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Introduction

semPower provides a collection of functions to perform power analyses for structural equation models. The
main functions of semPower are:

• semPower.aPriori: determine required sample size (N), given alpha, beta or power, effect, and df
• semPower.postHoc: determine achieved power (and beta), given alpha, N, effect, and df
• semPower.compromise: determine alpha and beta, given the alpha/beta ratio, N, effect, and df

All functions require the specification of the discrepancy between H0 and H1, i.e. the magnitude of effect in
a certain metric. semPower understands the following effect-size measures: F0, RMSEA, Mc, GFI, AGFI
(see below for details). Alternatively, it is also possible to define the effect by providing the H0 and the H1
covariance matrices (see covariance matrix input).

In addition, semPower can be used to create power-plots:

• sempower.powerPlot.byN: Plot achieved power as function of N for a given effect
• sempower.powerPlot.byEffect: Plot achieved power as function of the magnitude of effect for a given

sample size

For the impatient reader, this document starts with some brief examples. The remainder of this document
provides some notes on the statistical background, the definition of various effect-sizes, and a detailed
description of the functions contained in this package.

Examples

Determine required sample size (a priori power analysis)

Use semPower.aPriori to determine the required sample size to detect a certain effect with a certain power.
For example, let’s determine the required sample size to detect misspecifications of a model (involving df
= 100 degrees of freedom) corresponding to RMSEA = .05 with a power of 80% on an alpha error of .05.
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After loading the semPower package, call the function semPower.aPriori with arguments effect = .05,
effect.measure = 'RMSEA', alpha = .05, power = .80, and df = 100.

library(semPower)

ap <- semPower.aPriori(effect = .05, effect.measure = 'RMSEA',

alpha = .05, power = .80, df = 100)

summary(ap)

#>

#> semPower: A-priori power analysis

#>

#> F0 0.250000

#> RMSEA 0.050000

#> Mc 0.882497

#>

#> df 100

#> Required Num Observations 164

#>

#> Critical Chi-Square 124.3421

#> NCP 40.75000

#> Alpha 0.050000

#> Beta 0.197211

#> Power (1-beta) 0.802789

#> Implied Alpha/Beta Ratio 0.253535
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The results show that a sample size of N = 164 yields a power of approximately 80% to reject a wrong model
(with df = 100) with an amount of misspecification corresponding to RMSEA = .05 on alpha = .05.
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Determine achieved power (post-hoc power analysis)

Use semPower.postHoc to determine the actually achieved power with a certain sample size. For example,
let’s determine the achieved power with a sample size of N = 1000 to detect misspecifications of a model
(involving df = 100 degrees of freedom) corresponding to RMSEA = .05 on an alpha error of .05. Call the
function semPower.postHoc with arguments effect = .05, effect.measure = 'RMSEA', alpha = .05, N

= 1000, and df = 100:

ph <- semPower.postHoc(effect = .05, effect.measure = 'RMSEA',

alpha = .05, N = 1000, df = 100)

summary(ph)

#>

#> semPower: Post-hoc power analysis

#>

#> F0 0.250000

#> RMSEA 0.050000

#> Mc 0.882497

#>

#> df 100

#> Num Observations 1000

#> NCP 249.7500

#>

#> Critical Chi-Square 124.3421

#> Alpha 0.050000

#> Beta 2.903302e-17

#> Power (1-beta) > 0.9999

#> Implied Alpha/Beta Ratio 1.722177e+15
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The results show that a sample size of N = 1000 is associated with a power larger than > 99.99 % (more
precisely, 1 - 2.903302e-17) to reject a wrong model (with df = 100) with an amount of misspecification
corresponding to RMSEA = .05 on alpha = .05.

Determine critical chi-square and implied alpha and beta (compromise power
analysis)

Use semPower.compromise to determine the critical chi-square and the implied alpha and beta errors. For
example, let’s determine the critical chi-square such that the associated alpha and beta errors are equal,
assuming sample size of N = 1000, a model involving df = 100 degrees of freedom and misspecifications
corresponding to RMSEA = .05. Call the function semPower.compromise with arguments effect = .05,
effect.measure = 'RMSEA', abratio = 1, N = 1000, and df = 100:

cp <- semPower.compromise(effect = .05, effect.measure = 'RMSEA',

abratio = 1, N = 1000, df = 100)

summary(cp)

