Package 'sdcSpatial'

July 19, 2019

Title Statistical Disclosure Control for Spatial Data

Version 0.1.1

Description Privacy protected raster maps

can be created from spatial point data. Protection methods include smoothing of dichotomous variables by de Jonge and de Wolf (2016) <doi:10.1007/978-3-319-45381-1_9>, continuous variables by de Wolf and de Jonge (2018) <doi:10.1007/978-3-319-99771-1_23>, suppressing revealing values and a generalization of the quad tree method by Suñé, Rovira, Ibáñez and Farré (2017) <doi:10.2901/EUROSTAT.C2017.001>.

License GPL-2

Encoding UTF-8

LazyData true

URL https://github.com/edwindj/sdcSpatial

BugReports https://github.com/edwindj/sdcSpatial/issues

RoxygenNote 6.1.1

Suggests testthat, knitr, rmarkdown, sp, sf

Imports raster, methods

Depends R (>= 2.10)

VignetteBuilder knitr

NeedsCompilation no

Author Edwin de Jonge [aut, cre] (https://orcid.org/0000-0002-6580-4718), Peter-Paul de Wolf [aut], Sapphire Han [ctb]

Maintainer Edwin de Jonge <edwindjonge@gmail.com>

Repository CRAN

Date/Publication 2019-07-19 17:50:02 UTC

R topics documented:

sdcSpatial-package	 2
disclosure_risk	 3
dwellings	 4
enterprises	 5
is_sensitive	 6
plot.sdc_raster	 7
plot_sensitive	 8
protect_quadtree	 8
protect_smooth	 10
remove_sensitive	 11
sdc_raster	 13
sensitivity_score	 14
smooth_raster	 15

sdcSpatial-package Privacy Protected maps

Description

sdcSpatial contains functions to create spatial distribution maps, assess the risk of disclosure on a location and to suppress or adjust revealing values at certain locations.

Details

 ${\tt sdcSpatial}$ working horse is the ${\tt sdc_raster()}$ object upon which the following methods can be applied:

Sensitivity assessment

- plot.sdc_raster(),plot_sensitive()
- print
- is_sensitive()

Protection methods

- remove_sensitive()
- protect_smooth()
- protect_quadtree()

Extraction

- sum, extract the sum layer from a sdc_raster object
- mean, extract the mean layer from a sdc_raster object

disclosure_risk

Author(s)

Maintainer: Edwin de Jonge <edwindjonge@gmail.com> (0000-0002-6580-4718)

Authors:

• Peter-Paul de Wolf

Other contributors:

• Sapphire Han [contributor]

References

de Jonge, E., & de Wolf, P. P. (2016, September). Spatial smoothing and statistical disclosure control. In International Conference on Privacy in Statistical Databases (pp. 107-117). Springer, Cham.

de Wolf, P. P., & de Jonge, E. (2018, September). Safely Plotting Continuous Variables on a Map. In International Conference on Privacy in Statistical Databases (pp. 347-359). Springer, Cham.

Suñé, E., Rovira, C., Ibáñez, D., Farré, M. (2017). Statistical disclosure control on visualising geocoded population data using a structure in quadtrees, NTTS 2017

See Also

Useful links:

- https://github.com/edwindj/sdcSpatial
- Report bugs at https://github.com/edwindj/sdcSpatial/issues

disclosure_risk Calculate disclosure risk for raster cells

Description

The disclosure risk function is used by is_sensitive() to determine the risk of a raster cell. It returns a score between 0 and 1 for cells that have a finite value (otherwise NA).

Usage

disclosure_risk(x, risk_type = x\$risk_type)

Arguments

X	sdc_raster object.
risk_type	character: "external", "internal", "discrete"

Details

Different risk functions include:

- external (numeric variable), calculates how much the largest value comprises the total sum within a cell
- internal (numeric variable), calculates how much the largest value comprises the sum without the second largest value
- discrete (logical variable), calculates the fraction of TRUE vs FALSE

Value

raster::raster object with the disclosure risk.

