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as_s2_geography Create an S2 Geography Vector
Description

Geography vectors are arrays of points, lines, polygons, and/or collections of these. Geography

vectors assume coordinates are longitude and latitude on a perfect sphere.

Usage

as_s2_geography(x, ...)

## Default S3 method:
as_s2_geography(x, ...)

## S3 method for class 's2_geography'
as_s2_geography(x, ...)

## S3 method for class 's2_lnglat'
as_s2_geography(x, ...)

## S3 method for class 's2_point'
as_s2_geography(x, ...)

## S3 method for class 'wk_wkb'
as_s2_geography(x, ..., oriented

FALSE, check

## S3 method for class 'WKB'
as_s2_geography(x, ..., oriented = FALSE, check

## S3 method for class 'blob'

TRUE)

TRUE)
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as_s2_geography(x, ..., oriented = FALSE, check = TRUE)

## S3 method for class 'wk_wkt'

as_s2_geography(x, ..., oriented = FALSE, check = TRUE)

## S3 method for class 'character'

as_s2_geography(x, ..., oriented = FALSE, check = TRUE)

## S3 method for class 'logical'

as_s2_geography(x, ...)

## S3 method for class 's2_geography'

as_wkb(x, ..., endian = wk::wk_platform_endian())

## S3 method for class 's2_geography'

as_wkt(x, ..., precision = 16, trim = TRUE)

Arguments

X An object that can be converted to an s2_geography vector
Unused

oriented TRUE if polygon ring directions are known to be correct (i.e., exterior rings are
defined counter clockwise and interior rings are defined clockwise).

check Use check = FALSE to error on invalid geometries

endian The endian to use when writing well-known binary. Defaults to the platform
endian. See wk: :as_wkb().

precision The number of significant digits to export when writing well-known text. If
trim = FALSE, the number of digits after the decimal place.

trim Should trailing zeroes be included after the decimal place?

Details

The coercion function as_s2_geography() is used to wrap the input of most functions in the s2
package so that you can use other objects with an unambiguious interpretation as a geography
vector. Geography vectors have a minimal vctrs implementation, so you can use these objects in
tibble, dplyr, and other packages that use the vctrs framework.

Value

An object with class s2_geography

See Also

s2_geog_from_wkb(), s2_geog_from_text(), s2_geog_point(), s2_make_line(), s2_make_polygon()
for other ways to create geography vectors, and s2_as_binary() and s2_as_text () for other ways
to export them.
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s2_boundary S2 Geography Transformations

Description

These functions operate on one or more geography vectors and return a geography vector.

Usage

s2_boundary(x)

s2_centroid(x)

s2_closest_point(x, y)
s2_minimum_clearance_line_between(x, y)
s2_difference(x, y, options = s2_options())
s2_sym_difference(x, y, options = s2_options())

s2_intersection(x, y, options = s2_options())

s2_union(x, y = NULL, options = s2_options())
s2_snap_to_grid(x, grid_size)

s2_simplify(x, tolerance, radius = s2_earth_radius_meters())
s2_rebuild(x, options = s2_options())

s2_buffer_cells(

X,

distance,

max_cells = 1000,

min_level = -1,

radius = s2_earth_radius_meters()

)

s2_centroid_agg(x, na.rm = FALSE)

s2_union_agg(x, options = s2_options(), na.rm = FALSE)

Arguments

X geography vectors. These inputs are passed to as_s2_geography (), so you can
pass other objects (e.g., character vectors of well-known text) directly.
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options

grid_size

tolerance

radius

distance
max_cells
min_level

na.rm

Model

geography vectors. These inputs are passed to as_s2_geography (), so you can
pass other objects (e.g., character vectors of well-known text) directly.

An s2_options() object describing the polygon/polyline model to use and the
snap level.

The grid size to which coordinates should be snapped; will be rounded to the
nearest power of 10.

The minimum distance between vertexes to use when simplifying a geography.

Radius of the earth. Defaults to the average radius of the earth in meters as
defined by s2_earth_radius_meters().

The distance to buffer, in units of radius.
The maximum number of cells to approximate a buffer.

The minimum cell level used to approximate a buffer (1 - 30). Setting this value
too high will result in unnecessarily large geographies, but may help improve
buffers along long, narrow regions.

For aggregate calculations use na.rm = TRUE to drop missing values.

