The santaR
package is designed for the detection of significantly altered time trajectories between study groups, in short time-series.
As the visualisation of significantly altered time-trajectories is critical to the interpretation of the process under study, this vignette will detail the plotting options present in santaR
. santaR_plot()
returns a ggplot2 plotObject
that can be further modified using ggplot2
grammar.
First we can analyse a subset of data using santaR_auto_fit()
, returning a list of SANTAObj.
library(santaR)
# Load a subset of the example data
tmp_data <- acuteInflammation$data[,1:6]
tmp_meta <- acuteInflammation$meta
# Analyse data, with confidence bands and p-value
res_acuteInf_df5 <- santaR_auto_fit(inputData=tmp_data, ind=tmp_meta$ind, time=tmp_meta$time, group=tmp_meta$group, df=5, ncores=0, CBand=TRUE, pval.dist=FALSE)
## Input data generated: 0.05 secs
## Spline fitted: 0.27 secs
## ConfBands done: 16.22 secs
## total time: 16.54 secs
Each variable can be accessed either by its list position or variable name:
# Default plot
# individual points, individual trajectories, group mean curves and confidence bands
# access by list position
santaR_plot(res_acuteInf_df5[[5]])
# access by variable name
santaR_plot(res_acuteInf_df5$var_5)
The individual points, trajectories, group mean curves and confidence bands can be turned on or off:
# only groupMeanCurve
santaR_plot(res_acuteInf_df5$var_5, showIndPoint=FALSE, showIndCurve=FALSE, showGroupMeanCurve=TRUE, showConfBand=TRUE)
# only Individuals
santaR_plot(res_acuteInf_df5$var_5, showIndPoint=TRUE, showIndCurve=TRUE, showGroupMeanCurve=FALSE, showConfBand=FALSE)
# add confidence bands (only available if previously calculated)
santaR_plot(res_acuteInf_df5$var_5, showIndPoint=TRUE, showIndCurve=TRUE, showGroupMeanCurve=TRUE, showConfBand=TRUE)
# add a totalMeanCurve (grey)
santaR_plot(res_acuteInf_df5$var_5, showTotalMeanCurve=TRUE )
Title and axis can be altered to suit the analysis:
# add title
santaR_plot(res_acuteInf_df5$var_5, title='A figure title')
# remove the legend
santaR_plot(res_acuteInf_df5$var_5, title='A variable, no legend', legend=FALSE)
# force purple and green color
santaR_plot(res_acuteInf_df5$var_5, title='A variable in different colors', colorVect = c('purple','green'))
# Default colors are in order: "blue", "red", "green", "orange", "purple", "seagreen", "darkturquoise", "violetred", "saddlebrown", "black"
# add x and y labels
santaR_plot(res_acuteInf_df5$var_5, title='Different axis labels', xlab='Time', ylab='Variable value')
santaR_plot()
returns a ggplot2 plotObject
that can be modified using all the range of ggplot2
grammar:
library(ggplot2)
# add x and y labels by adding it outside the plotting function [not useful but shows that any ggplot command can be added to the plot]
santaR_plot(res_acuteInf_df5$var_5, title='A variable') + xlab('Time') + ylab('Variable value')
# Constrain the x axis (will remove points and raise warnings)
santaR_plot(res_acuteInf_df5$var_5, showConfBand=FALSE, title='A variable', xlab='Time', ylab='Variable value') + xlim(0,48)
## Warning: Removed 4 rows containing missing values (geom_point).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 4 rows containing missing values (geom_point).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
## Warning: Removed 84 rows containing missing values (geom_path).
# Looser y limits
santaR_plot(res_acuteInf_df5$var_5, title='A variable', xlab='Time', ylab='Variable value') + ylim(-2,5)
Plots can be stored in a variables and combined in multiplots using gridExtra grid.arrange()
:
library(gridExtra)
# store plot in a variable, plot multiple variables...
p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value')
plot(p1)
p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value')
# multiplot
grid.arrange(p1, p2)
# force them side by side
grid.arrange(p1, p2, ncol=2)
# Force both plots on the same y limits (remove legend from plots)
p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value', legend=FALSE)
p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value', legend=FALSE)
p1 <- p1 + ylim(-1.2, 4.2)
p2 <- p2 + ylim(-1.2, 4.2)
grid.arrange(p1, p2, ncol=2 )