*x6
speed =~ x7 + x8 + x9 '

fit1 <- cfa(m1, data = HolzingerSwineford1939)
fit1a <- cfa(m1, data = HolzingerSwineford1939, std.lv = TRUE) # Equivalent to fit1

94 Net-class

fit2 <- cfa(m2, data = HolzingerSwineford1939) # Not equivalent to or nested in fit1
fit3 <- cfa(m3, data = HolzingerSwineford1939) # Nested in fit1 and fit1a

tests <- net(fit1, fit1a, fit2, fit3)
tests
summary(tests)

End(Not run)

Net-class Class For the Result of Nesting and Equivalence Testing

Description

This class contains the results of nesting and equivalence testing among multiple models

Usage

S4 method for signature 'Net'
show(object)

S4 method for signature 'Net'
summary(object)

Arguments

object An object of class Net.

Value

show signature(object = "Net"): prints the logical matrix of test results. NA indi-
cates a model did not converge.

summary signature(object = "Net"): prints a narrative description of results. The
original object is invisibly returned.

Slots

test Logical matrix indicating nesting/equivalence among models

df The degrees of freedom of tested models

Objects from the Class

Objects can be created via the net function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

nullRMSEA 95

See Also

net

Examples

See the example in the net function.

nullRMSEA Calculate the RMSEA of the null model

Description

Calculate the RMSEA of the null (baseline) model

Usage

nullRMSEA(object, scaled = FALSE, silent = FALSE)

Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan
functions.

scaled If TRUE, the scaled (or robust, if available) RMSEA is returned. Ignored if a
robust test statistic was not requested.

silent If TRUE, do not print anything on the screen.

Details

RMSEA of the null model is calculated similar to the formula provided in the lavaan package. The
standard formula of RMSEA is

RMSEA =

√
χ2

N × df
− 1

N
×
√
G

where χ2 is the chi-square test statistic value of the target model, N is the total sample size, df is
the degree of freedom of the hypothesized model, G is the number of groups. Kenny proposed in
his website that

"A reasonable rule of thumb is to examine the RMSEA for the null model and make sure that is no
smaller than 0.158. An RMSEA for the model of 0.05 and a TLI of .90, implies that the RMSEA
of the null model is 0.158. If the RMSEA for the null model is less than 0.158, an incremental
measure of fit may not be that informative."

See also http://davidakenny.net/cm/fit.htm

http://davidakenny.net/cm/fit.htm

96 orthRotate

Value

A value of RMSEA of the null model (a numeric vector) returned invisibly.

Author(s)

Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models with
small degrees of freedom. Sociological Methods Research, 44(3), 486–507. doi:10.1177/0049124114543236

See Also

• miPowerFit For the modification indices and their power approach for model fit evaluation

• moreFitIndices For other fit indices

Examples

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
nullRMSEA(fit)

orthRotate Implement orthogonal or oblique rotation

Description

These functions will implement orthogonal or oblique rotation on standardized factor loadings from
a lavaan output.

Usage

orthRotate(object, method = "varimax", ...)

oblqRotate(object, method = "quartimin", ...)

funRotate(object, fun, ...)

orthRotate 97

Arguments

object A lavaan output

method The method of rotations, such as "varimax", "quartimax", "geomin", "oblimin",
or any gradient projection algorithms listed in the GPA function in the GPArotation
package.

... Additional arguments for the GPForth function (for orthRotate), the GPFoblq
function (for oblqRotate), or the function that users provide in the fun argu-
ment.

fun The name of the function that users wish to rotate the standardized solution.
The functions must take the first argument as the standardized loading matrix
and return the GPArotation object. Check this page for available functions:
rotations.

Details

These functions will rotate the unrotated standardized factor loadings by orthogonal rotation us-
ing the GPForth function or oblique rotation using the GPFoblq function the GPArotation pack-
age. The resulting rotation matrix will be used to calculate standard errors of the rotated stan-
dardized factor loading by delta method by numerically computing the Jacobian matrix by the
lav_func_jacobian_simple function.

Value

An linkS4class{EFA} object that saves the rotated EFA solution

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

Not run:

unrotated <- efaUnrotate(HolzingerSwineford1939, nf = 3,
varList = paste0("x", 1:9), estimator = "mlr")

Orthogonal varimax
out.varimax <- orthRotate(unrotated, method = "varimax")
summary(out.varimax, sort = FALSE, suppress = 0.3)

Orthogonal Quartimin
orthRotate(unrotated, method = "quartimin")

Oblique Quartimin
oblqRotate(unrotated, method = "quartimin")

Geomin
oblqRotate(unrotated, method = "geomin")

98 parcelAllocation

Target rotation
library(GPArotation)
target <- matrix(0, 9, 3)
target[1:3, 1] <- NA
target[4:6, 2] <- NA
target[7:9, 3] <- NA
colnames(target) <- c("factor1", "factor2", "factor3")
This function works with GPArotation version 2012.3-1
funRotate(unrotated, fun = "targetQ", Target = target)

End(Not run)

parcelAllocation Random Allocation of Items to Parcels in a Structural Equation Model

Description

This function generates a given number of randomly generated item-to-parcel allocations, fits a
model to each allocation, and provides averaged results over all allocations.

Usage

parcelAllocation(model, data, parcel.names, item.syntax, nAlloc = 100,
fun = "sem", alpha = 0.05, fit.measures = c("chisq", "df", "cfi",
"tli", "rmsea", "srmr"), ..., show.progress = FALSE, iseed = 12345,
do.fit = TRUE, return.fit = FALSE, warn = FALSE)

Arguments

model lavaan model syntax specifying the model fit to (at least some) parceled data.
Note that there can be a mixture of items and parcels (even within the same
factor), in case certain items should never be parceled. Can be a character string
or parameter table. Also see lavaanify for more details.

data A data.frame containing all observed variables appearing in the model, as well
as those in the item.syntax used to create parcels. If the data have missing val-
ues, multiple imputation before parceling is recommended: submit a stacked
data set (with a variable for the imputation number, so they can be separateed
later) and set do.fit = FALSE to return the list of data.frames (one per alloca-
tion), each of which is a stacked, imputed data set with parcels.

parcel.names character vector containing names of all parcels appearing as indicators in
model.

item.syntax lavaan model syntax specifying the model that would be fit to all of the un-
parceled items, including items that should be randomly allocated to parcels
appearing in model.

nAlloc The number of random items-to-parcels allocations to generate.

parcelAllocation 99

fun character string indicating the name of the lavaan function used to fit model
to data. Can only take the values "lavaan", "sem", "cfa", or "growth".

alpha Alpha level used as criterion for significance.

fit.measures character vector containing names of fit measures to request from each fitted
lavaan model. See the output of fitMeasures for a list of available measures.

... Additional arguments to be passed to lavaanList. See also lavOptions

show.progress If TRUE, show a txtProgressBar indicating how fast the model-fitting iterates
over allocations.

iseed (Optional) Random seed used for parceling items. When the same random seed
is specified and the program is re-run, the same allocations will be generated.
Using the same iseed argument will ensure the any model is fit to the same
parcel allocations. Note: When using parallel options, you must first type
RNGkind("L'Ecuyer-CMRG") into the R Console, so that the seed will be con-
trolled across cores.

do.fit If TRUE (default), the model is fitted to each parceled data set, and the summary
of results is returned (see the Value section below). If FALSE, the items are
randomly parceled, but the model is not fit; instead, the list of data.frames is
returned (so assign it to an object).

return.fit If TRUE, a lavaanList object is returned with the list of results across alloca-
tions

warn Whether to print warnings when fitting model to each allocation

Details

This function implements the random item-to-parcel allocation procedure described in Sterba (2011)
and Sterba and MacCallum (2010). The function takes a single data set with item-level data, ran-
domly assigns items to parcels, fits a structural equation model to the parceled data (using lavaan-
List), and repeats this process for a user-specified number of random allocations. Results from all
fitted models are summarized in the output. For further details on the benefits of randomly allocat-
ing items to parcels, see Sterba (2011) and Sterba and MccCallum (2010).

Value

Estimates A data.frame containing results related to parameter estimates with columns
corresponding to their names; average and standard deviation across allocations;
minimum, maximum, and range across allocations; and the proportion of allo-
cations in which each parameter estimate was significant.

SE A data.frame containing results similar to Estimates, but related to the stan-
dard errors of parameter estimates.

Fit A data.frame containing results related to model fit, with columns correspond-
ing to fit index names; their average and standard deviation across allocations;
the minimum, maximum, and range across allocations; and (if the test statistic
or RMSEA is included in fit.measures) the proportion of allocations in which
each test of (exact or close) fit was significant.

Model A lavaanList object containing results of the model fitted to each parcel allo-
cation. Only returned if return.fit = TRUE.

100 parcelAllocation

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Sterba, S. K. (2011). Implications of parcel-allocation variability for comparing fit of item-solutions
and parcel-solutions. Structural Equation Modeling, 18(4), 554–577. doi:10.1080/10705511.2011.607073

Sterba, S. K. & MacCallum, R. C. (2010). Variability in parameter estimates and model fit across
random allocations of items to parcels. Multivariate Behavioral Research, 45(2), 322–358. doi:10.1080/00273171003680302

Sterba, S. K., & Rights, J. D. (2016). Accounting for parcel-allocation variability in practice:
Combining sources of uncertainty and choosing the number of allocations. Multivariate Behavioral
Research, 51(2–3), 296–313. doi:10.1080/00273171.2016.1144502

Sterba, S. K., & Rights, J. D. (2017). Effects of parceling on model selection: Parcel-allocation
variability in model ranking. Psychological Methods, 22(1), 47–68. doi:10.1037/met0000067

See Also

PAVranking for comparing 2 models, poolMAlloc for choosing the number of allocations

Examples

Fit 2-factor CFA to simulated data. Each factor has 9 indicators.

Specify the item-level model (if NO parcels were created)
item.syntax <- c(paste0("f1 =~ f1item", 1:9),

paste0("f2 =~ f2item", 1:9))
cat(item.syntax, sep = "\n")
Below, we reduce the size of this same model by
applying different parceling schemes

3-indicator parcels
mod.parcels <- '
f1 =~ par1 + par2 + par3
f2 =~ par4 + par5 + par6
'
names of parcels
(parcel.names <- paste0("par", 1:6))

Not run:
override default random-number generator to use parallel options
RNGkind("L'Ecuyer-CMRG")

parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,
parcel.names = parcel.names, item.syntax = item.syntax,
std.lv = TRUE, # any addition lavaan arguments
parallel = "snow") # parallel options

parcelAllocation 101

POOL RESULTS by treating parcel allocations as multiple imputations
Details provided in Sterba & Rights (2016); see ?poolMAlloc.

save list of data sets instead of fitting model yet
dataList <- parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,

parcel.names = parcel.names,
item.syntax = item.syntax,
do.fit = FALSE)

now fit the model to each data set
fit.parcels <- cfa.mi(mod.parcels, data = dataList, std.lv = TRUE)
summary(fit.parcels) # uses Rubin's rules
anova(fit.parcels) # pooled test statistic
class?lavaan.mi # find more methods for pooling results

End(Not run)

multigroup example
simParcel$group <- 0:1 # arbitrary groups for example
mod.mg <- '
f1 =~ par1 + c(L2, L2)*par2 + par3
f2 =~ par4 + par5 + par6
'
names of parcels
(parcel.names <- paste0("par", 1:6))

parcelAllocation(mod.mg, data = simParcel, parcel.names, item.syntax,
std.lv = TRUE, group = "group", group.equal = "loadings",
nAlloc = 20, show.progress = TRUE)

parcels for first factor, items for second factor
mod.items <- '
f1 =~ par1 + par2 + par3
f2 =~ f2item2 + f2item7 + f2item8
'
names of parcels
(parcel.names <- paste0("par", 1:3))

parcelAllocation(mod.items, data = simParcel, parcel.names, item.syntax,
nAlloc = 20, std.lv = TRUE)

mixture of 1- and 3-indicator parcels for second factor
mod.mix <- '
f1 =~ par1 + par2 + par3
f2 =~ f2item2 + f2item7 + f2item8 + par4 + par5 + par6
'
names of parcels
(parcel.names <- paste0("par", 1:6))

102 partialInvariance

parcelAllocation(mod.mix, data = simParcel, parcel.names, item.syntax,
nAlloc = 20, std.lv = TRUE)

partialInvariance Partial Measurement Invariance Testing Across Groups

Description

This test will provide partial invariance testing by (a) freeing a parameter one-by-one from nested
model and compare with the original nested model or (b) fixing (or constraining) a parameter one-
by-one from the parent model and compare with the original parent model. This function only
works with congeneric models. The partialInvariance is used for continuous variable. The
partialInvarianceCat is used for categorical variables.

Usage

partialInvariance(fit, type, free = NULL, fix = NULL, refgroup = 1,
poolvar = TRUE, p.adjust = "none", fbound = 2, return.fit = FALSE,
method = "satorra.bentler.2001")

partialInvarianceCat(fit, type, free = NULL, fix = NULL, refgroup = 1,
poolvar = TRUE, p.adjust = "none", return.fit = FALSE,
method = "satorra.bentler.2001")

Arguments

fit A list of models for invariance testing. Each model should be assigned by
appropriate names (see details). The result from measurementInvariance or
measurementInvarianceCat could be used in this argument directly.

type The types of invariance testing: "metric", "scalar", "strict", or "means"

free A vector of variable names that are free across groups in advance. If partial
mean invariance is tested, this argument represents a vector of factor names that
are free across groups.

fix A vector of variable names that are constrained to be equal across groups in
advance. If partial mean invariance is tested, this argument represents a vector
of factor names that are fixed across groups.

refgroup The reference group used to make the effect size comparison with the other
groups.

poolvar If TRUE, the variances are pooled across group for standardization. Otherwise,
the variances of the reference group are used for standardization.

p.adjust The method used to adjust p values. See p.adjust for the options for adjusting
p values. The default is to not use any corrections.

fbound The z-scores of factor that is used to calculate the effect size of the loading
difference proposed by Millsap and Olivera-Aguilar (2012).

partialInvariance 103

return.fit Return the submodels fitted by this function
method The method used to calculate likelihood ratio test. See lavTestLRT for available

options

Details

There are four types of partial invariance testing:

• Partial weak invariance. The model named ’fit.configural’ from the list of models is compared
with the model named ’fit.loadings’. Each loading will be freed or fixed from the metric and
configural invariance models respectively. The modified models are compared with the origi-
nal model. Note that the objects in the list of models must have the names of "fit.configural"
and "fit.loadings". Users may use "metric", "weak", "loading", or "loadings" in the type ar-
gument. Note that, for testing invariance on marker variables, other variables will be assigned
as marker variables automatically.

• Partial strong invariance. The model named ’fit.loadings’ from the list of models is compared
with the model named either ’fit.intercepts’ or ’fit.thresholds’. Each intercept will be freed
or fixed from the scalar and metric invariance models respectively. The modified models are
compared with the original model. Note that the objects in the list of models must have the
names of "fit.loadings" and either "fit.intercepts" or "fit.thresholds". Users may use "scalar",
"strong", "intercept", "intercepts", "threshold", or "thresholds" in the type argument. Note
that, for testing invariance on marker variables, other variables will be assigned as marker
variables automatically. Note that if all variables are dichotomous, scalar invariance testing is
not available.

• Partial strict invariance. The model named either ’fit.intercepts’ or ’fit.thresholds’ (or ’fit.loadings’)
from the list of models is compared with the model named ’fit.residuals’. Each residual vari-
ance will be freed or fixed from the strict and scalar (or metric) invariance models respectively.
The modified models are compared with the original model. Note that the objects in the list
of models must have the names of "fit.residuals" and either "fit.intercepts", "fit.thresholds", or
"fit.loadings". Users may use "strict", "residual", "residuals", "error", or "errors" in the type
argument.

• Partial mean invariance. The model named either ’fit.intercepts’ or ’fit.thresholds’ (or ’fit.residuals’
or ’fit.loadings’) from the list of models is compared with the model named ’fit.means’. Each
factor mean will be freed or fixed from the means and scalar (or strict or metric) invariance
models respectively. The modified models are compared with the original model. Note that
the objects in the list of models must have the names of "fit.means" and either "fit.residuals",
"fit.intercepts", "fit.thresholds", or "fit.loadings". Users may use "means" or "mean" in the
type argument.

Two types of comparisons are used in this function:

1. free: The nested model is used as a template. Then, one parameter indicating the differences
between two models is free. The new model is compared with the nested model. This process
is repeated for all differences between two models. The likelihood-ratio test and the difference
in CFI are provided.

2. fix: The parent model is used as a template. Then, one parameter indicating the differences
between two models is fixed or constrained to be equal to other parameters. The new model
is then compared with the parent model. This process is repeated for all differences between
two models. The likelihood-ratio test and the difference in CFI are provided.

104 partialInvariance

3. wald: This method is similar to the fix method. However, instead of building a new model
and compare them with likelihood-ratio test, multivariate wald test is used to compare equality
between parameter estimates. See lavTestWald for further details. Note that if any rows of
the contrast cannot be summed to 0, the Wald test is not provided, such as comparing two
means where one of the means is fixed as 0. This test statistic is not as accurate as likelihood-
ratio test provided in fix. I provide it here in case that likelihood-ratio test fails to converge.

Note that this function does not adjust for the inflated Type I error rate from multiple tests. The
degree of freedom of all tests would be the number of groups minus 1.

The details of standardized estimates and the effect size used for each parameters are provided in
the vignettes by running vignette("partialInvariance").

Value

A list of results are provided. The list will consists of at least two elements:

1. estimates: The results of parameter estimates including pooled estimates (poolest), the es-
timates for each group, standardized estimates for each group (std), the difference in standard-
ized values, and the effect size statistic (q for factor loading difference and h for error variance
difference). See the details of this effect size statistic by running vignette("partialInvariance").
In the partialInvariance function, the additional effect statistics proposed by Millsap and
Olivera-Aguilar (2012) are provided. For factor loading, the additional outputs are the ob-
served mean difference (diff_mean), the mean difference if factor scores are low (low_fscore),
and the mean difference if factor scores are high (high_fscore). The low factor score is cal-
culated by (a) finding the factor scores that its z score equals -bound (the default is −2) from
all groups and (b) picking the minimum value among the factor scores. The high factor score
is calculated by (a) finding the factor scores that its z score equals bound (default = 2) from
all groups and (b) picking the maximum value among the factor scores. For measurement
intercepts, the additional outputs are the observed means difference (diff_mean) and the pro-
portion of the differences in the intercepts over the observed means differences (propdiff).
For error variances, the additional outputs are the proportion of the difference in error vari-
ances over the difference in observed variances (propdiff).

2. results: Statistical tests as well as the change in CFI are provided. χ2 and p value are
provided for all methods.

