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avgEst Weighted Average of Model Estimates
Description

Calculate a weighted average of model estimates (e.g. coefficients, fitted values, residuals) for a set
of models.

Usage

avgEst(est, weights = "equal”, est.names = NULL, ...)

Arguments

est A list or nested list of numeric vectors, comprising the model estimates. In the
latter case, these should correspond to estimates for candidate models for each
of a set of different response variables.

weights An optional numeric vector of weights to use for model averaging, or a named
list of such vectors. The former should be supplied when est is a list, and the
latter when it is a nested list (with matching list names). If weights = "equal”
(default), a simple average is calculated instead.

est.names An optional vector of names used to extract and/or sort estimates from the out-

put.

Not currently used.
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Details

This function can be used to calculate a weighted average of model estimates such as coefficients,
fitted values, or residuals, where models are typically competing candidate models fit to the same
response variable. Weights are typically a *weight of evidence’ type metric such as Akaike model
weights (Burnham & Anderson 2002, Burnham et al. 2011), which can be conveniently calculated
in R using packages such as MuMIn or AICcmodavg. However, numeric weights of any sort can
be used. If none are supplied, the simple average is calculated instead.

Averaging is performed via the *full’/’zero’ rather than ’subset’/’conditional’/’natural’ method,
meaning that zero is substituted for estimates for any *missing’ parameters (e.g. coefficients) prior
to calculations. This provides a form of shrinkage and thus reduces estimate bias (Burnham &
Anderson 2002, Grueber et al. 2011).

Value

A numeric vector of the model-averaged estimates, or a list of such vectors.

References

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach (2nd ed.). New York: Springer-Verlag. Retrieved from https:
//www.springer.com/gh/book/9780387953649

Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel
inference in behavioral ecology: some background, observations, and comparisons. Behavioral
Ecology and Sociobiology, 65(1), 23-35. https://doi.org/c4mrns

Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Barton, K., ...
Hartig, F. (2018). Model averaging in ecology: a review of Bayesian, information-theoretic, and
tactical approaches for predictive inference. Ecological Monographs, 88(4), 485-504. https:
//doi.org/gfgwrv

Grueber, C. E., Nakagawa, S., Laws, R. J., & Jamieson, I. G. (2011). Multimodel inference in
ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 24(4), 699-711.
https://doi.org/b7b5d4

Walker, J. A. (2019). Model-averaged regression coefficients have a straightforward interpretation
using causal conditioning. BioRxiv, 133785. https://doi.org/c8zt

See Also

weighted.mean

Examples

## Model-averaged coefficients

m <- Shipley.Growth # candidate models

b <- lapply(m, function(i) coef(summary(i))[, 11)
avgEst(b)

## Using weights
w <- runif(length(b), @, 1)
avgEst(b, w)


https://stackoverflow.com/questions/53055050/predicted-values-with-mumin-throwing-error-when-full-false
https://www.springer.com/gb/book/9780387953649
https://www.springer.com/gb/book/9780387953649
https://doi.org/c4mrns
https://doi.org/gfgwrv
https://doi.org/gfgwrv
https://doi.org/b7b5d4
https://doi.org/c8zt
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## Model-averaged predictions
f <- lapply(m, predict)
avgEst(f, w)

bootCI Bootstrap Confidence Intervals

Description

Calculate confidence intervals from bootstrapped model effects.

Usage
bootCI(mod, conf = 0.95, type = "bca", digits = 3, bci.arg = NULL, ...)
Arguments
mod A fitted model object. Alternatively, a boot object (class "boot"), containing
bootstrapped model effects. Can also be a list or nested list of such objects.
conf A numeric value specifying the confidence level for the intervals.
type The type of confidence interval to return (defaults to "bca” - see Details). See
boot.ci for further specification details.
digits The number of significant digits to return for numeric values.
bci.arg A named list of any additional arguments to boot . ci, excepting argument index.
Arguments to bootEff.
Details

This is essentially a wrapper for boot.ci from the boot package, returning confidence intervals
of the specified type and level calculated from bootstrapped model effects. If a model or models
is supplied, bootstrapping will first be performed via bootEff. Effects for which the confidence
intervals do not contain zero are highlighted with a star.

Nonparametric bias-corrected and accelerated confidence intervals (BCa, Efron 1987) are calcu-
lated by default, which should provide the most accurate coverage across a range of bootstrap
sampling distributions (Puth et al. 2015). They will, however, be inappropriate for parametric re-
sampling - in which case the default will be set to the bootstrap percentile method instead ("perc").

Value

A data frame of the effects and bootstrapped confidence intervals, or a list or nested list of same.


https://stackoverflow.com/questions/7588388/adjusted-bootstrap-confidence-intervals-bca-with-parametric-bootstrap-in-boot
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Note

All bootstrapped confidence intervals will tend to underestimate the true nominal coverage to some
extent when sample size is small (Chernick & Labudde 2009), so the appropriate caution should be
exercised in interpretation in such cases. Comparison of different interval types may be informative.
For example, normal-theory based intervals may outperform bootstrap percentile methods when n
< 34 (Hesterberg 2015). Ultimately however, the bootstrap is not a solution to small sample size.

References

Chernick, M. R., & Labudde, R. A. (2009). Revisiting Qualms about Bootstrap Confidence Inter-
vals. American Journal of Mathematical and Management Sciences, 29(3—4), 437-456. https:
//doi.org/c8zv

Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American Statistical Asso-
ciation, 82(397), 171-185. https://doi.org/gfww2z

Hesterberg, T. C. (2015). What Teachers Should Know About the Bootstrap: Resampling in the
Undergraduate Statistics Curriculum. The American Statistician, 69(4), 371-386. https://doi.
org/gd85v5

Puth, M.-T., Neuhduser, M., & Ruxton, G. D. (2015). On the variety of methods for calculating
confidence intervals by bootstrapping. Journal of Animal Ecology, 84(4), 892—-897. https://doi.
org/f8n9rq

See Also

boot.ci, bootEff

Examples

## CI's from bootstrapped SEM
bootCI(Shipley.SEM.Boot)

## From original SEM (models)
## (not typically recommended - better to use saved boot objects)

system.time(
Shipley.SEM.CI <- bootCI(Shipley.SEM, ran.eff = "site"”, seed = 53908,

ncpus = 2)
)
bootEff Bootstrap Effects
Description

Bootstrap model effects (standardised coefficients) and optional SEM correlated errors.


https://stats.stackexchange.com/questions/112147/can-bootstrap-be-seen-as-a-cure-for-the-small-sample-size
https://doi.org/c8zv
https://doi.org/c8zv
https://doi.org/gfww2z
https://doi.org/gd85v5
https://doi.org/gd85v5
https://doi.org/f8n9rq
https://doi.org/f8n9rq
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Usage
bootEff(
mod,
R = 10000,
seed = NULL,
data = NULL,
ran.eff = NULL,
cor.err = NULL,
catch.err = TRUE,
parallel = "snow",
ncpus = NULL,
cl = NULL,
bM.arg = NULL,
)
Arguments
mod A fitted model object, or a list or nested list of such objects.
R Number of bootstrap replicates to generate.
seed Seed for the random number generator. If not provided, a random five-digit
integer is used (see Details).
data An optional dataset used to first re-fit the model(s).
ran.eff For mixed models with nested random effects, the name of the variable com-
prising the highest-level random effect. For non-nested random effects, specify
"crossed"”. Non-specification of this argument when mod is a mixed model(s)
will result in an error.
cor.err Optional, names of SEM correlated errors to be bootstrapped. Should be of the
form: c("mod1 ~~mod2", "mod3 ~~ mod4"”, ...) (spaces optional), with names
matching model names.
catch.err Logical, should errors generated during model fitting or estimation be caught
and NA returned for estimates? If FALSE, any such errors will cause the function
to exit.
parallel The type of parallel processing to use. Can be one of "snow”, "multicore”, or
"no" (for none).
ncpus Number of system cores to use for parallel processing. If NULL (default), all
available cores are used.
cl Optional cluster to use if parallel = "snow”. If NULL (default), a local cluster
is created using the specified number of cores.
bM.arg A named list of any additional arguments to bootMer.