The geometry model indicates whether or not a geometry includes its boundaries. Boundaries of line
geometries are its end points. OPEN geometries do not contain their boundary (model = "open");
CLOSED geometries (model = "closed") contain their boundary; SEMI-OPEN geometries (model
= "semi-open") contain half of their boundaries, such that when two polygons do not overlap or
two lines do not cross, no point exist that belong to more than one of the geometries. (This latter
form, half-closed, is not present in the OpenGIS "simple feature access" (SFA) standard nor DE9-
IM on which that is based). The default values for s2_contains() (open) and covers/covered_by
(closed) correspond to the SFA standard specification of these operators.

See Also

BigQuery’s geography function reference:

 ST_BOUNDARY

* ST_CENTROID

* ST_CLOSESTPOINT
» ST_DIFFERENCE

e ST_INTERSECTION

* ST_UNION

* ST_SNAPTOGRID

e ST_SIMPLIFY

* ST_UNION_AGG

* ST_CENTROID_AGG


https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_boundary
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_centroid
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_closestpoint
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_difference
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_intersection
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_union
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_snaptogrid
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_simplify
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_union_agg
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#s2_centroid_agg
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Examples

# returns the boundary:

# empty for point, endpoints of a linestring,

# perimeter of a polygon

s2_boundary ("POINT (-64 45)")

s2_boundary("LINESTRING (@ @, 10 @)")
s2_boundary("POLYGON ((@ @, 10 @, 10 10, @ 10, @ @))")

# returns the area-weighted centroid, element-wise
s2_centroid("POLYGON ((0 @, 10 @, 10 10, © 10, @ 0))")
s2_centroid("LINESTRING (@ @, 10 0)")

# returns the unweighted centroid of the entire input
s2_centroid_agg(c("POINT (@ @)", "POINT (10 @)"))

# returns the closest point on x to y
s2_closest_point(
"POLYGON ((@ o, 10 @, 10 10, @ 10, 0 9))",
"POINT (@ 90)" # north pole!
)

# returns the shortest possible line between x and y
s2_minimum_clearance_line_between(

"POLYGON ((0 @, 10 @, 10 10, @ 10, 0 9))",

"POINT (@ 90)" # north pole!
)

# binary operations: difference, symmetric difference, intersection and union
s2_difference(

"POLYGON ((0 o, 10 @, 10 10, @ 10, 0 9))",

"POLYGON ((5 5, 15 5, 15 15, 515, 5 5))",

# 32 bit platforms may need to set snap rounding

s2_options(snap = s2_snap_level(30))
)

s2_sym_difference(
"POLYGON ((@ @, 10 @, 10 10, @ 10, @ @))",
"POLYGON ((5 5, 15 5, 15 15, 5 15, 5 5))",
# 32 bit platforms may need to set snap rounding
s2_options(snap = s2_snap_level(30))

)

s2_intersection(
"POLYGON ((@ @, 10 @, 10 10, @ 10, 0 9))",
"POLYGON ((5 5, 15 5, 15 15, 5 15, 5 5))",
# 32 bit platforms may need to set snap rounding
s2_options(snap = s2_shap_level(30))

)

s2_union(
"POLYGON ((@ o, 10 @, 10 10, @ 10, @ @))",
"POLYGON ((5 5, 15 5, 15 15, 5 15, 5 5))",
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# 32 bit platforms may need to set snap rounding
s2_options(snap = s2_snap_level(30))
)

# use s2_union_agg() to aggregate geographies in a vector
s2_union_agg(
c(
"POLYGON ((@ o, 10 @, 10 10, @ 10, @ @))",
"POLYGON ((5 5, 155, 15 15, 5 15, 5 5))"
),
# 32 bit platforms may need to set snap rounding
s2_options(snap = s2_snap_level(30))
)

# snap to grid rounds coordinates to a specified grid size
s2_snap_to_grid("POINT (@.333333333333 0.666666666666)", 1e-2)

s2_bounds_cap Compute feature-wise and aggregate bounds

Description

s2_bounds_rect () returns a bounding latitude-longitude rectangle that contains the region; s2_bounds_cap()
returns a bounding circle represented by a centre point (lat, Ing) and an angle. The bound may not

be tight for points, polylines and geometry collections. The rectangle returned may depend on

the order of points or polylines. 1ng_lo values larger than 1ng_hi indicate regions that span the
antimeridian, see the Fiji example.

