Package 'seer'

June 8, 2020

Type Package

Title Feature-Based Forecast Model Selection

Version 1.1.5

Maintainer Thiyanga Talagala <tstalagala@gmail.com>

Description A novel meta-learning framework for forecast model selection using time series features. Many applications require a large number of time series to be forecast. Providing better forecasts for these time series is important in decision and policy making. We propose a classification framework which selects forecast models based on features calculated from the time series. We call this framework FFORMS (Feature-based FORecast Model Selection). FFORMS builds a mapping that relates the features of time series to the best forecast model using a random forest. 'seer' package is the implementation of the FFORMS algorithm. For more details see our paper at <htps://www.monash.edu/business/econometrics-andbusiness-statistics/research/publications/ebs/wp06-2018.pdf>.

License GPL-3

Depends R (>= 3.2.3)

Imports stats, urca, forecast (>= 8.3), dplyr, magrittr, randomForest, forecTheta, stringr, tibble, purrr, future, furrr, utils, tsfeatures, MASS

Encoding UTF-8

RoxygenNote 7.1.0

Suggests testthat (>= 2.1.0), covr, repmis, knitr, rmarkdown, ggplot2, tidyr, Mcomp, GGally

NeedsCompilation no

Author Thiyanga Talagala [aut, cre] (https://orcid.org/0000-0002-0656-9789), Rob J Hyndman [ths, aut] (https://orcid.org/0000-0002-2140-5352), George Athanasopoulos [ths, aut]

Repository CRAN

Date/Publication 2020-06-08 05:00:02 UTC

R topics documented:

accuracy_arima	3
accuracy_ets	3
accuracy_mstl	4
accuracy_nn	4
accuracy_rw	5
accuracy_rwd	5
accuracy_snaive	6
accuracy_stlar	6
accuracy_tbats	7
accuracy_theta	7
accuracy_wn	8
acf5	8
acf_seasonalDiff	9
build_rf	9
cal_features	10
cal_m4measures	11
cal_MASE	12
cal_medianscaled	12
cal_sMAPE	13
cal_WA	13
classify_labels	14
classlabel	14
combination_forecast_inside	15
convert_msts	15
e_acf1	16
fcast_accuracy	16
fforms_combinationforecast	17
fforms_ensemble	18
holtWinter_parameters	19
prepare_trainingset	19
rf_forecast	20
sim_arimabased	21
sim_etsbased	22
sim_mstlbased	23
split_names	24
stlar	24
unitroot	25

Index

accuracy_arima

Description

Calculate accuracy measue based on ARIMA models

Usage

accuracy_arima(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

a list which contains the accuracy and name of the specific ARIMA model.

accuracy_ets	Forecast-accuracy calculation
--------------	-------------------------------

Description

Calculate accuracy measure based on ETS models

Usage

accuracy_ets(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

a list which contains the accuracy and name of the specific ETS model.

accuracy_mstl

Description

Calculate accuracy based on MSTL

Usage

accuracy_mstl(ts_info, function_name, length_out, mtd)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function
mtd	Method to use for forecasting the seasonally adjusted series

Value

accuracy measure calculated based on multiple seasonal decomposition

accuracy_nn	Calculate accuracy measure calculated based on neural network fore-
	casts

Description

Calculate accuracy measure calculated based on neural network forecasts

Usage

```
accuracy_nn(ts_info, function_name, length_out)
```

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should
	be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

accuracy measure calculated based on neural network forecasts

accuracy_rw

Description

Calculate accuracy measure based on random walk models

Usage

accuracy_rw(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

returns accuracy measure calculated baded on random walk model

accuracy_rwd	Calculate accuracy measure based on random walk with drift
--------------	--

Description

Calculate accuracy measure based on random walk with drift

Usage

accuracy_rwd(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

accuracy measure calculated baded on random walk with drift model

accuracy_snaive

Description

Calculate accuracy measure based on snaive method

Usage

accuracy_snaive(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

accuracy measure calculated based on snaive method

accuracy_stlar	Calculate accuracy measure based on STL-AR method	
----------------	---	--