Arguments to stdCoeff.
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Details

bootEff uses the boot function (primarily) to bootstrap effects from a fitted model or list of models
(i.e. standardised coefficients, calculated using stdCoeff). Bootstrapping is typically nonparamet-
ric, i.e. coefficients are calculated from data where the rows have been randomly sampled with
replacement. The number of replicates is set by default to 10,000, which should provide accurate
coverage for confidence intervals in most situations. To ensure that data is resampled in the same
way across individual bootstrap operations within the same run (e.g. models in a list), the same seed
is set per operation, with the value saved as an attribute to the bootstrapped values (for reproducibil-
ity). The seed can either be user-supplied or a randomly-generated five-digit number (default), and
is always re-initialised on exit (i.e. set.seed(NULL)).

Where weights are specified, bootstrapped effects will be a weighted average across the set of
candidate models for each response variable, calculated after each model is first refit to the resam-
pled dataset (specifying weights = "equal” will use a simple average instead). If no weights are
specified and mod is a nested list of models, the function will throw an error, as it will be expect-
ing weights for a presumed model averaging scenario. If instead the user wishes to bootstrap each
individual model, they should recursively apply the function using rMapply (remember to set a
seed).

Where names of models with correlated errors are specified to cor.err, the function will also
return bootstrapped Pearson correlated errors (weighted residuals) for those models. If weights are
supplied and mod is a nested list, residuals will first be averaged across candidate models. If any two
models (or candidate sets) with correlated errors were fit to different subsets of data observations,
both models/sets are first refit to data containing only the observations in common.

For mixed models with nested random effects, the highest-level random effect (only) in the dataset
is resampled, a procedure which should best retain the hierarchical structure of the data (Davison
& Hinkley 1997, Ren et al. 2010). Lower-level groups or individual observations are not them-
selves resampled, as these are not independent. The name of this random effect must be supplied
to ran.eff, matching the name in the data. Incidentally, this form of resampling will result in
different sized datasets if observations are unbalanced across groups; however this should not gen-
erally be an issue, as the number of independent units (groups), and hence the *degrees of freedom’,
remains unchanged. For non-nested random effects however (i.e. "crossed"”), group resampling
will not be appropriate, and (semi-)parametric bootstrapping is performed instead via bootMer in
the Ime4 package. Users should think carefully about whether their random effects are nested or
not. NOTE: As bootMer takes only a fitted model as its first argument, any model averaging is cal-
culated 'post-hoc’ using the estimates in boot objects for each candidate model, rather than during
the bootstrapping process itself (i.e. the default procedure via boot). Results are then returned in a
new boot object for each response variable or correlated error estimate.

Parallel processing is used by default via the parallel package and option parallel = "snow” (and
is generally recommended), but users can specify the type of parallel processing to use, or none. If
"snow”, a cluster of workers is created using makeCluster, and the user can specify the number
of system cores to incorporate in the cluster (defaults to all available). bootEff then exports all
required objects and functions to this cluster using clusterExport, after performing a (rough)
match of all objects and functions in the current global environment to those referenced in the
model call(s). Users should load any required external packages prior to calling the function.

Value

An object of class "boot” containing the bootstrapped effects, or a list/nested list of such objects.


https://stats.stackexchange.com/questions/46965/bootstrapping-unbalanced-clustered-data-non-parametric-bootstrap
https://stats.stackexchange.com/questions/228800/crossed-vs-nested-random-effects-how-do-they-differ-and-how-are-they-specified
https://stats.stackexchange.com/questions/228800/crossed-vs-nested-random-effects-how-do-they-differ-and-how-are-they-specified
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Note

Bootstrapping mixed (or indeed any other) models may take a very long time when the number of
replicates, observations, parameters, and/or models is high. To decrease processing time, it may
be worth trying different optimizers and/or other options to generate faster estimates (always check
results).

References

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach (2nd ed.). New York: Springer-Verlag. Retrieved from https:
//www.springer.com/gb/book/9780387953649

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application. Cambridge
University Press.

Ren, S., Lai, H., Tong, W., Aminzadeh, M., Hou, X., & Lai, S. (2010). Nonparametric bootstrapping
for hierarchical data. Journal of Applied Statistics, 37(9), 1487-1498. https://doi.org/dvfzcn
See Also

boot, bootMer, stdCoeff, residuals, avgEst

Examples

## Bootstrap Shipley SEM (while take a while...)
## Set 'site' as random effect group for resampling - highest-level

system.time(
Shipley.SEM.Boot <- bootEff(Shipley.SEM, ran.eff = "site"”, seed = 53908,
ncpus = 2)

## Original estimates
lapply(Shipley.SEM.Boot, "[[", 1)

## Bootstrapped estimates
lapply(Shipley.SEM.Boot, function(i) head(i$t))

getData Get Model Data

Description

Extract the data used to fit a model.

Usage

getData(mod, subset = FALSE, merge = FALSE, ...)


https://www.springer.com/gb/book/9780387953649
https://www.springer.com/gb/book/9780387953649
https://doi.org/dvfzcn
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Arguments
mod A fitted model object, or a list or nested list of such objects.
subset Logical. If TRUE, only observations used to fit the model(s) are returned (i.e.
missing observations (NA) are removed).
merge Logical. If TRUE, and mod is a list or nested list, a single dataset containing all
variables used to fit models is returned.
Arguments to eval.
Details

This is a simple convenience function to return the data used to fit a model, by evaluating the ’data’
slot of the model call object. If the ’data’ argument of the model call was not specified, or is not
a data frame (or coercible to such) containing all variables referenced in the model formula, an
error will be thrown - this restriction is largely to ensure that a single coherent dataset of all model
variables can be made available for resampling purposes.

If mod is a list of models and merge = TRUE, all (unique) variables used to fit models are merged
into a single data frame. This will return an error if subset = TRUE results in datasets with different
numbers of observations (rows).

Value

A data frame of the variables used to fit the model(s), or a list or nested list of same.

See Also

getCall, eval

Examples

## Get data used to fit SEM from Shipley (2009)
getData(Shipley.SEM[[1]]1) # from single model
getData(Shipley.SEM) # from SEM (list)

getData(Shipley.SEM, merge = TRUE) # from SEM (single dataset)

getEff Get SEM Effects

Description

Extract SEM direct, indirect, and/or total effects from an object of class "semEff".
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Usage

getEff(eff, type = "orig")
direff(...)
indEff(...)

totEff(...)

Arguments

eff An object of class "semEff".
type The type of effects to return. Must be either "orig"” (default) or "boot".

Arguments (above) to be passed to getEff from other extractor functions.

Details

These are simple extractor functions for effects calculated using semEff, intended for convenience
(e.g. for use with predEff).

