Package 'rrcov3way'

January 17, 2020
Date 2020-01-14
VersionNote Released 0.1-10 on 2017-06-22 on CRAN
Title Robust Methods for Multiway Data Analysis, Applicable also for Compositional Data
Version 0.1-18
Author
Valentin Todorov <valentin. todorov@chello. at>, Maria Anna Di Palma <madipalma@unior. it> and Michele Gallo
{ }
Description Provides methods for multiway data analysis by means of Parafac and Tucker 3 models. Robust versions (Engelen and Hubert (2011) doi:10.1016/j.aca.2011.04.043) and versions for compositional data are also provided (Gallo (2015) doi:10.1080/03610926.2013.798664, Di Palma et al. (2018) <doi:10.1080/02664763.2017.1381669
Maintainer Valentin Todorov valentin.todorov@chello.at
Depends rrcov
Imports robustbase, nnls
LazyLoad no
LazyData no
License GPL (>=2)
NeedsCompilation no
RoxygenNote 6.1.1
Repository CRAN
Date/Publication 2020-01-17 00:00:02 UTC

R topics documented:

amino . 2
Arno . 3
congruence . 5
cp_als . 6
do3Postprocess . 8
do3Rotate . 10
do3Scale 10
elind 12
girls 13
Kojima 15
krp 16
mtrace 17
orth 18
orthmax2 19
Parafac 20
permute 22
plot.tucker3 23
toArray 25
Tucker3 26
ulabor 29
unfold 30
va3way 31
waterquality 33
Index 35

amino

Amino acids fluorescence data.

Description

A data set containing five simple laboratory-made samples where each sample contains different amounts of tyrosine, tryptophan and phenylalanine dissolved in phosphate buffered water. The samples were measured by fluorescence (excitation $240-300 \mathrm{~nm}$, emission $250-450 \mathrm{~nm}, 1 \mathrm{~nm}$ intervals) on a PE LS50B spectrofluorometer.

Usage

data(amino)

Format

A three-way array with dimension $5 \times 201 \times 61$. The first dimension refers to the 5 samples. The second dimension refers to the emission measurements ($250-450 \mathrm{~nm}, 1 \mathrm{~nm}$ intervals). The third dimension refers to the excitation (240-300 nm, 1nm intervals).
@source http://www.models.life.ku.dk/Amino_Acid_fluo.
@references Bro, R, PARAFAC: Tutorial and applications, Chemometrics and Intelligent Laboratory Systems, 1997, 38, 149-171 Bro, R, Multi-way Analysis in the Food Industry. Models, Algorithms, and Applications. 1998. Ph.D. Thesis, University of Amsterdam (NL) \& Royal Veterinary and Agricultural University (DK). Kiers, H.A.L. (1998) A three-step algorithm for Candecomp/Parafac analysis of large data sets with multicollinearity, Journal of Chemometrics, 12, 155-171.

Examples

```
## Not run:
data(amino)
## Plotting Emission spectra
oldpar <- par(mfrow=c(2,1))
matplot(t(amino[,,1]), type="l",
    xlab="Wavelength/nm", ylab="Intensity",
    main="Fluorescence emission spectra")
matplot(t(amino[,,5]), type="l",
        xlab="Wavelength/nm", ylab="Intensity",
        main="Fluorescence emission spectra")
par <- oldpar
## Plotting excitation spectra
oldpar <- par(mfrow=c(2,1))
matplot(t(amino[,1,]), type="l",
        xlab="Wavelength/nm", ylab="Intensity",
        main="Fluorescence excitation spectra")
matplot(t(amino[,30,]), type="l",
        xlab="Wavelength/nm", ylab="Intensity",
        main="Fluorescence excitation spectra")
par <- oldpar
## End(Not run)
```

Arno
Chemical composition of water in the main stream of Arno river

Description

Chemical composition of water in the main stream of Arno river.

Usage

data("Arno")

Format

A three-way array with dimension $23 \times 11 \times 4$. The first dimension refers to 23 distances from the spring. The second dimension refers to the 11 chemical compositions. The third dimension refers to the time of collection - four occasions.