Usage

s2_bounds_cap(x)

s2_bounds_rect(x)

Arguments
X geography vectors. These inputs are passed to as_s2_geography (), so you can
pass other objects (e.g., character vectors of well-known text) directly.
Value

Both functions return a data. frame:

* s2_bounds_rect(): Columns minlng, minlat, maxlng, maxlat (degrees)

* s2_bounds_cap(): Columns 1ng, lat, angle (degrees)



Examples

s2_bounds_cap(s2_data_countries("Antarctica"))
s2_bounds_cap(s2_data_countries(”"Netherlands”))
s2_bounds_cap(s2_data_countries("Fiji"))

s2_bounds_rect(s2_data_countries("Antarctica”))
s2_bounds_rect(s2_data_countries(”Netherlands"))
s2_bounds_rect(s2_data_countries(”"Fiji"))

s2_closest_feature

s2_closest_feature Matrix Functions

Description

These functions are similar to accessors and predicates, but instead of recycling x and y to a common
length and returning a vector of that length, these functions return a vector of length x with each

element i containing information about how the entire vector y relates to the feature at x[i].

Usage

s2_closest_feature(x, y)

s2_farthest_feature(x, y)

s2_distance_matrix(x, y, radius = s2_earth_radius_meters())

s2_max_distance_matrix(x, y, radius = s2_earth_radius_meters())

s2_contains_matrix(x, y, options = s2_options(model = "open"))
s2_within_matrix(x, y, options = s2_options(model = "open”))
s2_covers_matrix(x, y, options = s2_options(model = "closed"))
s2_covered_by_matrix(x, y, options = s2_options(model = "closed"))

s2_intersects_matrix(x, y, options

s2_disjoint_matrix(x, y, options

s2_equals_matrix(x, y, options = s

s2_touches_matrix(x, y, options =

s2_dwithin_matrix(x, y, distance,

s2_may_intersect_matrix(x, y, max_

s2_options())
s2_options())
2_options())

s2_options())

radius = s2_earth_radius_meters())

edges_per_cell = 50, max_feature_cells = 4)
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Arguments

X,y
radius
options

distance

Geography vectors, coerced using as_s2_geography(). x is considered the
source, where as y is considered the target.

Radius of the earth. Defaults to the average radius of the earth in meters as
defined by s2_earth_radius_meters().

An s2_options() object describing the polygon/polyline model to use and the
snap level.

A distance on the surface of the earth in the same units as radius.

max_edges_per_cell

For s2_may_intersect_matrix(), this values controls the nature of the index
on y, with higher values leading to coarser index. Values should be between
10 and 50; the default of 50 is adequate for most use cases, but for specialized
operations users may wish to use a lower value to increase performance.

max_feature_cells

Value

For s2_may_intersect_matrix(), this value controls the approximation of x
used to identify potential intersections on y. The default value of 4 gives the
best performance for most operations, but for specialized operations users may
wish to use a higher value to increase performance.

A vector of length x.

See Also

See pairwise predicate functions (e.g., s2_intersects()).

Examples

city_names <- c("Vatican City”, "San Marino"”, "Luxembourg")
cities <- s2_data_cities(city_names)

country_names <- s2_data_tbl_countries$name

countries <- s2_data_countries()

# closest feature returns y indices of the closest feature
# for each feature in x
country_names[s2_closest_feature(cities, countries)]

# farthest feature returns y indices of the farthest feature
# for each feature in x
country_names[s2_farthest_feature(cities, countries)]

# predicate matrices
country_names[s2_intersects_matrix(cities, countries)[[1]]1]

# distance matrices
s2_distance_matrix(cities, cities)
s2_max_distance_matrix(cities, countries[1:4])
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s2_contains S2 Geography Predicates

Description

These functions operate two geography vectors (pairwise), and return a logical vector.