Value

A list containing the original or bootstrapped effects for each response variable, as numeric vectors
or matrices (respectively).

Functions

e getEff: Extract all effects.

» dirEff: Extract direct effects.

* indEff: Extract indirect effects.
* totEff: Extract total effects.

getY Get Model Response Variable

Description

Extract the response variable from a fitted model on the original or link scale.

Usage

getY(mod, data = NULL, link = FALSE, ...)
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Arguments
mod A fitted model object, or a list or nested list of such objects.
data An optional dataset used to first re-fit the model(s).
link Logical. If TRUE, return the GLM response variable on the link scale (see De-
tails).
Arguments to glt (not including family, which is determined from mod).
Details

getY will return the response variable from a model by summing the fitted values and the response
residuals. If 1ink = TRUE and the model is a GLM, the response is returned on the link scale. If this
results in undefined values, it is replaced by an estimate based on the *working’ response variable
of the GLM (see glt).

Value
A numeric vector comprising the response variable on the original or link scale, or an array, list of

vectors/arrays, or nested list.

Examples

## All SEM responses (original scale)
getY(Shipley.SEM)

## Estimated response in link scale from binomial model
getY(Shipley.SEM$Live, link = TRUE)

glt Generalised Link Transformation

Description

Transform a numeric variable using a GLM link function, or return an estimate of same.

Usage
glt(x, family = NULL, force.est = FALSE, ...)
Arguments
X a positive numeric vector, corresponding to a variable to be transformed. Can
also be a list or nested list of such vectors.
family Optional, the error distribution family containing the link function which will be

used to transform x (see family for specification details). If not supplied, it is
determined from x (see Details).



12
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force.est Logical, whether to force the return of the estimated rather than direct trans-
formation, where the latter can be produced (i.e. does not contain undefined
values).

Not currently used.

Details

glt can be used to provide a ’generalised’ transformation of a numeric variable using the link func-
tion from a generalised linear model (GLM). The transformation is generalised in the sense that
it can always be produced, even where a standard link transformation would produce undefined
values. It achieves this via an estimate based on the working’ response variable of the GLM (see
below). If the error distribution family is not specified (default), then it is determined (roughly)
from x, with binomial (1ink = "logit") used when all x <= 1 and poisson(link = "log") oth-
erwise. Although the function is generally intended for binomial or poisson variables, any variable
which can be fit using glm can be supplied. One of the key purposes of glt is to allow the calcu-
lation of fully standardised model coefficients for GLMs (in which case x = the response variable),
while it can also facilitate the proper calculation of SEM indirect effects (see below).

Estimating the link transformation

A key challenge in generating fully standardised model coefficients for a GLM with a non-gaussian
link function is the difficulty in calculating appropriate standardised ranges (typically the standard
deviation) for the response variable in the link scale. This is because directly transforming the
response will often produce undefined values. Although methods for circumventing this issue by
indirectly estimating the variance of the link-transformed response have been proposed - including
a latent-theoretic approach for binomial models (McKelvey & Zavoina 1975) and a more general
variance-based method using a pseudo R-squared (Menard 2011) - here an alternative approach
is used. Where transformed values are undefined, the function will instead return the synthetic
working’ response from the iteratively reweighted least squares algorithm (IRLS) of the GLM
(McCullagh & Nelder 1989). This is reconstructed as the sum of the linear predictor and the work-
ing residuals - with the latter comprising the error of the model in the link scale. The advantage
of this approach is that a relatively straightforward ’transformation’ of any non-gaussian response
is readily attainable in all cases. The standard deviation (or other relevant range) can then be cal-
culated using values of the transformed response and used to scale the coefficients. An additional
benefit for piecewise SEMs is that the transformed rather than original response can then be speci-
fied as a predictor in other models, ensuring that standardised indirect and total effects are calculated
correctly (i.e. using the same units).

To ensure a high level of "accuracy’ in the working response - in the sense that the inverse-transformation

is practically indistinguishable from the original response variable - the function uses the following
iterative fitting procedure to calculate a ’final’ working response:

1. A new GLM of the same error family is fit with the original response variable as both predictor
and response, and using a single IWLS iteration.

2. The working response is extracted from this model.

3. The inverse transformation of the working response is then calculated.

4. If the inverse transformation is ’effectively’ equal to the original response (tested using all. equal),

the working response is returned; otherwise, the GLM is re-fit with the working response now
as the predictor, and steps 2-4 are repeated - each time with an additional IWLS iteration.
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This approach will generate a very reasonable transformation of the response variable, which will
also be practically indistinguishable from the direct transformation (where this can be compared -
see Examples). It also ensures that the transformed values, and hence the standard deviation, are the
same for any GLM fitting the same response - provided it uses the same link function - facilitating
model comparisons, selection, and averaging.

Value

A numeric vector of the transformed values, or an array, list of vectors/arrays, or nested list.

Note

As we often cannot directly observe the GLM response variable on the link scale, any method esti-
mating its values or statistics will be *wrong’ to a greater or lesser degree. The aim should be to try
to minimise this error as far as (reasonably) possible, while also generating standardised coefficients
whose interpretation most closely resembles those of the ordinary linear model - something which
the current method achieves. The solution of using the working response from the GLM to scale
coefficients is a purely practical, but reasonable one, and one that takes advantage of modern com-
puting power to minimise error through iterative model fitting. An added bonus is that the estimated
variance is constant across models fit to the same response variable, which cannot be said of pre-
vious methods (Menard 2011). The overall approach would be classed as ’observed-empirical’ by
Grace et al. (2018), as it utilises model error variance (the working residuals) rather than theoretical
distribution-specific variance.

References

Grace, J.B., Johnson, D.J., Lefcheck, J.S. and Byrnes, J.E.K. (2018) Quantifying relative impor-
tance: computing standardized effects in models with binary outcomes. Ecosphere 9, €02283.
https://doi.org/gdm5bj

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models (2nd Edition). London: Chap-
man and Hall.

McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level depen-
dent variables. The Journal of Mathematical Sociology, 4(1), 103-120. https://doi.org/dqgfhpp

Menard, S. (2011) Standards for Standardized Logistic Regression Coefficients. Social Forces 89,
1409-1428. https://doi.org/bvxbés

See Also

glm, all.equal

Examples

## Compare estimate with a direct link transformation
## (test with a poisson variable, log link)
set.seed(1)

y <- rpois(30, lambda = 10)

yl <- glt(y, force.est = TRUE)

## Effectively equal?


https://doi.org/gdm5bj
https://doi.org/dqfhpp
https://doi.org/bvxb6s
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all.equal(log(y), yl, check.names = FALSE)
# TRUE

## Actual difference...
all.equal(log(y), yl, check.names = FALSE, tolerance = .Machine$double.eps)
# "Mean relative difference: 1.05954e-12"

predeff Predict Effects

Description

Generate predicted values for SEM direct, indirect, or total effects.