Details

The Arno data example was used in Gallo and Buccinati (2013) to illustrate a particular version of the Tucker model, known as the weighted principal component analysis. The Tucker3 results are usually given in the form of tables or plots and in this work for the representation of the Tucker3
results of logratio data, is proposed to use one-mode plots, clr-joint biplots (Gallo, 2015), and trajectory plots.

Source

Nisi B., Vaselli O., Buccianti A., Minissale A., Delgado-Huertas A., Tassi F., Montegrossi G. (2008). Geochemical and isotopic investigation of the dissolved load in the running waters from the Arno valley: evaluation of the natural and anthropogenic input. In Memorie Descrittive della Carta Geologica d'Italia, Nisi (eds.), 79: 1-91.

Nisi B., Buccianti A., Vaselli O., Perini G., Tassi F., Minissale A., Montegrossi G. (2008) Hydrogeochemistry and strontium isotopes in the Arno river basin (Tuscany, Italy): Constraints on natural controls by statistical modeling. Journal of Hydrology 360: 166-183.

References

Gallo M. and Buccianti A. (2013). Weighted principal component analysis for compositional data: application example for the water chemistry of the Arno river (Tuscany, central Italy), Environmetrics, 24(4):269-277.
Gallo M. (2015). Tucker3 model for compositional data. Communications in Statistics-Theory and Methods, 44(21):4441-4453.

Examples

```
data(Arno)
dim(Arno) # [1] 23 11 4
dim(Arno[,,1]) # [1] 23 11
rownames(Arno[,,1]) # the 23 distances from the spring
colnames(Arno[,,1]) # the 11 chemical compositions
dim(Arno[,1,]) # [1] 23 4
colnames(Arno[,1,]) # the four occasions
res <- Tucker3(Arno, robust=FALSE, coda.transform="ilr")
res
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", main="Trajectory biplot")
```


Description

The function congruence (x, y) computes the Tucker's congruence (phi) coefficients among two sets of factors.

Usage

congruence ($\mathrm{x}, \mathrm{y}=\mathrm{NULL}$)

Arguments

$x \quad$ A vector or matrix of factor loadings.
$y \quad$ A vector or matrix of factor loadings (may be NULL).

Details

Find the Tucker's coefficient of congruence between two sets of factor loadings. Factor congruences are the cosines of pairs of vectors defined by the loadings matrix and based at the origin. Thus, for loadings that differ only by a scaler (e.g. the size of the eigen value), the factor congruences will be 1.

For factor loading vectors of X and Y the measure of factor congruence, phi, is

$$
\phi=\frac{\sum X Y}{\sqrt{\sum\left(X^{2}\right) \sum\left(Y^{2}\right)}}
$$

If $y=N U L L$ and x is a numeric matrix, the congruence coefficients between the columns of the matrix x are returned. The result is a symmetric matrix with ones on the diagonal. If two matrices are provided, they must have the same size and the result is a square matrix containing the congruence coefficients between all pairs of columns of the two matrices.

Value

A matrix of factor congruences.

Author(s)

Valentin Todorov, valentin.todorov@chello.at

References

L.R Tucker (1951). A method for synthesis of factor analysis studies. Personnel Research Section Report No. 984. Department of the Army, Washington, DC.

Examples

```
X <- getLoadings(PcaClassic(delivery))
Y <- getLoadings(PcaHubert(delivery, k=3))
round(congruence(X,Y),3)
```

cp_als
Alternating Least Squares (ALS) for Candecomp/Parafac (CP)

Description

Alternating Least Squares (ALS) algorithm with optional constraints for the minimization of the Candecomp/Parafac (CP) loss function.

Usage

cp_als(X, n, m, p, ncomp, const = "none", start = "random", conv $=1 \mathrm{e}-06$, maxit $=10000$, trace $=$ FALSE)

Arguments

$X \quad$ A three-way array or a matrix. If X is a matrix (matricised threeway array), n, m and p must be given and are the number of $\mathrm{A}-$, B- and C-mode entities respectively
$\mathrm{n} \quad$ Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
ncomp Number of components to extract
const Optional constraints for each mode. Can be a three element character vector or a single character, one of "none" for no constraints (default), "orth" for orthogonality constraints, "nonneg" for nonnegativity constraints or "zerocor" for zero correlation between the extracted factors. For example, const="orth" means orthogonality constraints for all modes, while const=c("orth", "none", "none") sets the orthogonality constraint only for mode A.
start Initial values for the A, B and C components. Can be "svd" for starting point of the algorithm from SVD's, "random" for random starting point (orthonormalized component matrices or nonnegative matrices in case of nonnegativity constraint), or a list containing user specified components.
conv Convergence criterion, default is conv=1e-6.
maxit Maximum number of iterations, default is maxit=10000.
trace Logical, provide trace output.