Usage
s2_contains(x, y, options = s2_options(model = "open"))
s2_within(x, y, options = s2_options(model = "open"))
s2_covered_by(x, y, options = s2_options(model = "closed"))
s2_covers(x, y, options = s2_options(model = "closed"))

s2_disjoint(x, y, options = s2_options())
s2_intersects(x, y, options = s2_options())
s2_equals(x, y, options = s2_options())

s2_intersects_box(
X,
1ng1,
lat1,
1ng2,
lat2,
detail = 1000,
options = s2_options()

)
s2_touches(x, y, options = s2_options())

s2_dwithin(x, y, distance, radius = s2_earth_radius_meters())

Arguments
X geography vectors. These inputs are passed to as_s2_geography(), so you can
pass other objects (e.g., character vectors of well-known text) directly.
y geography vectors. These inputs are passed to as_s2_geography (), so you can
pass other objects (e.g., character vectors of well-known text) directly.
options An s2_options() object describing the polygon/polyline model to use and the

snap level.
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1lng1, latl, 1ng2, lat2
A latitude/longitude range

detail The number of points with which to approximate non-geodesic edges.
distance A distance on the surface of the earth in the same units as radius.
radius Radius of the earth. Defaults to the average radius of the earth in meters as

defined by s2_earth_radius_meters().

Model

The geometry model indicates whether or not a geometry includes its boundaries. Boundaries of line
geometries are its end points. OPEN geometries do not contain their boundary (model = "open”);
CLOSED geometries (model = "closed") contain their boundary; SEMI-OPEN geometries (model
= "semi-open") contain half of their boundaries, such that when two polygons do not overlap or
two lines do not cross, no point exist that belong to more than one of the geometries. (This latter
form, half-closed, is not present in the OpenGIS "simple feature access" (SFA) standard nor DE9-
IM on which that is based). The default values for s2_contains() (open) and covers/covered_by
(closed) correspond to the SFA standard specification of these operators.

See Also

Matrix versions of these predicates (e.g., s2_intersects_matrix()).

BigQuery’s geography function reference:

* ST_CONTAINS

* ST_COVEREDBY

* ST_COVERS

e ST_DISJOINT

* ST_EQUALS

* ST_INTERSECTS

* ST_INTERSECTSBOX
* ST_TOUCHES

e ST_WITHIN

* ST_DWITHIN

Examples

s2_contains(
"POLYGON ((@ @, 10 @, 10 10, @ 10, 0 0))",
c("POINT (5 5)", "POINT (-1 1)")

)

s2_within(
c("POINT (5 5)", "POINT (-1 1)"),
"POLYGON ((@ @, 10 0, 10 10, @ 10, @ @))"
)

s2_covered_by/(


https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_contains
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_coveredby
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_covers
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_disjoint
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_equals
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_intersects
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_intersectsbox
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_touches
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_within
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_dwithin
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"POLYGON ((@ @, 10 @, 10 10, @ 10, @ 0))",
c("POINT (5 5)", "POINT (-1 1)")
)

s2_covers(
"POLYGON ((@ @, 10 @, 10 10, @ 10, 0 0))",
c("POINT (5 5)", "POINT (-1 1)")

)

s2_disjoint(
"POLYGON ((@ 0, 10 @, 10 10, © 10, @ 0))",
c("POINT (5 5)", "POINT (-1 1)")

)

s2_intersects(
"POLYGON ((@ o, 10 @, 10 10, @ 10, 0 9))",
c("POINT (5 5)", "POINT (-1 1)")

)

s2_equals(
"POLYGON ((@ @, 10 o, 10 10, @ 10, 0 0))",
c(
"POLYGON ((@ @, 10 @, 10 10, @ 10, @ 0))",
"POLYGON ((10 @0, 10 10, @ 10, @ @, 10 0))",
"POLYGON ((-1 -1, 10 o, 10 190, @ 10, -1 -1))"
)
)

s2_intersects(
"POLYGON ((@ @, 10 @, 10 10, @ 10, 0 9))",
c("POINT (5 5)", "POINT (-1 1)")

)

s2_intersects_box(
c("POINT (5 5)", "POINT (-1 1)"),
0, 0, 10, 10

)

s2_touches(
"POLYGON ((@ @, 0 1, 11, @ 0))",
c("POINT (@ @)", "POINT (0.5 0.75)", "POINT (@ 0.5)")

)

s2_dwithin(
"POLYGON ((@ o, 10 0, 10 10, @ 10, @ 0))",
c("POINT (5 5)", "POINT (-1 1)"),
@ # distance in meters

)

s2_dwithin(
"POLYGON ((0 o, 10 o, 10 10, @ 10, @ 0))",
c("POINT (5 5)", "POINT (-1 1)"),
1e6 # distance in meters

s2_contains
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s2_data_tbl_countries Low-resolution world boundaries, timezones, and cities

Description

Well-known binary versions of the Natural Earth low-resolution world boundaries and timezone
boundaries.
Usage
s2_data_tbl_countries
s2_data_tbl_timezones
s2_data_tbl_cities
s2_data_countries(name = NULL)
s2_data_timezones(utc_offset_min = NULL, utc_offset_max = utc_offset_min)

s2_data_cities(name = NULL)

Arguments

name The name of a country, continent, city, or NULL for all features.

utc_offset_min, utc_offset_max
Minimum and/or maximum timezone offsets.