#>

#> semPower: Compromise power analysis

#>

#> F0 0.250000

#> RMSEA 0.050000

#> Mc 0.882497

#>

#> df 100

#> Num Observations 1000

#> Desired Alpha/Beta Ratio 1.000000
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#>

#> Critical Chi-Square 192.8233

#> Implied Alpha 7.357816e-08

#> Implied Beta 7.357816e-08

#> Implied Power (1-beta) > 0.9999

#> Actual Alpha/Beta Ratio 1.000000
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The results show that choosing a critical chi-square of 192.82 is associated with balanced error probabilties
alpha = beta = .000000074 when deciding between a correct and a wrong model (with df = 100) with an
amount of misspecification corresponding to RMSEA = .05 on alpha = .05 with N = 1000.

Extended example: Define effect in terms of model parameters

Consider the situation that one is interested in determining whether the observed responses on 8 items reflect
two seperate (but correlated) factors or can be described by assuming just a single factor. A suitable model
to test this hypothesis would specify two factors and constrain their correlation to 1. When this constrained
model fits the data, a single factor is sufficient. Otherwise, two factors are required.

Suppose that a correlation between two factors of r > .9 is considered as implying that these are practically
equivalent, so these could be collapsed into a single factor. However, if the correlations between these factors
turns out smaller than .9, one might rather prefer a two-factor model. In terms of power analyses, we thus
want sufficient power to identify whether the correlation between the factors is ≤ .9. The misfit associated
with a model assuming a correlation of 1 when, in reality, the true correlation is ≤ .9 is supposed to define
the magnitude of effect.

The problem is now that one cannot immediately say how this difference in a model parameter translates to
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an effect size such as the RMSEA. Instead, any type of power analysis must be performed using the H0 and
the H1 covariance matrices, obtained by the help of a suitable sem-package, such as lavaan.

First, a suitable model that describes the true situation in the population is required. We need to define the
value of each single (non-zero) parameter, so we need to specify each loading, each residual variance, the
variance of the factors as well as their covariance. Note that the magnitude of effect (and thus power) does
not only depend on the correlation between the factors, but also varies with other parameters of the model,
such as the loading magnitude, so some reasonable guess concerning the latter required. Let us assume that
the standardized loadings vary between .4 and .8. Importantly, I define that two factors exists that correlate
by .9.

library(lavaan)

# define (true) population model

model.pop <- '

# define relations between factors and items in terms of loadings

f1 =~ .7*x1 + .7*x2 + .5*x3 + .5*x4

f2 =~ .8*x5 + .6*x6 + .6*x7 + .4*x8

# define unique variances of the items to be equal to 1-loading^2, so that the loadings above are in a standardized

x1 ~~ .51*x1

x2 ~~ .51*x2

x3 ~~ .75*x3

x4 ~~ .75*x4

x5 ~~ .36*x5

x6 ~~ .64*x6

x7 ~~ .64*x7

x8 ~~ .84*x8

# define variances of f1 and f2 to be 1

f1 ~~ 1*f1

f2 ~~ 1*f2

# define covariance (=correlation, because factor variances are 1) between the factors to be .9

f1 ~~ 0.9*f2

'

Using the model string above, we can now obtain the associated variance-covariance matrix defining the true
state in the population.

# population covariance matrix

cov.pop <- fitted(sem(model.pop))$cov

It is a good idea to check whether the model string actually defined all parameters as we expected. To verifiy,
we can just fit the true model to the population covariance matrix which should yield a perfect fit and give
the same parameter estimates we used in the definition of the model string.

# sanity check

model.h1 <- '

f1 =~ x1 + x2 + x3 + x4

f2 =~ x5 + x6 + x7 + x8

'

summary(sem(model.h1, sample.cov = cov.pop, sample.nobs = 1000), stand = T, fit = T)

Having obtained the population covariance matrix, we now need to define and estimate the analysis model.
The analysis model should make at least one restriction which is factually wrong and thereby defines the
effect of interest, in the present case the restriction that the two factors correlate to 1.