3. models: The submodels used in the free and fix methods, as well as the nested and parent
models. The nested and parent models will be changed from the original models if free or
fit arguments are specified.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Millsap, R. E., & Olivera-Aguilar, M. (2012). Investigating measurement invariance using con-
firmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp.
380–392). New York, NY: Guilford.

partialInvariance 105

See Also

measurementInvariance for measurement invariance for continuous variables; measurementInvarianceCat
for measurement invariance for categorical variables; lavTestWald for multivariate Wald test

Examples

Conduct weak invariance testing manually by using fixed-factor
method of scale identification

library(lavaan)

conf <- "
f1 =~ NA*x1 + x2 + x3
f2 =~ NA*x4 + x5 + x6
f1 ~~ c(1, 1)*f1
f2 ~~ c(1, 1)*f2
"

weak <- "
f1 =~ NA*x1 + x2 + x3
f2 =~ NA*x4 + x5 + x6
f1 ~~ c(1, NA)*f1
f2 ~~ c(1, NA)*f2
"

configural <- cfa(conf, data = HolzingerSwineford1939, std.lv = TRUE, group="school")
weak <- cfa(weak, data = HolzingerSwineford1939, group="school", group.equal="loadings")
models <- list(fit.configural = configural, fit.loadings = weak)
partialInvariance(models, "metric")

Not run:
partialInvariance(models, "metric", free = "x5") # "x5" is free across groups in advance
partialInvariance(models, "metric", fix = "x4") # "x4" is fixed across groups in advance

Use the result from the measurementInvariance function
HW.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

models2 <- measurementInvariance(model = HW.model, data=HolzingerSwineford1939,
group="school")

partialInvariance(models2, "scalar")

Conduct weak invariance testing manually by using fixed-factor
method of scale identification for dichotomous variables

f <- rnorm(1000, 0, 1)
u1 <- 0.9*f + rnorm(1000, 1, sqrt(0.19))
u2 <- 0.8*f + rnorm(1000, 1, sqrt(0.36))
u3 <- 0.6*f + rnorm(1000, 1, sqrt(0.64))
u4 <- 0.7*f + rnorm(1000, 1, sqrt(0.51))

106 partialInvariance

u1 <- as.numeric(cut(u1, breaks = c(-Inf, 0, Inf)))
u2 <- as.numeric(cut(u2, breaks = c(-Inf, 0.5, Inf)))
u3 <- as.numeric(cut(u3, breaks = c(-Inf, 0, Inf)))
u4 <- as.numeric(cut(u4, breaks = c(-Inf, -0.5, Inf)))
g <- rep(c(1, 2), 500)
dat2 <- data.frame(u1, u2, u3, u4, g)

configural2 <- "
f1 =~ NA*u1 + u2 + u3 + u4
u1 | c(t11, t11)*t1
u2 | c(t21, t21)*t1
u3 | c(t31, t31)*t1
u4 | c(t41, t41)*t1
f1 ~~ c(1, 1)*f1
f1 ~ c(0, NA)*1
u1 ~~ c(1, 1)*u1
u2 ~~ c(1, NA)*u2
u3 ~~ c(1, NA)*u3
u4 ~~ c(1, NA)*u4
"

outConfigural2 <- cfa(configural2, data = dat2, group = "g",
parameterization = "theta", estimator = "wlsmv",
ordered = c("u1", "u2", "u3", "u4"))

weak2 <- "
f1 =~ NA*u1 + c(f11, f11)*u1 + c(f21, f21)*u2 + c(f31, f31)*u3 + c(f41, f41)*u4
u1 | c(t11, t11)*t1
u2 | c(t21, t21)*t1
u3 | c(t31, t31)*t1
u4 | c(t41, t41)*t1
f1 ~~ c(1, NA)*f1
f1 ~ c(0, NA)*1
u1 ~~ c(1, 1)*u1
u2 ~~ c(1, NA)*u2
u3 ~~ c(1, NA)*u3
u4 ~~ c(1, NA)*u4
"

outWeak2 <- cfa(weak2, data = dat2, group = "g", parameterization = "theta",
estimator = "wlsmv", ordered = c("u1", "u2", "u3", "u4"))

modelsCat <- list(fit.configural = outConfigural2, fit.loadings = outWeak2)

partialInvarianceCat(modelsCat, type = "metric")

partialInvarianceCat(modelsCat, type = "metric", free = "u2")
partialInvarianceCat(modelsCat, type = "metric", fix = "u3")

Use the result from the measurementInvarianceCat function

model <- ' f1 =~ u1 + u2 + u3 + u4
f2 =~ u5 + u6 + u7 + u8'

PAVranking 107

modelsCat2 <- measurementInvarianceCat(model = model, data = datCat, group = "g",
parameterization = "theta",
estimator = "wlsmv", strict = TRUE)

partialInvarianceCat(modelsCat2, type = "scalar")

End(Not run)

PAVranking Parcel-Allocation Variability in Model Ranking

Description

This function quantifies and assesses the consequences of parcel-allocation variability for model
ranking of structural equation models (SEMs) that differ in their structural specification but share
the same parcel-level measurement specification (see Sterba & Rights, 2016). This function calls
parcelAllocation—which can be used with only one SEM in isolation—to fit two (assumed)
nested models to each of a specified number of random item-to-parcel allocations. Output includes
summary information about the distribution of model selection results (including plots) and the
distribution of results for each model individually, across allocations within-sample. Note that this
function can be used when selecting among more than two competing structural models as well (see
instructions below involving the seed argument).

Usage

PAVranking(model0, model1, data, parcel.names, item.syntax, nAlloc = 100,
fun = "sem", alpha = 0.05, bic.crit = 10, fit.measures = c("chisq",
"df", "cfi", "tli", "rmsea", "srmr", "logl", "aic", "bic", "bic2"), ...,
show.progress = FALSE, iseed = 12345, warn = FALSE)

Arguments

model0, model1 lavaan model syntax specifying nested models (model0 within model1) to be
fitted to the same parceled data. Note that there can be a mixture of items and
parcels (even within the same factor), in case certain items should never be
parceled. Can be a character string or parameter table. Also see lavaanify
for more details.

data A data.frame containing all observed variables appearing in the model, as well
as those in the item.syntax used to create parcels. If the data have missing val-
ues, multiple imputation before parceling is recommended: submit a stacked
data set (with a variable for the imputation number, so they can be separateed
later) and set do.fit = FALSE to return the list of data.frames (one per alloca-
tion), each of which is a stacked, imputed data set with parcels.

parcel.names character vector containing names of all parcels appearing as indicators in
model.

108 PAVranking

item.syntax lavaan model syntax specifying the model that would be fit to all of the un-
parceled items, including items that should be randomly allocated to parcels
appearing in model.

nAlloc The number of random items-to-parcels allocations to generate.
fun character string indicating the name of the lavaan function used to fit model

to data. Can only take the values "lavaan", "sem", "cfa", or "growth".
alpha Alpha level used as criterion for significance.
bic.crit Criterion for assessing evidence in favor of one model over another. See Rafferty

(1995) for guidelines (default is "very strong evidence" in favor of the model
with lower BIC).

fit.measures character vector containing names of fit measures to request from each fitted
lavaan model. See the output of fitMeasures for a list of available measures.

... Additional arguments to be passed to lavaanList. See also lavOptions

show.progress If TRUE, show a txtProgressBar indicating how fast each model-fitting iterates
over allocations.

iseed (Optional) Random seed used for parceling items. When the same random
seed is specified and the program is re-run, the same allocations will be gen-
erated. The seed argument can be used to assess parcel-allocation variability
in model ranking when considering more than two models. For each pair of
models under comparison, the program should be rerun using the same random
seed. Doing so ensures that multiple model comparisons will employ the same
set of parcel datasets. Note: When using parallel options, you must first type
RNGkind("L'Ecuyer-CMRG") into the R Console, so that the seed will be con-
trolled across cores.

warn Whether to print warnings when fitting models to each allocation

Details

This is based on a SAS macro ParcelAlloc (Sterba & MacCallum, 2010). The PAVranking func-
tion produces results discussed in Sterba and Rights (2016) relevant to the assessment of parcel-
allocation variability in model selection and model ranking. Specifically, the PAVranking function
first calls parcelAllocation to generate a given number (nAlloc) of item-to-parcel allocations,
fitting both specified models to each allocation, and providing summaryies of PAV for each model.
Additionally, PAVranking provides the following new summaries:

• PAV in model selection index values and model ranking between Models model0 and model1.
• The proportion of allocations that converged and the proportion of proper solutions (results

are summarized for allocations with both converged and proper allocations only).

For further details on the benefits of the random allocation of items to parcels, see Sterba (2011)
and Sterba and MacCallum (2010).

To test whether nested models have equivalent fit, results can be pooled across allocations using
the same methods available for pooling results across multiple imputations of missing data (see
Examples).

Note: This function requires the lavaan package. Missing data must be coded as NA. If the function
returns "Error in plot.new() : figure margins too large", the user may need to increase size
of the plot window (e.g., in RStudio) and rerun the function.

PAVranking 109

Value

model0.results Results returned by parcelAllocation for model0 (see the Value section).

model1.results Results returned by parcelAllocation for model1 (see the Value section).
model0.v.model1

A list of model-comparison results, including the following:

• LRT_Summary: The average likelihood ratio test across allocations, as well
as the SD, minimum, maximum, range, and the proportion of allocations
for which the test was significant.

• Fit_Index_Differences: Differences in fit indices, organized by what
proportion favored each model and among those, what the average differ-
ence was.

• Favored_by_BIC: The proportion of allocations in which each model met
the criterion (bic.crit) for a substantial difference in fit.

• Convergence_Summary: The proportion of allocations in which each model
(and both models) converged on a solution.

Histograms are also printed to the current plot-output device.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25,
111–163. doi:10.2307/271063

Sterba, S. K. (2011). Implications of parcel-allocation variability for comparing fit of item-solutions
and parcel-solutions. Structural Equation Modeling: A Multidisciplinary Journal, 18(4), 554–577.
doi:10.1080/10705511.2011.607073

Sterba, S. K., & MacCallum, R. C. (2010). Variability in parameter estimates and model fit
across repeated allocations of items to parcels. Multivariate Behavioral Research, 45(2), 322–358.
doi:10.1080/00273171003680302

Sterba, S. K., & Rights, J. D. (2016). Accounting for parcel-allocation variability in practice:
Combining sources of uncertainty and choosing the number of allocations. Multivariate Behavioral
Research, 51(2–3), 296–313. doi:10.1080/00273171.2016.1144502

Sterba, S. K., & Rights, J. D. (2017). Effects of parceling on model selection: Parcel-allocation
variability in model ranking. Psychological Methods, 22(1), 47–68. doi:10.1037/met0000067

See Also

parcelAllocation for fitting a single model, poolMAlloc for choosing the number of allocations

Examples

Specify the item-level model (if NO parcels were created)
This must apply to BOTH competing models

110 permuteMeasEq

item.syntax <- c(paste0("f1 =~ f1item", 1:9),
paste0("f2 =~ f2item", 1:9))

cat(item.syntax, sep = "\n")
Below, we reduce the size of this same model by
applying different parceling schemes

Specify a 2-factor CFA with correlated factors, using 3-indicator parcels
mod1 <- '
f1 =~ par1 + par2 + par3
f2 =~ par4 + par5 + par6
'
Specify a more restricted model with orthogonal factors
mod0 <- '
f1 =~ par1 + par2 + par3
f2 =~ par4 + par5 + par6
f1 ~~ 0*f2
'
names of parcels (must apply to BOTH models)
(parcel.names <- paste0("par", 1:6))

Not run:
override default random-number generator to use parallel options
RNGkind("L'Ecuyer-CMRG")

PAVranking(model0 = mod0, model1 = mod1, data = simParcel, nAlloc = 100,
parcel.names = parcel.names, item.syntax = item.syntax,
std.lv = TRUE, # any addition lavaan arguments
parallel = "snow") # parallel options

POOL RESULTS by treating parcel allocations as multiple imputations.
Details provided in Sterba & Rights (2016); see ?poolMAlloc.

save list of data sets instead of fitting model yet
dataList <- parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,

parcel.names = parcel.names,
item.syntax = item.syntax,
do.fit = FALSE)

now fit each model to each data set
fit0 <- cfa.mi(mod0, data = dataList, std.lv = TRUE)
fit1 <- cfa.mi(mod1, data = dataList, std.lv = TRUE)
anova(fit0, fit1) # pooled test statistic comparing models
class?lavaan.mi # find more methods for pooling results

End(Not run)

permuteMeasEq 111

permuteMeasEq Permutation Randomization Tests of Measurement Equivalence and
Differential Item Functioning (DIF)

Description

The function permuteMeasEq provides tests of hypotheses involving measurement equivalence, in
one of two frameworks: multigroup CFA or MIMIC models.

Usage

permuteMeasEq(nPermute, modelType = c("mgcfa", "mimic"), con, uncon = NULL,
null = NULL, param = NULL, freeParam = NULL, covariates = NULL,
AFIs = NULL, moreAFIs = NULL, maxSparse = 10, maxNonconv = 10,
showProgress = TRUE, warn = -1, datafun, extra,
parallelType = c("none", "multicore", "snow"), ncpus = NULL, cl = NULL,
iseed = 12345)

Arguments

nPermute An integer indicating the number of random permutations used to form empirical
distributions under the null hypothesis.

modelType A character string indicating type of model employed: multiple-group CFA
("mgcfa") or MIMIC ("mimic").

con The constrained lavaan object, in which the parameters specified in param are
constrained to equality across all groups when modelType = "mgcfa", or which
regression paths are fixed to zero when modelType = "mimic". In the case of
testing configural invariance when modelType = "mgcfa", con is the configural
model (implicitly, the unconstrained model is the saturated model, so use the
defaults uncon = NULL and param = NULL). When modelType = "mimic", con is
the MIMIC model in which the covariate predicts the latent construct(s) but no
indicators (unless they have already been identified as DIF items).

uncon Optional. The unconstrained lavaan object, in which the parameters specified in
param are freely estimated in all groups. When modelType = "mgcfa", only in
the case of testing configural invariance should uncon = NULL. When modelType
= "mimic", any non-NULL uncon is silently set to NULL.

null Optional. A lavaan object, in which an alternative null model is fit (besides
the default independence model specified by lavaan) for the calculation of in-
cremental fit indices. See Widamin & Thompson (2003) for details. If NULL,
lavaan’s default independence model is used.

param An optional character vector or list of character vectors indicating which pa-
rameters the user would test for DIF following a rejection of the omnibus null
hypothesis tested using (more)AFIs. Note that param does not guarantee cer-
tain parameters are constrained in con; that is for the user to specify when fit-
ting the model. If users have any "anchor items" that they would never intend
to free across groups (or levels of a covariate), these should be excluded from
param; exceptions to a type of parameter can be specified in freeParam. When

112 permuteMeasEq

modelType = "mgcfa", param indicates which parameters of interest are con-
strained across groups in con and are unconstrained in uncon. Parameter names
must match those returned by names(coef(con)), but omitting any group-
specific suffixes (e.g., "f1~1" rather than "f1~1.g2") or user-specified labels
(that is, the parameter names must follow the rules of lavaan’s model.syntax).
Alternatively (or additionally), to test all constraints of a certain type (or multi-
ple types) of parameter in con, param may take any combination of the following
values: "loadings", "intercepts", "thresholds", "residuals", "residual.covariances",
"means", "lv.variances", and/or "lv.covariances". When modelType =
"mimic", param must be a vector of individual parameters or a list of char-
acter strings to be passed one-at-a-time to lavTestScore(object = con,add =
param[i]), indicating which (sets of) regression paths fixed to zero in con that
the user would consider freeing (i.e., exclude anchor items). If modelType =
"mimic" and param is a list of character strings, the multivariate test statistic
will be saved for each list element instead of 1-df modification indices for each
individual parameter, and names(param) will name the rows of the MI.obs slot
(see permuteMeasEq). Set param = NULL (default) to avoid collecting modifica-
tion indices for any follow-up tests.

freeParam An optional character vector, silently ignored when modelType = "mimic". If
param includes a type of parameter (e.g., "loadings"), freeParam indicates
exceptions (i.e., anchor items) that the user would not intend to free across
groups and should therefore be ignored when calculating p values adjusted for
the number of follow-up tests. Parameter types that are already unconstrained
across groups in the fitted con model (i.e., a partial invariance model) will
automatically be ignored, so they do not need to be specified in freeParam.
Parameter names must match those returned by names(coef(con)), but omit-
ting any group-specific suffixes (e.g., "f1~1" rather than "f1~1.g2") or user-
specified labels (that is, the parameter names must follow the rules of lavaan
model.syntax).

covariates An optional character vector, only applicable when modelType = "mimic". The
observed data are partitioned into columns indicated by covariates, and the
rows are permuted simultaneously for the entire set before being merged with
the remaining data. Thus, the covariance structure is preserved among the co-
variates, which is necessary when (e.g.) multiple dummy codes are used to rep-
resent a discrete covariate or when covariates interact. If covariates = NULL
when modelType = "mimic", the value of covariates is inferred by searching
param for predictors (i.e., variables appearing after the "~" operator).

AFIs A character vector indicating which alternative fit indices (or chi-squared itself)
are to be used to test the multiparameter omnibus null hypothesis that the con-
straints specified in con hold in the population. Any fit measures returned by
fitMeasures may be specified (including constants like "df", which would be
nonsensical). If both AFIs and moreAFIs are NULL, only "chisq" will be re-
turned.

moreAFIs Optional. A character vector indicating which (if any) alternative fit indices
returned by moreFitIndices are to be used to test the multiparameter omnibus
null hypothesis that the constraints specified in con hold in the population.

maxSparse Only applicable when modelType = "mgcfa" and at least one indicator is ordered.
An integer indicating the maximum number of consecutive times that randomly

permuteMeasEq 113

permuted group assignment can yield a sample in which at least one category (of
an ordered indicator) is unobserved in at least one group, such that the same set
of parameters cannot be estimated in each group. If such a sample occurs, group
assignment is randomly permuted again, repeatedly until a sample is obtained
with all categories observed in all groups. If maxSparse is exceeded, NA will be
returned for that iteration of the permutation distribution.

maxNonconv An integer indicating the maximum number of consecutive times that a random
permutation can yield a sample for which the model does not converge on a
solution. If such a sample occurs, permutation is attempted repeatedly until
a sample is obtained for which the model does converge. If maxNonconv is
exceeded, NA will be returned for that iteration of the permutation distribution,
and a warning will be printed when using show or summary.

showProgress Logical. Indicating whether to display a progress bar while permuting. Silently
set to FALSE when using parallel options.

warn Sets the handling of warning messages when fitting model(s) to permuted data
sets. See options.

datafun An optional function that can be applied to the data (extracted from con) af-
ter each permutation, but before fitting the model(s) to each permutation. The
datafun function must have an argument named data that accepts a data.frame,
and it must return a data.frame containing the same column names. The col-
umn order may differ, the values of those columns may differ (so be careful!),
and any additional columns will be ignored when fitting the model, but an er-
ror will result if any column names required by the model syntax do not appear
in the transformed data set. Although available for any modelType, datafun
may be useful when using the MIMIC method to test for nonuniform DIF (met-
ric/weak invariance) by using product indicators for a latent factor represent-
ing the interaction between a factor and one of the covariates, in which case
the product indicators would need to be recalculated after each permutation of
the covariates. To access other R objects used within permuteMeasEq, the
arguments to datafun may also contain any subset of the following: "con",
"uncon", "null", "param", "freeParam", "covariates", "AFIs", "moreAFIs",
"maxSparse", "maxNonconv", and/or "iseed". The values for those arguments
will be the same as the values supplied to permuteMeasEq.

extra An optional function that can be applied to any (or all) of the fitted lavaan ob-
jects (con, uncon, and/or null). This function will also be applied after fitting
the model(s) to each permuted data set. To access the R objects used within
permuteMeasEq, the arguments to extra must be any subset of the following:
"con", "uncon", "null", "param", "freeParam", "covariates", "AFIs", "moreAFIs",
"maxSparse", "maxNonconv", and/or "iseed". The values for those arguments
will be the same as the values supplied to permuteMeasEq. The extra function
must return a named numeric vector or a named list of scalars (i.e., a list of
numeric vectors of length == 1). Any unnamed elements (e.g., "" or NULL) of
the returned object will result in an error.

parallelType The type of parallel operation to be used (if any). The default is "none". Forking
is not possible on Windows, so if "multicore" is requested on a Windows
machine, the request will be changed to "snow" with a message.

