
Package ‘scrapeR’
February 20, 2015

Type Package

Title Tools for Scraping Data from HTML and XML Documents

Version 0.1.6

Date 2009-10-12

Author Ryan M. Acton <rmacton@gmail.com>

Maintainer Ryan M. Acton <rmacton@gmail.com>

Depends XML,RCurl

Description Tools for Scraping Data from Web-Based Documents

License GPL (>= 2)

URL http://www.ryanacton.com

LazyLoad yes

Repository CRAN

Date/Publication 2010-02-03 10:09:28

NeedsCompilation no

R topics documented:
scrapeR-package . 1
scrape . 2

Index 6

scrapeR-package Tools for Scraping Data from Web-Based Documents

Description

Tools for Scraping Data from Web-Based Documents

Details

1

http://www.ryanacton.com

2 scrape

Package: scrapeR
Type: Package
Version: 0.1.6
Date: 2009-11-10
License: GPL (>= 2)
LazyLoad: yes

Author(s)

Ryan M. Acton <rmacton@gmail.com> http://www.ryanacton.com

References

Duncan Temple Lang. (2009). XML: Tools for parsing and generating XML within R and S-Plus.
http://CRAN.R-project.org/package=XML.

Duncan Temple Lang. (2009). RCurl: General network (HTTP/FTP/...) client interface for R.
http://CRAN.R-project.org/package=RCurl.

scrape A Tool For Scraping and Parsing HTML and XML Documents From
the Web

Description

This function assists the user with retrieving HTML and XML files, parsing their contents, and
diagnosing potential errors that may have occurred along the way.

Usage

scrape(url=NULL,object=NULL,file=NULL,chunkSize=50,maxSleep=5,
userAgent=unlist(options("HTTPUserAgent")),follow=FALSE,
headers=TRUE,parse=TRUE,isXML=FALSE,.encoding=integer(),
verbose=FALSE)

Arguments

url a vector of URLs, each as a character string. Either the url, object, or the file
parameter must be provided.

object character; the name of an R object that contains the raw source code of an HTML
or XML. This parameter is likely useful when a previous call to scrape simply
gathered document source code, followed redirects, and/or returned the headers,
thus allowing the user to inspect the output first for potential problems before
deciding to parse it into an R-friendly tree-like structure. Either the object, url,
or the file parameter must be provided.

http://www.ryanacton.com
http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=RCurl

scrape 3

file a vector of paths to local files, as a character string. Either the file, url, or the
object parameter must be provided.

chunkSize integer; if a vector of urls is supplied whose size is greater than the value of
chunkSize, the urls will be split into chunks of size chunkSize. By splitting
the urls into chunks, the number of simultaneous HTTP requests is reduced,
thus placing less burden on the server. The default value of chunkSize is 50. It
is not recommended that one specifies a value of chunkSize larger than 100.

maxSleep integer; if the vector of urls is larger than the value of chunkSize, the function
will “sleep" for ceiling(runif(1,min=0,max=maxSleep)) seconds between
chunks. It is often helpful to use a sleep parameter when making repeated HTTP
requests so as to not overwhelm the servers with gapless sequential requests.
The default value for this parameter is 5.

userAgent the User-Agent HTTP header that is supplied with any HTTP requests made by
this function. This header is used to identify your HTTP calls to the host server.
It is strongly recommended that one uses an informative User-Agent header, per-
haps with a link to one’s email or web address. This information may prove help-
ful to system administrators when they are unsure of the legitimacy your HTTP
requests, as it provides them a way of contacting you. See the URL reference for
“User-Agent" headers below for more information. By default, the User-Agent
header is assigned the value given by unlist(options("HTTPUserAgent")),
but the user is encouraged to construct a customized version.

follow logical; should these HTTP requests follow URL redirects if they are encoun-
tered? Here, redirection will only occur with HTTP requests for which the status
code is of the 3xx type (see the reference to HTTP status codes below). This pa-
rameter is only meaningful if the url parameter is supplied. The default value
for this parameter is FALSE.