Value

The result of the decomposition as a list with the following elements:

- A Component matrix for the A-mode
- B Component matrix for the B-mode
- C Component matrix for the C-mode
- f Value of the loss function
- fp Fit value expressed as a percentage
- iter Number of iterations
- tripcos Minimal triple cosine between two components across the three component matrices, used to inspect degeneracy
- mintripcos Minimal triple cosine during the iterative algorithm observed at every 10 iterations, used to inspect degeneracy
- ftiter Matrix containing in each row the function value and the minimal triple cosine at every 10 iterations
- const Optional constraints (same as the input parameter const)

Note

The argument const should be a three element character vector. Set const[j]="none" for unconstrained update in j-th mode weight matrix (the default), const[j]="orth" for orthogonal update in j-th mode weight matrix, const[j]="nonneg" for non-negative constraint on j-th mode or const[j]="zerocor" for zero correlation between the extracted factors. The default is unconstrained update for all modes.
The loss function to be minimized is $\operatorname{sum}(k)\left\|X(k)-A D(k) B^{\prime}\right\|^{2}$, where $D(k)$ is a diagonal matrix holding the k -th row of C .

Author(s)

Valentin Todorov, valentin.todorov@chello.at

References

Harshman, R.A. (1970). Foundations of Parafac procedure: models and conditions for an "explanatory" multi-mode factor analysis. UCLA Working Papers in Phonetics, 16: 1-84.
Harshman, R. A., \& Lundy, M. E. (1994). PARAFAC: Parallel factor analysis. Computational Statistics and Data Analysis, 18, 39-72.
Lawson CL, Hanson RJ (1974). Solving Least Squares Problems. Prentice Hall, Englewood Cliffs, NJ.

Examples

```
## Example with the OECD data
    data(elind)
    dim(elind)
```

```
res <- cp_als(elind, ncomp=3)
res$fp
res$fp
res$iter
res <- cp_als(elind, ncomp=3, const="nonneg")
res$A
```

do3Postprocess Postprocessing: renormalization, reflection and reordering; access to some of the components of the model.

Description

The estimated model will be renormalized, reflected (change of sign) or the components will be reordered. Functions that provide access to some components of the model: coordinates, weights.

Usage

\#\# S3 method for class 'tucker3'
do3Postprocess(x, reflectA, reflectB, reflectC, reorderA, reorderB, reorderC, ...)
\#\# S3 method for class 'parafac'
do3Postprocess(x, reflectA, reflectB, reflectC, reorder, ...)
\#\# S3 method for class 'parafac'
coordinates(x, mode = c("A", "B", "C"), type = c("normalized", "unit", "principal"), ...)
\#\# S3 method for class 'tucker3'
coordinates(x, mode = c("A", "B", "C"), type = c("normalized", "unit", "principal"), ...)
\#\# S3 method for class 'parafac'
weights(object, ...)
\#\# S3 method for class 'tucker3'
weights(object, mode = c("A", "B", "C"), ...)
\#\# S3 method for class 'parafac'
reflect(x, mode = c("A", "B", "C"), rsign = 1, ...)
\#\# S3 method for class 'tucker3'
reflect (x, mode $=c(" A ", " B ", " C "), r s i g n=1, \ldots)$

Arguments

x
object
reflectA
reflectB How to handle the signs of the components of mode B - can be a single number or a vector with length of the number of components of B
reflectC How to handle the signs of the components of mode C - can be a single number or a vector with length of the number of components of C

reorder	How to reorder the components of a Parafac solution - a vector with length of the number of components
reorderA	How to reorder the components of mode A - a vector with length of the number of components of A giving the new order
reorderB	How to reorder the components of mode B - a vector with length of the number of components of B giving the new order
reorderC	How to reorder the components of mode C - a vector with length of the number of components of C giving the new order
mode	For which mode to provide the coordinates or weights. Default is mode A
type	Which type of coordinates to provide. Default is "normalized"
rsign	How to change the sign of the components of the given mode. Can be a single number or a vector with length of the number of components of the correspond- ing mode.
\ldots	Potential further arguments passed to lower level functions.