Description

Calculate accuracy measure based on STL-AR method

Usage

accuracy_stlar(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

accuracy measure calculated based on stlar method

accuracy_tbats

Description

Calculate accuracy measure based on TBATS

Usage

accuracy_tbats(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

accuracy measure calculated based on TBATS models

Description

Calculate accuracy measure based on Theta method

Usage

accuracy_theta(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series
function_name	function to calculate the accuracy function, the arguments of this function should be forecast, training and test set of the time series
length_out	number of measures calculated by the function

Value

returns accuracy measure calculated based on theta method

accuracy_wn

Description

Calculate accuracy measure based on white noise process

Usage

accuracy_wn(ts_info, function_name, length_out)

Arguments

ts_info	list containing training and test part of a time series	
function_name	function to calculate the accuracy function, the arguments of this function should	
	be forecast, training and test set of the time series	
length_out	number of measures calculated by the function	

Value

returns accuracy measure calculated based on white noise process

acf5	Autocorrelation-based features
acro	Theorem bused jeannes

Description

Computes various measures based on autocorrelation coefficients of the original series, first-differenced series and second-differenced series

Usage

acf5(y)

Arguments

у

a univariate time series

Value

A vector of 3 values: sum of squared of first five autocorrelation coefficients of original series, first-differenced series, and twice-differenced series.

Author(s)

acf_seasonalDiff Autocorrelation coefficients based on seasonally differenced series

Description

Autocorrelation coefficients based on seasonally differenced series

Usage

```
acf_seasonalDiff(y, m, lagmax)
```

Arguments

У	a univariate time series
m	frequency of the time series
lagmax	maximum lag at which to calculate the acf

Value

A vector of 3 values: first ACF value of seasonally-differenced series, ACF value at the first seasonal lag of seasonally-differenced series, sum of squares of first 5 autocorrelation coefficients of seasonally-differenced series.

Author(s)

Thiyanga Talagala

build_rf

build random forest classifier

Description

train a random forest model and predict forecast-models for new series

Usage

```
build_rf(
   training_set,
   testset = FALSE,
   rf_type = c("ru", "rcp"),
   ntree,
   seed,
   import = FALSE,
   mtry = 8
)
```

Arguments

training_set	data frame of features and class labels
testset	features of new time series, default FALSE if a testset is not available
rf_type	whether ru(random forest based on unbiased sample) or rcp(random forest based on class priors)
ntree	number of trees in the forest
seed	a value for seed
import	Should importance of predictors be assessed?, TRUE of FALSE
mtry	number of features to be selected at each node

Value

a list containing the random forest and forecast-models for new series

cal	features	Ca
Car.		

Calculate features for new time series instances

Description

Computes relevant time series features before applying them to the model

Usage

```
cal_features(
   tslist,
   seasonal = FALSE,
   m = 1,
   lagmax = 2L,
   database,
   h,
   highfreq
)
```

Arguments

tslist	a list of univariate time series
seasonal	if FALSE, restricts to features suitable for non-seasonal data
m	frequency of the time series or minimum frequency in the case of msts objects
lagmax	maximum lag at which to calculate the acf (quarterly series-5L, monthly-13L, weekly-53L, daily-8L, hourly-25L)
database	whether the time series is from mcomp or other
h	forecast horizon
highfreq	whether the time series is weekly, daily or hourly

cal_m4measures

Value

dataframe: each column represent a feature and each row represent a time series

Author(s)

Thiyanga Talagala

cal_m4measures Mean of MASE and sMAPE

Description

Calculate MASE and sMAPE for an individual time series

Usage

cal_m4measures(training, test, forecast)

Arguments

training	training period of a time series
test	test peiod of a time series
forecast	forecast obtained from a fitted to the training period

Value

returns a single value: mean on MASE and sMAPE

Author(s)

Thiyanga Talagala

Examples

```
require(Mcomp)
require(magrittr)
ts <- Mcomp::M3[[1]]$x
fcast_arima <- auto.arima(ts) %>% forecast(h=6)
cal_m4measures(M3[[1]]$x, M3[[1]]$xx, fcast_arima$mean)
```

cal_MASE

Description

Calculation of mean absolute scaled error

Usage

cal_MASE(training, test, forecast)