Usage

predeff(
mod,
newdata = NULL,
effects = NULL,
eff.boot = NULL,
re.form = NA,
type = "link",
ci.conf = 0.95,
ci.type = "bca",
interaction = NULL,

digits = 3,
bci.arg = NULL,
parallel = "no",
ncpus = NULL,
cl = NULL,
)
Arguments
mod A fitted model object, or a list or nested list of such objects.
newdata An optional data frame of new values to predict, which should contain all the
variables named in effects or all those used to fit mod.
effects A numeric vector of effects to predict, or a list or nested list of such vectors.
These will typically have been calculated using semEff, bootEff, or stdCoeff.
Alternatively, a boot object produced by bootEff can be supplied.
eff.boot A matrix of bootstrapped effects used to calculate confidence intervals for pre-

dictions, or a list or nested list of such matrices. These will have been calculated
using semEff or bootEff.
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re.form For mixed models of class "merMod”, the formula for random effects to con-
dition on when predicting effects. Defaults to NA, meaning random effects are
averaged over. See predict.merMod for further specification details.

type The type of prediction to return (for GLMs). Can be either "1ink" (default) or
"response”.
ci.conf A numeric value specifying the confidence level for confidence intervals on pre-

dictions (and any interactive effects).

ci.type The type of confidence interval to return (defaults to "bca” - see Details). See
boot.ci for further specification details.

interaction An optional name of an interactive effect, for which to return standardised ef-
fects for predictions of the main (continuous) variable across different values or
levels of interacting variables (see Details). The name should be of the form
"x1:x2...", containing all the variables involved and matching the name of an
interactive effect in the model(s) terms or in effects.

digits The number of significant digits to return for interactive effects.

bci.arg A named list of any additional arguments to boot. ci, excepting argument index.

parallel The type of parallel processing to use for calculating confidence intervals on
predictions. Can be one of "snow"”, "multicore”, or "no” (for none - the de-
fault).

ncpus Number of system cores to use for parallel processing. If NULL (default), all

available cores are used.

cl Optional cluster to use if parallel = "snow". If NULL (default), a local cluster
is created using the specified number of cores.

Arguments to stdCoeff.

Details

Generate predicted values for SEM direct, indirect, or total effects on a response variable, which
should be supplied to effects. These are used in place of model coefficients in the standard
prediction formula, with values for predictors drawn either from the data used to fit the original
model(s) (mod) or from newdata. It is assumed that effects are fully standardised; however, if this
is not the case, then the same standardisation options originally specified to stdCoeff should be
re-specified - which will then be used to standardise the data. If no effects are supplied, standardised
model coefficients will be calculated and used to generate predictions. These will equal the model(s)
fitted values if newdata = NULL, unique.x = FALSE, and re. form = NULL (where applicable).

Model-averaged predictions can be generated if averaged effects are supplied to the model in
mod, or, alternatively, if weights are specified (passed to stdCoeff) and mod is a list of candidate
models (effects can also be passed using this latter method). For mixed model predictions where
random effects are included (e.g. re.form = NULL), the latter approach should be used, otherwise
the contribution of random effects will be taken from the single model instead of (correctly) being
averaged over a candidate set.

If bootstrapped effects are supplied to eff.boot (or to effects as part of a boot object), boot-
strapped predictions are calculated by predicting from each effect. Confidence intervals can then
be returned, for which the type should be appropriate for the original form of bootstrap sampling



16 predEff

(defaults to "bca”). If the number of observations to predict is very large, parallel processing may
speed up the calculation of intervals.

Predictions are always returned in the original (typically unstandardised) units of the (link-)response
variable. For GLMs, they can be returned in the response scale if type = "response”.

Additionally, if the name of an interactive effect is supplied to interaction, standardised effects
(and confidence intervals) can be returned for predictions of a continuous main’ variable across
specified values or levels of interacting variable(s). The values for all variables should be supplied
in newdata, with the continuous variable being automatically identified as having the most unique
values.

Value

A numeric vector of the predictions, or, if bootstrapped effects are supplied, a list containing the
predictions and the upper and lower confidence intervals. Optional interactive effects may also be
appended. Predictions may also be returned in a list or nested list, depending on the structure of
mod (and other arguments).

See Also

predict, semEff, stdCoeff, bootCI, pSapply

Examples

## Predict effects (direct, total)

m <- Shipley.SEM

e <- Shipley.SEM.Eff

dir <- dirgff(e)

tot <- totEff(e)

f.dir <- predEff(m, effects = dir, type = "response”)
f.tot <- predEff(m, effects = tot, type = "response")

## Using new data for predictors

d <- na.omit(Shipley)

xn <- c("lat”, "DD", "Date"”, "Growth")

seq100 <- function(x) seq(min(x), max(x), length = 100)
nd <- data.frame(sapply(d[xn], seq100))

f.dir <- predeff(m, nd, dir, type = "response”)

f.tot <- predEff(m, nd, tot, type = "response”)

## Add CI's

dir.b <- dirEff(e, "boot")
tot.b <- totEff(e, "boot")
f.dir <- predEff(m, nd, dir, dir.b, type "response”)
f.tot <- predEff(m, nd, tot, tot.b, type = "response")

## Predict an interactive effect (e.g. Live ~ Growth * DD)
xn <- c("Growth", "DD")
d[xn] <- scale(d[xn]) # standardise predictors (improves fit)
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m <- 1lme4::glmer(Live ~ Growth * DD + (1 | site) + (1 | tree),
family = binomial, data = d)
nd <- with(d, expand.grid(
Growth = seq100(Growth),
DD = mean(DD) + c(-sd(DD), sd(DD)) # two levels for DD
))

f <- predEff(m, nd, type = "response”, interaction = "Growth:DD")

## Add CI's (need to bootstrap model - will take a while)

system.time(B <- bootEff(m, ran.eff = "site”, R = 1000))
est <- B$t0; est.b <- B$t # estimates
f <- predEff(m, nd, est, est.b, type = "response”, interaction = "Growth:DD")

## Model-averaged predictions (several approaches)

m <- Shipley.Growth # candidate models (list)

w <- runif(length(m), @, 1) # weights

e <- stdCoeff(m, w) # averaged effects

f1 <- predeff(m[[1]1], effects = e) # pass avg. effects
f2 <- predEff(m, weights = w) # pass weights argument
3 <- avgEst(predeff(m), w) # use avgEst function
stopifnot(all.equal(f1, f2))

stopifnot(all.equal(f2, f3))

## Compare model fitted values: predEff vs. predict
m <- Shipley.SEM$Live

f1 <- predeff(m, unique.x = FALSE, re.form = NULL)
f2 <- predict(m)

stopifnot(all.equal(f1, f2))

print.semeff Print SEM Effects

Description

A print method for an object of class "semEff", returning summary tables of effects and confidence
intervals for all responses.

Usage
## S3 method for class 'semEff'
print(x, ...)

Arguments
X An object of class "semEff".

Further arguments passed to or from other methods.
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pSapply

Parallel sapply

Description

Apply a function to a vector using parallel processing.

Usage

pSapply(
X,
FUN,

parallel = "snow",

ncpus = NULL,
cl = NULL,

add.obj = NULL,

Arguments

X
FUN
parallel

ncpus

cl

add.obj

Details

A vector object (numeric, character, or list).
Function to apply to the elements of X.

n o n

The type of parallel processing to use. Can be one of "snow"”, "multicore”, or
"no" (for none). If none, sapply is used instead.

Number of system cores to use for parallel processing. If NULL (default), all
available cores are used.

Optional cluster to use if parallel = "snow"”. If NULL (default), a local cluster
is created using the specified number of cores.

A character vector of any additional object names to be exported to the cluster
for parallel processing. Use if a required object or function cannot be found.

Arguments to parSapply or sapply.