# define (wrong) analysis model

model.h0 <- '
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f1 =~ NA*x1 + x2 + x3 + x4

f2 =~ NA*x5 + x6 + x7 + x8

# define variances of f1 and f2 to be 1

f1 ~~ 1*f1

f2 ~~ 1*f2

# set correlation between the factors to 1

f1 ~~ 1*f2

'

# fit analysis model to population data

fit.h0 <- sem(model.h0, sample.cov = cov.pop, sample.nobs = 1000, likelihood='wishart')

Any type of power-analysis can now be performed using the model-implied covariance matrix along with
the population covariance matrix as arguments. For example, to determine the required sample size use
semPower.aPriori with SigmaHat = cov.h0, Sigma = cov.pop, alpha = .05, power = .80, and df = df.

# model implied covariance matrix

cov.h0 <- fitted(fit.h0)$cov

df <- fit.h0@test[[1]]$df

# perform power analysis

ap5 <- semPower.aPriori(SigmaHat = cov.h0, Sigma = cov.pop,

alpha = .05, power = .95, df = df)

summary(ap5)

The output (which is omitted here) shows that N = 1258 observations are required to detect a correlation
between the factors ≤ .9 with a power of 95% on alpha = .05. The output also shows various effect-sizes as
implied by the specified covariance matrices. In the population, fitting a model assuming the two factors
correlate by 1 when they actually correlate by .9 leads to a population minimum of the ML-fitting function of
F0 = 0.0244, which amounts to model misfit corresponding to RMSEA = 0.035 or SRMR = 0.016.

Background

The statistical evaluation of mathematical models often proceeds by considering a test-statistic that expresses
the discrepancy between the observed data and the data as implied by the fitted model. In SEM, the relevant
test statistic for a sample of size N is given by T = F̂ (N − 1). F̂ denotes the minimized sample value of the
chosen discrepancy function (such as Maximum-Likelihood) and thereby indicates lack of fit of the model to
the sample data. Thus, T permits a likelihood-ratio test of the null hypothesis (H0) that the model is correct.
If the hypothesized model holds in the population, T can be shown to follow asymptotically a central χ2(df)
distribution with df = .5 · p(p + 1) − q degrees of freedom, where p is the number of manifest variables and q
denotes the number of free parameters. This is why T is often referred to as “chi-square model test statistic”
– a convention which is followed here.

Given an observed value for the chi-square test statistic, a null hypothesis significance test can be performed
to evaluate whether this value is larger than would be expected by chance alone. The usual test proceeds
as follows: Given a certain specified alpha-error level (typically alpha = .05), a critical chi-square value
is obtained from the asymptotic central χ2(df) distribution. If the observed value for the chi-square test
statistic exceeds the critical value, the null hypothesis that the model fits the data is rejected. Otherwise, H0
is retained. A finding of the observed statistic exceeding the critical value (implying an upper-tail probability
that falls below the specified alpha level) thus leads to the statistical decision that the discrepancy between
the hypothesized and the actual population covariance matrix is too large to be attributable to sampling error
only. Accordingly, a statistically significant chi-square test statistic provides evidence against the validity of
the hypothesized model.
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When testing statistical hypotheses using this framework, two types of decision errors can occur: The alpha
error (or type-I error) of incorrectly rejecting a true H0 (a correct model) and the beta error (or type-II error)
of incorrectly retaining a false H0 (an incorrect model). Statistical power is defined as the complement of the
beta-error probability (1 - beta) and thus gives the probability to reject an incorrect model.

If the H0 is false, the chi-square test statistic is no longer central χ2(df) distributed, but can be shown
to follow a noncentral χ2(df, λ) distribution with non-centrality parameter λ and expected value df + λ
(MacCallum, Browne, & Sugawara, 1996). The non-centrality parameter λ shifts the expected value of the
non-central χ2(df, λ) distribution to the right of the corresponding central distribution. Having determined
the critical value associated with the desired alpha probability from the central χ2(df) distribution, the
beta-error probability can be computed by constructing the corresponding non-central χ2(df, λ)distribution
with a certain non-centrality parameter λ and obtaining the area (i.e., the integral) of this distribution to the
left of the critical value Correspondingly, statistical power is the area of the non-central χ2(df, λ) distribution
to the right of the critical value. The general situation is illustrated in Figure 1.