Arguments

training	training peiod of the time series
test	test period of the time series
forecast	forecast values of the series

Value

returns a single value

Author(s)

Thiyanga Talagala

cal_medianscaled scale MASE and sMAPE by median

Description

Given a matrix of MASE and sMAPE for each forecasting method and scaled by median and take the mean of MASE-scaled by median and sMAPE-scaled by median as the forecast accuracy measure to identify the class labels

Usage

```
cal_medianscaled(x)
```

Arguments

Х

output form the function fcast_accuracy, where the parameter accuracyFun = cal_m4measures

Value

a list with accuracy matrix, vector of arima models and vector of ets models the accuracy for each forecast-method is average of scaled-MASE and scaled-sMAPE. Median of MASE and sMAPE calculated based on forecast produced from different models for a given series.

cal_sMAPE

Description

Calculation of symmetric mean absolute percentage error

Usage

```
cal_sMAPE(training, test, forecast)
```

Arguments

training	training peiod of the time series
test	test period of the time series
forecast	forecast values of the series

Value

returns a single value

Author(s)

Thiyanga Talagala

Weighted Average

Description

Weighted Average(WA) calculated based on MASE, sMAPE for an individual time series

Usage

```
cal_WA(training, test, forecast)
```

Arguments

training	training period of a time series
test	test peiod of a time series
forecast	forecast obtained from a fitted to the training period

Value

returns a single value: WA based on MASE and sMAPE

Author(s)

Thiyanga Talagala

classify_labels Classify labels according to the FFORMS famework

Description

This function further classify class labels as in FFORMS framework

Usage

classify_labels(df_final)

Arguments

df_final a dataframe: output from split_names function

Value

a vector of class labels in FFORMS framewok

classlabel *identify the best forecasting method*

Description

identify the best forecasting method according to the forecast accuacy measure

Usage

```
classlabel(accuracy_mat)
```

Arguments

accuracy_mat matrix of forecast accuracy measures (rows: time series, columns: forecasting method)

Value

a vector: best forecasting method for each series corresponding to the rows of accuracy_mat

Author(s)

 ${\tt combination_forecast_inside}$

This function is call to be inside fforms_combination

Description

Given weights and time series in a two seperate vectors calculate combination forecast

Usage

```
combination_forecast_inside(x, y, h)
```

Arguments

х	weights and names of models (output based on fforms.ensemble)
У	time series values
h	forecast horizon

Value

list of combination forecasts corresponds to point, lower and upper

Author(s)

Thiyanga Talagala

convert_msts	Convert multiple frequency time	e series into msts object
--------------	---------------------------------	---------------------------

Description

Convert multiple frequency(daily, hourly, half-hourly, minutes, seconds) time series into msts object.

Usage

```
convert_msts(y, category)
```

Arguments

У	univariate time series
category	frequency data have been collected

Value

a ts object or msts object

e_acf1

Description

Computes the first order autocorrelation of the residual series of the deterministic trend model

Usage

e_acf1(y)

Arguments

у

a univariate time series

Value

A numeric value.

Author(s)

Thiyanga Talagala

fcast_accuracy calculate forecast accuracy from different forecasting methods

Description

Calculate forecast accuracy on test set according to a specified criterion

Usage

```
fcast_accuracy(
  tslist,
  models = c("ets", "arima", "rw", "rwd", "wn", "theta", "stlar", "nn", "snaive",
    "mstlarima", "mstlets", "tbats"),
  database,
   accuracyFun,
  h,
  length_out,
  fcast_save
)
```

Arguments

tslist	a list of time series
models	a vector of models to compute
database	whether the time series is from mcomp or other
accuracyFun	function to calculate the accuracy measure, the arguments for the accuracy func- tion should be training, test and forecast
h	forecast horizon
length_out	number of measures calculated by a single function
fcast_save	if the argument is TRUE, forecasts from each series are saved