Format

A data.frame with columns name (character), and geometry (wk_wkb)
An object of class data. frame with 120 rows and 2 columns.

An object of class data. frame with 243 rows and 3 columns.

Source

Natural Earth Data


https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
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Examples

head(s2_data_countries())
s2_data_countries("Germany")
s2_data_countries("Europe")

head(s2_data_timezones())
s2_data_timezones(-4)

head(s2_data_cities())
s2_data_cities("Cairo”)

s2_earth_radius_meters
Earth Constants

Description

According to Yoder (1995), the radius of the earth is 6371.01 km. These functions are used to set the
default radis for functions that return a distance or accept a distance as input (e.g., s2_distance()
and s2_dwithin()).

Usage

s2_earth_radius_meters()

References

Yoder, C.F. 1995. "Astrometric and Geodetic Properties of Earth and the Solar System" in Global
Earth Physics, A Handbook of Physical Constants, AGU Reference Shelf 1, American Geophysical
Union, Table 2. https://doi.org/10.1029/RF001p0001

Examples

s2_earth_radius_meters()

s2_geog_point Create and Format Geography Vectors

Description

These functions create and export geography vectors. Unlike the BigQuery geography construc-
tors, these functions do not sanitize invalid or redundant input using s2_union(). Note that when
creating polygons using s2_make_polygon(), rings can be open or closed.


https://doi.org/10.1029/RF001p0001
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Usage

s2_geog_point(longitude, latitude)

s2_make_line(longitude, latitude, feature_id = 1L)

s2_make_polygon(

longitude,
latitude,
feature_id = 1L,
ring_id = 1L,
oriented = FALSE,
check = TRUE

)

s2_geog_from_text(wkt_string, oriented = FALSE, check = TRUE)
s2_geog_from_wkb(wkb_bytes, oriented = FALSE, check = TRUE)
s2_as_text(x, precision = 16, trim = TRUE)

s2_as_binary(x, endian = wk::wk_platform_endian())

Arguments

longitude, latitude
Vectors of latitude and longitude

feature_id, ring_id
Vectors for which a change in sequential values indicates a new feature or ring.
Use factor () to convert from a character vector.

oriented TRUE if polygon ring directions are known to be correct (i.e., exterior rings are
defined counter clockwise and interior rings are defined clockwise).

check Use check = FALSE to error on invalid geometries

wkt_string Well-known text

wkb_bytes A list() of raw()

X geography vectors. These inputs are passed to as_s2_geography(), so you can
pass other objects (e.g., character vectors of well-known text) directly.

precision The number of significant digits to export when writing well-known text. If
trim = FALSE, the number of digits after the decimal place.

trim Should trailing zeroes be included after the decimal place?

endian The endian to use when writing well-known binary. Defaults to the platform

endian. See wk: :as_wkb().

See Also

See as_s2_geography () for other ways to construct geography vectors.

BigQuery’s geography function reference:
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* ST_GEOGPOINT
 ST_MAKELINE

* ST_MAKEPOLYGON
* ST_GEOGFROMTEXT
* ST_ GEOGFROMWKB
o ST_ASTEXT

» ST_ASBINARY

Examples

# create point geographies using coordinate values:
s2_geog_point(-64, 45)

# create line geographies using coordinate values:
s2_make_line(c(-64, 8), c(45, 71))

# optionally, separate features using feature_id:
s2_make_line(
c(-64, 8, -27, -27), c(45, 71, @, 45),
feature_id = c(1, 1, 2, 2)
)

# create polygon geographies using coordinate values:
# (rings can be open or closed)
s2_make_polygon(c(-45, 8, @), c(64, 71, 90))

# optionally, separate rings and/or features using
# ring_id and/or feature_id
s2_make_polygon(
c(20, 10, 10, 30, 45, 30, 20, 20, 40, 20, 45),
c(35, 30, 10, 5, 20, 20, 15, 25, 40, 45, 30),
feature_id = c(rep(1, 8), rep(2, 3)),
ring_id = c(1, 1, 1, 1, 1, 2, 2, 2,1, 1, 1)
)