This is a wrapper for parSapply from the parallel package, enabling (potentially) faster processing
of a function over a vector of objects. Parallel processing via option "snow” (default) is carried
out using a cluster of workers, which is automatically set up via makeCluster using all available
system cores or a user supplied number of cores. The function then exports the required objects and
functions to this cluster using clusterExport, after performing a (rough) match of all objects and
functions in the current global environment to those referenced in the call to FUN (and also any calls
in X). Any additional required objects can be supplied using add. obj.

Value

The output of FUN in a list, or simplified to a vector or array.
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See Also

parSapply, sapply

R2 R-squared/Pseudo R-squared

Description

Calculate R-squared or pseudo R-squared for a fitted model, defined as the squared multiple corre-
lation between the observed and fitted values for the response variable. *Adjusted’ and ’Predicted’
versions are also calculated (see Details).

Usage
R2(mod, data = NULL, adj = TRUE, pred = TRUE, re.form = NULL, ...)
Arguments
mod A fitted model object, or a list or nested list of such objects.
data An optional dataset used to first re-fit the model(s).
adj, pred Logical. If TRUE (default), adjusted and/or predicted R-squared are also returned
(the latter is not available for all model types).
re.form For mixed models of class "merMod”, the formula for random effects to condi-
tion on when generating fitted values used in the calculation of R-squared. De-
faults to NULL, meaning all random effects are included. See predict.merMod
for further specification details.
Not currently used.
Details

Various approaches to the calculation of a goodness-of-fit measure for GLMs analogous to R-
squared in the ordinary linear model have been proposed. Generally termed ’pseudo R-squared’
measures, they include variance-based, likelihood-based, and distribution-specific approaches. Here
however, a more straightforward definition is used, which can be applied to any model for which fit-
ted values of the response variable are generated: R-squared is calculated as the squared (weighted)
correlation between the observed and fitted values of the response (in the original units). This is
simply the squared version of the correlation measure advocated by Zheng & Agresti (2000), itself
an intuitive measure of goodness-of-fit describing the predictive power of a model. As the measure
does not depend on any specific error distribution or model estimating procedure, it is also generally
comparable across many different types of model (Kvalseth 1985). In the case of the ordinary linear
model, the measure equals the more traditional R-squared based on sums of squares.

If adj = TRUE (default), the *adjusted’ R-squared value is also returned, which provides an estimate
of the population - as opposed to sample - R-squared. This is achieved via an analytical formula
which adjusts R-squared for the ’degrees of freedom’ of the model (i.e. the ratio of observations to
parameters). Here, this is calculated via the "Pratt’ rather than standard *Ezekiel/Wherry’ formula,
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shown in a previous simulation to be the most effective of a range of existing formulas at estimat-
ing the population R-squared, across a range of model specification scenarios (Yin & Fan 2001).
Adjusted R-squared can be used to safeguard against overfitting of the model to the original sample.

If pred = TRUE (default), a *predicted’ R-squared is also returned, which is calculated via the same
formula as for R-squared but using cross-validated rather than standard fitted values. These are
obtained by dividing model response residuals by the complement of the observation leverages
(diagonals of the hat matrix), then subtracting these inflated *predicted’ residuals from the response
variable. This is essentially a short cut to obtaining out-of-sample predictions, normally arising
via a leave-one-out cross-validation procedure (in a GLM they will not be exactly equal to such
predictions). The resulting R-squared is an estimate of the R-squared that would occur were the
model to be fitted to new data, and will be lower than the original R-squared, and likely also the
adjusted R-squared - highlighting the loss of explanatory power when predicting new data. This
measure is a variant of an existing one, calculated by substituting the "PRESS’ statistic, i.e. the
sum of squares of the predicted residuals (Allen 1974), for the residual sum of squares in the classic
R-squared formula.

For mixed models, the function will, by default, calculate all R-squared metrics using fitted values
incorporating both the fixed and random effects, thus encompassing all variation captured by the
model. This is equivalent to the ’conditional’ R-squared of Nakagawa et al. (2017). To include
only some or no random effects, simply set the appropriate formula using the argument re.form,
which is passed directly to predict.merMod. If re. form = NA, R-squared is calculated for the fixed
effects only - equivalent to the *marginal’ R-squared of Nakagawa et al. (2017).

R-squared values produced by this function will always be bounded between zero (no fit) and one
(perfect fit), meaning that any negative values arising from calculations will be rounded up to zero.
Negative values typically mean that the fit is *worse’ than the null expectation of no relationship
between the variables, which can be difficult to interpret in practice and in any case usually only
occurs in rare situations, such as where the intercept is suppressed. Hence, for simplicity and ease
of interpretation, values less than zero are presented here as a complete lack of model fit.

Value

A numeric vector of the R-squared value(s), or an array, list of vectors/arrays, or nested list.

Note

Caution must be exercised in interpreting the values of any pseudo R-squared measure calculated
for a GLM or mixed model (including those produced by this function), as such measures do not
hold all the properties of R-squared in the ordinary linear model and as such may not always behave
as expected. They are, at best, approximations. Care must also be taken in comparing the measures
to their equivalents from ordinary linear models. This is particularly the case for the adjusted and
predicted versions, which have previously only been defined for ordinary linear models, and which
could be described as ’approximations of approximations’ of what they intend to measure. For
example, for the adjusted R-squared for mixed models, it’s not entirely clear what the sample size
(n) in the formula should represent - the no. of observations? independent groups? something
else? (the default interpretation of no. of observations is used). With all that being said, the value
of standardised R-squared measures for even 'rough’ model fit assessment and comparison may
outweigh such reservations, and the adjusted and predicted versions in particular may aid the user
in diagnosing and preventing overfitting. They should NOT, however, replace other measures such
as AIC or BIC for comparing and/or ranking competing models fit to the same data.


https://www.r-bloggers.com/can-we-do-better-than-r-squared/
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Examples

## Pseudo R-squared for mixed models

R2(Shipley.SEM) # fixed + random ('conditional')
R2(Shipley.SEM, re.form = ~ (1 | tree)) # fixed + 'tree'
R2(Shipley.SEM, re.form = ~ (1 | site)) # fixed + 'site'
R2(Shipley.SEM, re.form = NA) # fixed only ('marginal')

## Predicted R-squared: compare cross-validated predictions calculated/
## approximated via the hat matrix to standard method (leave-one-out)

## Fit test models using Shipley data - compare 1lm vs glm
d <- na.omit(Shipley)

# m <- lm(Live ~ Date + DD + lat, d)

m <- glm(Live ~ Date + DD + lat, binomial, d)

## Manual CV predictions (leave-one-out)

cvfl <- sapply(1:nrow(d), function(i) {
m.ni <- update(m, data = d[-i, ])
predict(m.ni, d[i, ], type = "response”)

b

## Short-cut via the hat matrix

y <- getY(m)

f <- fitted(m)

cvf2 <-y - (y - f) / (1 - hatvalues(m))

## Compare predictions (not exactly equal for GLMs)
all.equal(cvf1, cvf2)

# 1lm: TRUE; glm: "Mean relative difference: 1.977725e-06"
cor(cvfl, cvf2)

# Im: 1; glm: 0.9999987
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NOTE: comparison not tested here for mixed models, as hierarchical data can
complicate the choice of an appropriate leave-one-out procedure. However,
there is no reason why use of the leverage values (diagonals of the hat
matrix) to estimate CV predictions shouldn't generalise (roughly?) to the
mixed model case. In any case, users should exercise the appropriate
caution in interpretation of the predicted R-squared for mixed models,
especially GLMMs.

od o H W

rMapply Recursive mapply

Description

Recursively apply a function to a list or lists.