114 permuteMeasEq

ncpus Integer: number of processes to be used in parallel operation. If NULL (the de-
fault) and parallelType c("multicore","snow"), the default is one less than
the maximum number of processors detected by detectCores. This default is
also silently set if the user specifies more than the number of processors detected.

cl An optional parallel or snow cluster for use when parallelType = "snow". If
NULL, a "PSOCK" cluster on the local machine is created for the duration of the
permuteMeasEq call. If a valid makeCluster object is supplied, parallelType
is silently set to "snow", and ncpus is silently set to length(cl).

iseed Integer: Only used to set the states of the RNG when using parallel options, in
which case RNGkind is set to "L'Ecuyer-CMRG" with a message. See clusterSetRNGStream
and Section 6 of vignette("parallel","parallel") for more details. If user
supplies an invalid value, iseed is silently set to the default (12345). To set the
state of the RNG when not using parallel options, call set.seed before calling
permuteMeasEq.

Details

The function permuteMeasEq provides tests of hypotheses involving measurement equivalence, in
one of two frameworks:

1. 1 For multiple-group CFA models, provide a pair of nested lavaan objects, the less constrained
of which (uncon) freely estimates a set of measurement parameters (e.g., factor loadings,
intercepts, or thresholds; specified in param) in all groups, and the more constrained of which
(con) constrains those measurement parameters to equality across groups. Group assignment
is repeatedly permuted and the models are fit to each permutation, in order to produce an
empirical distribution under the null hypothesis of no group differences, both for (a) changes
in user-specified fit measures (see AFIs and moreAFIs) and for (b) the maximum modification
index among the user-specified equality constraints. Configural invariance can also be tested
by providing that fitted lavaan object to con and leaving uncon = NULL, in which case param
must be NULL as well.

2. 2 In MIMIC models, one or a set of continuous and/or discrete covariates can be permuted,
and a constrained model is fit to each permutation in order to provide a distribution of any fit
measures (namely, the maximum modification index among fixed parameters in param) under
the null hypothesis of measurement equivalence across levels of those covariates.

In either framework, modification indices for equality constraints or fixed parameters specified in
param are calculated from the constrained model (con) using the function lavTestScore.

For multiple-group CFA models, the multiparameter omnibus null hypothesis of measurement
equivalence/invariance is that there are no group differences in any measurement parameters (of
a particular type). This can be tested using the anova method on nested lavaan objects, as seen in
the output of measurementInvariance, or by inspecting the change in alternative fit indices (AFIs)
such as the CFI. The permutation randomization method employed by permuteMeasEq generates
an empirical distribution of any AFIs under the null hypothesis, so the user is not restricted to using
fixed cutoffs proposed by Cheung & Rensvold (2002), Chen (2007), or Meade, Johnson, & Braddy
(2008).

If the multiparameter omnibus null hypothesis is rejected, partial invariance can still be established
by freeing invalid equality constraints, as long as equality constraints are valid for at least two
indicators per factor. Modification indices can be calculated from the constrained model (con), but

permuteMeasEq 115

multiple testing leads to inflation of Type I error rates. The permutation randomization method
employed by permuteMeasEq creates a distribution of the maximum modification index if the null
hypothesis is true, which allows the user to control the familywise Type I error rate in a manner
similar to Tukey’s q (studentized range) distribution for the Honestly Significant Difference (HSD)
post hoc test.

For MIMIC models, DIF can be tested by comparing modification indices of regression paths to
the permutation distribution of the maximum modification index, which controls the familywise
Type I error rate. The MIMIC approach could also be applied with multiple-group models, but
the grouping variable would not be permuted; rather, the covariates would be permuted separately
within each group to preserve between-group differences. So whether parameters are constrained
or unconstrained across groups, the MIMIC approach is only for testing null hypotheses about the
effects of covariates on indicators, controlling for common factors.

In either framework, lavaan’s group.label argument is used to preserve the order of groups seen
in con when permuting the data.

Value

The permuteMeasEq object representing the results of testing measurement equivalence (the mul-
tiparameter omnibus test) and DIF (modification indices), as well as diagnostics and any extra
output.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Papers about permutation tests of measurement equivalence:
Jorgensen, T. D., Kite, B. A., Chen, P.-Y., & Short, S. D. (in press). Permutation randomiza-
tion methods for testing measurement equivalence and detecting differential item functioning in
multiple-group confirmatory factor analysis. Psychological Methods, 23(4), 708–728. doi:10.1037/met0000152

Kite, B. A., Jorgensen, T. D., & Chen, P.-Y. (in press). Random permutation testing applied to
measurement invariance testing with ordered-categorical indicators. Structural Equation Modeling
25(4), 573–587. doi:10.1080/10705511.2017.1421467

Jorgensen, T. D. (2017). Applying permutation tests and multivariate modification indices to config-
urally invariant models that need respecification. Frontiers in Psychology, 8(1455). doi:10.3389/fpsyg.2017.01455

Additional reading:
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Struc-
tural Equation Modeling, 14(3), 464–504. doi:10.1080/10705510701301834

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measure-
ment invariance. Structural Equation Modeling, 9(2), 233–255. doi:10.1207/S15328007SEM0902_5

Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative
fit indices in tests of measurement invariance. Journal of Applied Psychology, 93(3), 568–592.
doi:10.1037/0021-9010.93.3.568

Widamin, K. F., & Thompson, J. S. (2003). On specifying the null model for incremental fit in-
dices in structural equation modeling. Psychological Methods, 8(1), 16–37. doi:10.1037/1082-
989X.8.1.16

116 permuteMeasEq

See Also

TukeyHSD, lavTestScore, measurementInvariance, measurementInvarianceCat

Examples

Not run:

########################
Multiple-Group CFA
########################

create 3-group data in lavaan example(cfa) data
HS <- lavaan::HolzingerSwineford1939
HS$ageGroup <- ifelse(HS$ageyr < 13, "preteen",

ifelse(HS$ageyr > 13, "teen", "thirteen"))

specify and fit an appropriate null model for incremental fit indices
mod.null <- c(paste0("x", 1:9, " ~ c(T", 1:9, ", T", 1:9, ", T", 1:9, ")*1"),

paste0("x", 1:9, " ~~ c(L", 1:9, ", L", 1:9, ", L", 1:9, ")*x", 1:9))
fit.null <- cfa(mod.null, data = HS, group = "ageGroup")

fit target model with varying levels of measurement equivalence
mod.config <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
miout <- measurementInvariance(model = mod.config, data = HS, std.lv = TRUE,

group = "ageGroup")

(fit.config <- miout[["fit.configural"]])
(fit.metric <- miout[["fit.loadings"]])
(fit.scalar <- miout[["fit.intercepts"]])

####################### Permutation Method

fit indices of interest for multiparameter omnibus test
myAFIs <- c("chisq","cfi","rmsea","mfi","aic")
moreAFIs <- c("gammaHat","adjGammaHat")

Use only 20 permutations for a demo. In practice,
use > 1000 to reduce sampling variability of estimated p values

test configural invariance
set.seed(12345)
out.config <- permuteMeasEq(nPermute = 20, con = fit.config)
out.config

test metric equivalence
set.seed(12345) # same permutations

permuteMeasEq 117

out.metric <- permuteMeasEq(nPermute = 20, uncon = fit.config, con = fit.metric,
param = "loadings", AFIs = myAFIs,
moreAFIs = moreAFIs, null = fit.null)

summary(out.metric, nd = 4)

test scalar equivalence
set.seed(12345) # same permutations
out.scalar <- permuteMeasEq(nPermute = 20, uncon = fit.metric, con = fit.scalar,

param = "intercepts", AFIs = myAFIs,
moreAFIs = moreAFIs, null = fit.null)

summary(out.scalar)

Not much to see without significant DIF.
Try using an absurdly high alpha level for illustration.
outsum <- summary(out.scalar, alpha = .50)

notice that the returned object is the table of DIF tests
outsum

visualize permutation distribution
hist(out.config, AFI = "chisq")
hist(out.metric, AFI = "chisq", nd = 2, alpha = .01,

legendArgs = list(x = "topright"))
hist(out.scalar, AFI = "cfi", printLegend = FALSE)

####################### Extra Output

function to calculate expected change of Group-2 and -3 latent means if
each intercept constraint were released
extra <- function(con) {

output <- list()
output["x1.vis2"] <- lavTestScore(con, release = 19:20, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[70]
output["x1.vis3"] <- lavTestScore(con, release = 19:20, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[106]
output["x2.vis2"] <- lavTestScore(con, release = 21:22, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[70]
output["x2.vis3"] <- lavTestScore(con, release = 21:22, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[106]
output["x3.vis2"] <- lavTestScore(con, release = 23:24, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[70]
output["x3.vis3"] <- lavTestScore(con, release = 23:24, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[106]
output["x4.txt2"] <- lavTestScore(con, release = 25:26, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[71]
output["x4.txt3"] <- lavTestScore(con, release = 25:26, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[107]
output["x5.txt2"] <- lavTestScore(con, release = 27:28, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[71]
output["x5.txt3"] <- lavTestScore(con, release = 27:28, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[107]
output["x6.txt2"] <- lavTestScore(con, release = 29:30, univariate = FALSE,

118 permuteMeasEq

epc = TRUE, warn = FALSE)epcepc[71]
output["x6.txt3"] <- lavTestScore(con, release = 29:30, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[107]
output["x7.spd2"] <- lavTestScore(con, release = 31:32, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[72]
output["x7.spd3"] <- lavTestScore(con, release = 31:32, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[108]
output["x8.spd2"] <- lavTestScore(con, release = 33:34, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[72]
output["x8.spd3"] <- lavTestScore(con, release = 33:34, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[108]
output["x9.spd2"] <- lavTestScore(con, release = 35:36, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[72]
output["x9.spd3"] <- lavTestScore(con, release = 35:36, univariate = FALSE,

epc = TRUE, warn = FALSE)epcepc[108]
output

}

observed EPC
extra(fit.scalar)

permutation results, including extra output
set.seed(12345) # same permutations
out.scalar <- permuteMeasEq(nPermute = 20, uncon = fit.metric, con = fit.scalar,

param = "intercepts", AFIs = myAFIs,
moreAFIs = moreAFIs, null = fit.null, extra = extra)

summarize extra output
summary(out.scalar, extra = TRUE)

###########
MIMIC
###########

Specify Restricted Factor Analysis (RFA) model, equivalent to MIMIC, but
the factor covaries with the covariate instead of being regressed on it.
The covariate defines a single-indicator construct, and the
double-mean-centered products of the indicators define a latent
interaction between the factor and the covariate.
mod.mimic <- '
visual =~ x1 + x2 + x3
age =~ ageyr
age.by.vis =~ x1.ageyr + x2.ageyr + x3.ageyr

x1 ~~ x1.ageyr
x2 ~~ x2.ageyr
x3 ~~ x3.ageyr
'

HS.orth <- indProd(var1 = paste0("x", 1:3), var2 = "ageyr", match = FALSE,
data = HS[, c("ageyr", paste0("x", 1:3))])

fit.mimic <- cfa(mod.mimic, data = HS.orth, meanstructure = TRUE)
summary(fit.mimic, stand = TRUE)

permuteMeasEq-class 119

Whereas MIMIC models specify direct effects of the covariate on an indicator,
DIF can be tested in RFA models by specifying free loadings of an indicator
on the covariate's construct (uniform DIF, scalar invariance) and the
interaction construct (nonuniform DIF, metric invariance).
param <- as.list(paste0("age + age.by.vis =~ x", 1:3))
names(param) <- paste0("x", 1:3)
param <- as.list(paste0("x", 1:3, " ~ age + age.by.vis")) # equivalent

test both parameters simultaneously for each indicator
do.call(rbind, lapply(param, function(x) lavTestScore(fit.mimic, add = x)$test))
or test each parameter individually
lavTestScore(fit.mimic, add = as.character(param))

####################### Permutation Method

function to recalculate interaction terms after permuting the covariate
datafun <- function(data) {

d <- data[, c(paste0("x", 1:3), "ageyr")]
indProd(var1 = paste0("x", 1:3), var2 = "ageyr", match = FALSE, data = d)

}

set.seed(12345)
perm.mimic <- permuteMeasEq(nPermute = 20, modelType = "mimic",

con = fit.mimic, param = param,
covariates = "ageyr", datafun = datafun)

summary(perm.mimic)

End(Not run)

permuteMeasEq-class Class for the Results of Permutation Randomization Tests of Measure-
ment Equivalence and DIF

Description

This class contains the results of tests of Measurement Equivalence and Differential Item Function-
ing (DIF).

Usage

S4 method for signature 'permuteMeasEq'
show(object)

S4 method for signature 'permuteMeasEq'
summary(object, alpha = 0.05, nd = 3, extra = FALSE)

120 permuteMeasEq-class

S4 method for signature 'permuteMeasEq'
hist(x, ..., AFI, alpha = 0.05, nd = 3,
printLegend = TRUE, legendArgs = list(x = "topleft"))

Arguments

object, x object of class permuteMeasEq

alpha alpha level used to draw confidence limits in hist and flag significant statistics
in summary output

nd number of digits to display

extra logical indicating whether the summary output should return permutation-based
p values for each statistic returned by the extra function. If FALSE (default),
summary will return permutation-based p values for each modification index.

... Additional arguments to pass to hist

AFI character indicating the fit measure whose permutation distribution should be
plotted

printLegend logical. If TRUE (default), a legend will be printed with the histogram

legendArgs list of arguments passed to the legend function. The default argument is a list
placing the legend at the top-left of the figure.

Value

• The show method prints a summary of the multiparameter omnibus test results, using the user-
specified AFIs. The parametric (∆)χ2 test is also displayed.

• The summary method prints the same information from the show method, but when extra
= FALSE (the default) it also provides a table summarizing any requested follow-up tests of
DIF using modification indices in slot MI.obs. The user can also specify an alpha level for
flagging modification indices as significant, as well as nd (the number of digits displayed).
For each modification index, the p value is displayed using a central χ2 distribution with the
df shown in that column. Additionally, a p value is displayed using the permutation distri-
bution of the maximum index, which controls the familywise Type I error rate in a manner
similar to Tukey’s studentized range test. If any indices are flagged as significant using the
tukey.p.value, then a message is displayed for each flagged index. The invisibly returned
data.frame is the displayed table of modification indices, unless permuteMeasEq was called
with param = NULL, in which case the invisibly returned object is object. If extra = TRUE, the
permutation-based p values for each statistic returned by the extra function are displayed and
returned in a data.frame instead of the modification indices requested in the param argument.

• The hist method returns a list of length == 2, containing the arguments for the call to hist
and the arguments to the call for legend, respectively. This list may facilitate creating a
customized histogram of AFI.dist, MI.dist, or extra.dist

Slots

PT A data.frame returned by a call to parTable on the constrained model

modelType A character indicating the specified modelType in the call to permuteMeasEq

permuteMeasEq-class 121

ANOVA A numeric vector indicating the results of the observed (∆)χ2 test, based on the central χ2

distribution

AFI.obs A vector of observed (changes in) user-selected fit measures

AFI.dist The permutation distribution(s) of user-selected fit measures. A data.frame with n.Permutations
rows and one column for each AFI.obs.

AFI.pval A vector of p values (one for each element in slot AFI.obs) calculated using slot AFI.dist,
indicating the probability of observing a change at least as extreme as AFI.obs if the null hy-
pothesis were true

MI.obs A data.frame of observed Lagrange Multipliers (modification indices) associated with
the equality constraints or fixed parameters specified in the param argument. This is a subset
of the output returned by a call to lavTestScore on the constrained model.

MI.dist The permutation distribution of the maximum modification index (among those seen in
slot MI.obs$X2) at each permutation of group assignment or of covariates

extra.obs If permuteMeasEq was called with an extra function, the output when applied to the
original data is concatenated into this vector

extra.dist A data.frame, each column of which contains the permutation distribution of the
corresponding statistic in slot extra.obs

n.Permutations An integer indicating the number of permutations requested by the user

n.Converged An integer indicating the number of permuation iterations which yielded a con-
verged solution

n.nonConverged An integer vector of length n.Permutations indicating how many times group
assignment was randomly permuted (at each iteration) before converging on a solution

n.Sparse Only relevant with ordered indicators when modelType == "mgcfa". An integer vec-
tor of length n.Permutations indicating how many times group assignment was randomly
permuted (at each iteration) before obtaining a sample with all categories observed in all
groups.

oldSeed An integer vector storing the value of .Random.seed before running permuteMeasEq.
Only relevant when using a parallel/multicore option and the original RNGkind() != "L'Ecuyer-CMRG".
This enables users to restore their previous .Random.seed state, if desired, by running: .Random.seed[-1]
<-permutedResults@oldSeed[-1]

Objects from the Class

Objects can be created via the permuteMeasEq function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

permuteMeasEq

122 plausibleValues

Examples

See the example from the permuteMeasEq function

plausibleValues Plausible-Values Imputation of Factor Scores Estimated from a lavaan
Model

Description

Draw plausible values of factor scores estimated from a fitted lavaan model, then treat them as
multiple imputations of missing data using runMI.

Usage

plausibleValues(object, nDraws = 20L, seed = 12345,
omit.imps = c("no.conv", "no.se"), ...)

Arguments

object A fitted model of class lavaan, blavaan, or lavaan.mi

nDraws integer specifying the number of draws, analogous to the number of imputed
data sets. If object is of class lavaan.mi, this will be the number of draws
taken per imputation. Ignored if object is of class blavaan, in which case the
number of draws is the number of MCMC samples from the posterior.

seed integer passed to set.seed(). Ignored if object is of class blavaan,

omit.imps character vector specifying criteria for omitting imputations when object is
of class lavaan.mi. Can include any of c("no.conv","no.se","no.npd").

... Optional arguments to pass to lavPredict. assemble will be ignored because
multiple groups are always assembled into a single data.frame per draw. type
will be ignored because it is set internally to type="lv".

Details

Because latent variables are unobserved, they can be considered as missing data, which can be im-
puted using Monte Carlo methods. This may be of interest to researchers with sample sizes too small
to fit their complex structural models. Fitting a factor model as a first step, lavPredict provides
factor-score estimates, which can be treated as observed values in a path analysis (Step 2). How-
ever, the resulting standard errors and test statistics could not be trusted because the Step-2 analysis
would not take into account the uncertainty about the estimated factor scores. Using the asymptotic
sampling covariance matrix of the factor scores provided by lavPredict, plausibleValues draws
a set of nDraws imputations from the sampling distribution of each factor score, returning a list of
data sets that can be treated like multiple imputations of incomplete data. If the data were already
imputed to handle missing data, plausibleValues also accepts an object of class lavaan.mi, and
will draw nDraws plausible values from each imputation. Step 2 would then take into account

plausibleValues 123

uncertainty about both missing values and factor scores. Bayesian methods can also be used to
generate factor scores, as available with the blavaan package, in which case plausible values are
simply saved parameters from the posterior distribution. See Asparouhov and Muthen (2010) for
further technical details and references.

Each returned data.frame includes a case.idx column that indicates the corresponding rows in the
data set to which the model was originally fitted (unless the user requests only Level-2 variables).
This can be used to merge the plausible values with the original observed data, but users should
note that including any new variables in a Step-2 model might not accurately account for their
relationship(s) with factor scores because they were not accounted for in the Step-1 model from
which factor scores were estimated.

If object is a multilevel lavaan model, users can request plausible values for latent variables at
particular levels of analysis by setting the lavPredict argument level=1 or level=2. If the level
argument is not passed via . . . , then both levels are returned in a single merged data set per draw.
For multilevel models, each returned data.frame also includes a column indicating to which cluster
each row belongs (unless the user requests only Level-2 variables).