See Also

```
Other sensitive: is_sensitive, plot_sensitive, remove_sensitive, sdc_raster, sensitivity_score
```

dwellings

Simulated dwellings data set

Description

The data are generated with residence/household locations from the Dutch open data BAG register¹. The locations are realistic, but the associated data is simulated.

Usage

dwellings

Format

An object of class data.frame with 90603 rows and 4 columns.

Details

- x, integer, x coordinate of dwelling (crs 28992)
- y, integer, y coordinate of dwelling (crs 28992)
- consumption, numeric, simulated continuous value
- unemployed, logical, simulated discrete value

References

Basisregistratie Adressen en Gebouwen https://zakelijk.kadaster.nl/bag-producten

¹https://zakelijk.kadaster.nl/bag-producten

enterprises

Examples

```
# dwellings is a data.frame, the best way is to first turn it
# into a sf or sp object.
# create an sf object from our data
if (requireNamespace("sf")) {
  dwellings_sf <- sf::st_as_sf(dwellings, coords=c("x", "y"), crs=28992)</pre>
  unemployed <- sdc_raster( dwellings_sf</pre>
                           , "unemployed"
                           , r=200
                            , max_risk = 0.9
                           )
  plot (unemployed)
  sensitivity_score (unemployed)
  unemployed_smoothed <- protect_smooth(unemployed, bw = 0.4e3)</pre>
  plot(unemployed_smoothed, main="Employment rate")
  plot(unemployed_smoothed, "sum", main = "Employment")
} else {
  message("Package 'sf' was not installed.")
}
dwellings_sp <- dwellings
# or change a data.frame into a sp object
sp::coordinates(dwellings_sp) <- ~ x + y</pre>
tryCatch(
  # not working on some OS versions.
  sp::proj4string(dwellings_sp) <- "+init=epsg:28992"</pre>
)
consumption <- sdc_raster(dwellings_sp, dwellings_sp$consumption, r = 500)</pre>
consumption
plot (consumption)
# but we can also create a raster directly from a data.frame
unemployed <- sdc_raster( dwellings[c("x","y")], dwellings$unemployed)</pre>
```

enterprises Simulated data set with enterprise locations.

Description

enterprises is generated from the dutch open data BAG register². The locations are realistic, but the associated data is simulated.

²https://zakelijk.kadaster.nl/bag-producten

Usage

enterprises

Format

An object of class SpatialPointsDataFrame with 8348 rows and 2 columns.

Details

- production numeric simulated production (lognormal).
- fined logical simulated variable if an enterprise is fined or not.

References

Basisregistratie Adressen en Gebouwen: https://zakelijk.kadaster.nl/bag-producten

Examples

```
library(sdcSpatial)
library(raster)
data("enterprises")
production <- sdc_raster(enterprises, "production", min_count = 10)
print(production)
# show the average production per cell
plot(production, "mean")
production$min_count <- 2 # adjust norm for sdc
plot(production)
production_safe <- remove_sensitive(production)
plot(production_safe)</pre>
```

is_sensitive Return raster with sensitive locations.

Description

Create a binary raster with sensitive locations.

Usage

```
is_sensitive(x, max_risk = x$max_risk, min_count = x$min_count,
risk_type = x$risk_type)
```

6

plot.sdc_raster

Arguments

Х	sdc_raster object.
max_risk	a risk value higher than ${\tt max_risk}$ will be sensitive.
min_count	a count lower than min_count will be sensitive.
risk_type	what kind of measure should be used (see details).

Details

By default the risk settings are taken from x, but they can be overriden. Different risk functions can be used:

- external (numeric variable), calculates how much the largest value comprises the total sum
- internal (numeric variable), calculates how much the largest value comprises the sum without the second largest value
- discrete (logical variable), calculates the fraction of sensitive values.