Usage
rMapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
Arguments
FUN Function to apply.
Object(s) to which FUN can be applied, or lists of such objects to iterate over
(defined narrowly, as of class "1ist").
MoreArgs A list of additional arguments to FUN.
SIMPLIFY Logical, whether to simplify the results to a vector or array.
USE .NAMES Logical, whether to use the names of the first list object in . . . for the output.
Details

rMapply recursively applies FUN to the elements of the lists in ... via mapply. If only a single
list is supplied, the function acts like a recursive version of sapply. The particular condition that
determines if the function should stop recursing is if either the first or second objects in . . . are not
of class "list". Thus, unlike mapply, it will not iterate over non-list elements in these objects, but
instead returns the output of f(...).

This is primarily a convenience function used internally to enable recursive application of functions
to lists or nested lists. Its particular stop condition for recursing is also designed to either a) act as a
wrapper for FUN if the first objectin . . . is not a list, or b) apply a model averaging operation if the
first object is a list and the second object is a numeric vector (of weights).

Value

The output of FUN in a list or nested list, or simplified to a vector or array (or list of arrays).

See Also

mapply
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sdW Weighted Standard Deviation

Description

Calculate the weighted standard deviation of x.

Usage
sdW(...)

Arguments

Arguments to varW.

Details

This is simply a wrapper for varW, applying the square root to the output.

Value

A numeric value, the weighted standard deviation of x.

See Also

sd, varW

semEff SEM Effects

Description

Automatically calculate direct, indirect, total, and mediator effects for endogenous (response) vari-
ables in a "piecewise’ structural equation model (SEM).

Usage

semEff(
sem,
predictors = NULL,
mediators = NULL,
responses = NULL,
ci.conf = 0.95,
ci.type = "bca”,
digits = 3,
bci.arg = NULL,
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Arguments

sem A piecewise SEM, comprising a list of fitted model objects, or, alternatively, of
boot objects (class "boot"), containing bootstrapped model effects.
predictors, mediators, responses
Names of variables for/through which to calculate effects. If NULL (default), all
predictors, endogenous predictors (mediators), and endogenous variables (re-
sponses) will be used.

ci.conf A numeric value specifying the confidence level for confidence intervals on ef-
fects.

ci.type The type of confidence interval to return (defaults to "bca” - see Details). See
boot.ci for further specification details.

digits The number of significant digits to return for numeric values.

bci.arg A named list of any additional arguments to boot . ci, excepting argument index.

Arguments to bootEff.

Details

The eponymous function of this package calculates all direct, indirect, total, and mediator effects for
endogenous variables in a *piecewise’ structural equation model (SEM), that is, one where param-
eter estimation is local rather than global (Shipley 2000, 2009; Lefcheck 2016). The SEM simply
takes the form of a list of fitted models, or bootstrapped estimates from such models, describing hy-
pothesised causal pathways from predictors to response ("endogenous’) variables. These are either
direct, or operate indirectly via other response variables (’mediators’). This list should represent a
directed ("acyclic’) causal model, which should be named (exactly) for each response variable and
ordered from ’upstream’ or ’causal’ variables through to ’"downstream’ (i.e. those at the end of the
pathway). If sem s a list of fitted models, effects will first be bootstrapped using bootEff (this may
take a while!).

Direct effects are calculated as fully standardised model coefficients for each response variable,
while indirect effects are the product of these direct effects operating along causal pathways in the
SEM. The total effects of any given predictor on a response are then the sum of its direct and (all) its
indirect effects. "Mediator’ effects are also calculated, as the sum of all indirect paths which operate
through each individual mediator - useful to assess the relative importance of different mediators in
affecting the response. All of these effect types are calculated automatically for all (default) or a
subset of predictors, mediators, or response variables in the SEM.

Confidence intervals for effects are returned for each response, with BCa intervals calculated by
default using bootstrapped estimates for each effect type (MacKinnon et al. 2004, Cheung 2009,
Hayes & Scharkow 2013). As indirect, total, and mediator effects are not directly bootstrapped
using the fitted models for response variables (i.e. via bootEff), their equivalent 'bootstrapped’
estimates are calculated instead using each bootstrapped direct effect.

Correlated errors (and confidence intervals) are also returned if their bootstrapped values are present
in sem, or, if semis a list of fitted models, if specified to argument cor.err (see bootEff). These
represent residual relationships among response variables, unaccounted for by the SEM.

All effects and bootstrapped effects are returned in lists for each response variable, with all except
mediator effects also including the model intercept(s) - required for prediction (this will be zero for
ordinary linear models with fully standardised effects).
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Value
A list object of class "semEff", comprising:

1. all effects
2. all bootstrapped effects

3. summary tables of effects and confidence intervals

References

Cheung, M. W. L. (2009). Comparison of methods for constructing confidence intervals of stan-
dardized indirect effects. Behavior Research Methods, 41(2), 425-438. https://doi.org/fnx7xk

Hayes, A. F., & Scharkow, M. (2013). The Relative Trustworthiness of Inferential Tests of the Indi-
rect Effect in Statistical Mediation Analysis: Does Method Really Matter? Psychological Science,
24(10), 1918-1927. https://doi.org/bbhr

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in R for ecology,
evolution, and systematics. Methods in Ecology and Evolution, 7(5), 573-579. https://doi.org/
f8s8rb

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence Limits for the Indirect
Effect: Distribution of the Product and Resampling Methods. Multivariate Behavioral Research,
39(1), 99. https://doi.org/chqcnx

Shipley, B. (2000). A New Inferential Test for Path Models Based on Directed Acyclic Graphs.
Structural Equation Modeling: A Multidisciplinary Journal, 7(2), 206-218. https://doi.org/
cgm32d

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. https://doi.org/bqd43d

See Also
bootEff, bootCI

Examples

## SEM effects
Shipley.SEM.Eff <- semEff(Shipley.SEM.Boot)

## Effects for selected variables
semEff(Shipley.SEM.Boot, predictors = "lat")
semEff(Shipley.SEM.Boot, mediators = "DD")
semEff(Shipley.SEM.Boot, responses = "Live")

## Effects calculated using original SEM (models)
## (not typically recommended - better to use saved boot objects)
system.time(
Shipley.SEM.Eff <- semEff(Shipley.SEM, ran.eff = "site", seed = 53908,
ncpus = 2)
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## Summary
Shipley.SEM.Eff

Shipley Simulated Data from Shipley (2009)

Description

Simulated Data from Shipley (2009)

Usage

Shipley

Format

A data frame with 1900 observations and 9 variables:

site a numeric code giving the site from which the observation comes

tree a numeric code giving the tree from which the observation comes

lat the latitude of the site

year the year in which the observation was taken

Date the Julian date when the bud burst occurs

DD the number of degree days when bud burst occurs

Growth the increase in diameter growth of the tree

Survival the probability of survival until the next year (used only for the simulation)

Live a binary value (1 = tree lived the following winter, O = tree died the following winter)

Source

https://doi.org/c886

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. https://doi.org/bqd43d


https://doi.org/c886
https://doi.org/bqd43d
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Shipley.Growth Candidate Model Set from Shipley 'Growth’ Model

Description

A set of hypothetical competing models fit to the same response variable ('Growth’) using the
simulated data in Shipley (2009), for which model estimates can be compared and/or averaged.