Value

A list of length nDraws, each of which is a data.frame containing plausible values, which can be
treated as a list of imputed data sets to be passed to runMI (see Examples). If object is of class
lavaan.mi, the list will be of length nDraws*m, where m is the number of imputations.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Asparouhov, T. & Muthen, B. O. (2010). Plausible values for latent variables using Mplus. Tech-
nical Report. Retrieved from www.statmodel.com/download/Plausible.pdf

See Also

runMI, lavaan.mi

Examples

example from ?cfa and ?lavPredict help pages
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit1 <- cfa(HS.model, data = HolzingerSwineford1939)
fs1 <- plausibleValues(fit1, nDraws = 3,

lavPredict() can add only the modeled data
append.data = TRUE)

lapply(fs1, head)

To merge factor scores to original data.frame (not just modeled data)

124 plotProbe

fs1 <- plausibleValues(fit1, nDraws = 3)
idx <- lavInspect(fit1, "case.idx") # row index for each case
if (is.list(idx)) idx <- do.call(c, idx) # for multigroup models
data(HolzingerSwineford1939) # copy data to workspace
HolzingerSwineford1939$case.idx <- idx # add row index as variable
loop over draws to merge original data with factor scores
for (i in seq_along(fs1)) {

fs1[[i]] <- merge(fs1[[i]], HolzingerSwineford1939, by = "case.idx")
}
lapply(fs1, head)

multiple-group analysis, in 2 steps
step1 <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",

group.equal = c("loadings","intercepts"))
PV.list <- plausibleValues(step1)

subsequent path analysis
path.model <- ' visual ~ c(t1, t2)*textual + c(s1, s2)*speed '
Not run:
step2 <- sem.mi(path.model, data = PV.list, group = "school")
test equivalence of both slopes across groups
lavTestWald.mi(step2, constraints = 't1 == t2 ; s1 == s2')

End(Not run)

multilevel example from ?Demo.twolevel help page
model <- '

level: 1
fw =~ y1 + y2 + y3
fw ~ x1 + x2 + x3

level: 2
fb =~ y1 + y2 + y3
fb ~ w1 + w2

'
msem <- sem(model, data = Demo.twolevel, cluster = "cluster")
mlPVs <- plausibleValues(msem, nDraws = 3) # both levels by default
lapply(mlPVs, head, n = 10)
only Level 1
mlPV1 <- plausibleValues(msem, nDraws = 3, level = 1)
lapply(mlPV1, head)
only Level 2
mlPV2 <- plausibleValues(msem, nDraws = 3, level = 2)
lapply(mlPV2, head)

plotProbe Plot a latent interaction

plotProbe 125

Description

This function will plot the line graphs representing the simple effect of the independent variable
given the values of the moderator. For multigroup models, it will only generate a plot for 1 group,
as specified in the function used to obtain the first argument.

Usage

plotProbe(object, xlim, xlab = "Indepedent Variable",
ylab = "Dependent Variable", legend = TRUE, legendArgs = list(), ...)

Arguments

object The result of probing latent interaction obtained from probe2WayMC, probe2WayRC,
probe3WayMC, or probe3WayRC function.

xlim The vector of two numbers: the minimum and maximum values of the indepen-
dent variable

xlab The label of the x-axis

ylab The label of the y-axis

legend logical. If TRUE (default), a legend is printed.

legendArgs list of arguments passed to legend function if legend=TRUE.

... Any addition argument for the plot function

Value

None. This function will plot the simple main effect only.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

• indProd For creating the indicator products with no centering, mean centering, double-mean
centering, or residual centering.

• probe2WayMC For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe3WayMC For probing the three-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe2WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• probe3WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

126 plotProbe

Examples

library(lavaan)

dat2wayMC <- indProd(dat2way, 1:3, 4:6)

model1 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~~ 0*f1
f12 ~~ 0*f2
x1 ~ 0*1
x4 ~ 0*1
x1.x4 ~ 0*1
x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f12 ~ NA*1
f3 ~ NA*1
"

fitMC2way <- sem(model1, data = dat2wayMC, std.lv = FALSE,
meanstructure = TRUE)

result2wayMC <- probe2WayMC(fitMC2way, c("f1", "f2", "f12"),
"f3", "f2", c(-1, 0, 1))

plotProbe(result2wayMC, xlim = c(-2, 2))

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f3 =~ x7 + x8 + x9
f12 =~ x1.x4 + x2.x5 + x3.x6
f13 =~ x1.x7 + x2.x8 + x3.x9
f23 =~ x4.x7 + x5.x8 + x6.x9
f123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 =~ x10 + x11 + x12
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~~ 0*f12
f1 ~~ 0*f13
f1 ~~ 0*f123
f2 ~~ 0*f12
f2 ~~ 0*f23
f2 ~~ 0*f123
f3 ~~ 0*f13
f3 ~~ 0*f23
f3 ~~ 0*f123

plotRMSEAdist 127

f12 ~~ 0*f123
f13 ~~ 0*f123
f23 ~~ 0*f123
x1 ~ 0*1
x4 ~ 0*1
x7 ~ 0*1
x10 ~ 0*1
x1.x4 ~ 0*1
x1.x7 ~ 0*1
x4.x7 ~ 0*1
x1.x4.x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f3 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
f23 ~ NA*1
f123 ~ NA*1
f4 ~ NA*1
"

fitMC3way <- sem(model3, data = dat3wayMC, std.lv = FALSE,
meanstructure = TRUE)

result3wayMC <- probe3WayMC(fitMC3way,
c("f1", "f2", "f3", "f12", "f13", "f23", "f123"),
"f4", c("f1", "f2"), c(-1, 0, 1), c(-1, 0, 1))

plotProbe(result3wayMC, xlim = c(-2, 2))

plotRMSEAdist Plot the sampling distributions of RMSEA

Description

Plots the sampling distributions of RMSEA based on the noncentral chi-square distributions

Usage

plotRMSEAdist(rmsea, n, df, ptile = NULL, caption = NULL,
rmseaScale = TRUE, group = 1)

Arguments

rmsea The vector of RMSEA values to be plotted

n Sample size of a dataset

df Model degrees of freedom

ptile The percentile rank of the distribution of the first RMSEA that users wish to plot
a vertical line in the resulting graph

128 plotRMSEAdist

caption The name vector of each element of rmsea

rmseaScale If TRUE, the RMSEA scale is used in the x-axis. If FALSE, the chi-square scale
is used in the x-axis.

group The number of group that is used to calculate RMSEA.

Details

This function creates overlappling plots of the sampling distribution of RMSEA based on noncentral
χ2 distribution (MacCallum, Browne, & Suguwara, 1996). First, the noncentrality parameter (λ) is
calculated from RMSEA (Steiger, 1998; Dudgeon, 2004) by

λ = (N − 1)dε2/K,

where N is sample size, d is the model degree of freedom, K is the number of group, and ε is
the population RMSEA. Next, the noncentral χ2 distribution with a specified df and noncentrality
parameter is plotted. Thus, the x-axis represents the sample χ2 value. The sample χ2 value can be
transformed to the sample RMSEA scale (ε̂) by

ε̂ =
√
K

√
χ2 − d

(N − 1)d
,

where χ2 is the χ2 value obtained from the noncentral χ2 distribution.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Dudgeon, P. (2004). A note on extending Steiger’s (1998) multiple sample RMSEA adjustment
to other noncentrality parameter-based statistic. Structural Equation Modeling, 11(3), 305–319.
doi:10.1207/s15328007sem1103_1

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.
doi:10.1037/1082-989X.1.2.130

Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. Structural
Equation Modeling, 5(4), 411–419. doi:10.1080/10705519809540115

See Also

• plotRMSEApower to plot the statistical power based on population RMSEA given the sample
size

• findRMSEApower to find the statistical power based on population RMSEA given a sample
size

• findRMSEAsamplesize to find the minium sample size for a given statistical power based on
population RMSEA

plotRMSEApower 129

Examples

plotRMSEAdist(c(.05, .08), n = 200, df = 20, ptile = .95, rmseaScale = TRUE)
plotRMSEAdist(c(.05, .01), n = 200, df = 20, ptile = .05, rmseaScale = FALSE)

plotRMSEApower Plot power curves for RMSEA

Description

Plots power of RMSEA over a range of sample sizes

Usage

plotRMSEApower(rmsea0, rmseaA, df, nlow, nhigh, steps = 1, alpha = 0.05,
group = 1, ...)

Arguments

rmsea0 Null RMSEA

rmseaA Alternative RMSEA

df Model degrees of freedom

nlow Lower sample size

nhigh Upper sample size

steps Increase in sample size for each iteration. Smaller values of steps will lead to
more precise plots. However, smaller step sizes means a longer run time.

alpha Alpha level used in power calculations

group The number of group that is used to calculate RMSEA.

... The additional arguments for the plot function.

Details

This function creates plot of power for RMSEA against a range of sample sizes. The plot places
sample size on the horizontal axis and power on the vertical axis. The user should indicate the
lower and upper values for sample size and the sample size between each estimate ("step size") We
strongly urge the user to read the sources below (see References) before proceeding. A web version
of this function is available at: http://quantpsy.org/rmsea/rmseaplot.htm.

Value

Plot of power for RMSEA against a range of sample sizes

http://quantpsy.org/rmsea/rmseaplot.htm

130 plotRMSEApower

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)

Kristopher J. Preacher (Vanderbilt University; <kris.preacher@vanderbilt.edu>)

Donna L. Coffman (Pennsylvania State University; <dlc30@psu.edu.>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19–35.
doi:10.1037/1082-989X.11.1.19

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.
doi:10.1037/1082-989X.1.2.130

MacCallum, R. C., Lee, T., & Browne, M. W. (2010). The issue of isopower in power analysis for
tests of structural equation models. Structural Equation Modeling, 17(1), 23–41. doi:10.1080/10705510903438906

Preacher, K. J., Cai, L., & MacCallum, R. C. (2007). Alternatives to traditional model comparison
strategies for covariance structure models. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.),
Modeling contextual effects in longitudinal studies (pp. 33–62). Mahwah, NJ: Lawrence Erlbaum
Associates.

Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. Structural
Equation Modeling, 5(4), 411–419. doi:10.1080/10705519809540115

Steiger, J. H., & Lind, J. C. (1980, June). Statistically based tests for the number of factors. Paper
presented at the annual meeting of the Psychometric Society, Iowa City, IA.

See Also

• plotRMSEAdist to visualize the RMSEA distributions

• findRMSEApower to find the statistical power based on population RMSEA given a sample
size

• findRMSEAsamplesize to find the minium sample size for a given statistical power based on
population RMSEA

Examples

plotRMSEApower(rmsea0 = .025, rmseaA = .075, df = 23,
nlow = 100, nhigh = 500, steps = 10)

plotRMSEApowernested 131

plotRMSEApowernested Plot power of nested model RMSEA

Description

Plot power of nested model RMSEA over a range of possible sample sizes.

Usage

plotRMSEApowernested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A,
rmsea1B = NULL, dfA, dfB, nlow, nhigh, steps = 1, alpha = 0.05,
group = 1, ...)

Arguments

rmsea0A The H0 baseline RMSEA

rmsea0B The H0 alternative RMSEA (trivial misfit)

rmsea1A The H1 baseline RMSEA

rmsea1B The H1 alternative RMSEA (target misfit to be rejected)

dfA degree of freedom of the more-restricted model

dfB degree of freedom of the less-restricted model

nlow Lower bound of sample size

nhigh Upper bound of sample size

steps Step size

alpha The alpha level

group The number of group in calculating RMSEA

... The additional arguments for the plot function.

Author(s)

Bell Clinton

Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19-35.
doi:10.1037/1082-989X.11.1.19

132 poolMAlloc

See Also

• findRMSEApowernested to find the power for a given sample size in nested model comparison
based on population RMSEA

• findRMSEAsamplesizenested to find the minium sample size for a given statistical power in
nested model comparison based on population RMSEA

Examples

plotRMSEApowernested(rmsea0A = 0, rmsea0B = 0, rmsea1A = 0.06,
rmsea1B = 0.05, dfA = 22, dfB = 20, nlow = 50,
nhigh = 500, steps = 1, alpha = .05, group = 1)

poolMAlloc Pooled estimates and standard errors across M parcel-allocations:
Combining sampling variability and parcel-allocation variability.

Description

This function employs an iterative algorithm to pick the number of random item-to-parcel alloca-
tions needed to meet user-defined stability criteria for a fitted structural equation model (SEM) (see
Details below for more information). Pooled point and standard-error estimates from this SEM can
be outputted at this final selected number of allocations (however, it is more efficient to save the
allocations and treat them as multiple imputations using runMI; see See Also for links with exam-
ples). Additionally, new indices (see Sterba & Rights, 2016) are outputted for assessing the relative
contributions of parcel-allocation variability vs. sampling variability in each estimate. At each it-
eration, this function generates a given number of random item-to-parcel allocations, fits a SEM
to each allocation, pools estimates across allocations from that iteration, and then assesses whether
stopping criteria are met. If stopping criteria are not met, the algorithm increments the number of
allocations used (generating all new allocations).

Usage

poolMAlloc(nPerPar, facPlc, nAllocStart, nAllocAdd = 0,
parceloutput = NULL, syntax, dataset, stopProp, stopValue,
selectParam = NULL, indices = "default", double = FALSE,
checkConv = FALSE, names = "default", leaveout = 0,
useTotalAlloc = FALSE, ...)

Arguments

nPerPar A list in which each element is a vector, corresponding to each factor, indicat-
ing sizes of parcels. If variables are left out of parceling, they should not be
accounted for here (i.e., there should not be parcels of size "1").

poolMAlloc 133

facPlc A list of vectors, each corresponding to a factor, specifying the item indicators
of that factor (whether included in parceling or not). Either variable names or
column numbers. Variables not listed will not be modeled or included in output
datasets.

nAllocStart The number of random allocations of items to parcels to generate in the first
iteration of the algorithm.

nAllocAdd The number of allocations to add with each iteration of the algorithm. Note that
if only one iteration is desired, nAllocAdd can be set to 0 and results will be
output for nAllocStart allocationsonly.

parceloutput Optional character. Path (folder/directory) where M (the final selected number
of allocations) parceled data sets will be outputted from the iteration where the
algorithm met stopping criteria. Note for Windows users: file path must be
specified using forward slashes (/), not backslashes (\). See path.expand for
details. If NULL (default), nothing is saved to disk.

syntax lavaan syntax that defines the model.

dataset Item-level dataset

stopProp Value used in defining stopping criteria of the algorithm (δa in Sterba & Rights,
2016). This is the minimum proportion of change (in any pooled parameter or
pooled standard error estimate listed in selectParam) that is allowable from
one iteration of the algorithm to the next. That is, change in pooled estimates
and pooled standard errors from one iteration to the next must all be less than
(stopProp) x (value from former iteration). Note that stopValue can override
this criterion (see below). Also note that values less than .01 are unlikely to lead
to more substantively meaningful precision. Also note that if only stopValue is
a desired criterion, stopProp can be set to 0.

stopValue Value used in defining stopping criteria of the algorithm (δb in Sterba & Rights,
2016). stopValue is a minimum allowable amount of absolute change (in any
pooled parameter or pooled standard error estimate listed in selectParam) from
one iteration of the algorithm to the next. For a given pooled estimate or pooled
standard error, stopValue is only invoked as a stopping criteria when the min-
imum change required by stopProp is less than stopValue. Note that values
less than .01 are unlikely to lead to more substantively meaningful precision.
Also note that if only stopProp is a desired criterion, stopValue can be set to
0.

selectParam (Optional) A list of the pooled parameters to be used in defining stopping cri-
teria (i.e., stopProp and stopValue). These parameters should appear in the
order they are listed in the lavaan syntax. By default, all pooled parameters are
used. Note that selectParam should only contain freely-estimated parameters.
In one example from Sterba & Rights (2016) selectParam included all free pa-
rameters except item intercepts and in another example selectParam included
only structural parameters.

indices Optional character vector indicating the names of available fitMeasures to
be included in the output. The first and second elements should be a chi-squared
test statistic and its associated degrees of freedom, both of which will be added if
missing. If "default", the indices will be c("chisq","df","cfi","tli","rmsea","srmr").
If a robust test statistic is requested (see lavOptions), c("chisq","df") will

134 poolMAlloc

be replaced by c("chisq.scaled","df.scaled"). For the output to include
both the naive and robust test statistics, indices should include both, but put the
scaled test statistics first, as in indices = c("chisq.scaled","df.scaled","chisq","df")

double (Optional) If set to TRUE, requires stopping criteria (stopProp and stopValue)
to be met for all parameters (in selectParam) for two consecutive iterations of
the algorithm. By default, this is set to FALSE, meaning stopping criteria need
only be met at one iteration of the algorithm.

checkConv (Optional) If set to TRUE, function will output pooled estimates and standard
errors from 10 iterations post-convergence.

names (Optional) A character vector containing the names of parceled variables.

leaveout (Optional) A vector of variables to be left out of randomized parceling. Either
variable names or column numbers are allowed.

useTotalAlloc (Optional) If set to TRUE, function will output a separate set of results that uses all
allocations created by the algorithm, rather than M allocations (see "Allocations
needed for stability" below). This distinction is further discussed in Sterba and
Rights (2016).

... Additional arguments to be passed to lavaan. See also lavOptions

Details

For further details on the benefits of the random allocation of items to parcels, see Sterba (2011)
and Sterba & MacCallum (2010).

This function implements an algorithm for choosing the number of allocations (M; described in
Sterba & Rights, 2016), pools point and standard-error estimates across these M allocations, and
produces indices for assessing the relative contributions of parcel-allocation variability vs. sampling
variability in each estimate.

To obtain pooled test statistics for model fit or model comparison, the list or parcel allocations can
be passed to runMI (find Examples on the help pages for parcelAllocation and PAVranking).

This function randomly generates a given number (nAllocStart) of item-to-parcel allocations, fits
a SEM to each allocation, and then increments the number of allocations used (by nAllocAdd) until
the pooled point and standard-error estimates fulfill stopping criteria (stopProp and stopValue,
defined above). A summary of results from the model that was fit to the M allocations are returned.

Additionally, this function outputs the proportion of allocations with solutions that converged (using
a maximum likelihood estimator) as well as the proportion of allocations with solutions that were
converged and proper. The converged and proper solutions among the final M allocations are used
in computing pooled results.

Additionally, after each iteration of the algorithm, information useful in monitoring the algorithm
is outputted. The number of allocations used at that iteration, the proportion of pooled parameter
estimates meeting stopping criteria at the previous iteration, the proportion of pooled standard errors
meeting stopping criteria at the previous iteration, and the runtime of that iteration are outputted.
When stopping criteria are satisfied, the full set of results are outputted.

Value

Estimates A table containing pooled results across M allocations at the iteration where
stopping criteria were met. Columns correspond to individual parameter name,

poolMAlloc 135

pooled estimate, pooled standard error, p-value for a z-test of the parameter,
z-based 95% confidence interval, p-value for a t-test of the parameter (using
degrees of freedom described in Sterba & Rights, 2016), and t-based 95% con-
fidence interval for the parameter.

Fit A table containing results related to model fit from the M allocations at the iter-
ation where stopping criteria were met. Columns correspond to fit index names,
the average of each index across allocations, the standard deviation of each fit
index across allocations, the maximum of each fit index across allocations, the
minimum of each fit index across allocations, the range of each fit index across
allocations, and the percent of the M allocations where the chi-square test of
absolute fit was significant.