headers logical; should these HTTP requests retrieve the resulting HTTP headers? This
parameter is only meaningful if the url parameter is supplied. The default value
for this parameter is FALSE.

parse logical, should the url or file vectors be parsed into R-friendly tree-like struc-
tures? See xmlTreeParse for more information about this feature and how the
object is returned. If parse==TRUE, this tree-like structure is easily navigable
using the XPath language (see the corresponding url reference provided below
and the help page for xpathSApply). The default value for this parameter is
TRUE.

isXML logical; do the url or file vectors point to well-formed XML files? See xmlTreeParse
for the differences between parsing XML and HTML documents. The default
value for this parameter is FALSE.

.encoding integer or a string; identifies the encoding of the retrieved content. See getURL
for more information.

verbose logical; shall the function print extra information to the console? The default
value for this parameter is FALSE.

Value

If url or file is supplied, then either the raw source code of the urls (files) is returned as a
list of (potentially long) character vectors (when parse==FALSE), or a list of R-friendly tree-like

4 scrape

structures of the documents is returned (when parse==TRUE). If object is supplied, then either the
raw source code contained within the object is returned as a list object of (potentially long) character
strings (when parse==FALSE), or a list object of R-friendly tree-like structures for the documents
is returned (when parse==TRUE). If url or object are supplied, the resulting object may have the
following attributes:

redirect.URL the destination URLs that resulted from a series of redirects, if they occurred;
else NA. This is only returned if follow==TRUE.

headers the HTTP headers resulting from these HTTP requests. These are only returned
if headers==TRUE.

Author(s)

Ryan M. Acton <racton@uci.edu> http://www.ryanacton.com

References

Duncan Temple Lang. (2009). XML: Tools for parsing and generating XML within R and S-Plus.
http://CRAN.R-project.org/package=XML.

Duncan Temple Lang. (2009). RCurl: General network (HTTP/FTP/...) client interface for R.
http://CRAN.R-project.org/package=RCurl.

Information about HTTP status codes: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.
html.

Information about User-Agent headers: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.
html#sec14.43.

Information about the XPath language: http://www.w3schools.com/XPath/default.asp.

Examples

Not run:
Example 1. Getting all of the package names available for download
from CRAN (http://cran.r-project.org/web/packages/)

First, pull in the page's source code, check for (and follow) a page redirection,
and retrieve the headers before deciding to parse the code.
pageSource<-scrape(url="http://cran.r-project.org/web/packages/",headers=TRUE,
parse=FALSE)

Second, inspect the headers to ensure a status code of 200, which means the page
was served properly. If okay, then parse the object into an XML tree and retrieve
all of the package names.
if(attributes(pageSource)$headers["statusCode"]==200) {
page<-scrape(object="pageSource")
xpathSApply(page,"//table//td/a",xmlValue)
} else {
cat("There was an error with the page. \n")
}

End(Not run)

http://www.ryanacton.com
http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=RCurl
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.43
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.43
http://www.w3schools.com/XPath/default.asp

scrape 5

Example 2. Parsing a local XML file, then pulling out information of interest

First, locate and parse the demo recipe file supplied with this package
fileToLoad<-system.file("recipe.xml",package="scrapeR")
mmmCookies<-scrape(file=fileToLoad,isXML=TRUE)

Next, retrieve the names of the dry ingredients that I'll need to buy
xpathSApply(mmmCookies[[1]],"//recipe/ingredient[@type='dry']/item",xmlValue)

Next, remind myself how much flour is needed
paste(xpathSApply(mmmCookies[[1]],"//item[.='flour']/preceding-sibling::amount",
xmlValue),xpathSApply(mmmCookies[[1]],"//item[.='flour']/
preceding-sibling::unit",xmlValue))

Finally, remind myself who the author of this recipe is
xpathSApply(mmmCookies[[1]],"//recipe",xmlGetAttr,"from")

Index

∗Topic package
scrapeR-package, 1

getURL, 3

scrape, 2
scrapeR-package, 1

xmlTreeParse, 3
xpathSApply, 3

6

	scrapeR-package
	scrape
	Index