See Also

```
Other sensitive: disclosure_risk, plot_sensitive, remove_sensitive, sdc_raster, sensitivity_score
```

Examples

```
dwellings_sp <- dwellings
sp::coordinates(dwellings_sp) <- ~ x + y
tryCatch(
    # does not work on some OS versions
    sp::proj4string(dwellings_sp) <- "+init=epsg:28992"
)
    # create a 1km grid
    unemployed <- sdc_raster(dwellings_sp, dwellings_sp$unemployed, r = 1e3)
print(unemployed)
# retrieve the sensitive cells
is_sensitive(unemployed)
```

plot.sdc_raster Plot a sdc_raster object

Description

Plot a sdc_raster object together with its sensitivity.

Usage

```
## S3 method for class 'sdc_raster'
plot(x, value = "mean", sensitive = TRUE, ...,
main = paste(substitute(x)), col)
```

Arguments

Х	sdc_raster object to be plotted
value	character which value layer to be used for plotting, e.g. "sum", "count", "mean" (default).
sensitive	logical show the sensitivity in the plot?
	<pre>passed on to raster::plot()</pre>
main	title of plot
col	color palette to be used, passed on to raster::plot().

Details

When sensitive is set to TRUE, a side-by-side plot will be made of the value and its sensitivity.

See Also

Other plotting: plot_sensitive

plot_sensitive Plot the sensitive cells of the sdc_raster.

Description

Plots t the sensitive cells of the sdc_raster. The sensitive cells are plotted in red. The sensitive cells are determined using is_sensitive.

Usage

```
plot_sensitive(x, value = "mean", main = "sensitive", col, ...)
```

Arguments

Х	sdc_raster object
value	character which value layer to be used for values, e.g. "sum", "count", "mean" (default).
main	character title of map.
col	color palette to be used, passed on to raster::plot().
	<pre>passed on to plot.sdc_raster.</pre>

See Also

Other plotting: plot.sdc_raster

Other sensitive: disclosure_risk, is_sensitive, remove_sensitive, sdc_raster, sensitivity_score

protect_quadtree Protect a raster with a quadtree method.

Description

protect_quadtree reduces sensitive by aggregating sensisitve cells with its three neighbors, and does this recursively until no sensitive cells are left or when the maximum zoom levels has been reached.

Usage

```
protect_quadtree(x, max_zoom = Inf, ...)
```

Arguments

Х	sdc_raster object to be protected.
max_zoom	numeric, restricts the number of zoom steps and thereby the max resolution for the blocks. Each step will zoom with a factor of 2 in x and y so the max resolution = resolution $* 2^{\text{max}}$ zoom.
	Arguments passed on to is_sensitive
	x sdc_raster object.
	max_risk a risk value higher than max_risk will be sensitive.
	min_count a count lower than min_count will be sensitive.
	risk_type what kind of measure should be used (see details).

Details

This implementation generalizes the method as described by Suñé et al., in which there is no risk function, and only a min_count to determine sensitivity. Furthermore the method the article only handles count data (x\$value\$count), not mean or summed values. Currently the translation feature of the article is not (yet) implemented, for the original method does not take the disclosure_risk into account.

Value

a sdc_raster object, in which sensitive cells have been recursively aggregated until not sensitive or when max_zoom has been reached.

References

Suñé, E., Rovira, C., Ibáñez, D., Farré, M. (2017). Statistical disclosure control on visualising geocoded population data using a structure in quadtrees, NTTS 2017

See Also

Other protection methods: protect_smooth, remove_sensitive

Examples

```
library(raster)
fined <- sdc_raster(enterprises, enterprises$fined)
plot(fined)
fined_qt <- protect_quadtree(fined)
plot(fined_qt)
fined <- sdc_raster(enterprises, enterprises$fined, r=50)
plot(fined)
fined_qt <- protect_quadtree(fined)
plot(fined_qt)</pre>
```

protect_smooth Protect a sdc_raster by smoothing

Description

protect_smooth reduces the sensitivity by applying a Gaussian smoother, making the values less localized.

