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C5_rules General Interface for C5.0 Rule-Based Classification Models

Description

C5_rules() is a way to generate a specification of a model before fitting. The main arguments for
the model are:

• trees: The number of sequential models included in the ensemble (rules are derived from an
initial set of boosted trees).

• min_n: The minimum number of data points in a node that are required for the node to be split
further.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using parsnip::set_engine(). If left to their defaults here (NULL), the
values are taken from the underlying model functions. If parameters need to be modified, update()
can be used in lieu of recreating the object from scratch.

Usage

C5_rules(mode = "classification", trees = NULL, min_n = NULL)

## S3 method for class 'C5_rules'
update(
object,
parameters = NULL,
trees = NULL,
min_n = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

trees A non-negative integer (no greater than 100 for the number of members of the
ensemble.

min_n An integer greater than one zero and nine for the minimum number of data points
in a node that are required for the node to be split further.

object A C5_rules model specification.
parameters A 1-row tibble or named list with main parameters to update. If the individual

arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place or replaced
wholesale.

... Not used for update().
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Details

C5.0 is a classification model that is an extension of the C4.5 model of Quinlan (1993). It has tree-
and rule-based versions that also include boosting capabilities. C5_rules() enables the version of
the model that uses a series of rules (see the examples below). To make a set of rules, an initial C5.0
tree is created and flattened into rules. The rules are pruned, simplified, and ordered. Rule sets are
created within each iteration of boosting.

The two main tuning parameters are the number of trees in the boosting ensemble (trees) and
the number of samples required to continue splitting when creating a tree (min_n). There are no
arguments to control the total number of rules in the ensemble.

Note that C5_rules() does not require that categorical predictors be converted to numeric indicator
values. Note that using parsnip::fit() will always create dummy variables so, if there is interest
in keeping the categorical predictors in their original format, parsnip::fit_xy() would be a better
choice. When using the tune package, using a recipe for pre-processing enables more control over
how such predictors are encoded since recipes do not automatically create dummy variables.

Note that C5.0 has a tool for early stopping during boosting where less iterations of boosting are
performed than the number requested. C5_rules() turns this feature off (although it can be re-
enabled using C50::C5.0Control()).

Value

An updated parsnip model specification.

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

See Also

parsnip::fit(), parsnip::fit_xy(), C50::C5.0(), C50::C5.0Control()

Examples

C5_rules()
# Parameters can be represented by a placeholder:
C5_rules(trees = 7)

# ------------------------------------------------------------------------------

data(ad_data, package = "modeldata")

set.seed(282782)
class_rules <-

C5_rules(trees = 1, min_n = 10) %>%
fit(Class ~ ., data = ad_data)

summary(class_rules$fit)

# ------------------------------------------------------------------------------
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model <- C5_rules(trees = 10, min_n = 2)
model
update(model, trees = 1)
update(model, trees = 1, fresh = TRUE)

committees Parameter functions for Cubist models

Description

Committee-based models enact a boosting-like procedure to produce ensembles. committees pa-
rameter is for the number of models in the ensembles while max_rules can be used to limit the
number of possible rules.

Usage

committees(range = c(1L, 100L), trans = NULL)

max_rules(range = c(1L, 500L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Value

A function with classes "quant_param" and "param"

Examples

committees()
committees(4:5)

max_rules()
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cubist_rules General Interface for Cubist Rule-Based Regression Models

Description

cubist_rules() is a way to generate a specification of a model before fitting. The main arguments
for the model are:

• committees: The number of sequential models included in the ensemble (similar to the num-
ber of trees in boosting).

• neighbors: The number of neighbors in the post-model instance-based adjustment.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using parsnip::set_engine(). If left to their defaults here (NULL), the
values are taken from the underlying model functions. If parameters need to be modified, update()
can be used in lieu of recreating the object from scratch.

Usage

cubist_rules(
mode = "regression",
committees = NULL,
neighbors = NULL,
max_rules = NULL

)

## S3 method for class 'cubist_rules'
update(
object,
parameters = NULL,
committees = NULL,
neighbors = NULL,
max_rules = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

committees A non-negative integer (no greater than 100 for the number of members of the
ensemble.

neighbors An integer between zero and nine for the number of training set instances that
are used to adjust the model-based prediction.

max_rules The largest number of rules.
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object A Cubist model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place or replaced
wholesale.

... Not used for update().

Details

Cubist is a rule-based ensemble regression model. A basic model tree (Quinlan, 1992) is created
that has a separate linear regression model corresponding for each terminal node. The paths along
the model tree is flattened into rules these rules are simplified and pruned. The parameter min_n is
the primary method for controlling the size of each tree while max_rules controls the number of
rules.

Cubist ensembles are created using committees, which are similar to boosting. After the first model
in the committee is created, the second model uses a modified version of the outcome data based on
whether the previous model under- or over-predicted the outcome. For iteration m, the new outcome
y* is computed using

If a sample is under-predicted on the previous iteration, the outcome is adjusted so that the next time
it is more likely to be over-predicted to compensate. This adjustment continues for each ensemble
iteration. See Kuhn and Johnson (2013) for details.

After the model is created, there is also an option for a post-hoc adjustment that uses the training
set (Quinlan, 1993). When a new sample is predicted by the model, it can be modified by its nearest
neighbors in the original training set. For K neighbors, the model based predicted value is adjusted
by the neighbor using:

where t is the training set prediction and w is a weight that is inverse to the distance to the neighbor.