Usage

Shipley.Growth

Format

A list of mixed models of class "1mer"” and "glmer”, fit to the same response variable.

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. https://doi.org/bqd43d

Examples

## Specification

Shipley.Growth <- list(
1me4: :1mer (Growth ~ Date + (1 | site) + (1 | tree), data = Shipley),
Ime4::1mer(Growth ~ Date + DD + (1 | site) + (1 | tree), data = Shipley),
Ime4::1lmer(Growth ~ Date + DD + lat + (1 | site) + (1 | tree),
data = Shipley)

Shipley.SEM Hypothesised SEM from Shipley (2009)

Description

Hypothesised SEM from Shipley (2009)

Usage
Shipley.SEM


https://doi.org/bqd43d
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Format

A list of fitted mixed models of class "1mer” and "glmer", representing structured equations.

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. https://doi.org/bqd43d

Examples

## Specification

Shipley.SEM <- list(
"DD" = 1lme4::1lmer(DD ~ lat + (1 | site) + (1 | tree), data = Shipley),
"Date” = lme4::1lmer(Date ~ DD + (1 | site) + (1 | tree), data = Shipley),
"Growth” = 1lme4::1mer(Growth ~ Date + (1 | site) + (1 | tree),
data = Shipley),
"Live" = 1lme4::glmer(Live ~ Growth + (1 | site) + (1 | tree), binomial,
data = Shipley)

Shipley.SEM.Boot Bootstrapped Estimates for Shipley SEM

Description

Bootstrapped estimates generated from the hypothesised SEM from Shipley (2009), using bootEff.

Usage

Shipley.SEM.Boot

Format

A list of objects of class "boot", representing bootstrapped estimates from fitted mixed models.

References

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),
363-368. https://doi.org/bqgd43d


https://doi.org/bqd43d
https://doi.org/bqd43d
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Examples

## Specification

Shipley.SEM.Boot <- bootEff(Shipley.SEM, ran.eff = "site"”, seed = 53908,
ncpus = 2)

Shipley.SEM.Eff Effects for Shipley SEM

Description

SEM effects calculated from bootstrapped estimates of the hypothesised SEM from Shipley (2009),
using semeff.

Usage

Shipley.SEM.Eff

Format
A list object of class "semEff”, containing SEM effects and summary tables.
References
Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2),

363-368. https://doi.org/bqd43d

Examples

## Specification

Shipley.SEM.Eff <- semEff(Shipley.SEM.Boot)


https://doi.org/bqd43d
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stdCoeff

Standardised Coefficients

Description

Calculate fully standardised model coefficients in standard deviation units, adjusted for multi-
collinearity among predictors.

Usage
stdCoeff(

mod,
weights = NULL,
data = NULL,
term.names = NULL,
cen.x = TRUE,
cen.y = TRUE,
std.x = TRUE,
std.y = TRUE,

unique.x = TRUE,
refit.x = TRUE,
r.squared = FALSE,

Arguments

mod

weights

data

term.names

cen.x, cen.y

std.x, std.y

unique.x

refit.x

r.squared

A fitted model object, or a list or nested list of such objects.

An optional numeric vector of weights to use for model averaging, or a named
list of such vectors. The former should be supplied when mod is a list, and the
latter when it is a nested list (with matching list names). If set to "equal”, a
simple average is calculated instead.

An optional dataset used to first re-fit the model(s).

An optional vector of term names used to extract and/or sort coefficients from
the output.

Logical, whether the intercept and coefficients should be calculated using mean-
centred variables.

Logical, whether coefficients should be scaled by the standard deviations of vari-
ables.

Logical, whether coefficients should be adjusted for multicollinearity among
predictors.

Logical, whether the model should be re-fit with centred predictors.
Logical, whether R-squared values should also be returned.

Arguments to R2.
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Details

stdCoeff will calculate fully standardised coefficients in standard deviation units for a fitted model
or list of models. It achieves this via adjusting the ‘raw’ model coefficients, so no standardisation
of input variables is required beforehand. Users can simply specify the model with all variables in
their original units and the function will do the rest. However, the user is free to scale and/or centre
any input variables should they choose, which should not affect the outcome of standardisation
(provided any scaling is by standard deviations). This may be desirable in some cases, such as to
increase numerical stability during model fitting when variables are on widely different scales.

If arguments cen.x or cen.y are TRUE, model estimates will be calculated as if all predictors (x)
and/or the response variable (y) were mean-centred prior to model-fitting (including any dummy
variables arising from categorical predictors). Thus, for an ordinary linear model where centring of
x and y is specified, the intercept will be zero - the mean (or weighted mean) of y. In addition, if
cen.x = TRUE and there are interacting terms in the model, all coefficients for lower order terms of
the interaction are adjusted using an expression which ensures that each main effect or lower order
term is estimated at the mean values of the terms they interact with (zero in a ’centred’ model) -
typically improving the interpretation of coefficients. The expression used comprises a weighted
sum of all the coefficients that contain the lower order term, with the weight for the term itself being
zero and those for ’containing’ terms being the product of the means of the other variables involved
in that term (i.e. those not in the lower order term itself). For example, for a three-way interaction
(x1 * x2 * x3), the expression for main effect 51 would be:

B1 + B12T2 + B13T3 + P123T2T3

(adapted from here)

In addition, if std.x = TRUE or unique.x = TRUE (see below), product terms for interactive effects
will be recalculated using mean-centred variables, to ensure that standard deviations and variance
inflation factors (VIF) for predictors are calculated correctly (the model must be re-fit for this latter
purpose, to recalculate the variance-covariance matrix).

If std. x = TRUE, coefficients are standardised by multiplying by the standard deviations of predic-
tor variables (or terms), while if std.y = TRUE they are divided by the standard deviation of the
response. If the model is a GLM, this latter is calculated using the link-transformed response (or an
estimate of same) generated using the function getY. If both arguments are true, the coefficients are
regarded as ’fully’ standardised in the traditional sense, often referred to as "betas’.

If unique. x = TRUE (default), coefficients are adjusted for multicollinearity among predictors by di-
viding by the square root of the VIFs (Dudgeon 2016, Thompson et al. 2017). If they have also been
standardised by the standard deviations of x and y, this converts them to semipartial correlations,
i.e. the correlation between the unique components of predictors (residualised on other predictors)
and the response variable. This measure of effect size is arguably much more interpretable and
useful than the traditional standardised coefficient, as it is always estimated independent of other
predictors and so can more readily be compared both within and across models. Values range from
zero to +/-1 rather than +/- infinity (as in the case of betas) - putting them on the same scale as the
bivariate correlation between predictor and response. In the case of GLMs however, the measure
is analogous but not exactly equal to the semipartial correlation, so its values may not always be
bound between +/-1 (such cases are likely rare). Crucially, for ordinary linear models, the square of
the semipartial correlation equals the increase in R-squared when that variable is added last in the
model - directly linking the measure to model fit and ’variance explained’. See here for additional
arguments in favour of the use of semipartial correlations.


https://stats.stackexchange.com/questions/65898/why-could-centering-independent-variables-change-the-main-effects-with-moderatio
https://www.daviddisabato.com/blog/2016/4/8/on-effect-sizes-in-multiple-regression
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If refit.x = TRUE, the model will be re-fit with any (newly-)centred continuous predictors. This
will occur (and will normally be desired) when cen.x and unique.x are TRUE and there are in-
teraction terms in the model, in order to calculate correct VIFs from the var-cov matrix. However,
re-fitting may not be necessary in some cases - for example where predictors have already been cen-
tred (and whose values will not subsequently be resampled during bootstrapping) - and disabling
this option may save time with larger models and/or bootstrap runs.