Proportion of converged and proper allocations

A table containing the proportion of the final M allocations that converged (us-
ing a maximum likelihood estimator) and the proportion of allocations that con-
verged to proper solutions. Note that pooled estimates, pooled standard errors,
and other results are computed using only the converged, proper allocations.

Allocations needed for stability (M)

The number of allocations (M) at which the algorithm’s stopping criteria (de-
fined above) were met.

Indices used to quantify uncertainty in estimates due to sample vs. allocation variability

A table containing individual parameter names, an estimate of the proportion
of total variance of a pooled parameter estimate that is attributable to parcel-
allocation variability (PPAV), and an estimate of the ratio of the between-allocation
variance of a pooled parameter estimate to the within-allocation variance (RPAV).
See Sterba & Rights (2016) for more detail.

Total runtime (minutes)

The total runtime of the function, in minutes. Note that the total runtime will
be greater when the specified model encounters convergence problems for some
allocations, as is the case with the simParcel dataset used below.

Author(s)

Jason D. Rights (Vanderbilt University; <jason.d.rights@vanderbilt.edu>)

The author would also like to credit Corbin Quick and Alexander Schoemann for providing the
original parcelAllocation function on which this function is based.

References

Sterba, S. K. (2011). Implications of parcel-allocation variability for comparing fit of item-solutions
and parcel-solutions. Structural Equation Modeling, 18(4), 554–577. doi:10.1080/10705511.2011.607073

Sterba, S. K., & MacCallum, R. C. (2010). Variability in parameter estimates and model fit
across random allocations of items to parcels. Multivariate Behavioral Research, 45(2), 322–358.
doi:10.1080/00273171003680302

Sterba, S. K., & Rights, J. D. (2016). Accounting for parcel-allocation variability in practice:
Combining sources of uncertainty and choosing the number of allocations. Multivariate Behavioral
Research, 51(2–3), 296–313. doi:10.1080/00273171.2016.1144502

136 poolMAlloc

Sterba, S. K., & Rights, J. D. (2017). Effects of parceling on model selection: Parcel-allocation
variability in model ranking. Psychological Methods, 22(1), 47–68. doi:10.1037/met0000067

See Also

runMI for treating allocations as multiple imputations to pool results across allocations. See Exam-
ples on help pages for:

• parcelAllocation for fitting a single model

• PAVranking for comparing 2 models

Examples

Not run:
lavaan syntax: A 2 Correlated
factor CFA model to be fit to parceled data

parmodel <- '
f1 =~ NA*p1f1 + p2f1 + p3f1
f2 =~ NA*p1f2 + p2f2 + p3f2
p1f1 ~ 1
p2f1 ~ 1
p3f1 ~ 1
p1f2 ~ 1
p2f2 ~ 1
p3f2 ~ 1
p1f1 ~~ p1f1
p2f1 ~~ p2f1
p3f1 ~~ p3f1
p1f2 ~~ p1f2
p2f2 ~~ p2f2
p3f2 ~~ p3f2
f1 ~~ 1*f1
f2 ~~ 1*f2
f1 ~~ f2

'

specify items for each factor
f1name <- colnames(simParcel)[1:9]
f2name <- colnames(simParcel)[10:18]

run function
poolMAlloc(nPerPar = list(c(3,3,3), c(3,3,3)),

facPlc = list(f1name, f2name), nAllocStart = 10, nAllocAdd = 10,
syntax = parmodel, dataset = simParcel, stopProp = .03,
stopValue = .03, selectParam = c(1:6, 13:18, 21),
names = list("p1f1","p2f1","p3f1","p1f2","p2f2","p3f2"),
double = FALSE, useTotalAlloc = FALSE)

End(Not run)

probe2WayMC 137

See examples on ?parcelAllocation and ?PAVranking for how to obtain
pooled test statistics and other pooled lavaan output.
Details provided in Sterba & Rights (2016).

probe2WayMC Probing two-way interaction on the no-centered or mean-centered la-
tent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered
latent two-way interaction

Usage

probe2WayMC(fit, nameX, nameY, modVar, valProbe, group,
omit.imps = c("no.conv", "no.se"))

Arguments

fit A fitted lavaan or lavaan.mi object with a latent 2-way interaction.

nameX character vector of all 3 factor names used as the predictors. The lower-order
factors must be listed first, and the final name must be the latent interaction
factor.

nameY The name of factor that is used as the dependent variable.

modVar The name of factor that is used as a moderator. The effect of the other inde-
pendent factor will be probed at each value of the moderator variable listed in
valProbe.

valProbe The values of the moderator that will be used to probe the effect of the focal
predictor.

group In multigroup models, the label of the group for which the results will be re-
turned. Must correspond to one of lavInspect(fit,"group.label"), or an
integer corresponding to which of those group labels.

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit is of class lavaan.mi. Can include any of c("no.conv","no.se","no.npd"),
the first 2 of which are the default setting, which excludes any imputations that
did not converge or for which standard errors could not be computed. The last
option ("no.npd") would exclude any imputations which yielded a nonposi-
tive definite covariance matrix for observed or latent variables, which would
include any "improper solutions" such as Heywood cases. NPD solutions are
not excluded by default because they are likely to occur due to sampling error,
especially in small samples. However, gross model misspecification could also
cause NPD solutions, users can compare pooled results with and without this
setting as a sensitivity analysis to see whether some imputations warrant further
investigation.

138 probe2WayMC

Details

Before using this function, researchers need to make the products of the indicators between the
first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean
centering may not be appropriate for probing interaction if researchers are interested in simple
intercepts. The mean or double-mean centering can be done by the indProd function. The indicator
products can be made for all possible combination or matched-pair approach (Marsh et al., 2004).
Next, the hypothesized model with the regression with latent interaction will be used to fit all
original indicators and the product terms. See the example for how to fit the product term below.
Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable (Y) on the independent
varaible (X) and the moderator (Z) be

Y = b0 + b1X + b2Z + b3XZ + r,

where b0 is the estimated intercept or the expected value of Y when both X and Z are 0, b1 is the
effect of X when Z is 0, b2 is the effect of Z when X is 0, b3 is the interaction effect between X
and Z, and r is the residual term.

For probing two-way interaction, the simple intercept of the independent variable at each value of
the moderator (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 2003; Preacher, Curran, &
Bauer, 2006) can be obtained by

b0|X=0,Z = b0 + b2Z.

The simple slope of the independent varaible at each value of the moderator can be obtained by

bX|Z = b1 + b3Z.

The variance of the simple intercept formula is

V ar
(
b0|X=0,Z

)
= V ar (b0) + 2ZCov (b0, b2) + Z2V ar (b2)

where V ar denotes the variance of a parameter estimate and Cov denotes the covariance of two
parameter estimates.

The variance of the simple slope formula is

V ar
(
bX|Z

)
= V ar (b1) + 2ZCov (b1, b3) + Z2V ar (b3)

Wald z statistic is used for test statistic (even for objects of class lavaan.mi).

Value

A list with two elements:

1. SimpleIntercept: The intercepts given each value of the moderator. This element will be
NULL unless the factor intercept is estimated (e.g., not fixed at 0).

2. SimpleSlope: The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the valProbe
argument. The second column is the simple intercept or simple slope. The third column is the SE of
the simple intercept or simple slope. The fourth column is the Wald (z) statistic. The fifth column
is the p value testing whether the simple intercepts or slopes are different from 0.

probe2WayMC 139

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions.
Newbury Park, CA: Sage.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences (3rd ed.). New York, NY: Routledge.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275–300. doi:10.1037/1082-989X.9.3.275

Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in
multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational
and Behavioral Statistics, 31(4), 437–448. doi:10.3102/10769986031004437

See Also

• indProd For creating the indicator products with no centering, mean centering, double-mean
centering, or residual centering.

• probe3WayMC For probing the three-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe2WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• probe3WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• plotProbe Plot the simple intercepts and slopes of the latent interaction.

Examples

library(lavaan)

dat2wayMC <- indProd(dat2way, 1:3, 4:6)

model1 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~~0*f1
f12 ~~ 0*f2
x1 ~ 0*1
x4 ~ 0*1
x1.x4 ~ 0*1

140 probe2WayRC

x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f12 ~ NA*1
f3 ~ NA*1
"

fitMC2way <- sem(model1, data = dat2wayMC, std.lv = FALSE,
meanstructure = TRUE)

summary(fitMC2way)

probe2WayMC(fitMC2way, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, 0, 1))

probe2WayRC Probing two-way interaction on the residual-centered latent interac-
tion

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent two-way
interaction (Geldhof et al., 2013)

Usage

probe2WayRC(fit, nameX, nameY, modVar, valProbe, group,
omit.imps = c("no.conv", "no.se"))

Arguments

fit A fitted lavaan or lavaan.mi object with a latent 2-way interaction.

nameX character vector of all 3 factor names used as the predictors. The lower-order
factors must be listed first, and the final name must be the latent interaction
factor.

nameY The name of factor that is used as the dependent variable.

modVar The name of factor that is used as a moderator. The effect of the other inde-
pendent factor will be probed at each value of the moderator variable listed in
valProbe.

valProbe The values of the moderator that will be used to probe the effect of the focal
predictor.

group In multigroup models, the label of the group for which the results will be re-
turned. Must correspond to one of lavInspect(fit,"group.label"), or an
integer corresponding to which of those group labels.

probe2WayRC 141

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit is of class lavaan.mi. Can include any of c("no.conv","no.se","no.npd"),
the first 2 of which are the default setting, which excludes any imputations that
did not converge or for which standard errors could not be computed. The last
option ("no.npd") would exclude any imputations which yielded a nonposi-
tive definite covariance matrix for observed or latent variables, which would
include any "improper solutions" such as Heywood cases. NPD solutions are
not excluded by default because they are likely to occur due to sampling error,
especially in small samples. However, gross model misspecification could also
cause NPD solutions, users can compare pooled results with and without this
setting as a sensitivity analysis to see whether some imputations warrant further
investigation.

Details

Before using this function, researchers need to make the products of the indicators between the first-
order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird,
& Widaman, 2006). The process can be automated by the indProd function. Note that the indicator
products can be made for all possible combination or matched-pair approach (Marsh et al., 2004).
Next, the hypothesized model with the regression with latent interaction will be used to fit all
original indicators and the product terms. To use this function the model must be fit with a mean
structure. See the example for how to fit the product term below. Once the lavaan result is obtained,
this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-
centered result into the no-centered result. See Geldhof et al. (2013) for further details. Note
that this approach based on a strong assumption that the first-order latent variables are normally
distributed. The probing process is applied after the no-centered result (parameter estimates and
their covariance matrix among parameter estimates) has been computed. See the probe2WayMC for
further details.

Value

A list with two elements:

1. SimpleIntercept: The intercepts given each value of the moderator. This element will be
NULL unless the factor intercept is estimated (e.g., not fixed at 0).

2. SimpleSlope: The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the valProbe
argument. The second column is the simple intercept or simple slope. The third column is the
standard error of the simple intercept or simple slope. The fourth column is the Wald (z) statistic.
The fifth column is the p value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

142 probe2WayRC

References

Lance, C. E. (1988). Residual centering, exploratory and confirmatory moderator analysis, and de-
composition of effects in path models containing interactions. Applied Psychological Measurement,
12(2), 163–175. doi:10.1177/014662168801200205

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered
and product terms: Implications for modeling interactions. Structural Equation Modeling, 13(4),
497–519. doi:10.1207/s15328007sem1304_1

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275–300. doi:10.1037/1082-989X.9.3.275

Geldhof, G. J., Pornprasertmanit, S., Schoemann, A. M., & Little, T. D. (2013). Orthogonaliz-
ing through residual centering: Extended applications and caveats Educational and Psychological
Measurement, 73(1), 27–46. doi:10.1177/0013164412445473

See Also

• indProd For creating the indicator products with no centering, mean centering, double-mean
centering, or residual centering.

• probe2WayMC For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe3WayMC For probing the three-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe3WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• plotProbe Plot the simple intercepts and slopes of the latent interaction.

Examples

library(lavaan)

dat2wayRC <- orthogonalize(dat2way, 1:3, 4:6)

model1 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~~0*f1
f12 ~~ 0*f2
x1 ~ 0*1
x4 ~ 0*1
x1.x4 ~ 0*1
x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f12 ~ NA*1

probe3WayMC 143

f3 ~ NA*1
"

fitRC2way <- sem(model1, data = dat2wayRC, std.lv = FALSE,
meanstructure = TRUE)

summary(fitRC2way)

probe2WayRC(fitRC2way, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, 0, 1))

probe3WayMC Probing three-way interaction on the no-centered or mean-centered
latent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered
latent two-way interaction

Usage

probe3WayMC(fit, nameX, nameY, modVar, valProbe1, valProbe2, group,
omit.imps = c("no.conv", "no.se"))

Arguments

fit A fitted lavaan or lavaan.mi object with a latent 2-way interaction.

nameX character vector of all 7 factor names used as the predictors. The 3 lower-order
factors must be listed first, followed by the 3 second-order factors (specifically,
the 4th element must be the interaction between the factors listed first and sec-
ond, the 5th element must be the interaction between the factors listed first and
third, and the 6th element must be the interaction between the factors listed
second and third). The final name will be the factor representing the 3-way
interaction.

nameY The name of factor that is used as the dependent variable.

modVar The name of two factors that are used as the moderators. The effect of the
independent factor on each combination of the moderator variable values will
be probed.

valProbe1 The values of the first moderator that will be used to probe the effect of the
independent factor.

valProbe2 The values of the second moderator that will be used to probe the effect of the
independent factor.

group In multigroup models, the label of the group for which the results will be re-
turned. Must correspond to one of lavInspect(fit,"group.label").

144 probe3WayMC

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit is of class lavaan.mi. Can include any of c("no.conv","no.se","no.npd"),
the first 2 of which are the default setting, which excludes any imputations that
did not converge or for which standard errors could not be computed. The last
option ("no.npd") would exclude any imputations which yielded a nonposi-
tive definite covariance matrix for observed or latent variables, which would
include any "improper solutions" such as Heywood cases. NPD solutions are
not excluded by default because they are likely to occur due to sampling error,
especially in small samples. However, gross model misspecification could also
cause NPD solutions, users can compare pooled results with and without this
setting as a sensitivity analysis to see whether some imputations warrant further
investigation.

Details

Before using this function, researchers need to make the products of the indicators between the
first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean
centering may not be appropriate for probing interaction if researchers are interested in simple
intercepts. The mean or double-mean centering can be done by the indProd function. The indicator
products can be made for all possible combination or matched-pair approach (Marsh et al., 2004).
Next, the hypothesized model with the regression with latent interaction will be used to fit all
original indicators and the product terms. See the example for how to fit the product term below.
Once the lavaan result is obtained, this function will be used to probe the interaction.
Let that the latent interaction model regressing the dependent variable (Y) on the independent
varaible (X) and two moderators (Z and W) be

Y = b0 + b1X + b2Z + b3W + b4XZ + b5XW + b6ZW + b7XZW + r,

where b0 is the estimated intercept or the expected value of Y when X , Z, and W are 0, b1 is the
effect of X when Z and W are 0, b2 is the effect of Z when X and W is 0, b3 is the effect of W
whenX and Z are 0, b4 is the interaction effect betweenX and Z whenW is 0, b5 is the interaction
effect between X and W when Z is 0, b6 is the interaction effect between Z and W when X is 0,
b7 is the three-way interaction effect between X , Z, and W , and r is the residual term.
For probing three-way interaction, the simple intercept of the independent variable at the specific
values of the moderators (Aiken & West, 1991) can be obtained by

b0|X=0,Z,W = b0 + b2Z + b3W + b6ZW.

The simple slope of the independent varaible at the specific values of the moderators can be obtained
by

bX|Z,W = b1 + b3Z + b4W + b7ZW.

The variance of the simple intercept formula is

V ar
(
b0|X=0,Z,W

)
= V ar (b0)+Z2V ar (b2)+W 2V ar (b3)+Z2W 2V ar (b6)+2ZCov (b0, b2)+2WCov (b0, b3)+2ZWCov (b0, b6)+2ZWCov (b2, b3)+2Z2WCov (b2, b6)+2ZW 2Cov (b3, b6)

where V ar denotes the variance of a parameter estimate and Cov denotes the covariance of two
parameter estimates.
The variance of the simple slope formula is

V ar
(
bX|Z,W

)
= V ar (b1)+Z2V ar (b4)+W 2V ar (b5)+Z2W 2V ar (b7)+2ZCov (b1, b4)+2WCov (b1, b5)+2ZWCov (b1, b7)+2ZWCov (b4, b5)+2Z2WCov (b4, b7)+2ZW 2Cov (b5, b7)

Wald z statistic is used for test statistic (even for objects of class lavaan.mi).

probe3WayMC 145

Value

A list with two elements:

1. SimpleIntercept: The intercepts given each combination of moderator values. This element
will be shown only if the factor intercept is estimated (e.g., not fixed at 0).

2. SimpleSlope: The slopes given each combination of moderator values.

In each element, the first column represents values of the first moderator specified in the valProbe1
argument. The second column represents values of the second moderator specified in the valProbe2
argument. The third column is the simple intercept or simple slope. The fourth column is the
standard error of the simple intercept or simple slope. The fifth column is the Wald (z) statistic. The
sixth column is the p value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions.
Newbury Park, CA: Sage.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275–300. doi:10.1037/1082-989X.9.3.275

See Also

• indProd For creating the indicator products with no centering, mean centering, double-mean
centering, or residual centering.

• probe2WayMC For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe2WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• probe3WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• plotProbe Plot the simple intercepts and slopes of the latent interaction.

Examples

library(lavaan)

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6

146 probe3WayRC

f3 =~ x7 + x8 + x9
f12 =~ x1.x4 + x2.x5 + x3.x6
f13 =~ x1.x7 + x2.x8 + x3.x9
f23 =~ x4.x7 + x5.x8 + x6.x9
f123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 =~ x10 + x11 + x12
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~~ 0*f12
f1 ~~ 0*f13
f1 ~~ 0*f123
f2 ~~ 0*f12
f2 ~~ 0*f23
f2 ~~ 0*f123
f3 ~~ 0*f13
f3 ~~ 0*f23
f3 ~~ 0*f123
f12 ~~ 0*f123
f13 ~~ 0*f123
f23 ~~ 0*f123
x1 ~ 0*1
x4 ~ 0*1
x7 ~ 0*1
x10 ~ 0*1
x1.x4 ~ 0*1
x1.x7 ~ 0*1
x4.x7 ~ 0*1
x1.x4.x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f3 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
f23 ~ NA*1
f123 ~ NA*1
f4 ~ NA*1
"

fitMC3way <- sem(model3, data = dat3wayMC, std.lv = FALSE,
meanstructure = TRUE)

summary(fitMC3way)

probe3WayMC(fitMC3way, nameX = c("f1" ,"f2" ,"f3",
"f12","f13","f23", # the order matters!
"f123"), # 3-way interaction

nameY = "f4", modVar = c("f1", "f2"),
valProbe1 = c(-1, 0, 1), valProbe2 = c(-1, 0, 1))

probe3WayRC Probing three-way interaction on the residual-centered latent interac-
tion

probe3WayRC 147

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent three-way
interaction (Geldhof et al., 2013)

Usage

probe3WayRC(fit, nameX, nameY, modVar, valProbe1, valProbe2, group,
omit.imps = c("no.conv", "no.se"))

Arguments

fit A fitted lavaan or lavaan.mi object with a latent 2-way interaction.

nameX character vector of all 7 factor names used as the predictors. The 3 lower-order
factors must be listed first, followed by the 3 second-order factors (specifically,
the 4th element must be the interaction between the factors listed first and sec-
ond, the 5th element must be the interaction between the factors listed first and
third, and the 6th element must be the interaction between the factors listed
second and third). The final name will be the factor representing the 3-way
interaction.

nameY The name of factor that is used as the dependent variable.

modVar The name of two factors that are used as the moderators. The effect of the
independent factor on each combination of the moderator variable values will
be probed.

valProbe1 The values of the first moderator that will be used to probe the effect of the
independent factor.

valProbe2 The values of the second moderator that will be used to probe the effect of the
independent factor.

group In multigroup models, the label of the group for which the results will be re-
turned. Must correspond to one of lavInspect(fit,"group.label").