150 200 250 300 350 400

0
.0

0
0

0
.0

1
0

0
.0

2
0

Chi−Square

D
e
n
s
it
y

Figure 1: Central (left) and non-central (right) chi-square distributions

Figure 1 depicts a central (solid) χ2(df) and a non-central (dashed) χ2(df, λ) distribution with df = 200 and
λ = 100. The area of the central distribution χ2(df) to the right of the critical value reflects the alpha error.
The solid line indicates a critical value of 234, which corresponds to alpha = .05. The dotted line shows a
critical value of 244 obtained from compromise power analyses, which is associated with alpha = .018. The
area of χ2(df, λ) distribution to the left of the critical value is the beta-error probability (beta = .006 and
beta = .018 for critical values of 234 and 244, respectively). Statistical power is defined as 1 - beta, that is,
the area under the noncentral χ2(df, λ) distribution to the right of the critical value.
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Measures of Effect

To define the discrepancy between the H0 and the H1 model, any non-centrality based measure of effect can
be used. semPower understands the measures detailed below.

F0

F0 is the population minimum of the Maximum-Likelihood fitting function, defined as

F0 = log |Σ| − log |Σ̂| + tr(Σ̂Σ) − p

where Σ is the p · p population covariance matrix, Σ̂ the p · p model-implied covariance matrix, and p the
number of observed variables. If the model is correct, Σ̂ = Σ and F0 = 0. Otherwise, F0 > 0 with higher
values expressing a larger discrepancy (misfit) of the model to the data.

If fitting a model to some sample data of size N , the estimated minimum of the fit-function, F̂ , is used to
construct an asymptotically χ2-distributed model test-statistic, commonly simply called the chi-squared
model test:

χ2 = F̂ (N − 1)

Note that F̂ is a biased estimate of F0. If F0 = 0, the expected value of F̂ is df , i.e. the model degree of
freedom. For a model with q free parameters, the df are given by

df =
p(p + 1)

2
− q

RMSEA

The Root-Mean-Squared Error of Approximation (RMSEA; Browne & Cudeck, 1992; Steiger & Lind, 1980)
scales F0 by the model degrees of freedom:

RMSEA =
√

(F0/df)

so that the RMSEA is bounded by zero and lower values indicate better fit. The implied F0 is:

F0 = df · RMSEA2

Given that F0 is scaled by the df , defining an effect in terms of the RMSEA requires specification of the
degrees of freedom.

Mc

Mc (McDonald, 1989) is a transformation of F0 on the interval 0-1 with higher values indicating better fit.

Mc = e−.5F0

F0 = −2 ln Mc
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GFI

The Goodness-of-Fit Index (GFI; Jöreskog & Sörbom, 1984; Steiger, 1990) scales F0 on the interval 0-1 with
higher values indicating better fit:

GFI =
p

p + 2F0

F0 =
p(1 − GFI)

2GFI

As the GFI depends on the number of observed variables (p), this number need to be provided when defining
an effect in terms of the GFI.

AGFI

The Adjusted Goodness-of-Fit Index (AGFI; Jöreskog & Sörbom, 1984; Steiger, 1990) modifies the GFI by
including a penalty for the number pf free parameters, as measured (somewhat indirectly) by the model
degrees of freedom:

AGFI = 1 −
p(p + 1)

2df

(

1 −
p

p + 2F0

)

F0 =
p(1 − AGFI)df

p(p + 1) − 2df(1 − AGFI)

Specifying an effect in terms of the AGFI requires specification of both the number of observed variables (p)
and the model degrees of freedom (df).

Measures not based on non-centrality

Fit-indices that are not based on non-centrality have no straightforward relation to F0 and are thus not
well suited for power-analyses. However, if defining the effect through H0 and H1 covariance matrices (see
covariance matrix input), such measures can at least be computed.

SRMR

The Standardized-Root-Mean-Square Residual (SRMR) is a measure of the (root of the) average (squared)
difference between the (standardized) model-implied and population covariance matrices, so that it ranges
from 0 to 1 with lower values indicating better fit. Let E0 be the difference between the model-implied and
the population covariance matrix, E0 = Σ − Σ̂, vech denote the vectorization transformation, and Q be
a diagonal matrix of dimension .5p(p + 1) containing the inverse of the product of standard deviations of
observed variables i and j. Then, the SRMR can be defined as

SRMR =

√

1

.5p(p + 1)
vech(E0) · Q · vech(E0)′
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The relation of the residual matrix E0 to F0 is complex and depends on the model-implied covariance matrix,
so the SRMR is generally not suited to define an effect in terms of F0 (based on ML estimation):

F0 = − ln |I + Σ̂−.5E0Σ̂−.5|

CFI

The Comparative Fit Index (CFI) is an incremental index expressing the proportionate reduction of misfit
associated with the hypothesized model (F0H) in relation to the null-model (F0N ), defined as a model that
constraints all covariances to zero. In the population, the CFI ranges from 0 to 1 with higher values indicating
better fit.

