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Introduction

seagull is a package that fits a mixed model via sparse-group lasso (SGL) regularization. Limiting cases of
this penalty are the lasso and the group lasso, which are also available in this package. Solutions are obtained
via proximal gradient descent on a grid of values for the regularization parameter A\. The grid search for this
value is implemented using warm starts. And since proximal gradient descent is an iterative procedure, the
step size between consecutive iterations is a crucial parameter for convergence. To determine this step size,
backtracking line search is implemented.

We assume the following underlying mixed model:

y=Xb+ Zu+e,
where b is a vector of fized effects and u a vector of random effects. The inclusion of fixed effects is not
mandatory in order for the algorithms to work.

Let n, p, and L be the number of observations, random effects, and groups, respectively. seagull solves the
following SGL problem:

L
1 .
gnur;% lly — Xb— Zu||§ + a\||diag {wf, ... 7’“"5}“H1 +(1- a)/\;wlc" Hu(l)HQ.

Each w represents a weight, either for a particular feature (F') or group (G). The mizing parameter o may

range between 0 and 1. And as can be seen in the above formula, o = 1 leads to the lasso, whereas a = 0
leads to the group lasso.

Example

Once installed, the package shall be loaded in the common way. A simulated example data set is available
and loaded just as easily:



library("seagull")
data("seagull_data")

The data consists of a response variable y named phenotypes, a design matrix Z named genotypes, and
a variable called group. Z consists of 1000 observations and 466 explanatory variables. These variables
consist of genotype data from single nucleotide polymorphism marker. The variable y is another matrix,
which harbors information of 3 traits. (One trait per column.) The variable group stores information about
group assignments of each explanatory variable.

To fit the SGL, we can just call:

fit_sgll <- seagull(y = phenotypes[, 1], Z = genotypes, groups = groups)

The created output is a list with the following attributes:

attributes(fit_sgll)

#> $names

#> [1] "random_effects” "lambda" "iterations"” "alpha"
y I

#> [5] "rel_acc" "maz_iter" "gamma_bls" Tawds
#> [9] "loops_lambda"

The last attribute of this list (lLoops_lambda) determines the number of different values for the penalty
parameter A\ that were used throughout the grid search. Since we didn’t specialize this value when calling
the function seagull, it was set to its default, i.e. loops_lambda = 50. This value determines the number
of rows of the variables random_effects and iterations (and also fixed_effects if present). So, if we
want to visualize the results from a certain A along the grid, say the very last solution, where A is at its
smallest, we could do this as follows:

last_solution <- fit_sgli$loops_lambda

plot(x = seq(l, dim(genotypes)[2], 1),
y = fit_sgli$random_effects[last_solution,],
xlab = "position", ylab = "effect estimate",
col = "gray80", pch = 16)
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In total, there were 466 features to be estimated. We can check the number of features of this last solution
which remained to be exactly equal to zero:

#> [1] "The number of ZEROS in the last solution is: "
#> [2] "46"

As this is the result based on the smallest A, the solution is noisy. (By that we mean: The number of zeros
among the estimates is low compared to the total number of estimates.) We will compare this to a solution
that was obtained with a larger value:

points(x = seq(l, dim(genotypes)[2], 1),
y = fit_sgli$random_effects[20,],
pch = 16)
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#> [1] "The number of ZEROS in the solution in line 20 is: "
#> [2] "456"

This is a significantly larger number of zeros among the estimates than what we saw previously. In fact, for
this value of A the solution is sparse. Which we expect from a selection operator such as these lasso variants.

Input parameters

In this section we present a comprehensive list of input parameters: We will describe these variables and
give additional comments about their use.

e y is a numeric vector of n observations.

e X is an optional design matrix of dimension n x ¢ which relates y to fixed effects b.

e Zis a design matrix of dimension n x p which relates y to random effects w.



