The most fundamental function in runner
package is runner
. With runner::runner
one can apply any R function on running windows. This tutorial presents set of examples explaining how to tackle some tasks. Some of the examples are referenced to original topic on stack-overflow.
library(runner)
x <- sample(letters, 20, replace = TRUE)
date <- Sys.Date() + cumsum(sample(1:5, 20, replace = TRUE)) # unequaly spaced time series
runner(
x,
k = "7 days",
idx = date,
f = function(x) length(unique(x))
)
## [1] 1 2 3 2 2 2 2 3 3 4 4 3 3 3 4 3 2 2 2 2
library(runner)
x <- cumsum(rnorm(20))
date <- Sys.Date() + cumsum(sample(1:5, 20, replace = TRUE)) # unequaly spaced time series
runner(
x,
k = "week",
idx = date,
f = function(x) mean(x, trim = 0.05)
)
## [1] -1.25749691 -1.64713165 -2.02798213 -2.69369499 -3.18110392 -3.29694938
## [7] -4.05063663 -3.85160954 -3.19867633 -2.57709721 -1.65170984 -1.54691603
## [13] -1.50351450 -1.02189013 -0.70260513 -0.14853595 -0.07376711 -0.54787677
## [19] -2.51124034 -2.29345682
library(runner)
# sample data
x <- cumsum(rnorm(20))
data <- data.frame(
date = Sys.Date() + cumsum(sample(1:3, 20, replace = TRUE)), # unequaly spaced time series,
y = 3 * x + rnorm(20),
x = cumsum(rnorm(20))
)
# solution
data$pred <- runner(
data,
lag = "1 days",
k = "2 weeks",
idx = date,
f = function(data) {
predict(
lm(y ~ x, data = data)
)[nrow(data)]
}
)
plot(data$date, data$y, type = "l", col = "red")
lines(data$date, data$pred, col = "blue")
library(runner)
library(dplyr)
set.seed(3737)
df <- data.frame(
user_id = c(rep(27, 7), rep(11, 7)),
date = as.Date(rep(c('2016-01-01', '2016-01-03', '2016-01-05', '2016-01-07',
'2016-01-10', '2016-01-14', '2016-01-16'), 2)),
value = round(rnorm(14, 15, 5), 1))
df %>%
group_by(user_id) %>%
mutate(
v_minus7 = sum_run(value, 7, idx = date),
v_minus14 = sum_run(value, 14, idx = date)
)