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit is of class lavaan.mi. Can include any of c("no.conv","no.se","no.npd"),
the first 2 of which are the default setting, which excludes any imputations that
did not converge or for which standard errors could not be computed. The last
option ("no.npd") would exclude any imputations which yielded a nonposi-
tive definite covariance matrix for observed or latent variables, which would
include any "improper solutions" such as Heywood cases. NPD solutions are
not excluded by default because they are likely to occur due to sampling error,
especially in small samples. However, gross model misspecification could also
cause NPD solutions, users can compare pooled results with and without this
setting as a sensitivity analysis to see whether some imputations warrant further
investigation.

Details

Before using this function, researchers need to make the products of the indicators between the first-
order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird,

148 probe3WayRC

& Widaman, 2006). The process can be automated by the indProd function. Note that the indicator
products can be made for all possible combination or matched-pair approach (Marsh et al., 2004).
Next, the hypothesized model with the regression with latent interaction will be used to fit all
original indicators and the product terms (Geldhof et al., 2013). To use this function the model
must be fit with a mean structure. See the example for how to fit the product term below. Once the
lavaan result is obtained, this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-
centered result into the no-centered result. See Geldhof et al. (2013) for further details. Note
that this approach based on a strong assumption that the first-order latent variables are normally
distributed. The probing process is applied after the no-centered result (parameter estimates and
their covariance matrix among parameter estimates) has been computed. See the probe3WayMC for
further details.

Value

A list with two elements:

1. SimpleIntercept: The intercepts given each value of the moderator. This element will be
shown only if the factor intercept is estimated (e.g., not fixed as 0).

2. SimpleSlope: The slopes given each value of the moderator.

In each element, the first column represents values of the first moderator specified in the valProbe1
argument. The second column represents values of the second moderator specified in the valProbe2
argument. The third column is the simple intercept or simple slope. The fourth column is the SE of
the simple intercept or simple slope. The fifth column is the Wald (z) statistic. The sixth column is
the p value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Geldhof, G. J., Pornprasertmanit, S., Schoemann, A., & Little, T. D. (2013). Orthogonalizing
through residual centering: Extended applications and caveats. Educational and Psychological
Measurement, 73(1), 27–46. doi:10.1177/0013164412445473

Lance, C. E. (1988). Residual centering, exploratory and confirmatory moderator analysis, and de-
composition of effects in path models containing interactions. Applied Psychological Measurement,
12(2), 163–175. doi:10.1177/014662168801200205

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered
and product terms: Implications for modeling interactions. Structural Equation Modeling, 13(4),
497–519. doi:10.1207/s15328007sem1304_1

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275–300. doi:10.1037/1082-989X.9.3.275

Pornprasertmanit, S., Schoemann, A. M., Geldhof, G. J., & Little, T. D. (submitted). Probing latent
interaction estimated with a residual centering approach.

probe3WayRC 149

See Also

• indProd For creating the indicator products with no centering, mean centering, double-mean
centering, or residual centering.

• probe2WayMC For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe3WayMC For probing the three-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

• probe2WayRC For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

• plotProbe Plot the simple intercepts and slopes of the latent interaction.

Examples

library(lavaan)

dat3wayRC <- orthogonalize(dat3way, 1:3, 4:6, 7:9)

model3 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f3 =~ x7 + x8 + x9
f12 =~ x1.x4 + x2.x5 + x3.x6
f13 =~ x1.x7 + x2.x8 + x3.x9
f23 =~ x4.x7 + x5.x8 + x6.x9
f123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 =~ x10 + x11 + x12
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~~ 0*f12
f1 ~~ 0*f13
f1 ~~ 0*f123
f2 ~~ 0*f12
f2 ~~ 0*f23
f2 ~~ 0*f123
f3 ~~ 0*f13
f3 ~~ 0*f23
f3 ~~ 0*f123
f12 ~~ 0*f123
f13 ~~ 0*f123
f23 ~~ 0*f123
x1 ~ 0*1
x4 ~ 0*1
x7 ~ 0*1
x10 ~ 0*1
x1.x4 ~ 0*1
x1.x7 ~ 0*1
x4.x7 ~ 0*1
x1.x4.x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1

150 quark

f3 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
f23 ~ NA*1
f123 ~ NA*1
f4 ~ NA*1
"

fitRC3way <- sem(model3, data = dat3wayRC, std.lv = FALSE,
meanstructure = TRUE)

summary(fitRC3way)

probe3WayMC(fitRC3way, nameX = c("f1" ,"f2" ,"f3",
"f12","f13","f23", # the order matters!
"f123"), # 3-way interaction

nameY = "f4", modVar = c("f1", "f2"),
valProbe1 = c(-1, 0, 1), valProbe2 = c(-1, 0, 1))

quark Quark

Description

The quark function provides researchers with the ability to calculate and include component scores
calculated by taking into account the variance in the original dataset and all of the interaction and
polynomial effects of the data in the dataset.

Usage

quark(data, id, order = 1, silent = FALSE, ...)

Arguments

data The data frame is a required component for quark. In order for quark to process
a data frame, it must not contain any factors or text-based variables. All variables
must be in numeric format. Identifiers and dates can be left in the data; however,
they will need to be identified under the id argument.

id Identifiers and dates within the dataset will need to be acknowledged as quark
cannot process these. By acknowledging the identifiers and dates as a vector
of column numbers or variable names, quark will remove them from the data
temporarily to complete its main processes. Among many potential issues of not
acknowledging identifiers and dates are issues involved with imputation, product
and polynomial effects, and principal component analysis.

order Order is an optional argument provided by quark that can be used when the
imputation procedures in mice fail. Under some circumstances, mice cannot
calculate missing values due to issues with extreme missingness. Should an
error present itself stating a failure due to not having any columns selected, set

quark 151

the argument order = 2 in order to reorder the imputation method procedure.
Otherwise, use the default order = 1.

silent If FALSE, the details of the quark process are printed.

... additional arguments to pass to mice.

Details

The quark function calculates these component scores by first filling in the data via means of mul-
tiple imputation methods and then expanding the dataset by aggregating the non-overlapping inter-
action effects between variables by calculating the mean of the interactions and polynomial effects.
The multiple imputation methods include one of iterative sampling and group mean substitution and
multiple imputation using a polytomous regression algorithm (mice). During the expansion process,
the dataset is expanded to three times its normal size (in width). The first third of the dataset con-
tains all of the original data post imputation, the second third contains the means of the polynomial
effects (squares and cubes), and the final third contains the means of the non-overlapping interac-
tion effects. A full principal componenent analysis is conducted and the individual components are
retained. The subsequent combinequark function provides researchers the control in determining
how many components to extract and retain. The function returns the dataset as submitted (with
missing values) and the component scores as requested for a more accurate multiple imputation in
subsequent steps.

Value

The output value from using the quark function is a list. It will return a list with 7 components.

ID Columns Is a vector of the identifier columns entered when running quark.

ID Variables Is a subset of the dataset that contains the identifiers as acknowledged when
running quark.

Used Data Is a matrix / dataframe of the data provided by user as the basis for quark to
process.

Imputed Data Is a matrix / dataframe of the data after the multiple method imputation process.

Big Matrix Is the expanded product and polynomial matrix.
Principal Components

Is the entire dataframe of principal components for the dataset. This dataset will
have the same number of rows of the big matrix, but will have 1 less column (as
is the case with principal component analyses).

Percent Variance Explained

Is a vector of the percent variance explained with each column of principal com-
ponents.

Author(s)

Steven R. Chesnut (University of Southern Mississippi; <Steven.Chesnut@usm.edu>)

Danny Squire (Texas Tech University)

Terrence D. Jorgensen (University of Amsterdam)

The PCA code is copied and modified from the FactoMineR package.

152 reliability

References

Howard, W. J., Rhemtulla, M., & Little, T. D. (2015). Using Principal Components as Auxil-
iary Variables in Missing Data Estimation. Multivariate Behavioral Research, 50(3), 285–299.
doi:10.1080/00273171.2014.999267

See Also

combinequark

Examples

set.seed(123321)

dat <- HolzingerSwineford1939[,7:15]
misspat <- matrix(runif(nrow(dat) * 9) < 0.3, nrow(dat))
dat[misspat] <- NA
dat <- cbind(HolzingerSwineford1939[,1:3], dat)
Not run:
quark.list <- quark(data = dat, id = c(1, 2))

final.data <- combinequark(quark = quark.list, percent = 80)

Example to rerun quark after imputation failure:
quark.list <- quark(data = dat, id = c(1, 2), order = 2)

End(Not run)

reliability Calculate reliability values of factors

Description

Calculate reliability values of factors by coefficient omega

Usage

reliability(object, return.total = FALSE, dropSingle = TRUE,
omit.imps = c("no.conv", "no.se"))

Arguments

object A lavaan or lavaan.mi object, expected to contain only exogenous common
factors (i.e., a CFA model).

return.total logical indicating whether to return a final column containing the reliability of
a composite of all items. Ignored in 1-factor models, and should only be set TRUE
if all factors represent scale dimensions that could nonetheless be collapsed to a
single scale composite (scale sum or scale mean).

reliability 153

dropSingle logical indicating whether to exclude factors defined by a single indicator from
the returned results. If TRUE (default), single indicators will still be included in
the total column when return.total = TRUE.

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion.

Details

The coefficient alpha (Cronbach, 1951) can be calculated by

α =
k

k − 1

[
1−

∑k
i=1 σii∑k

i=1 σii + 2
∑
i<j σij

]
,

where k is the number of items in a factor, σii is the item i observed variances, σij is the observed
covariance of items i and j.

The coefficient omega (Bollen, 1980; see also Raykov, 2001) can be calculated by

ω1 =

(∑k
i=1 λi

)2
V ar (ψ)(∑k

i=1 λi

)2
V ar (ψ) +

∑k
i=1 θii + 2

∑
i<j θij

,

where λi is the factor loading of item i, ψ is the factor variance, θii is the variance of measurement
errors of item i, and θij is the covariance of measurement errors from item i and j.

The second coefficient omega (Bentler, 1972, 2009) can be calculated by

ω2 =

(∑k
i=1 λi

)2
V ar (ψ)

1′Σ̂1
,

where Σ̂ is the model-implied covariance matrix, and 1 is the k-dimensional vector of 1. The first
and the second coefficients omega will have the same value when the model has simple structure, but
different values when there are (for example) cross-loadings or method factors. The first coefficient
omega can be viewed as the reliability controlling for the other factors (like η2partial in ANOVA).
The second coefficient omega can be viewed as the unconditional reliability (like η2 in ANOVA).

The third coefficient omega (McDonald, 1999), which is sometimes referred to hierarchical omega,
can be calculated by

154 reliability

ω3 =

(∑k
i=1 λi

)2
V ar (ψ)

1′Σ1
,

where Σ is the observed covariance matrix. If the model fits the data well, the third coefficient
omega will be similar to the ω2. Note that if there is a directional effect in the model, all coefficients
omega will use the total factor variances, which is calculated by lavInspect(object,"cov.lv").

In conclusion, ω1, ω2, and ω3 are different in the denominator. The denominator of the first formula
assumes that a model is congeneric factor model where measurement errors are not correlated.
The second formula accounts for correlated measurement errors. However, these two formulas
assume that the model-implied covariance matrix explains item relationships perfectly. The resid-
uals are subject to sampling error. The third formula use observed covariance matrix instead of
model-implied covariance matrix to calculate the observed total variance. This formula is the most
conservative method in calculating coefficient omega.

The average variance extracted (AVE) can be calculated by

AV E =
1′diag (ΛΨΛ′) 1

1′diag
(

Σ̂
)

1
,

Note that this formula is modified from Fornell & Larcker (1981) in the case that factor variances
are not 1. The proposed formula from Fornell & Larcker (1981) assumes that the factor variances
are 1. Note that AVE will not be provided for factors consisting of items with dual loadings. AVE
is the property of items but not the property of factors.

Regarding categorical indicators, coefficient alpha and AVE are calculated based on polychoric
correlations. The coefficient alpha from this function may be not the same as the standard alpha
calculation for categorical items. Researchers may check the alpha function in the psych package
for the standard coefficient alpha calculation.

Item thresholds are not accounted for. Coefficient omega for categorical items, however, is calcu-
lated by accounting for both item covariances and item thresholds using Green and Yang’s (2009,
formula 21) approach. Three types of coefficient omega indicate different methods to calculate
item total variances. The original formula from Green and Yang is equivalent to ω3 in this function.
Green and Yang did not propose a method for calculating reliability with a mixture of categorical
and continuous indicators, and we are currently unaware of an appropriate method. Therefore, when
reliability detects both categorical and continuous indicators in the model, an error is returned.
If the categorical indicators load on a different factor(s) than continuous indicators, then reliability
can be calculated separately for those scales by fitting separate models and submitting each to the
reliability function.

Value

Reliability values (coefficient alpha, coefficients omega, average variance extracted) of each factor
in each group. If there are multiple factors, a total column can optionally be included.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

reliability 155

Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American
Sociological Review, 45(3), 370–390. doi:10.2307/2095172

Bentler, P. M. (1972). A lower-bound method for the dimension-free measurement of internal
consistency. Social Science Research, 1(4), 343–357. doi:10.1016/0049-089X(72)90082-8

Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability.
Psychometrika, 74(1), 137–143. doi:10.1007/s11336-008-9100-1

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3),
297–334. doi:10.1007/BF02310555

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable vari-
ables and measurement errors. Journal of Marketing Research, 18(1), 39–50. doi:10.2307/3151312

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation mod-
eling: An alternative to coefficient alpha. Psychometrika, 74(1), 155–167. doi:10.1007/s11336-
008-9099-3

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Erlbaum.

Raykov, T. (2001). Estimation of congeneric scale reliability using covariance structure analysis
with nonlinear constraints British Journal of Mathematical and Statistical Psychology, 54(2), 315–
323. doi:10.1348/000711001159582

See Also

reliabilityL2 for reliability value of a desired second-order factor, maximalRelia for the maxi-
mal reliability of weighted composite

Examples

library(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
reliability(fit)
reliability(fit, return.total = TRUE)

156 reliabilityL2

reliabilityL2 Calculate the reliability values of a second-order factor

Description

Calculate the reliability values (coefficient omega) of a second-order factor

Usage

reliabilityL2(object, secondFactor, omit.imps = c("no.conv", "no.se"))

Arguments

object A lavaan or lavaan.mi object, expected to contain a least one exogenous
higher-order common factor.

secondFactor The name of a single second-order factor in the model fitted in object. The
function must be called multiple times to estimate reliability for each higher-
order factor.

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv","no.se","no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion.

Details

The first formula of the coefficient omega (in the reliability) will be mainly used in the calcu-
lation. The model-implied covariance matrix of a second-order factor model can be separated into
three sources: the second-order common-factor variance, the residual variance of the first-order
common factors (i.e., not accounted for by the second-order factor), and the measurement error of
observed indicators:

Σ̂ = ΛBΦ2B
′Λ′ + ΛΨuΛ′ + Θ,

where Σ̂ is the model-implied covariance matrix, Λ contains first-order factor loadings, B contains
second-order factor loadings, Φ2 is the covariance matrix of the second-order factor(s), Ψu is the
covariance matrix of residuals from first-order factors, and Θ is the covariance matrix of the mea-
surement errors from observed indicators. Thus, we can calculate the proportion of variance of a
composite score calculated from the observed indicators (e.g., a total score or scale mean) that is
attributable to the second-order factor, i.e. coefficient omega at Level 1:

reliabilityL2 157

ωL1 =
1′ΛBΦ2B

′Λ′1

1′ΛBΦ2B′Λ′1 + 1′ΛΨuΛ′1 + 1′Θ1
,

where 1 is the k-dimensional vector of 1 and k is the number of observed variables.

The model-implied covariance matrix among first-order factors (Φ1) can be calculated as:

Φ1 = BΦ2B
′ + Ψu,

Thus, the proportion of variance among first-order common factors that is attributable to the second-
order factor (i.e., coefficient omega at Level 2) can be calculated as:

ωL2 =
1′FBΦ2B

′1F

1′FBΦ2B′1F + 1′F Ψu1F
,

where 1F is the F-dimensional vector of 1 and F is the number of first-order factors. This Level-2
omega can be interpreted as an estimate of the reliability of a hypothetical composite calculated
from error-free observable variables representing the first-order common factors. This might only
be meaningful as a thought experiment.

An additional thought experiment is possible: If the observed indicators contained only the second-
order common-factor variance and unsystematic measurement error, then there would be no first-
order common factors because their unique variances would be excluded from the observed mea-
sures. An estimate of this hypothetical composite reliability can be calculated as the partial coeffi-
cient omega at Level 1, or the proportion of observed variance explained by the second-order factor
after partialling out the uniqueness from the first-order factors:

ωL1 =
1′ΛBΦ2B

′Λ′1

1′ΛBΦ2B′Λ′1 + 1′Θ1
,

Note that if the second-order factor has a direct factor loading on some observed variables, the
observed variables will be counted as first-order factors, which might not be desirable.

Value

Reliability values at Levels 1 and 2 of the second-order factor, as well as the partial reliability value
at Level 1

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

reliability for the reliability of the first-order factors.

158 residualCovariate

Examples

library(lavaan)

HS.model3 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

higher =~ visual + textual + speed'

fit6 <- cfa(HS.model3, data = HolzingerSwineford1939)
reliability(fit6) # Should provide a warning for the endogenous variables
reliabilityL2(fit6, "higher")

residualCovariate Residual-center all target indicators by covariates

Description

This function will regress target variables on the covariate and replace the target variables by the
residual of the regression analysis. This procedure is useful to control the covariate from the analysis
model (Geldhof, Pornprasertmanit, Schoemann, & Little, 2013).

Usage

residualCovariate(data, targetVar, covVar)

Arguments

data The desired data to be transformed.

targetVar Varible names or the position of indicators that users wish to be residual centered
(as dependent variables)

covVar Covariate names or the position of the covariates using for residual centering (as
independent variables) onto target variables

Value

The data that the target variables replaced by the residuals

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Geldhof, G. J., Pornprasertmanit, S., Schoemann, A. M., & Little, T. D. (2013). Orthogonalizing
through residual centering: Extended applications and caveats. Educational and Psychological
Measurement, 73(1), 27–46. doi:10.1177/0013164412445473

runMI 159

See Also

indProd For creating the indicator products with no centering, mean centering, double-mean cen-
tering, or residual centering.

Examples

dat <- residualCovariate(attitude, 2:7, 1)

runMI Fit a lavaan Model to Multiple Imputed Data Sets

Description

This function fits a lavaan model to a list of imputed data sets, and can also implement multiple
imputation for a single data.frame with missing observations, using either the Amelia package or
the mice package.