Usage

```
protect_smooth(x, bw = raster::res(x$value), ...)
```

Arguments

Х	raster object
bw	bandwidth
	$passed\ through\ to\ \texttt{focal}.$

Details

The sensitivity of a raster can be decreased by applying a kernel density smoother as argued by de Jonge et al. (2016) and de Wolf et al. (2018). Smoothing spatially spreads localized values, reducing the risk for location disclosure. Note that smoothing often visually enhances detection of spatial patterns. The kernel applied is a Gaussian kernel with a bandwidth bw supplied by the user. The smoother acts upon the x\$value\$count and x\$value\$sum from which a new x\$value\$mean is derived.

References

de Jonge, E., & de Wolf, P. P. (2016, September). Spatial smoothing and statistical disclosure control. In International Conference on Privacy in Statistical Databases (pp. 107-117). Springer, Cham.

de Wolf, P. P., & de Jonge, E. (2018, September). Safely Plotting Continuous Variables on a Map. In International Conference on Privacy in Statistical Databases (pp. 347-359). Springer, Cham.

10

protect_smooth

See Also

Other protection methods: protect_quadtree, remove_sensitive

Examples

```
library(sdcSpatial)
library(raster)
data(enterprises)
# create a sdc_raster from point data with raster with
# a resolution of 200m
production <- sdc_raster(enterprises, variable = "production"</pre>
                         , r = 200, min_count = 3)
print (production)
# plot the raster
zlim <- c(0, 3e4)
# show which raster cells are sensitive
plot(production, zlim=zlim)
# but we can also retrieve directly the raster
sensitive <- is_sensitive(production, min_count = 3)</pre>
plot(sensitive, col = c('white', 'red'))
# what is the sensitivy fraction?
sensitivity_score(production)
# or equally
cellStats(sensitive, mean)
# let's smooth to reduce the sensitivity
smoothed <- protect_smooth(production, bw = 400)</pre>
plot (smoothed)
# what is the sensitivy fraction?
sensitivity_score(smoothed)
# let's remove the sensitive data.
smoothed_safe <- remove_sensitive(smoothed, min_count = 3)</pre>
plot(smoothed_safe, zlim=zlim)
# let's communicate!
production_mean <- mean(smoothed_safe)</pre>
production_total <- sum(smoothed_safe)</pre>
# and create a contour plot
raster::filledContour(production_mean, nlevels = 6, main = "Mean production")
# generated with R 3.6 >=
```

#col <- hcl.colors(10, rev=TRUE)</pre>

remove_sensitive Remove sensitive cells from raster

Description

```
remove_sensitive removes sensitive cells from a sdc_raster. The sensitive cells, as found
by is_sensitive() are set to NA.
```

Usage

```
remove_sensitive(x, max_risk = x$max_risk, min_count = x$min_count,
...)
```

```
mask_sensitive(x, max_risk = x$max_risk, min_count = x$min_count, ...)
```

Arguments

Х	sdc_raster object.
max_risk	a risk value higher than max_risk will be sensitive.
min_count	a count lower than min_count will be sensitive.
	passed on to is_sensitive.

Details

Removing sensitive cells is a protection method, which often is useful to finalize map protection after other protection methods have been applied. mask_sensitive and remove_sensitive are synonyms, to accommodate both experienced raster users as well as sdc users.

Value

sdc_raster object with sensitive cells set to NA.

See Also

Other sensitive: disclosure_risk, is_sensitive, plot_sensitive, sdc_raster, sensitivity_score

Other protection methods: protect_quadtree, protect_smooth

sdc_raster

Examples

```
library(raster)
unemployed <- sdc_raster(dwellings[1:2], dwellings$unemployed, r=200)
# plot the normally rastered data
plot(unemployed, zlim=c(0,1))
plot_sensitive(unemployed)
unemployed_safe <- remove_sensitive(unemployed, risk_type="discrete")
plot_sensitive(unemployed_safe, zlim=c(0,1))
print(unemployed)
unemployed$value</pre>
```

Description

sdc_raster creates multiple raster::raster objects ("count", "mean", "sum") from supplied point data x and calculates the sensitivity to privacy disclosure for each location.