Value

The output value of do3Postproces() is the postprocessed solution, Parafac or Tucker3. The output of weights() and coordinates() are the respoective values.

Author(s)

Valentin Todorov <valentin. todorov@chello. at> and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it

References

REFERENCES

Examples

```
data(elind)
x1 <- do3Scale(elind, center=TRUE, scale=TRUE)
cp <- Parafac(x1, ncomp=3, const=c("orth", "none", "none"))
cp$B
cp1 <- do3Postprocess(cp, reflectB=-1) # change the sign of all components of B
cp$B
weights(cp1)
coordinates(cp1)
coordinates(cp1, type="principal")
```


Description

Computes varimax rotation of the core and component matrix of a Tucker3 model to simple structure.

Usage

```
do3Rotate(x, ...)
\#\# S3 method for class 'tucker3'
do3Rotate(x, weights \(=c(0,0,0)\), rotate \(=c(" A "\),
    "B", "C"), ...)
```


Arguments

x
... Potential further arguments passed to called functions.
weights A numeric vector with length 3: relative weights (greater or equal 0) for the simplicity of the compoent matrices A, B and C respectively.
rotate Within which mode to rotate the Tucker3 solution: rotate="A" means to rotate the component matrix A of mode A; rotate $=c(" A ", " B$ ") means to rotate the component matrices A and B of modes A and B respectively. Default is to rotate all modes, i.e. rotate $=c(" A ", " B ", ~ " C ")$.

Value

A list including the following components:

Author(s)

Valentin Todorov, <valentin. todorov@chello.at>

```
    do3Scale Centering and scaling
```


Description

Centering and/or normalization of a three way array or a matricized array across one mode (modes indicated by "A", "B" or "C").

Usage

```
    ## S3 method for class 'tucker3'
do3Scale(x, renorm.mode = c("A", "B", "C"), ...)
    ## S3 method for class 'parafac'
do3Scale(x, renorm.mode = c("A", "B", "C"), ...)
    ## Default S3 method:
do3Scale(x, center = FALSE, scale = FALSE,
        center.mode = c("A", "B", "C", "AB", "AC", "BC", "ABC"),
        scale.mode = c("B", "A", "C"),
        only.data=TRUE, ...)
```


Arguments

x
center Whether and how to center the data. Can be NULL, logical TRUE or FALSE, function or a numeric vector with length corresponding to the number of columns in the corresponding mode. If center=TRUE, mean () is used; default is center=FALSE.
scale Whether and how to scale the data. Can be NULL, logical TRUE or FALSE, function or a numeric vector with length corresponding to the number of columns in the corresponding mode. If scale=TRUE, $\operatorname{sd}()$ is used; default is scale=FALSE.
center.mode Across which mode to center. Default is center.mode="A"
scale.mode Within which mode to scale. Default is scale.mode="B"
renorm.mode Within which mode to renormalize a Parafac or Tucker3 solution. See in Details how this is performed for the different models. Default is renorm.mode="A"
only.data Whether to return only the centered/scaled data or also the center and the scale themselves. Default is only.data=TRUE
$\ldots \quad$ potential further arguments passed to lower level functions.

Value

A named list, consisting of the centered and/or scaled data, a center vector, a scale vector and the mode in which the data were centered/scaled.

Author(s)

Valentin Todorov <valentin. todorov@chello. at> and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it

References

Kiers, H.A.L. (2000).Towards a standardizrd notationand terminology in multiway analysis. Journal of Chemometrics, 14:105-122.

Kroonenberg, P.M. (1983).Three-mode principal component analysis: Theory and applications (Vol. 2), DSWO press.

Examples

data(elind)
(x1 <- do3Scale(elind, center=TRUE, scale=TRUE))
(x2 <- do3Scale(elind, center=TRUE, scale=TRUE, center.mode="B"))
(x3 <- do3Scale(elind, center=TRUE, scale=TRUE, center.mode="C", scale.mode="C"))
elind OECD Electronics Industries Data

Description

OECD publishes comparative statistics of the export size of various sectors of the electronics industry:

1. information science,
2. telecommunication products,
3. radio and television equipment,
4. components and parts,
5. electromedical equipment, and
6. scientific equipment.