Usage

runMI(model, data, fun = "lavaan", ..., m, miArgs = list(),
miPackage = "Amelia", seed = 12345)

lavaan.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)

cfa.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)

sem.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)

growth.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia",
seed = 12345)

Arguments

model The analysis model can be specified using lavaan model.syntax or a parameter
table (as returned by parTable).

data A data.frame with missing observations, or a list of imputed data sets (if data
are imputed already). If runMI has already been called, then imputed data sets
are stored in the @DataList slot, so data can also be a lavaan.mi object from
which the same imputed data will be used for additional analyses.

fun character. Name of a specific lavaan function used to fit model to data (i.e.,
"lavaan", "cfa", "sem", or "growth"). Only required for runMI.

160 runMI

... additional arguments to pass to lavaan or lavaanList. See also lavOptions.
Note that lavaanList provides parallel computing options, as well as a FUN
argument so the user can extract custom output after the model is fitted to each
imputed data set (see Examples). TIP: If a custom FUN is used and parallel =
"snow" is requested, the user-supplied function should explicitly call library
or use :: for any functions not part of the base distribution.

m integer. Request the number of imputations. Ignored if data is already a list
of imputed data sets or a lavaan.mi object.

miArgs Addition arguments for the multiple-imputation function (miPackage). The ar-
guments should be put in a list (see example below). Ignored if data is already
a list of imputed data sets or a lavaan.mi object.

miPackage Package to be used for imputation. Currently these functions only support
"Amelia" or "mice" for imputation. Ignored if data is already a list of im-
puted data sets or a lavaan.mi object.

seed integer. Random number seed to be set before imputing the data. Ignored if
data is already a list of imputed data sets or a lavaan.mi object.

Value

A lavaan.mi object

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.

Examples

Not run:
impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),

"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

specify CFA model from lavaan's ?cfa help page
HS.model <- '

visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

'

impute data within runMI...

runMI 161

out1 <- cfa.mi(HS.model, data = HSMiss, m = 20, seed = 12345,
miArgs = list(noms = "school"))

... or impute missing data first
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations
out2 <- cfa.mi(HS.model, data = imps)

same results (using the same seed results in the same imputations)
cbind(impute.within = coef(out1), impute.first = coef(out2))

summary(out1, fit.measures = TRUE)
summary(out1, ci = FALSE, fmi = TRUE, output = "data.frame")
summary(out1, ci = FALSE, stand = TRUE, rsq = TRUE)

model fit. D3 includes information criteria
anova(out1)
equivalently:
lavTestLRT.mi(out1)
request D2
anova(out1, test = "D2")
request fit indices
fitMeasures(out1)

fit multigroup model without invariance constraints
mgfit.config <- cfa.mi(HS.model, data = imps, estimator = "mlm",

group = "school")
add invariance constraints, and use previous fit as "data"
mgfit.metric <- cfa.mi(HS.model, data = mgfit.config, estimator = "mlm",

group = "school", group.equal = "loadings")
mgfit.scalar <- cfa.mi(HS.model, data = mgfit.config, estimator = "mlm",

group = "school",
group.equal = c("loadings","intercepts"))

compare fit of 2 models to test metric invariance
(scaled likelihood ratio test)
lavTestLRT.mi(mgfit.metric, h1 = mgfit.config)
To compare multiple models, you must use anova()
anova(mgfit.config, mgfit.metric, mgfit.scalar)
or compareFit(), which also includes fit indices for comparison
(optional: name the models)
compareFit(config = mgfit.config, metric = mgfit.metric,

scalar = mgfit.scalar,
argsLRT = list(test = "D2", method = "satorra.bentler.2010"))

correlation residuals to investigate local misfit
resid(mgfit.scalar, type = "cor.bentler")
modification indices for fixed parameters, to investigate local misfit
modindices.mi(mgfit.scalar)
or lavTestScore.mi for modification indices about equality constraints

162 semTools

lavTestScore.mi(mgfit.scalar)

Wald test of whether latent means are == (fix 3 means to zero in group 2)
eq.means <- ' .p70. == 0

.p71. == 0

.p72. == 0 '
lavTestWald.mi(mgfit.scalar, constraints = eq.means)

ordered-categorical data
data(datCat)
lapply(datCat, class) # indicators already stored as ordinal
impose missing values
set.seed(123)
for (i in 1:8) datCat[sample(1:nrow(datCat), size = .1*nrow(datCat)), i] <- NA

impute ordinal missing data using mice package
library(mice)
set.seed(456)
miceImps <- mice(datCat)
save imputations in a list of data.frames
impList <- list()
for (i in miceImps$m) impList[[i]] <- complete(miceImps, action = i)

fit model, save zero-cell tables and obsolete "WRMR" fit indices
catout <- cfa.mi(' f =~ 1*u1 + 1*u2 + 1*u3 + 1*u4 ', data = impList,

FUN = function(fit) {
list(wrmr = lavaan::fitMeasures(fit, "wrmr"),

zeroCells = lavaan::lavInspect(fit, "zero.cell.tables"))
})

summary(catout)
lavTestLRT.mi(catout, test = "D2", pool.robust = TRUE)
fitMeasures(catout, fit.measures = c("rmsea","srmr","cfi"),

test = "D2", pool.robust = TRUE)

extract custom output
sapply(catout@funList, function(x) x$wrmr) # WRMR for each imputation
catout@funList[[1]]$zeroCells # zero-cell tables for first imputation
catout@funList[[2]]$zeroCells # zero-cell tables for second imputation ...

End(Not run)

semTools semTools: Useful Tools for Structural Equation Modeling

simParcel 163

Description

The semTools package provides many miscellaneous functions that are useful for statistical analysis
involving SEM in R. Many functions extend the funtionality of the lavaan package. Some sets of
functions in semTools correspond to the same theme. We call such a collection of functions a suite.
Our suites include:

• Model Fit Evaluation: moreFitIndices, nullRMSEA, singleParamTest, miPowerFit, and
chisqSmallN

• Measurement Invariance: measEq.syntax, partialInvariance, partialInvarianceCat,
and permuteMeasEq

• Power Analysis: SSpower, findRMSEApower, plotRMSEApower, plotRMSEAdist, findRMSEAsamplesize,
findRMSEApowernested, plotRMSEApowernested, and findRMSEAsamplesizenested

• Missing Data Analysis: auxiliary, runMI, twostage, fmi, bsBootMiss, quark, and combinequark

• Latent Interactions: indProd, orthogonalize, probe2WayMC, probe3WayMC, probe2WayRC,
probe3WayRC, and plotProbe

• Exploratory Factor Analysis (EFA): efa.ekc, efaUnrotate, orthRotate, oblqRotate, and
funRotate

• Reliability Estimation: reliability, reliabilityL2, and maximalRelia

• Parceling: parcelAllocation, PAVranking, and poolMAlloc

• Non-Normality: skew, kurtosis, mardiaSkew, mardiaKurtosis, and mvrnonnorm

All users of R (or SEM) are invited to submit functions or ideas for functions by contacting the
maintainer, Terrence Jorgensen (<TJorgensen314@gmail.com>). Contributors are encouraged to
use Roxygen comments to document their contributed code, which is consistent with the rest of
semTools. Read the vignette from the roxygen2 package for details: vignette("rd",package =
"roxygen2")

simParcel Simulated Data set to Demonstrate Random Allocations of Parcels

Description

A simulated data set with 2 factors with 9 indicators for each factor

Usage

simParcel

Format

A data.frame with 800 observations of 18 variables.

f1item1 Item 1 loading on factor 1

f1item2 Item 2 loading on factor 1

f1item3 Item 3 loading on factor 1

164 singleParamTest

f1item4 Item 4 loading on factor 1

f1item5 Item 5 loading on factor 1

f1item6 Item 6 loading on factor 1

f1item7 Item 7 loading on factor 1

f1item8 Item 8 loading on factor 1

f1item9 Item 9 loading on factor 1

f2item1 Item 1 loading on factor 2

f2item2 Item 2 loading on factor 2

f2item3 Item 3 loading on factor 2

f2item4 Item 4 loading on factor 2

f2item5 Item 5 loading on factor 2

f2item6 Item 6 loading on factor 2

f2item7 Item 7 loading on factor 2

f2item8 Item 8 loading on factor 2

f2item9 Item 9 loading on factor 2

Source

Data were generated using the simsem package.

Examples

head(simParcel)

singleParamTest Single Parameter Test Divided from Nested Model Comparison

Description

In comparing two nested models, ∆χ2 test may indicate that two models are different. However,
like other omnibus tests, researchers do not know which fixed parameters or constraints make these
two models different. This function will help researchers identify the significant parameter.

Usage

singleParamTest(model1, model2, return.fit = FALSE,
method = "satorra.bentler.2001")

singleParamTest 165

Arguments

model1 Model 1.

model2 Model 2. Note that two models must be nested models. Further, the order of
parameters in their parameter tables are the same. That is, nested models with
different scale identifications may not be able to test by this function.

return.fit Return the submodels fitted by this function

method The method used to calculate likelihood ratio test. See lavTestLRT for available
options

Details

This function first identify the differences between these two models. The model with more free
parameters is referred to as parent model and the model with less free parameters is referred to as
nested model. Three tests are implemented here:

1. free: The nested model is used as a template. Then, one parameter indicating the differences
between two models is free. The new model is compared with the nested model. This process
is repeated for all differences between two models.

2. fix: The parent model is used as a template. Then, one parameter indicating the differences
between two models is fixed or constrained to be equal to other parameters. The new model
is then compared with the parent model. This process is repeated for all differences between
two models.

3. mi: No longer available because the test of modification indices is not consistent. For example,
if two parameters are equality constrained, the modification index from the first parameter is
not equal to the second parameter.

Note that this function does not adjust for the inflated Type I error rate from multiple tests.

Value

If return.fit = FALSE, the result tables are provided. χ2 and p value are provided for all methods.
Note that the χ2 is all based on 1 df. Expected parameter changes and their standardized forms are
also provided.

If return.fit = TRUE, a list with two elements are provided. The first element is the tabular result.
The second element is the submodels used in the free and fix methods.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

library(lavaan)

Nested model comparison by hand
HS.model1 <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6'

166 skew

HS.model2 <- ' visual =~ a*x1 + a*x2 + a*x3
textual =~ b*x4 + b*x5 + b*x6'

m1 <- cfa(HS.model1, data = HolzingerSwineford1939, std.lv = TRUE,
estimator = "MLR")

m2 <- cfa(HS.model2, data = HolzingerSwineford1939, std.lv = TRUE,
estimator = "MLR")

anova(m1, m2)
singleParamTest(m1, m2)

Nested model comparison from the measurementInvariance function
HW.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

models <- measurementInvariance(model = HW.model, data = HolzingerSwineford1939,
group = "school")

singleParamTest(models[[1]], models[[2]])

Note that the comparison between weak (Model 2) and scalar invariance
(Model 3) cannot be done by this function # because the weak invariance
model fixes factor means as 0 in Group 2 but the strong invariance model
frees the factor means in Group 2. Users may try to compare
strong (Model 3) and means invariance models by this function.

skew Finding skewness

Description

Finding skewness (g1) of an object

Usage

skew(object, population = FALSE)

Arguments

object A vector used to find a skewness

population TRUE to compute the parameter formula. FALSE to compute the sample statistic
formula.

Details

The skewness computed is g1. The parameter skewness γ2 formula is

γ2 =
µ3

µ
3/2
2

,

skew 167

where µi denotes the i order central moment.

The excessive kurtosis formula for sample statistic g2 is

g2 =
k3
k22
,

where ki are the i order k-statistic.

The standard error of the skewness is

V ar(ĝ2) =
6

N

where N is the sample size.

Value

A value of a skewness with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Weisstein, Eric W. (n.d.). Skewness. Retrived from MathWorld–A Wolfram Web Resource: http:
//mathworld.wolfram.com/Skewness.html

See Also

• kurtosis Find the univariate excessive kurtosis of a variable

• mardiaSkew Find Mardia’s multivariate skewness of a set of variables

• mardiaKurtosis Find the Mardia’s multivariate kurtosis of a set of variables

Examples

skew(1:5)

http://mathworld.wolfram.com/Skewness.html
http://mathworld.wolfram.com/Skewness.html

168 splitSample

splitSample Randomly Split a Data Set into Halves

Description

This function randomly splits a data set into two halves, and saves the resulting data sets to the same
folder as the original.

Usage

splitSample(dataset, path = "default", div = 2, type = "default",
name = "splitSample")

Arguments

dataset The original data set to be divided. Can be a file path to a *.csv or *.dat file
(headers will automatically be detected) or an R object (matrix or dataframe).
(Windows users: file path must be specified using FORWARD SLASHES (/)
ONLY.)

path File path to folder for output data sets. NOT REQUIRED if dataset is a filename.
Specify ONLY if dataset is an R object, or desired output folder is not that of
original data set. If path is specified as "object", output data sets will be returned
as a list, and not saved to hard drive.

div Number of output data sets. NOT REQUIRED if default, 2 halves.

type Output file format ("dat" or "csv"). NOT REQUIRED unless desired output
formatting differs from that of input, or dataset is an R object and csv formatting
is desired.

name Output file name. NOT REQUIRED unless desired output name differs from
that of input, or input dataset is an R object. (If input is an R object and name is
not specified, name will be "splitSample".)

Details

This function randomly orders the rows of a data set, divides the data set into two halves, and saves
the halves to the same folder as the original data set, preserving the original formatting. Data set
type (*.csv or *.dat) and formatting (headers) are automatically detected, and output data sets will
preserve input type and formatting unless specified otherwise. Input can be in the form of a file path
(*.dat or *.csv), or an R object (matrix or dataframe). If input is an R object and path is default,
output data sets will be returned as a list object.

Value

If path = "object", list of output data sets. Otherwise, output will saved to hard drive in the
same format as input.

SSpower 169

Author(s)

Corbin Quick (University of Michigan; <corbinq@umich.edu>)

Examples

Input is .dat file
#splitSample("C:/Users/Default/Desktop/MYDATA.dat")
Output saved to "C:/Users/Default/Desktop/" in .dat format
Names are "MYDATA_s1.dat" and "MYDATA_s2.dat"

Input is R object
Split C02 dataset from the datasets package
library(datasets)
splitMyData <- splitSample(CO2, path = "object")
summary(splitMyData[[1]])
summary(splitMyData[[2]])
Output object splitMyData becomes list of output data sets

Input is .dat file in "C:/" folder
#splitSample("C:/testdata.dat", path = "C:/Users/Default/Desktop/", type = "csv")
Output saved to "C:/Users/Default/Desktop/" in *.csv format
Names are "testdata_s1.csv" and "testdata_s2.csv"

Input is R object
#splitSample(myData, path = "C:/Users/Default/Desktop/", name = "splitdata")
Output saved to "C:/Users/Default/Desktop/" in *.dat format
Names are "splitdata_s1.dat" and "splitdata_s2.dat"

SSpower Power for model parameters

Description

Apply Satorra & Saris (1985) method for chi-squared power analysis.

Usage

SSpower(powerModel, n, nparam, popModel, mu, Sigma, fun = "cfa",
alpha = 0.05, ...)

Arguments

powerModel lavaan model.syntax for the model to be analyzed. This syntax should con-
strain at least one nonzero parameter to 0 (or another number).

n integer. Sample size used in power calculation, or a vector of sample sizes if
analyzing a multigroup model. If length(n) < length(Sigma) when Sigma is
a list, n will be recycled.

170 SSpower

nparam integer. Number of invalid constraints in powerModel.

popModel lavaan model.syntax specifying the data-generating model. This syntax should
specify values for all nonzero paramters in the model. If length(n) > 1, the
same population values will be used for each group. Different population values
per group can only be specified by utilizing Sigma (and mu).

mu numeric or list. For a single-group model, a vector of population means. For
a multigroup model, a list of vectors (one per group). If mu and popModel are
missing, mean structure will be excluded from the analysis.

Sigma matrix or list. For a single-group model, a population covariance matrix. For a
multigroup model, a list of matrices (one per group). If missing, popModel will
be used to generate a model-implied Sigma.

fun character. Name of lavaan function used to fit powerModel (i.e., "cfa", "sem",
"growth", or "lavaan").

alpha Type I error rate used to set a criterion for rejecting H0.

... additional arguments to pass to lavaan.

Details

Specify all non-zero parameters in a population model, either by using lavaan syntax (popModel) or
by submitting a population covariance matrix (Sigma) and optional mean vector (mu) implied by the
population model. Then specify an analysis model that constrains at least one nonzero parameter to
an incorrect value. Note the number in the nparam argument.

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis.
Psychometrika, 50, 83–90. doi:10.1007/BF02294150

Examples

Specify population values. Note every paramter has a fixed value.
modelP <- '

f1 =~ .7*V1 + .7*V2 + .7*V3 + .7*V4
f2 =~ .7*V5 + .7*V6 + .7*V7 + .7*V8
f1 ~~ .3*f2
f1 ~~ 1*f1
f2 ~~ 1*f2
V1 ~~ .51*V1
V2 ~~ .51*V2
V3 ~~ .51*V3
V4 ~~ .51*V4
V5 ~~ .51*V5
V6 ~~ .51*V6

SSpower 171

V7 ~~ .51*V7
V8 ~~ .51*V8

'
Specify analysis model. Note parameter of interest f1~~f2 is fixed to 0.
modelA <- '

f1 =~ V1 + V2 + V3 + V4
f2 =~ V5 + V6 + V7 + V8
f1 ~~ 0*f2

'
Calculate power
SSpower(powerModel = modelA, popModel = modelP, n = 150, nparam = 1,

std.lv = TRUE)

Get power for a range of sample sizes

Ns <- seq(100, 500, 40)
Power <- rep(NA, length(Ns))
for(i in 1:length(Ns)) {

Power[i] <- SSpower(powerModel = modelA, popModel = modelP,
n = Ns[i], nparam = 1, std.lv = TRUE)

}
plot(x = Ns, y = Power, type = "l", xlab = "Sample Size")

Specify second population to calculate power for multigroup model

popMoments1 <- fitted(cfa(modelP))
modelP2 <- '

f1 =~ .7*V1 + .7*V2 + .7*V3 + .7*V4
f2 =~ .7*V5 + .7*V6 + .7*V7 + .7*V8
f1 ~~ .5*f2 ## higher correlation in Group 2
f1 ~~ 1*f1
f2 ~~ 1*f2
V1 ~~ .51*V1
V2 ~~ .51*V2
V3 ~~ .51*V3
V4 ~~ .51*V4
V5 ~~ .51*V5
V6 ~~ .51*V6
V7 ~~ .51*V7
V8 ~~ .51*V8

'
popMoments2 <- fitted(cfa(modelP2))
modelA2 <- '

f1 =~ V1 + V2 + V3 + V4
f2 =~ V5 + V6 + V7 + V8
f1 ~~ c(0, 0)*f2

'
mu <- list(popMoments1$mean, popMoments2$mean) # ignored if NULL
Sigma <- list(popMoments1$cov, popMoments2$cov)
SSpower(powerModel = modelA2, mu = mu, Sigma = Sigma,

n = c(60, 65), nparam = 2)

172 tukeySEM

tukeySEM Tukey’s WSD post-hoc test of means for unequal variance and sample
size

Description

This function computes Tukey’s WSD post hoc test of means when variances and sample sizes are
not equal across groups. It can be used as a post hoc test when comparing latent means in multiple
group SEM.

Usage

tukeySEM(m1, m2, var1, var2, n1, n2, ng)

Arguments

m1 Mean of group 1.

m2 Mean of group 2.

var1 Variance of group 1.

var2 Variance of group 2.

n1 Sample size of group 1.

n2 Sample size of group 2.

ng Total number of groups to be compared (i.e., the number of groups compared in
the omnibus test).