Note that cubist_rules() does not require that categorical predictors be converted to numeric
indicator values. Note that using parsnip::fit() will always create dummy variables so, if there
is interest in keeping the categorical predictors in their original format, parsnip::fit_xy() would
be a better choice. When using the tune package, using a recipe for pre-processing enables more
control over how such predictors are encoded since recipes do not automatically create dummy
variables.

The only available engine is "Cubist".



mtry_prop 7

Value

An updated parsnip model specification.

References

Quinlan R (1992). "Learning with Continuous Classes." Proceedings of the 5th Australian Joint
Conference On Artificial Intelligence, pp. 343-348.

Quinlan R (1993)."Combining Instance-Based and Model-Based Learning." Proceedings of the
Tenth International Conference on Machine Learning, pp. 236-243.

Kuhn M and Johnson K (2013). Applied Predictive Modeling. Springer.

See Also

parsnip::fit(), parsnip::fit_xy(), Cubist::cubist(), Cubist::cubistControl()

Examples

cubist_rules()
# Parameters can be represented by a placeholder:
cubist_rules(committees = 7)

# ------------------------------------------------------------------------------

data(car_prices, package = "modeldata")
car_rules <-

cubist_rules(committees = 1) %>%
fit(log10(Price) ~ ., data = car_prices)

car_rules

summary(car_rules$fit)

# ------------------------------------------------------------------------------

model <- cubist_rules(committees = 10, neighbors = 2)
model
update(model, committees = 1)
update(model, committees = 1, fresh = TRUE)

mtry_prop Proportion of Randomly Selected Predictors

Description

Proportion of Randomly Selected Predictors

Usage

mtry_prop(range = c(0.1, 1), trans = NULL)
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Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Value

A dials with classes "quant_param" and "param". The range element of the object is always
converted to a list with elements "lower" and "upper".

multi_predict._c5_rules

multi_predict() methods for rule-based models

Description

multi_predict() methods for rule-based models

Usage

## S3 method for class '`_c5_rules`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

## S3 method for class '`_cubist`'
multi_predict(object, new_data, type = NULL, neighbors = NULL, ...)

## S3 method for class '`_xrf`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

type A single character value or NULL. Possible values are class" and "prob".

trees An numeric vector of trees between one and 100.

... Not currently used.

neighbors An numeric vector of neighbors values between zero and nine.

penalty Non-negative penalty values.

Details

For C5.0 rule-based models, the model fit may contain less boosting iterations than the number
requested. Printing the object will show how many were used due to early stopping. This can be
change using an option in C50::C5.0Control(). Beware that the number of iterations requested
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Value

A tibble with one row for each row of new_data. Multiple predictions are contained in a list
column called .pred. That column has the standard parsnip prediction column names as well as
the column with the tuning parameter values.

rule_fit General Interface for RuleFit Models

Description

rule_fit() is a way to generate a specification of a model before fitting. The main arguments for
the model are:

• mtry: The number of predictors that will be randomly sampled at each split when creating the
tree models.

• trees: The number of trees contained in the ensemble.

• min_n: The minimum number of data points in a node that are required for the node to be split
further.

• tree_depth: The maximum depth of the tree (i.e. number of splits).

• learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.

• loss_reduction: The reduction in the loss function required to split further.

• sample_size: The amount of data exposed to the fitting routine.

These arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using parsnip::set_engine(). If left to their defaults here (NULL), the
values are taken from the underlying model functions. If parameters need to be modified, update()
can be used in lieu of recreating the object from scratch.

Usage

rule_fit(
mode = "unknown",
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
penalty = NULL

)

## S3 method for class 'rule_fit'
update(
object,
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parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
penalty = NULL,
fresh = FALSE,
...

)

Arguments

mode A single character string for the type of model. Possible values for this model
are "unknown", "regression", or "classification".

mtry An number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models.

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration.

loss_reduction A number for the reduction in the loss function required to split further .

sample_size An number for the number (or proportion) of data that is exposed to the fitting
routine.

penalty L1 regularization parameter.

object A rule_fit model specification.

parameters A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

fresh A logical for whether the arguments should be modified in-place or replaced
wholesale.

... Not used for update().

Details

The RuleFit model creates a regression model of rules in two stages. The first stage uses a tree-based
model that is used to generate a set of rules that can be filtered, modified, and simplified. These
rules are then added as predictors to a regularized generalized linear model that can also conduct
feature selection during model training.

For the xrf engine, the xgboost package is used to create the rule set that is then added to a glmnet
model.
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The only available engine is "xrf". Not that, per the documentation in ?xrf, transformations of the
response variable are not supported. To use these with rule_fit(), we recommend using a recipe
instead of the formula method.

Value

An updated parsnip model specification.

References

Friedman, J. H., and Popescu, B. E. (2008). "Predictive learning via rule ensembles." The Annals
ofApplied Statistics, 2(3), 916-954.

See Also

parsnip::fit(), parsnip::fit_xy(), xrf::xrf.formula()

Examples

rule_fit()
# Parameters can be represented by a placeholder:
rule_fit(trees = 7)

# ------------------------------------------------------------------------------

set.seed(6907)
rule_fit_rules <-

rule_fit(trees = 3, penalty = 0.1) %>%
set_mode("classification") %>%
fit(Species ~ ., data = iris)

# ------------------------------------------------------------------------------

model <- rule_fit(trees = 10, min_n = 2)
model
update(model, trees = 1)
update(model, trees = 1, fresh = TRUE)
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