Note: The above mentioned variables will neither be centered nor standardized throughout any of the
calculations of this package.

o weights_u is an optional vector of weights for the feature vector u. Its length is p. These weights
correspond to w’ in the above SGL problem. The default value is 1 for each feature. The group
weights w& are calculated as follows:
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So, in the case of all w" being equal to one in a certain group, the above expression collapses to the
square root of the group size.

e groups is an integer vector of length p or ¢ + p. The entry is supposed to be a code for a group, e.g.,
say the first entry is 4, then the first feature belongs to group 4. This vector will remain unused for the
lasso, so it doesn’t need to be provided. But it is mandatory for group lasso and SGL. If fixed effects
are incorporated, they may be assigned to a group. In this case, the vector shall be of length ¢ + p. If
no group is assigned for fixed effects, they will all automatically be assigned to the same group. In this
case, or if no fixed effects are present, the length of this vector shall be p. The entries of this vector
don’t need to be in any kind of order.

e alpha is the optional mixing parameter for the SGL according to the above formula. Its default is 0.9.

e rel_acc (or “e.”) is an optional parameter which reflects the stopping criterion. Convergence is
assumed after iteration m, if the following inequality is fulfilled:
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Default is 10™%. The smaller the value, the more iterations are needed to find the solution, which
means that also more time is needed for the calculations.

[m]

oo

e max_lambda is an optional value that sets the start value for the grid search for the penalty param-
eter \. There are algorithms implemented for each lasso variant in order to determine an optimal
value. These algorithms are the default option. We don’t recommend to set this value, as it will
most likely undermine the advantages of the warm starts procedure. For further details, please type
help("lambda_max").

e xi is an optional parameter for the determination of the minimal penalty parameter “\,.;,”, i.e.,
Amin = EXAmaz- We assume € € (0, 1]. Default value is 0.01.

e loops_Lambda is an optional, non-negative integer. It sets the number of A’s which shall be investigated
along the grid search from Az t0 EAnae- If xi = 1, this value will automatically be set to 1 and
only a single solution will be computed for A = \,;,4,. Default is 50.

e max_iter is another optional, non_ negative integer. It determines the maximum number of iterations
which is allowed in order to try to reach convergence (according to rel_acc). Default is 1000.

e gamma_bls is an optional variable. Should satisfy 0 < 735 < 1. This parameter is related to the
backtracking line search. Since proximal gradient descent is an iterative algorithm, a proper step size

(t) between iterations needs to be determined. In order to find an admissible update for (2) each
iteration begins with ¢ = 1. If the condition for backtracking line search is satisfied, the update is
admissible and will thus be performed. If the condition is not satisfied, ¢ will be decreased to st and
the current iteration will restart. The restart is performed until the condition is met. Default is 0.8.

e trace progress is an optional, logical parameter. If TRUE, a message will show up to indicate the end
of the calculations for each A along the regularization path. This might come in handy for larger data
sets. Default is FALSE.



Further notes

We want to point out a correlation to another lasso variant, called Integrative lasso with Penalty Factors, or
short IPF-LASSO. If we go back to the implemented SGL problem and its limiting case for the lasso, i.e.,
a = 1, we obtain:

o1 .
glg;% ||y—Xb—Zu||§—|—)\Hd1ag{wf,...,w5}qu.

If we suppose that no fixed effects are present in the model (i.e., b = 0) and we multiply the entire expression
by the factor 2n, we get:

g}li% ly — Zul)2 + 2nA |diag {w], ... ,wl'} qu )

or equivalently:

P
g}li% ly — Zul|2 + 2nA g | ;|-
u
: =
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The weights for features w' are assumed to be positive. So, we can simplify the last expression by introducing

Aj = QnAwJF:

P
. 2
min [ly — Zully + Y Ay |y -
(b,u) -
j=1

As a last step, we assume that u is obtained from M different sources (“modalities”) and we let all \’s
which belong to the same modality have the same value. Then the last term can be written as a sum over
modalities m:

P M
Do bl = 32 A [u]
j=1 m=1

And this immediately leads to the IPF-LASSO. So in the seagull package, this particular lasso variant
is implicitly included for mixed models. The weights for features w’ (weights_u) just need to be set
accordingly, i.e., the same weight for features that belong to the same modality.
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