CFI =
F0N − F0H

F0N

Whereas it is simple to obtain F0 from the CFI, this requires knowledge of F0N , which is rather difficult to
determine a priori:

F0 = F0N − CFI · F0N

Power Analyses

Performing a power analysis generally requires the specification of a measure and magnitude of effect that is
to be detected and a provision of the model degrees of freedom. Further arguments are required depending on
the type of power analysis. This section assumes that the effect is specified in terms of one of the measures
described above, see below for a description of how to define an effect by resorting on model-implied and
population covariance matrices.

A-Priori: Determine required N, given alpha, beta, effect, and df

The purpose of a-priori power analyses is to determine the required sample size to detect an effect, given a
specified alpha error. In the language of structural equation modeling, an a-priori power analysis asks: How
many observations do I need to falsify my model with a probability of X% (power), if it is actually wrong (to
the extent as defined by the chosen effect)?

Performing an a-priori power analyses requires the specification of an alpha error, the desired power (or,
equivalently the acceptable beta error), the type and magnitude of effect, and the model df. Depending on
the chosen effect-size measure, it may also be required to define the number of observed variables.

Suppose, we want the required sample size to detect misspecifications of a model (involving df = 100 degrees
of freedom) with a power of 80% on an alpha error of .05., where the amount of misfit corresponds to RMSEA
= .05. After loading the semPower package, we call the function semPower.aPriori with arguments effect

= .08, effect.measure = 'RMSEA', alpha = .05, power = .80, and df = 100, and store the results in a
list called ap1.

library(semPower)

ap1 <- semPower.aPriori(effect = .05, effect.measure = 'RMSEA',

alpha = .05, power = .80, df = 100)

Calling the summary method on ap1 prints the results and a figure of the associated central and non-central
chi-squared distributions.
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summary(ap1)

#>

#> semPower: A-priori power analysis

#>

#> F0 0.250000

#> RMSEA 0.050000

#> Mc 0.882497

#>

#> df 100

#> Required Num Observations 164

#>

#> Critical Chi-Square 124.3421

#> NCP 40.75000

#> Alpha 0.050000

#> Beta 0.197211

#> Power (1-beta) 0.802789

#> Implied Alpha/Beta Ratio 0.253535
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This shows that N = 164 yields a power of approximately 80% to detect the specified effect. The output
further shows the Critical Chi-Square, the non-centrality parameter (NCP), and the ratio between the
error probabilities (Implied Alpha/Beta ratio). In this example, the ratio between alpha and beta is 0.25,
showing that committing an beta error is four-times as likely as committing an alpha error. This is obviously
a consequence of the chosen input parameters, since a power (1 - beta) of .80 implies an beta error of .20,
which is four times the chosen alpha error of .05.

semPower also converts the chosen effect into other effect size measures, here into F0 and Mc: An RMSEA
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of .05 (based on df = 100) corresponds to F0 = 0.250 and Mc = .882. If we would also be interested in
obtaining the associated GFI and AGFI, the number of variables needs to be provided. Let’s assume our
model involves 20 observed variables. We repeat the call above, this time including the argument p = 20:

ap2 <- semPower.aPriori(effect = .05, effect.measure = 'RMSEA',

alpha = .05, power = .80, df = 100, p = 20)

summary(ap2)

#>

#> semPower: A-priori power analysis

#>

#> F0 0.250000

#> RMSEA 0.050000

#> Mc 0.882497

#> GFI 0.975610

#> AGFI 0.948780

#>

#> df 100

#> Required Num Observations 164

#>

#> Critical Chi-Square 124.3421

#> NCP 40.75000

#> Alpha 0.050000

#> Beta 0.197211

#> Power (1-beta) 0.802789

#> Implied Alpha/Beta Ratio 0.253535
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We now also get the GFI and AGFI equivalents of RMSEA = .05, assuming df = 100 and p = 20.
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Instead of specifying the desired power, it is of course also possible to specify the accepted beta error. For
example, calling

ap3 <- semPower.aPriori(effect = .05, effect.measure = 'RMSEA',

alpha = .05, beta = .20, df = 100, p = 20)

gives the same output as above.