The data consist of specialisation indices of electronics industries of 23 European countries for the years 1973-1979. The specialization index is defined as the proportion of the monetary value of an electronic industry compared to the total export value of manufactured goods of a country compared to the similar proportion for the world as a whole (see D'Ambra, 1985, p. 249 and Kroonenberg, 2008, p.282).

Usage

data(elind)

Format

A three-way array with dimension $23 \times 6 \times 7$. The first dimension refers to 23 countries. The second dimension refers to the six indices of electronics industries. The third dimension refers to the years in the period 1978-1985.

Source

The data set is available from Pieter Kroonenberg's web site at: http://three-mode. leidenuniv. nl/data/electronicindustriesinfo.htm

References

D'Ambra, L. (1985). Alcune estensione dell'analisi in componenti principali per lo studio dei sistemi evolutivi. Uno studio sul commercio internazionale dell'elettronica. In: Ricerche Economiche. 2. del Dipartimento di Scienze Economiche Ca’Foscari, Venezia.

Kroonenberg PM (2008). Applied multiway data analysis. Wiley series in probability and statistics. John Wiley and Sons, Hoboken, NJ, p. 282.

Examples

```
data(elind)
res <- Parafac(elind, robust=FALSE, coda.transform="none")
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Per-component plot
plot(res, which="percomp", comp=1, main="Per component plot")
## all components plot
plot(res, which="allcomp", main="All components plot", legend.position="topright")
```

girls Sempe girls' growth curves data

Description

Thirty girls selected from a French auxiological study (1953-1975) to get insight into the physical growth patterns of children from ages four to fifteen, Sempe (1987). They were measured yearly between the ages 4 and 15 on the following eight variables:

1. weight $=$ Weight
2. length $=$ Length
3. crump $=$ Crown-rump length
4. head = Head circumference
5. chest $=$ Chest circumference
6. $\operatorname{arm}=$ Arm
7. calf $=$ Calf
8. pelvis $=$ Pelvis

The data set is three way data array of size 30 (girls) x 8 (variables) x 12 (years).

Usage

```
data("girls")
```


Format

The format is a three way array with the following dimensions: The first dimension refers to 30 girls. The second dimension refers to the eight variables measured on the girls. The third dimension refers to the years -4 to 15 .

Details

The data are generally preprocessed as standard multiway profile data. For details see Kroonenberg (2008), Chapters 6 and 15.

Source

The data sets are available from Pieter Kroonenberg's web site at: http://www.leidenuniv.nl/ fsw/three-mode/data/girlsgrowthcurvesinfo.htm

References

Sempe, M. (1987). Multivariate and longitudinal data on growing children: Presentation of the French auxiological survey. In J.Janssen et al. Data analysis. The Ins and Outs of solving real problems (pp. 3-6). New York: Plenum Press.
Kroonenberg (2008). Applied multiway data analysis. Wiley series in probability and statistics. Hoboken NJ, Wiley.

Examples

```
data(girls)
str(girls)
## Center the data in mode A and find the "average girl"
center.girls <- do3Scale(girls, center=TRUE, only.data=FALSE)
X <- center.girls$x
center <- center.girls$center
average.girl <- as.data.frame(matrix(center, ncol=8, byrow=TRUE))
dimnames(average.girl) <- list(dimnames(X)[[3]], dimnames(X)[[2]])
## Divide these variables by 10 to reduce their range
average.girl$weight <- average.girl$weight/10
average.girl$length <- average.girl$length/10
average.girl$crrump <- average.girl$crrump/10
average.girl
p <- ncol(average.girl)
plot(rownames(average.girl), average.girl[,1], ylim=c(min(average.girl),
    max(average.girl)), type="n", xlab="Age", ylab="")
for(i in 1: p)
{
    lines(rownames(average.girl), average.girl[,i], lty=i, col=i)
    points(rownames(average.girl), average.girl[,i], pch=i, col=i)
}
legend <- colnames(average.girl)
legend[1] <- paste0(legend[1], "*")
legend[2] <- paste0(legend[3], "*")
```

legend[3] <- paste0(legend[4], "*")
legend("topleft", legend=legend, col=1:p, lty=1:p, pch=1:p)
Kojima Parental behaviour in Japan

Description

The data are drawn from a study (Kojima, 1975) of the perception of parental behaviour by parents and their children. Two data sets, boys and girls are available as Kojima.boys and Kojima.girls.