Details

After conducting an omnibus test of means across three of more groups, researchers often wish
to know which sets of means differ at a particular Type I error rate. Tukey’s WSD test holds the
error rate stable across multiple comparisons of means. This function implements an adaptation of
Tukey’s WSD test from Maxwell & Delaney (2004), that allows variances and sample sizes to differ
across groups.

Value

A vector with three elements:

1. q: The q statistic

2. df: The degrees of freedom for the q statistic

3. p: A p value based on the q statistic, df, and the total number of groups to be compared

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)

twostage 173

References

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model
comparison perspective (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Examples

For a case where three groups have been compared:
Group 1: mean = 3.91, var = 0.46, n = 246
Group 2: mean = 3.96, var = 0.62, n = 465
Group 3: mean = 2.94, var = 1.07, n = 64

compare group 1 and group 2
tukeySEM(3.91, 3.96, 0.46, 0.62, 246, 425, 3)

compare group 1 and group 3
tukeySEM(3.91, 2.94, 0.46, 1.07, 246, 64, 3)

compare group 2 and group 3
tukeySEM(3.96, 2.94, 0.62, 1.07, 465, 64, 3)

twostage Fit a lavaan model using 2-Stage Maximum Likelihood (TSML) esti-
mation for missing data.

Description

This function automates 2-Stage Maximum Likelihood (TSML) estimation, optionally with auxil-
iary variables. Step 1 involves fitting a saturated model to the partially observed data set (to variables
in the hypothesized model as well as auxiliary variables related to missingness). Step 2 involves
fitting the hypothesized model to the model-implied means and covariance matrix (also called the
"EM" means and covariance matrix) as if they were complete data. Step 3 involves correcting the
Step-2 standard errors (SEs) and chi-squared statistic to account for additional uncertainty due to
missing data (using information from Step 1; see References section for sources with formulas).

Usage

twostage(..., aux, fun, baseline.model = NULL)

lavaan.2stage(..., aux = NULL, baseline.model = NULL)

cfa.2stage(..., aux = NULL, baseline.model = NULL)

sem.2stage(..., aux = NULL, baseline.model = NULL)

growth.2stage(..., aux = NULL, baseline.model = NULL)

174 twostage

Arguments

... Arguments passed to the lavaan function specified in the fun argument. See
also lavOptions. At a minimum, the user must supply the first two named
arguments to lavaan (i.e., model and data).

aux An optional character vector naming auxiliary variable(s) in data

fun The character string naming the lavaan function used to fit the Step-2 hypothe-
sized model ("cfa", "sem", "growth", or "lavaan").

baseline.model An optional character string, specifying the lavaan model.syntax for a user-
specified baseline model. Interested users can use the fitted baseline model to
calculate incremental fit indices (e.g., CFI and TLI) using the corrected chi-
squared values (see the anova method in twostage). If NULL, the default "inde-
pendence model" (i.e., freely estimated means and variances, but all covariances
constrained to zero) will be specified internally.

Details

All variables (including auxiliary variables) are treated as endogenous varaibles in the Step-1 sat-
urated model (fixed.x = FALSE), so data are assumed continuous, although not necessarily mul-
tivariate normal (dummy-coded auxiliary variables may be included in Step 1, but categorical en-
dogenous variables in the Step-2 hypothesized model are not allowed). To avoid assuming multi-
variate normality, request se = "robust.huber.white". CAUTION: In addition to setting fixed.x
= FALSE and conditional.x = FALSE in lavaan, this function will automatically set meanstructure
= TRUE, estimator = "ML", missing = "fiml", and test = "standard". lavaan’s se option can
only be set to "standard" to assume multivariate normality or to "robust.huber.white" to relax
that assumption.

Value

The twostage object contains 3 fitted lavaan models (saturated, target/hypothesized, and baseline)
as well as the names of auxiliary variables. None of the individual models provide the correct model
results (except the point estimates in the target model are unbiased). Use the methods in twostage
to extract corrected SEs and test statistics.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Savalei, V., & Bentler, P. M. (2009). A two-stage approach to missing data: Theory and application
to auxiliary variables. Structural Equation Modeling, 16(3), 477–497. doi:10.1080/10705510903008238

Savalei, V., & Falk, C. F. (2014). Robust two-stage approach outperforms robust full information
maximum likelihood with incomplete nonnormal data. Structural Equation Modeling, 21(2), 280–
302. doi:10.1080/10705511.2014.882692

See Also

twostage

twostage-class 175

Examples

impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),

"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

specify CFA model from lavaan's ?cfa help page
HS.model <- '

visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

'

use ageyr and agemo as auxiliary variables
out <- cfa.2stage(model = HS.model, data = HSMiss, aux = c("ageyr","agemo"))

two versions of a corrected chi-squared test results are shown
out
see Savalei & Bentler (2009) and Savalei & Falk (2014) for details

the summary additionally provides the parameter estimates with corrected
standard errors, test statistics, and confidence intervals, along with
any other options that can be passed to parameterEstimates()
summary(out, standardized = TRUE)

use parameter labels to fit a more constrained model
modc <- '

visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + a*x8 + a*x9

'
outc <- cfa.2stage(model = modc, data = HSMiss, aux = c("ageyr","agemo"))

use the anova() method to test this constraint
anova(out, outc)
like for a single model, two corrected statistics are provided

twostage-class Class for the Results of 2-Stage Maximum Likelihood (TSML) Estima-
tion for Missing Data

176 twostage-class

Description

This class contains the results of 2-Stage Maximum Likelihood (TSML) estimation for missing
data. The summary, anova, vcov methods return corrected SEs and test statistics. Other methods
are simply wrappers around the corresponding lavaan methods.

Usage

S4 method for signature 'twostage'
show(object)

S4 method for signature 'twostage'
summary(object, ...)

S4 method for signature 'twostage'
anova(object, h1 = NULL, baseline = FALSE)

S4 method for signature 'twostage'
nobs(object, type = c("ntotal", "ngroups",
"n.per.group", "norig", "patterns", "coverage"))

S4 method for signature 'twostage'
coef(object, type = c("free", "user"))

S4 method for signature 'twostage'
vcov(object, baseline = FALSE)

S4 method for signature 'twostage'
fitted.values(object, model = c("target", "saturated",
"baseline"), type = "moments", labels = TRUE)

S4 method for signature 'twostage'
fitted(object, model = c("target", "saturated",
"baseline"), type = "moments", labels = TRUE)

S4 method for signature 'twostage'
residuals(object, type = c("raw", "cor", "normalized", "standardized"))

S4 method for signature 'twostage'
resid(object, type = c("raw", "cor", "normalized", "standardized"))

Arguments

object An object of class twostage.

... arguments passed to parameterEstimates.

h1 An object of class twostage in which object is nested, so that their difference
in fit can be tested using anova (see Value section for details).

baseline logical indicating whether to return results for the baseline model, rather than
the default target (hypothesized) model.

twostage-class 177

type The meaning of this argument varies depending on which method it it used
for. Find detailed descriptions in the Value section under coef, nobs, and
residuals.

model character naming the slot for which to return the model-implied sample mo-
ments (see fitted.values description.)

labels logical indicating whether the model-implied sample moments should have
(row/column) labels.

Value

show signature(object = "twostage"): The show function is used to display the
results of the anova method, as well as the header of the (uncorrected) target
model results.

summary signature(object = "twostage",...): The summary function prints the same
information from the show method, but also provides (and returns) the output
of parameterEstimates(object@target,...) with corrected SEs, test statis-
tics, and confidence intervals. Additional arguments can be passed to parameterEstimates,
including fmi = TRUE to provide an estimate of the fraction of missing informa-
tion.

anova signature(object = "twostage",h1 = NULL,baseline = FALSE): The anova
function returns the residual-based χ2 test statistic result, as well as the scaled
χ2 test statistic result, for the model in the target slot, or for the model in the
baseline slot if baseline = TRUE. The user can also provide a single additional
twostage object to the h1 argument, in which case anova returns residual-based
and scaled (∆)χ2 test results, under the assumption that the models are nested.
The models will be automatically sorted according their degrees of freedom.

nobs signature(object = "twostage",type = c("ntotal","ngroups","n.per.group","norig","patterns","coverage")):
The nobs function will return the total sample sized used in the analysis by de-
fault. Also available are the number of groups or the sample size per group,
the original sample size (if any rows were deleted because all variables were
missing), the missing data patterns, and the matrix of coverage (diagonal is the
proportion of sample observed on each variable, and off-diagonal is the propor-
tion observed for both of each pair of variables).

coef signature(object = "twostage",type = c("free","user")): This is sim-
ply a wrapper around the corresponding lavaan method, providing point esti-
mates from the target slot.

vcov signature(object = "twostage",baseline = FALSE): Returns the asymptotic
covariance matrix of the estimated parameters (corrected for additional uncer-
tainty due to missing data) for the model in the target slot, or for the model in
the baseline slot if baseline = TRUE.

fitted.values, fitted

signature(object = "twostage",model = c("target","saturated","baseline")):
This is simply a wrapper around the corresponding lavaan method, providing
model-implied sample moments from the slot specified in the model argument.

residuals, resid

signature(object = "twostage",type = c("raw","cor","normalized","standardized")):
This is simply a wrapper around the corresponding lavaan method, providing
residuals of the specified type from the target slot.

178 twostage-class

Slots

saturated A fitted lavaan object containing the saturated model results

target A fitted lavaan object containing the target/hypothesized model results

baseline A fitted lavaan object containing the baseline/null model results

auxNames A character string (potentially of length == 0) of any auxiliary variable names, if used

Objects from the Class

Objects can be created via the twostage function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

twostage

Examples

See the example from the twostage function

Index

∗Topic datasets
dat2way, 17
dat3way, 18
datCat, 19
exLong, 26
simParcel, 163

::, 160

anova,lavaan.mi-method
(lavaan.mi-class), 45

anova,twostage-method (twostage-class),
175

as.character,measEq.syntax-method
(measEq.syntax-class), 77

auxiliary, 4, 71, 163

blavaan, 122
BootMiss, 8, 9
BootMiss-class, 6
bsBootMiss, 7, 7, 163

calculate.D2, 9
cfa, 20, 25, 68, 69
cfa.2stage (twostage), 173
cfa.auxiliary (auxiliary), 4
cfa.mi, 49
cfa.mi (runMI), 159
chisqSmallN, 11, 163
clipboard, 13, 16, 32
clusterSetRNGStream, 114
coef,lavaan.mi-method

(lavaan.mi-class), 45
coef,twostage-method (twostage-class),

175
combinequark, 14, 151, 152, 163
compareFit, 16, 32, 48, 55, 72
cov, 63, 64

dat2way, 17
dat3way, 18

datCat, 19
detectCores, 114
discriminantValidity, 20

EFA-class, 21
efa.ekc, 23, 163
efaUnrotate, 22, 24, 163
emm_basis.lavaan (lavaan2emmeans), 49
exLong, 26

factanal, 25
findRMSEApower, 27, 30, 128, 130, 163
findRMSEApowernested, 28, 31, 132, 163
findRMSEAsamplesize, 28, 29, 128, 130, 163
findRMSEAsamplesizenested, 29, 30, 132,

163
FitDiff, 13, 16
FitDiff-class, 32
fitMeasures, 5, 13, 16, 32, 46–48, 99, 108,

112, 133
fitMeasures,lavaan.mi-method

(lavaan.mi-class), 45
fitmeasures,lavaan.mi-method

(lavaan.mi-class), 45
fitted,lavaan.mi-method

(lavaan.mi-class), 45
fitted,twostage-method

(twostage-class), 175
fitted.values,lavaan.mi-method

(lavaan.mi-class), 45
fitted.values,twostage-method

(twostage-class), 175
fmi, 33, 163
funRotate, 163
funRotate (orthRotate), 96

GPA, 97
GPFoblq, 97
GPForth, 97
growth.2stage (twostage), 173

179

180 INDEX

growth.auxiliary (auxiliary), 4
growth.mi, 49
growth.mi (runMI), 159

hist, 6, 120
hist,BootMiss-method (BootMiss-class), 6
hist,permuteMeasEq-method

(permuteMeasEq-class), 119
htmt, 35

imposeStart, 37
indProd, 40, 125, 138, 139, 141, 142, 144,

145, 148, 149, 159, 163

kd, 42
kurtosis, 44, 64, 65, 163, 167

lav_func_jacobian_simple, 97
lav_partable_unrestricted, 49
lavaan, 4, 5, 8, 11, 16, 20, 34, 47, 50, 66, 68,

70, 71, 78, 98, 99, 107, 108, 115,
122, 134, 137, 140, 143, 147, 152,
156, 160, 170, 174, 176–178

lavaan-class, 13
lavaan.2stage (twostage), 173
lavaan.auxiliary (auxiliary), 4
lavaan.mi, 10, 11, 16, 34, 49, 54, 57, 60, 66,

83, 122, 123, 137, 138, 140, 141,
143, 144, 147, 152, 156, 160

lavaan.mi (runMI), 159
lavaan.mi-class, 45
lavaan2emmeans, 49
lavaanify, 98, 107
lavaanList, 45, 48, 49, 99, 108, 160
lavCor, 23, 36
lavInspect, 48, 49, 58, 78, 79, 83, 137, 140,

143, 147, 154
lavOptions, 8, 68–71, 78, 99, 108, 133, 134,

160, 174
lavParseModelString, 70
lavPredict, 122, 123
lavTestLRT, 11, 16, 47, 55, 103, 165
lavTestLRT.mi, 10, 11, 16, 47, 48, 54
lavTestScore, 58, 59, 112, 114, 116, 121
lavTestScore.mi, 10, 56
lavTestWald, 61, 104, 105
lavTestWald.mi, 10, 46, 60
legend, 6, 120, 125
loadingFromAlpha, 62

makeCluster, 114
mardiaKurtosis, 45, 63, 65, 163, 167
mardiaSkew, 45, 64, 64, 163, 167
maximalRelia, 65, 155, 163
measEq.syntax, 68, 71, 77, 163
measEq.syntax-class, 76
measurementInvariance, 102, 105, 114, 116
measurementInvarianceCat, 102, 105, 116
mice, 151
miPowerFit, 13, 79, 91, 96, 163
model.syntax, 4, 36, 68, 77, 78, 80, 112, 159,

169, 170, 174
modificationIndices.mi (modindices.mi),

82
modificationindices.mi (modindices.mi),

82
modindices, 48
modindices.mi, 82
monteCarloMed, 85
moreFitIndices, 81, 88, 96, 112, 163
mvrnonnorm, 91, 163
mvrnorm, 18, 19

Net, 93
net, 16, 92, 94, 95
Net-class, 94
nobs,lavaan.mi-method

(lavaan.mi-class), 45
nobs,twostage-method (twostage-class),

175
nullRMSEA, 90, 91, 95, 163

oblqRotate, 22, 24, 163
oblqRotate (orthRotate), 96
options, 113
orthogonalize, 163
orthogonalize (indProd), 40
orthRotate, 22, 24, 96, 163

p.adjust, 102
parameterEstimates, 46, 48, 176, 177
parcelAllocation, 98, 107–109, 134, 136,

163
parTable, 4, 68, 120, 159
partialInvariance, 102, 163
partialInvarianceCat, 163
partialInvarianceCat

(partialInvariance), 102
path.expand, 133

INDEX 181

PAVranking, 100, 107, 134, 136, 163
permuteMeasEq, 110, 112, 115, 120, 121, 163
permuteMeasEq-class, 119
plausibleValues, 122
plot, 125
plotProbe, 41, 124, 139, 142, 145, 149, 163
plotRMSEAdist, 28, 30, 127, 130, 163
plotRMSEApower, 28, 30, 128, 129, 163
plotRMSEApowernested, 29, 31, 131, 163
poolMAlloc, 100, 109, 132, 163
probe2WayMC, 41, 125, 137, 141, 142, 145,

149, 163
probe2WayRC, 41, 125, 139, 140, 145, 149, 163
probe3WayMC, 41, 125, 139, 142, 143, 148,

149, 163
probe3WayRC, 41, 125, 139, 142, 145, 146, 163

quark, 15, 150, 163

recover_data.lavaan (lavaan2emmeans), 49
reliability, 67, 152, 156, 157, 163
reliabilityL2, 155, 156, 163
resid,lavaan.mi-method

(lavaan.mi-class), 45
resid,twostage-method (twostage-class),

175
residualCovariate, 158
residuals,lavaan.mi-method

(lavaan.mi-class), 45
residuals,twostage-method

(twostage-class), 175
RNGkind, 114
rotations, 97
runMI, 48, 49, 71, 122, 123, 132, 134, 136,

159, 163

saveFile (clipboard), 13
sem.2stage (twostage), 173
sem.auxiliary (auxiliary), 4
sem.mi, 49
sem.mi (runMI), 159
semTools, 162
set.seed, 114, 122
show,BootMiss-method (BootMiss-class), 6
show,EFA-method (EFA-class), 21
show,FitDiff-method (FitDiff-class), 32
show,lavaan.mi-method

(lavaan.mi-class), 45

show,measEq.syntax-method
(measEq.syntax-class), 77

show,Net-method (Net-class), 94
show,permuteMeasEq-method

(permuteMeasEq-class), 119
show,twostage-method (twostage-class),

175
simParcel, 135, 163
simulateData, 92
singleParamTest, 163, 164
skew, 45, 64, 65, 163, 166
splitSample, 168
SSpower, 163, 169
standardizedSolution, 58
summary,BootMiss-method

(BootMiss-class), 6
summary,EFA-method (EFA-class), 21
summary,FitDiff-method (FitDiff-class),

32
summary,lavaan.mi-method

(lavaan.mi-class), 45
summary,measEq.syntax-method

(measEq.syntax-class), 77
summary,Net-method (Net-class), 94
summary,permuteMeasEq-method

(permuteMeasEq-class), 119
summary,twostage-method

(twostage-class), 175

TukeyHSD, 116
tukeySEM, 172
twostage, 163, 173, 174, 178
twostage-class, 175
txtProgressBar, 99, 108

update,measEq.syntax-method
(measEq.syntax-class), 77

vcov,lavaan.mi-method
(lavaan.mi-class), 45

vcov,twostage-method (twostage-class),
175

write.table, 8, 13

	auxiliary
	BootMiss-class
	bsBootMiss
	calculate.D2
	chisqSmallN
	clipboard
	combinequark
	compareFit
	dat2way
	dat3way
	datCat
	discriminantValidity
	EFA-class
	efa.ekc
	efaUnrotate
	exLong
	findRMSEApower
	findRMSEApowernested
	findRMSEAsamplesize
	findRMSEAsamplesizenested
	FitDiff-class
	fmi
	htmt
	imposeStart
	indProd
	kd
	kurtosis
	lavaan.mi-class
	lavaan2emmeans
	lavTestLRT.mi
	lavTestScore.mi
	lavTestWald.mi
	loadingFromAlpha
	mardiaKurtosis
	mardiaSkew
	maximalRelia
	measEq.syntax
	measEq.syntax-class
	miPowerFit
	modindices.mi
	monteCarloMed
	moreFitIndices
	mvrnonnorm
	net
	Net-class
	nullRMSEA
	orthRotate
	parcelAllocation
	partialInvariance
	PAVranking
	permuteMeasEq
	permuteMeasEq-class
	plausibleValues
	plotProbe
	plotRMSEAdist
	plotRMSEApower
	plotRMSEApowernested
	poolMAlloc
	probe2WayMC
	probe2WayRC
	probe3WayMC
	probe3WayRC
	quark
	reliability
	reliabilityL2
	residualCovariate
	runMI
	semTools
	simParcel
	singleParamTest
	skew
	splitSample
	SSpower
	tukeySEM
	twostage
	twostage-class
	Index