If you are interested in how power changes for a range of sample sizes, it is useful to request a power plot, as
described in detail below.

Post-hoc: Determine achieved power, given alpha, N, effect, and df

The purpose of post-hoc power analyses is to determine the actually achieved power to detect a specified
effect with given sample size on a certain alpha error. In the language of structural equation modeling, a
post-hoc power analysis asks: With my sample at hand, how large is the probability (power) to falsify my
model if it is actually wrong (at least to the extent as defined by the chosen effect)?

Performing a post-hoc power analyses requires the specification of an alpha error, the sample size, the type
and magnitude of effect, and the model df. Again, depending on the chosen effect-size measure, it may also
be required to define the number of observed variables.

Suppose, we want the achieved power with a sample size of N = 1000 to detect misspecifications of a model
(involving df = 100 degrees of freedom) on an alpha error of .05., where the amount of misfit corresponds to
RMSEA = .05. We call the function semPower.postHoc with arguments effect = .08, effect.measure =

'RMSEA', alpha = .05, N = 1000, and df = 100, and store the results in a list called ph1.

ph1 <- semPower.postHoc(effect = .05, effect.measure = 'RMSEA',

alpha = .05, N = 1000, df = 100)

summary(ph1)

#>

#> semPower: Post-hoc power analysis

#>

#> F0 0.250000

#> RMSEA 0.050000

#> Mc 0.882497

#>

#> df 100

#> Num Observations 1000

#> NCP 249.7500

#>

#> Critical Chi-Square 124.3421

#> Alpha 0.050000

#> Beta 2.903302e-17

#> Power (1-beta) > 0.9999

#> Implied Alpha/Beta Ratio 1.722177e+15
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Calling the summary method on ph1 shows that the power is very high (power > .9999). The associated error
probabilities are provided in higher precision. Specifically, the beta error is beta = 2.903302e-17 which
translates into 2.9 · 10−17 = 0.000000000000000029. In practice, you would almost never miss a model with
an actual RMSEA >= .05 (or F0 >= 0.25 or Mc <= .882) under these conditions. The implied alpha/beta
ratio is 1.722177e+15, showing that committing an alpha error is about two quadrillion (1015) times as likely
as committing a beta error.

If you are interested in how power changes for a range of different magnitudes of effect (say, for RMSEA
ranging from .01 to .15), it is useful to request a power plot, as described in detail below.

Compromise: Determine alpha and beta, given the alpha/beta ratio, N, effect,
and df

The purpose of compromise power analyses is to determine alpha and beta (and the associated critical value
of the chi-squared test-statistic) given a specified effect, a certain sample size, and a desired ratio between
alpha and beta (Moshagen & Erdfelder, 2016). In the language of structural equation modeling, a compromise
analysis asks: With my sample at hand, how should I select a critical value for the chi-square model-test
to obtain proportionate alpha and beta errors in deciding whether my model is rather aligned with the
hypothesis of perfect fit or with the hypothesis of unacceptable degree of misfit (as defined by the chosen
effect)?

Performing a compromise power analyses requires the specification of a desired ratio between alpha and beta
(which defaults to 1), the sample size, the type and magnitude of effect (defining the H1 model representing
an unacceptable degree of misfit), and the model df. Again, depending on the chosen effect-size measure, it
may also be required to define the number of observed variables.
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Suppose, we want to determine the critical chi-square and the associated alpha and beta errors, forcing them
to be equal (i.e., an ratio of 1). Our model involves 100 df , our sample size is N = 1000, and we define the
H1 model representing an unacceptable degree of misfit as a model associated with an RMSEA of at least
.08. Thus, we call the function semPower.compromise with arguments effect = .08, effect.measure =

'RMSEA', abratio = 1, N = 1000, and df = 100, store the results in a list called cp1, and call the summary

method.

cp1 <- semPower.compromise(effect = .08, effect.measure = 'RMSEA',

abratio = 1, N = 1000, df = 100)

summary(cp1)

#>

#> semPower: Compromise power analysis

#>

#> F0 0.640000

#> RMSEA 0.080000

#> Mc 0.726149

#>

#> df 100

#> Num Observations 1000

#> Desired Alpha/Beta Ratio 1.000000

#>

#> Critical Chi-Square 312.0477

#> Implied Alpha 1.212986e-23

#> Implied Beta 1.212986e-23

#> Implied Power (1-beta) > 0.9999

#> Actual Alpha/Beta Ratio 1.000000
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The results show that choosing a Critical Chi-Square = 312 is associated with balanced error probabilities,
alpha = 1.212986e-23 and beta = 1.212986e-23. As requested, both error probabilities as just as large.
In addition, committing either error is highly unlikely: an error of 1.212986e-23 translates into 1.2 · 10−23 =
0.000000000000000000000012. In practice, one almost never would make a wrong decision.