If r.squared = TRUE, R-squared values are also returned via the R2 function.

Finally, if weights are specified, the function calculates a weighted average of the standardised
coefficients across models (Burnham & Anderson 2002).

Value

A numeric vector of the standardised coefficients, or a list or nested list of such vectors.

References

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach (2nd ed.). New York: Springer-Verlag. Retrieved from https:
//www.springer.com/gb/book/9780387953649

Dudgeon, P. (2016). A Comparative Investigation of Confidence Intervals for Independent Variables
in Linear Regression. Multivariate Behavioral Research, 51(2-3), 139-153. https://doi.org/
gfww3f

Thompson, C. G., Kim, R. S., Aloe, A. M., & Becker, B. J. (2017). Extracting the Variance Inflation
Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic and Applied
Social Psychology, 39(2), 81-90. https://doi.org/gfww2w

See Also

coef, VIF, getY, R2, avgEst

Examples

library(lme4)

## Standardised coefficients for SEM (i.e. direct effects)

m <- Shipley.SEM

stdCoeff(m)

stdCoeff(m, std.y = FALSE) # x-only

stdCoeff(m, std.x = FALSE, std.y = FALSE) # centred only
stdCoeff(m, cen.x = FALSE, cen.y = FALSE) # standardised only
stdCoeff(m, r.squared = TRUE) # add R-squared

## Demonstrate equality with manually-standardised variables (gaussian)
# m <- Shipley.Growth[[3]1]

m <- 1lm(Growth ~ Date + DD + lat, data = Shipley)

d <- data.frame(scale(na.omit(Shipley)))

b1 <- stdCoeff(m, unique.x = FALSE)

b2 <- coef(summary(update(m, data = d)))[, 1]

stopifnot(all.equal(bl, b2))


https://www.springer.com/gb/book/9780387953649
https://www.springer.com/gb/book/9780387953649
https://doi.org/gfww3f
https://doi.org/gfww3f
https://doi.org/gfww2w
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## Demonstrate equality with increment in R-squared (ordinary linear model)
m <- 1m(Growth ~ Date + DD + lat, data = Shipley)
r2 <- summary(m)$r.squared
b1 <- stdCoeff(m)[-1]
bn <- names(b1)
b2 <- sqgrt(sapply(bn, function(i) {
f <- reformulate(bnl[!bn %in% i)
r2i <- summary(update(m, f))$r.squared
r2 - r2i
1))
stopifnot(all.equal(bl, b2))

## Model-averaged standardised coefficients
m <- Shipley.Growth # candidate models

w <- runif(length(m), @, 1) # weights
stdCoeff(m, w)

varW Weighted Variance

Description

Calculate the weighted variance of x.

Usage
varW(x, w = NULL, na.rm = FALSE, ...)
Arguments
X A numeric vector.
w A numeric vector of weights of the same length as x.
na.rm Logical, whether NAs in x should be removed.
Not currently used.
Details

Calculate the weighted variance of x via the weighted covariance matrix (cov.wt). If no weights are
supplied, the simple variance is returned instead. As in weighted.mean, NAs in w are not handled
specially and will return NA as result.

Value

A numeric value, the weighted variance of x.

See Also

var, cov.wt, weighted.mean
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Examples

## Weighted variance
X <= rnorm(30)

w <- runif(30, 0, 1)
varW(x, w)

## Simple variance
varW(x)
stopifnot(varW(x) == var(x))

## NA handling

varW(c(x[1:291, NA), w, na.rm = TRUE) # NA in x (removed)
varW(c(x[1:29], NA), w, na.rm = FALSE) # NA in x (NA returned)
varW(x[1:29], w = c(w[1:291, NA)) # NA in w (NA returned)

VIF Generalised Variance Inflation Factors

Description

Calculate generalised variance inflation factors for terms in a fitted model via the variance-covariance
matrix of coefficients.

Usage
VIF(mod, data = NULL, ...)
Arguments
mod A fitted model object, or a list or nested list of such objects.
data An optional dataset used to first re-fit the model(s).
Arguments to eval (for evaluating model data).
Details

VIF calculates generalised variance inflation factors (GVIF) as described in Fox & Monette (1992),
and also implemented in the vif function in the car package. However, whereas vif returns both
GVIF and GVIFA(1/(2*Df)) values, VIF simply returns the squared result of the latter measure,
which equals the standard VIF for single-coefficient terms and is the equivalent measure for multi-
coefficient terms (e.g. categorical or polynomial). Also, while vif returns values per model term
(i.e. predictor variable), VIF returns values per coefficient, meaning that the same VIF will be
returned per coefficient for multi-coefficient terms. Finally, NA is returned for any coefficients which
could not be estimated in the model (e.g. aliased terms).

Value

A numeric vector of the VIFs, or an array, list of vectors/arrays, or nested list.
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References

Fox, J. and Monette, G. (1992) Generalized Collinearity Diagnostics. Journal of the American
Statistical Association 87, 178-183. https://doi.org/dm9wbw

See Also
vif (web)

Examples

## Model with two correlated terms

m <- Shipley.Growth[[3]]

VIF(m) # Date & DD somewhat correlated
VIF(update(m, . ~ . - DD)) # drop DD

## Model with different types of predictor (some multi-coefficient terms)
d <- data.frame(
y = rnorm(100),

x1 = poly(rnorm(100), 2), # polynomial
x2 = as.factor(rep(c(”a"”, "b", "c", "d"), each = 25)), # categorical
x3 = rep(1, 100) # no variation
)
m<- Im(y ~ x1.1 + x1.2 + x2 + x3, data = d)
VIF(m)
xNam Get Model Term Names
Description

Extract term names from a fitted model object.

Usage

xNam(mod, data = NULL, intercept = TRUE, aliased = TRUE, list = FALSE, ...)
Arguments

mod A fitted model object, or a list or nested list of such objects.

data An optional dataset used to construct the model frame.

intercept Logical, whether the intercept should be included.

aliased Logical, whether names of aliased terms should be included (see Details).

list Logical, whether names should be returned as a list, with all multi-coefficient

terms grouped under their main term names.

Arguments to eval (for evaluating model data).


https://doi.org/dm9wbw
https://www.rdocumentation.org/packages/car/versions/3.0-3/topics/vif
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Details

Extract term names from a fitted model. Names of terms for which coefficients cannot be estimated
are also included if aliased = TRUE (default). These may be terms which are perfectly correlated
with other terms in the model, so that the model design matrix is rank deficient.

Value

A character vector or list/nested list of term names.

Examples

## Term names from Shipley SEM
m <- Shipley.SEM

xNam(m)

xNam(m, intercept = FALSE)

## Model with different types of predictor (some multi-coefficient terms)
d <- data.frame(

y = rnorm(100),

x1 poly(rnorm(100), 2), # polynomial

x2 = as.factor(rep(c(”"a", "b", "c", "d"), each = 25)), # categorical

x3 = rep(1, 100) # no variation
)
m<- Im(y ~ x1.1 + x1.2 + x2 + x3, data = d)
xNam(m)

xNam(m, aliased = FALSE) # drop term that cannot be estimated (x3)
xNam(m, aliased = FALSE, list = TRUE) # as named list
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