# import and export well-known text
(geog <- s2_geog_from_text("POINT (-64 45)"))
s2_as_text(geog)

# import and export well-known binary
(geog <- s2_geog_from_wkb(wk::as_wkb("POINT (-64 45)")))
s2_as_binary(geog)

s2_is_collection S2 Geography Accessors



https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_geogpoint
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_makeline
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_makepolygon
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_geogfromtext
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_geogfromwkb
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_astext
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_asbinary

s2_is_collection

Description

Accessors extract information about geography vectors.
Usage

s2_is_collection(x)

s2_dimension(x)

s2_num_points(x)

s2_is_empty(x)

s2_area(x, radius = s2_earth_radius_meters())

s2_length(x, radius = s2_earth_radius_meters())

s2_perimeter(x, radius = s2_earth_radius_meters())

s2_x(x)

s2_y(x)

s2_distance(x, y, radius = s2_earth_radius_meters())

s2_max_distance(x, y, radius = s2_earth_radius_meters())
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Arguments
X,y geography vectors. These inputs are passed to as_s2_geography (), so you can
pass other objects (e.g., character vectors of well-known text) directly.
radius Radius of the earth. Defaults to the average radius of the earth in meters as
defined by s2_earth_radius_meters().
See Also

BigQuery’s geography function reference:

e ST_ISCOLLECTION
* ST_DIMENSION

e ST_NUMPOINTS

e ST_ISEMPTY

* ST_AREA

* ST LENGTH

» ST_PERIMETER

e ST X


https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_iscollection
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_dimension
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_numpoints
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_isempty
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_area
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_length
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_perimeter
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_x
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« ST Y
* ST _DISTANCE
* ST_MAXDISTANCE

Examples

# s2_is_collection() tests for multiple geometries in one feature
s2_is_collection(c("POINT (-64 45)", "MULTIPOINT ((-64 45), (8 72))"))

# s2_dimension() returns @ for point, 1 for line, 2 for polygon
s2_dimension(
c(
"GEOMETRYCOLLECTION EMPTY",
"POINT (-64 45)",
"LINESTRING (-64 45, 8 72)",
"POLYGON ((@ @, @ 10, 10 10, 10 0, @ 0))",
"GEOMETRYCOLLECTION (POINT (-64 45), LINESTRING (-64 45, 8 72))"

)

# s2_num_points() counts points
s2_num_points(c("POINT (-64 45)", "LINESTRING (-64 45, 8 72)"))

# s2_is_empty tests for emptiness
s2_is_empty(c("POINT (-64 45)", "POINT EMPTY"))

# calculate area, length, and perimeter

s2_area("POLYGON ((@ @, @ 10, 10 10, 10 0, @ 0))")

s2_perimeter ("POLYGON ((@ @, @ 10, 10 10, 10 @, @ 9))")
s2_length(s2_boundary("POLYGON ((© @, @ 10, 10 10, 10 @, @ 0))"))

# extract x and y coordinates from points
s2_x(c("POINT (-64 45)", "POINT EMPTY"))
s2_y(c("POINT (-64 45)", "POINT EMPTY"))

# calculate minimum and maximum distance between two geometries
s2_distance(
"POLYGON ((@ @, @ 10, 10 10, 10 0, @ 9))",
"POINT (-64 45)"
)
s2_max_distance(
"POLYGON ((@ @, @ 10, 10 10, 10 0, 0 0))",
"POINT (-64 45)"
)

s2_lnglat Create an S2 LngLat Vector



https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_y
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_distance
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_maxdistance
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Description

This class represents a latitude and longitude on the Earth’s surface. Most calculations in S2 convert
this to a as_s2_point(), which is a unit vector representation of this value.

Usage
s2_lnglat(lng, lat)
as_s2_lnglat(x, ...)