If, for some reason, you rather prefer the error probabilities to differ (for example because you consider falsely
accepting an incorrect model to be 100 times as bad as falsely rejecting an correct model), you can achieve
this by changing the abratio argument accordingly. For example, requesting the alpha error to be 100 times
as large as the beta error proceeds by setting abratio = 100.

cp2 <- semPower.compromise(effect = .08, effect.measure = 'RMSEA',

abratio = 100, N = 1000, df = 100)

summary(cp2)

#>

#> semPower: Compromise power analysis

#>

#> F0 0.640000

#> RMSEA 0.080000

#> Mc 0.726149

#>

#> df 100

#> Num Observations 1000

#> Desired Alpha/Beta Ratio 100.000000

#>

#> Critical Chi-Square 304.9642

#> Implied Alpha 1.373729e-22

#> Implied Beta 1.373729e-24

#> Implied Power (1-beta) > 0.9999

#> Actual Alpha/Beta Ratio 100.000000
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Power Plots

Power plots show the implied power as function of some other variable. semPower provides two different types
of power plots. You can either plot the achieved power to detect a certain effect over a range of different
sample sizes (semPower.powerPlot.byN). Alternatively, you can plot the achieved power with a given N to
detect a range of different effect size magnitudes (semPower.powerPlot.byEffect).

Determine power as function of N for a given effect

The function semPower.powerPlot.byN creates a plot showing the achieved power to detect a given effect on
a given alpha error over a range of sample sizes. However, because it is difficult to specify diagnostic sample
sizes for a given effect, the semPower.powerPlot.byN instead asks to provide the desired power range. For
example, suppose we are interested in how the power to detect an effect corresponding to RMSEA = .05
changes as function of N . We are interested in a power ranging from .05 to .99 (note that the power cannot
become smaller than alpha). This is achieved by setting the arguments power.min = .05 and power.max =

.99. In addition, as in any a-priori power analysis, the type and magnitude of effect, the df , and the alpha
error need to be defined: effect = .05, effect.measure = 'RMSEA',alpha = .05, df = 100.

semPower.powerPlot.byN(effect = .05, effect.measure = 'RMSEA',

alpha = .05, df = 100, power.min = .05, power.max = .99)
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This shows that a model with an associated RMSEA = .05 is rejected with a very high power when N > 250,
whereas power is small when N < 100.

Determine power as function of the magnitude of effect for a given N

The function semPower.powerPlot.byEffect creates a plot showing the achieved power at a given sample
size over a range of effect sizes. For example, suppose we are interested in how the power at N = 500
changes as function of effect size magnitude, corresponding to an RMSEA ranging from .001 to .10. This
is achieved by setting the arguments effect.measure = 'RMSEA', effect.min = .001 and effect.max =

.10. In addition, as in any post-hoc power analysis, the sample size, the df, and the alpha error need to be
defined: effect = .05, effect.measure = 'RMSEA', alpha = .05, df = 100.

semPower.powerPlot.byEffect(effect.measure = 'RMSEA', alpha = .05, N = 500,

df = 100, effect.min = .001, effect.max = .10)
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This shows that with N = 500, a model with an associated RMSEA > .04 is detected with a very high power,
whereas power for RMSEA < .03 is rather modest.