## # A tibble: 14 x 5
## # Groups: user_id [2]
## user_id date value v_minus7 v_minus14
## <dbl> <date> <dbl> <dbl> <dbl>
## 1 27 2016-01-01 15 15 15
## 2 27 2016-01-03 22.4 37.4 37.4
## 3 27 2016-01-05 13.3 50.7 50.7
## 4 27 2016-01-07 21.9 72.6 72.6
## 5 27 2016-01-10 20.6 55.8 93.2
## 6 27 2016-01-14 18.6 39.2 112.
## 7 27 2016-01-16 16.4 55.6 113.
## 8 11 2016-01-01 6.8 6.8 6.8
## 9 11 2016-01-03 21.3 28.1 28.1
## 10 11 2016-01-05 19.8 47.9 47.9
## 11 11 2016-01-07 22 69.9 69.9
## 12 11 2016-01-10 19.4 61.2 89.3
## 13 11 2016-01-14 17.5 36.9 107.
## 14 11 2016-01-16 19.3 56.2 119.
dplyr
library(runner)
library(dplyr)
df <- read.table(text = " user_id date category
27 2016-01-01 apple
27 2016-01-03 apple
27 2016-01-05 pear
27 2016-01-07 plum
27 2016-01-10 apple
27 2016-01-14 pear
27 2016-01-16 plum
11 2016-01-01 apple
11 2016-01-03 pear
11 2016-01-05 pear
11 2016-01-07 pear
11 2016-01-10 apple
11 2016-01-14 apple
11 2016-01-16 apple", header = TRUE)
df %>%
group_by(user_id) %>%
mutate(
distinct_7 = runner(category,
k = "7 days",
idx = as.Date(date),
f = function(x) length(unique(x))),
distinct_14 = runner(category,
k = "14 days",
idx = as.Date(date),
f = function(x) length(unique(x)))
)
## # A tibble: 14 x 5
## # Groups: user_id [2]
## user_id date category distinct_7 distinct_14
## <int> <fct> <fct> <int> <int>
## 1 27 2016-01-01 apple 1 1
## 2 27 2016-01-03 apple 1 1
## 3 27 2016-01-05 pear 2 2
## 4 27 2016-01-07 plum 3 3
## 5 27 2016-01-10 apple 3 3
## 6 27 2016-01-14 pear 2 3
## 7 27 2016-01-16 plum 3 3
## 8 11 2016-01-01 apple 1 1
## 9 11 2016-01-03 pear 2 2
## 10 11 2016-01-05 pear 2 2
## 11 11 2016-01-07 pear 2 2
## 12 11 2016-01-10 apple 2 2
## 13 11 2016-01-14 apple 1 2
## 14 11 2016-01-16 apple 1 2
library(dplyr)
x <- cumsum(rnorm(20))
y <- 3 * x + rnorm(20)
date <- Sys.Date() + cumsum(sample(1:3, 20, replace = TRUE)) # unequaly spaced time series
group <- rep(c("a", "b"), each = 10)
data.frame(date, group, y, x) %>%
group_by(group) %>%
run_by(idx = "date", k = "5 days") %>%
mutate(
alpha_5 = runner(
x = .,
f = function(x) {
coefficients(lm(x ~ y, x))[1]
}
),
beta_5 = runner(
x = .,
f = function(x) {
coefficients(lm(x ~ y, x))[1]
}
)
)
## # A tibble: 20 x 6
## # Groups: group [2]
## date group y x alpha_5 beta_5
## <date> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 2020-05-17 a 0.368 0.0470 0.0470 0.0470
## 2 2020-05-20 a 0.457 0.998 -3.91 -3.91
## 3 2020-05-23 a 3.73 0.967 1.00 1.00
## 4 2020-05-26 a 3.70 1.26 34.5 34.5
## 5 2020-05-28 a 4.76 1.98 -1.26 -1.26
## 6 2020-05-30 a 10.9 3.52 0.365 0.365
## 7 2020-06-02 a 6.13 2.39 0.948 0.948
## 8 2020-06-04 a 12.0 4.06 0.659 0.659
## 9 2020-06-06 a 11.0 3.58 0.711 0.711
## 10 2020-06-08 a 12.6 4.49 -2.38 -2.38
## 11 2020-06-09 b 12.9 3.60 3.60 3.60
## 12 2020-06-10 b 8.03 2.76 1.39 1.39
## 13 2020-06-11 b 15.8 4.68 0.768 0.768
## 14 2020-06-14 b 15.8 5.26 0.492 0.492
## 15 2020-06-15 b 20.8 6.95 -1.24 -1.24
## 16 2020-06-17 b 22.7 7.67 -0.165 -0.165
## 17 2020-06-19 b 19.0 6.55 0.862 0.862
## 18 2020-06-21 b 20.7 6.48 0.583 0.583
## 19 2020-06-24 b 14.6 5.18 2.05 2.05
## 20 2020-06-26 b 16.8 5.14 5.46 5.46
grouped_df
library(runner)
library(dplyr)
Date <- seq(from = as.Date("2014-01-01"),
to = as.Date("2019-12-31"),
by = 'day')
market_return <- c(rnorm(2191))
AAPL <- data.frame(
Company.name = "AAPL",
Date = Date,
market_return = market_return
)
MSFT <- data.frame(
Company.name = "MSFT",
Date = Date,
market_return = market_return
)
df <- rbind(AAPL, MSFT)
df$stock_return <- c(rnorm(4382))
df <- df[order(df$Date),]
df2 <- data.frame(
Company.name2 = c(replicate(450, "AAPL"), replicate(450, "MSFT")),
Event_date = sample(
seq(as.Date('2015/01/01'),
as.Date('2019/12/31'),
by = "day"),
size = 900)
)
df2 %>%
group_by(Company.name2) %>%
mutate(
intercept = runner(
x = df[df$Company.name == Company.name2[1], ],
k = "180 days",
lag = "5 days",
idx = df$Date[df$Company.name == Company.name2[1]],
at = Event_date,
f = function(x) {
coef(
lm(stock_return ~ market_return, data = x)
)[1]
}
),
slope = runner(
x = df[df$Company.name == Company.name2[1], ],
k = "180 days",
lag = "5 days",
idx = df$Date[df$Company.name == Company.name2[1]],
at = Event_date,
f = function(x) {
coef(
lm(stock_return ~ market_return, data = x)
)[2]
}
)
)
## # A tibble: 900 x 4
## # Groups: Company.name2 [2]
## Company.name2 Event_date intercept slope
## <fct> <date> <dbl> <dbl>
## 1 AAPL 2017-08-24 -0.0441 0.0247
## 2 AAPL 2019-04-21 -0.103 0.113
## 3 AAPL 2016-06-23 0.0669 -0.0500
## 4 AAPL 2019-07-28 -0.0570 0.138
## 5 AAPL 2016-05-27 0.0758 -0.0222
## 6 AAPL 2019-05-17 -0.0747 0.120
## 7 AAPL 2015-11-13 0.0134 -0.0917
## 8 AAPL 2019-06-12 -0.0503 0.102
## 9 AAPL 2017-03-14 0.0327 -0.0526
## 10 AAPL 2018-03-15 0.0252 -0.0734
## # … with 890 more rows