## S3 method for class 's2_lnglat'
as_s2_lnglat(x, ...)

## S3 method for class 's2_point'
as_s2_lnglat(x, ...)

## S3 method for class 's2_geography
as_s2_lnglat(x, ...)

## S3 method for class 'matrix'
as_s2_lnglat(x, ...)

## S3 method for class 's2_lnglat'
as.data.frame(x, ...)

## S3 method for class 's2_lnglat'

as.matrix(x, ...)
Arguments
lat, Ing Vectors of latitude and longitude values in degrees.
X A s2_lnglat () vector or an object that can be coerced to one.
Unused
Value

An object with class s2_Inglat

Examples

s2_lnglat(45, -64) # Halifax, Nova Scotia!
as.data.frame(s2_lnglat(45, -64))
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s2_options Geography Operation Options

Description

These functions specify defaults for options used to perform operations and construct geometries.
These are used in predicates (e.g., s2_intersects()), and boolean operations (e.g., s2_intersection())
to specify the model for containment and how new geometries should be constructed.

Usage
s2_options(
model = NULL,
snap = s2_snap_identity(),
snap_radius = -1,

duplicate_edges = FALSE,
edge_type = "directed”,
validate = FALSE,
polyline_type = "path”,
polyline_sibling_pairs = "keep”,
simplify_edge_chains = FALSE,
split_crossing_edges = FALSE,
idempotent = FALSE

)

s2_snap_identity()
s2_snap_level(level)
s2_snap_precision(precision)

s2_snap_distance(distance)

Arguments
model One of "open’, ’semi-open’ (default for polygons), or "closed’ (default for poly-
lines). See section "Model’
snap Use s2_snap_identity(), s2_snap_distance(), s2_snap_level (), or s2_snap_precision()
to specify how or if coordinate rounding should occur.
snap_radius As opposed to the snap function, which specifies the maximum distance a vertex

should move, the snap radius (in radians) sets the minimum distance between

vertices of the output that don’t cause vertices to move more than the distance

specified by the snap function. This can be used to simplify the result of a

boolean operation. Use -1 to specify that any minimum distance is acceptable.
duplicate_edges

Use TRUE to keep duplicate edges (e.g., duplicate points).
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edge_type One of ’directed’ (default) or "undirected’.
validate Use TRUE to validate the result from the builder.

polyline_type One of ’path’ (default) or "walk’. If *walk’, polylines that backtrack are pre-
served.
polyline_sibling_pairs
One of ’discard’ (default) or "keep’.
simplify_edge_chains
Use TRUE to remove vertices that are within snap_radius of the original vertex.
split_crossing_edges
Use TRUE to split crossing polyline edges when creating geometries.

idempotent Use FALSE to apply snap even if snapping is not necessary to satisfy vertex
constraints.

level A value from 0 to 30 corresponding to the cell level at which snapping should
occur.

precision A number by which coordinates should be multiplied before being rounded.

Rounded to the nearest exponent of 10.

distance A distance (in radians) denoting the maximum distance a vertex should move in
the snapping process.

Model

The geometry model indicates whether or not a geometry includes its boundaries. Boundaries of line
geometries are its end points. OPEN geometries do not contain their boundary (model = "open");
CLOSED geometries (model = "closed") contain their boundary; SEMI-OPEN geometries (model
= "semi-open") contain half of their boundaries, such that when two polygons do not overlap or
two lines do not cross, no point exist that belong to more than one of the geometries. (This latter
form, half-closed, is not present in the OpenGIS "simple feature access" (SFA) standard nor DE9-
IM on which that is based). The default values for s2_contains() (open) and covers/covered_by
(closed) correspond to the SFA standard specification of these operators.

Examples

# use s2_options() to specify containment models, snap level
# layer creation options, and builder options
s2_options(model = "closed”, snap = s2_snap_level(30))

s2_point Create an S2 Point Vector

Description

In S2 terminology, a "point" is a 3-dimensional unit vector representation of an s2_lnglat().
Internally, all s2 objects are stored as 3-dimensional unit vectors.
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Usage

s2_point(x, y, z)

as_s2_point(x, ...)

## S3 method for class 's2_point'
as_s2_point(x, ...)

## S3 method for class 's2_lnglat'
as_s2_point(x, ...)

## S3 method for class 's2_geography'
as_s2_point(x, ...)

## S3 method for class 'matrix'
as_s2_point(x, ...)

## S3 method for class 's2_point'
as.data.frame(x, ...)

## S3 method for class 's2_point'

as.matrix(x, ...)
Arguments
X, Y,z Vectors of latitude and longitude values in degrees.
Unused
Value

An object with class s2_point

Examples

Inglat <- s2_lnglat(-64, 45) # Halifax, Nova Scotia!
as_s2_point(lnglat)
as.data.frame(as_s2_point(lnglat))
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