Usage

```
sdc_raster(x, variable, r = 200, max_risk = 0.95, min_count = 10,
risk_type = c("external", "internal", "discrete"), ...,
field = variable)
```

Arguments

Х	sp::SpatialPointsDataFrame, sf::sf or a two column matrix or data.frame that is used to create a raster map.
variable	name of data column or $\texttt{numeric}$ with same length as x to be used for the data in the raster map.
r	either a desired resolution or a pre-existing raster object. In the first case, the crs of x (if present) will be used, in the latter the properties of the r will be kept.
max_risk	numeric, the maximum_risk score (disclosure_risk) before a cell in the map is considered sensitive.
min_count	<code>numeric</code> , a raster cell with less then <code>min_count</code> observations is considered sensitived.
risk_type	passed on to disclosure_risk().
	<pre>passed through to raster::rasterize()</pre>
field	synonym for variable. If both supplied, field has precedence.

Details

A sdc_raster object is the vehicle that does the book keeping for calculating sensitivity. Protection methods work upon a sdc_raster and return a new sdc_raster in which the sensitivity is reduced. The sensitivity of the map can be assessed with sensitivity_score, plot.sdc_raster(), plot_sensitive() or print. Reducing the sensitivity can be done with protect_smooth(), protect_quadtree() and remove_sensitive(). Raster maps for mean, sum and count data can be extracted from the <code>\$value(brick())</code>.

Value

object of class "sdc_raster":

- \$value: raster::brick() object with differenct layers e.g. count, sum, mean.
- \$max_risk: see above.
- \$min_count: see above.
- \$scale: used together with min_count to determine sensitivity: result of protection operation protect_smooth() or protect_quadtree().
- \$type: data type of variable, either numeric or logical
- \$risk_type, "external", "internal" or "discrete" (see disclosure_risk())

See Also

```
Other sensitive: disclosure_risk, is_sensitive, plot_sensitive, remove_sensitive, sensitivity_score
```

Examples

```
library(raster)
prod <- sdc_raster(enterprises, field = "production", r = 500)
print(prod)
prod <- sdc_raster(enterprises, field = "production", r = 1e3)
print(prod)</pre>
```

```
# get raster with the average production per cell averaged over the enterprises
prod_mean <- mean(prod)
summary(prod_mean)</pre>
```

```
# get raster with the total production per cell
prod_total <- sum(prod)
summary(prod_total)</pre>
```

14

sensitivity_score Mean sensitivity for raster

Description

sensitivity_score calculates the fraction of cells (with a value) that are considered sensitive
according to the used disclosure_risk

Usage

```
sensitivity_score(x, max_risk = x$max_risk, min_count = x$min_count,
    ...)
```

Arguments

Х	sdc_raster object.
max_risk	a risk value higher than ${\tt max_risk}$ will be sensitive.
min_count	a count lower than min_count will be sensitive.
	passed on to is_sensitive

See Also

Other sensitive: disclosure_risk, is_sensitive, plot_sensitive, remove_sensitive, sdc_raster

Examples

```
consumption <- sdc_raster(dwellings[1:2], variable = dwellings$consumption, r = 500)</pre>
```

sensitivity_score(consumption)
same as
print(consumption)

```
# change the rules! A higher norm generates more sensitive cells
sensitivity_score(consumption, min_count = 20)
```

smooth_raster Create kde density version of a raster

Description

Create kde density version of a raster

Usage

```
smooth_raster(x, bw = raster::res(x), smooth_fact = 5,
keep_resolution = TRUE, na.rm = TRUE, pad = TRUE,
threshold = NULL, ...)
```

Arguments

Х	raster object
bw	bandwidth
smooth_fact	integer, disaggregate factor to have a better smoothing
keep_resolut:	ion
	integer, should the returned map have same resolution as \times or keep the disaggregated raster resulting from <code>smooth_fact?</code>
na.rm	should the NA value be removed from the raster?
pad	should the data be padded?
threshold	cells with a lower (weighted) value of this threshold will be removed.
•••	passed through to focal.