Covariance Matrix input

The previous sections assumed that the magnitude of effect is determined by defining a certain effect size
metric (such as F0 or RMSEA) and a certain magnitude of effect. Alternatively, the effect can also be
determined by specifying the population (Σ) and the model-implied (Σ̂) covariance matrices directly. To
determine the associated effect in terms of F0, semPower just plugs these matrices in the ML-fitting function:

F0 = log |Σ| − log |Σ̂| + tr(Σ̂Σ) − p

Suppose, Σ and Σ̂ have been defined previously in the script and are referred to by the variables Sigma and
SigmaHat Then, any of the power-analysis functions is called setting the Sigma and SigmaHat arguments
accordingly (and omitting the effect and effect.measures arguments). This could look as follows:

semPower.aPriori(alpha = .05, power = .80, df = 100,

Sigma = Sigma, SigmaHat = SigmaHat)

semPower.postHoc(alpha = .05, N = 1000, df = 100,

Sigma = Sigma, SigmaHat = SigmaHat)

semPower.compromise(abratio = 1, N = 1000, df = 100,

Sigma = Sigma, SigmaHat = SigmaHat)
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semPower.powerPlot.byN(alpha = .05, df = 100, power.min = .05, power.max = .99,

Sigma = Sigma, SigmaHat = SigmaHat)

This feature is particularly useful when used in conjunction with some other SEM software, which is used to
generate the population and the model-implied covariance matrix (note that a proper definition of the latter
usually requires fitting the model to the population data). For illustration, let’s consider how this could be
done using lavaan.

library(lavaan)

# define (true) population model

model.pop <- '

f1 =~ .8*x1 + .7*x2 + .6*x3

f2 =~ .7*x4 + .6*x5 + .5*x6

f1 ~~ 1*f1

f2 ~~ 1*f2

f1 ~~ 0.5*f2

'

# define (wrong) H0 model

model.h0 <- '

f1 =~ x1 + x2 + x3

f2 =~ x4 + x5 + x6

f1 ~~ 0*f2

'

After loading the lavaan package, two lavaan model strings are defined. The first model string (model.pop)
is used to define the population covariance matrix, so all model parameters are defined (at least implicitly,
consult the lavaan documentation for defaults). Here, we define a model comprising two latent factors (each
with variance of 1), that are correlated by .5. Each latent factor is measured through three observed indicators
(x1 to x6) with (unstandardized) loadings ranging from .5 to .8. The second model string (model.h0) is
used to define the hypothesized (wrong) H0 model. To obtain the model-implied covariance matrix, we need
to fit this model to the population data; so this is basically an ordinary CFA model string with many free
parameters. Note that this model contraints the correlation between the two latent factors to zero. When
fitting this model to the population data defined previously, the model is thus wrong, since we defined the
correlation between these factors in the population to be .50.

Having defined the model strings, we proceed by actually obtaining the relevant covariance matrices.

# get population covariance matrix; equivalent to a perfectly fitting model

cov.pop <- fitted(sem(model.pop))$cov

# get covariance matrix as implied by H0 model

res.h0 <- sem(model.h0, sample.cov = cov.pop, sample.nobs = 1000, likelihood='wishart')

df <- res.h0@test[[1]]$df

cov.h0 <- fitted(res.h0)$cov

cov.pop is now the covariance matrix in the population (Σ). To obtain the model implied covariance matrix
(Σ̂), we need to fit our hypothesized, wrong, H0 model (model.h0) to the population data (cov.pop). The
model-implied covariance matrix then can be obtained by calling cov.h0 <- fitted(res.h0)$cov.

We are now in the position to use the obtained covariance matrix in power analyses. Let’s do a post-hoc power-
analysis assuming N = 1000 and alpha =.05 by calling semPower.postHoc with the arguments SigmaHat =

cov.h0 and Sigma = cov.pop.

ph4 <- semPower.postHoc(SigmaHat = cov.h0, Sigma = cov.pop, alpha = .05, N = 1000, df = df)

summary(ph4)
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The output (which is omitted here) indicates that fitting the hypothesized model to the population data is
associated with a discrepancy of F0 = 0.081 (or RMSEA = .095 or SRMR = .139 or . . . ) and that the power
to reject the H1 model is very high, 1 - beta = 1 - 1.347826e-08.

It is instructive to compare the expected chi-square (calculated via the obtained F0) with the chi-square
model test statistics as reported by lavaan:

fitmeasures(res.h0, 'chisq')

ph4$fmin * (ph4$N-1)

fitmeasures(res.h0, 'chisq') prints the model chi-square test as obtained by lavaan when fitting
model.h1 to the population data (cov.pop, see above). The line ph4$fmin * (ph4$N-1) computes the
expected chi-square, i.e. F0 multiplied by (N - 1). Obviously, both values match (= 81.52).
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