Value

a list with accuracy matrix, vector of arima models and vector of ets models

Author(s)

Thiyanga Talagala

fforms_combinationforecast

Combination forecast based on fforms

Description

Compute combination forecast based on the vote matrix probabilities

Usage

```
fforms_combinationforecast(
   fforms.ensemble,
   tslist,
   database,
   h,
   holdout = TRUE,
   parallel = FALSE
)
```

Arguments

fforms.ensemble

	a list output from fforms_ensemble function
tslist	list of new time series
database	whethe the time series is from mcom or other
h	length of the forecast horizon

holdout	if holdout=TRUE take a holdout sample from your data to caldulate forecast accuracy measure, if FALSE all of the data will be used for forecasting. Default is TRUE
parallel	If TRUE, multiple cores (or multiple sessions) will be used. This only speeds things up when there are a large number of time series.

Value

a list containing, point forecast, confidence interval, accuracy measure

Author(s)

Thiyanga Talagala

fforms_ensemble	Function to identify models to compute combination forecast using
	FFORMS algorithm

Description

This function identify models to be use in producing combination forecast

Usage

```
fforms_ensemble(votematrix, threshold = 0.5)
```

Arguments

votematrix	a matrix of votes of probabilities based of fforms random forest classifier
threshold	threshold value for sum of probabilities of votes, default is 0.5

Value

a list containing the names of the forecast models

Author(s)

holtWinter_parameters Parameter estimates of Holt-Winters seasonal method

Description

Estimate the smoothing parameter for the level-alpha and the smoothing parameter for the trendbeta, and seasonality-gamma

Usage

```
holtWinter_parameters(y)
```

Arguments

у

a univariate time series

Value

A vector of 3 values: alpha, beta, gamma

Author(s)

Thiyanga Talagala

prepare_trainingset preparation of training set

Description

Preparation of a training set for random forest training

Usage

```
prepare_trainingset(accuracy_set, feature_set)
```

Arguments

accuracy_set	output from the fcast_accuracy
feature_set	output from the cal_features

Value

dataframe consisting features and classlabels

 $rf_forecast$

function to calculate point forecast, 95% confidence intervals, forecast-accuracy for new series

Description

Given the prediction results of random forest calculate point forecast, 95% confidence intervals, forecast-accuracy for the test set

Usage

```
rf_forecast(
    predictions,
    tslist,
    database,
    function_name,
    h,
    accuracy,
    holdout = TRUE
)
```

Arguments

predictions	prediction results obtained from random forest classifier
tslist	list of new time series
database	whethe the time series is from mcom or other
function_name	specify the name of the accuracy function (for eg., cal_MASE, etc.) to calculate accuracy measure, (if a user written function the arguments for the accuracy function should be training period, test period and forecast).
h	length of the forecast horizon
accuracy	if true a accuaracy measure will be calculated
holdout	if holdout=TRUE take a holdout sample from your data to caldulate forecast accuracy measure, if FALSE all of the data will be used for forecasting. Default is TRUE

Value

a list containing, point forecast, confidence interval, accuracy measure

Author(s)

sim_arimabased

Description

simulate multiple time series for a given series based on ARIMA models

Usage

```
sim_arimabased(
   y,
   Nsim,
   Combine = TRUE,
   M = TRUE,
   Future = FALSE,
   Length = NA,
   extralength = NA
)
```

Arguments

У	a time series or M-competition data time series (Mcomp)
Nsim	number of time series to simulate
Combine	if TRUE, training and test data in the M-competition data are combined and generate a time series corresponds to the full length of the series. Otherwise, it generate a time series based on the training period of the series.
Μ	if TRUE, y is considered to be a Mcomp data object
Future	if future=TRUE, the simulated observations are conditional on the historical ob- servations. In other words, they are possible future sample paths of the time series. But if future=FALSE, the historical data are ignored, and the simulations are possible realizations of the time series model that are not connected to the original data.
Length	length of the simulated time series. If future = FALSE, the Length agument should be NA.
extralength	extra length need to be added for simulated time series

Value

A list of time series.

Author(s)

sim_etsbased

Description

simulate multiple time series for a given series based on ETS models

Usage

```
sim_etsbased(
   y,
   Nsim,
   Combine = TRUE,
   M = TRUE,
   Future = FALSE,
   Length = NA,
   extralength = NA
)
```

Arguments

У	a time series or M-competition data time series (Mcomp)
Nsim	number of time series to simulate
Combine	if TRUE, training and test data in the M-competition data are combined and generate a time series corresponds to the full length of the series. Otherwise, it generate a time series based on the training period of the series.
Μ	if TRUE, y is considered to be a Mcomp data object
Future	if future=TRUE, the simulated observations are conditional on the historical ob- servations. In other words, they are possible future sample paths of the time series. But if future=FALSE, the historical data are ignored, and the simulations are possible realizations of the time series model that are not connected to the original data.
Length	length of the simulated time series. If future = FALSE, the Length agument should be NA.
extralength	extra length need to be added for simulated time series

Value

A list of time series.

Author(s)

sim_mstlbased

Description

simulate multiple time series based a given series using multiple seasonal decomposition

Usage

```
sim_mstlbased(
   y,
   Nsim,
   Combine = TRUE,
   M = TRUE,
   Future = FALSE,
   Length = NA,
   extralength = NA,
   mtd = "ets"
)
```

Arguments

У	a time series or M-competition data time series (Mcomp object)
Nsim	number of time series to simulate
Combine	if TRUE, training and test data in the M-competition data are combined and generate a time series corresponds to the full length of the series. Otherwise, it generate a time series based on the training period of the series.
Μ	if TRUE, y is considered to be a Mcomp data object
Future	if future=TRUE, the simulated observations are conditional on the historical ob- servations. In other words, they are possible future sample paths of the time series. But if future=FALSE, the historical data are ignored, and the simulations are possible realizations of the time series model that are not connected to the original data.
Length	length of the simulated time series. If future = FALSE, the Length agument should be NA.
extralength	extra length need to be added for simulated time series
mtd	method to use for forecasting seasonally adjusted time series

Value

A list of time series.

Author(s)

split_names

Description

split the names of ARIMA, ETS models to model name, different number of parameters in each case.

Usage

split_names(models)

Arguments

models vector of model names

Value

a dataframe where columns gives the description of model components

stlar

STL-AR method

Description

STL decomposition method applied to the time series, then an AR model is used to forecast seasonally adjusted data, while the seasonal naive method is used to forecast the seasonal component

Usage

stlar(y, h = 10, s.window = 11, robust = FALSE)

Arguments

У	a univariate time series
h	forecast horizon
s.window	Either the character string "periodic" or the span (in lags) of the loess window for seasonal extraction
robust	logical indicating if robust fitting be used in the loess procedue

Value

return object of class forecast

Author(s)

unitroot

Description

Computes the test statistics based on unit root tests Phillips-Perron test and KPSS test

Usage

unitroot(y)

Arguments

у

a univariate time series

Value

A vector of 3 values: test statistic based on PP-test and KPSS-test

Author(s)

Index

accuracy_arima, 3 accuracy_ets, 3 accuracy_mstl,4 accuracy_nn, 4 accuracy_rw, 5 accuracy_rwd, 5 accuracy_snaive, 6 $accuracy_stlar, 6$ accuracy_tbats, 7 accuracy_theta, 7 accuracy_wn, 8 acf5, <mark>8</mark> acf_seasonalDiff,9 build_rf,9 cal_features, 10 cal_m4measures, 11 cal_MASE, 12 cal_medianscaled, 12 cal_sMAPE, 13 cal_WA, 13 classify_labels, 14 classlabel, 14 combination_forecast_inside, 15 convert_msts, 15 e_acf1, 16 fcast_accuracy, 16 fforms_combinationforecast, 17 fforms_ensemble, 18

holtWinter_parameters, 19

prepare_trainingset, 19

 $rf_forecast, 20$

sim_arimabased, 21
sim_etsbased, 22

sim_mstlbased, 23
split_names, 24
stlar, 24

unitroot, 25