- Boys data were analysed in Kroonenberg (2008)
- Girls data were analysed in Kroonenberg, Harshman, \& Murakami (2009).

Usage

data(Kojima)

Format

Both data sets are three dimensional arrays:

- boys: $150 \times 18 \times 4$
- girls: 153 x 18 x 4

The rows (1st mode) are 150 Japanese sons/153 Japanese daughters. The columns (2nd mode) are 18 scales (Acceptance, Child centerness, Possesiveness, etc.). The slices (3rd mode) are the 4 judgements (See Details for explanation).

Details

The boys data are ratings expressing the judgments of parents with respect to their own behaviour toward their sons, and the judgments of their sons with respect to their parents. Thus, there are four conditions:

- Father-Own behaviour (F-F),
- Mother-Own behaviour (M-M),
- Son-Father (B-F),
- Son-Mother (B-M).

The judgments involved 150 middle-class Japanese eighth-grade boys on the 18 subscales of the inventory. Thus, the data set consists of a 150 (Sons) x 18 (scales) x 4 (judgment combinations) data array.

Similarly, the girls data are ratings expressing the judgments of parents with respect to their own behaviour toward their daughters, and the judgments of their daughters with respect to their parents. Thus, there are four conditions:

- Father-Own behaviour (F-F),
- Mother-Own behaviour (M-M),
- Daughter-Father (G-F),
- Daughter-Mother (G-M).

The judgments involved 153 middle-class Japanese eighth-grade girls on the 18 subscales of the inventory. Thus, the data set consists of a 153 (Daughters) x 18 (scales) x 4 (judgment combinations) data array.
Preprocessing Given that the data are three-way profile data they are treated in the standard manner: centering per occasion-variable combination and by normalising the data after centring per lateral slice i.e. per scale over all sons/daughters x judges combinations. For details see Kroonenberg (2008), Chapter 13.

Source

The data sets are available from the Pieter Kroonenberg's web site at http://three-mode. leidenuniv. nl/.

References

Kojima, H. (1975). Inter-battery factor analysis of parents' and children's reports of parental behavior. Japanese Psychological Bulletin, 17, 33-48 (in Japanese).
Kroonenberg, P. M. (2008). Applied multiway data analysis. Wiley series in probability and statistics. Wiley, Hoboken NJ.
Kroonenberg, P. M., Harshman, R. A, \& Murakami, T. (2009). Analysing three-way profile data using the Parafac and Tucker3 models illustrated with views on parenting. Applied Multivariate Research, 13:5-41. PDF available at: http://www.phaenex.uwindsor.ca/ojs/leddy/index.php/AMR/article/viewFile/2833/2271

Examples

```
data(Kojima)
    dim(Kojima.boys)
    dim(Kojima.girls)
```


Description

The function $\operatorname{krp}(A, B)$ returns the Khatri-Rao product of two matrices A and B, of dimensions I x K and $\mathrm{J} \times \mathrm{K}$ respectively. The result is an IJ x K matrix formed by the matching column-wise Kronecker products, i.e. the k-th column of the Khatri-Rao product is defined as kronecker $(A[, k], B[, k])$.

Usage

$\operatorname{krp}(A, B)$

Arguments

A
Matrix of order I x K.
B
Matrix of order $\mathbf{J} \times \mathrm{K}$.

Value

The IJ x K matrix of columnwise Kronecker products.

Author(s)

Valentin Todorov, valentin.todorov@chello.at

References

Khatri, C. G., and Rao, C. Radhakrishna (1968). Solutions to Some Functional Equations and Their Applications to Characterization of Probability Distributions. Sankhya: Indian J. Statistics, Series A 30, 167-180.

Smilde, A., Bro R. and Gelardi, P. (2004). Multi-way Analysis: Applications in Chemical Sciences, Chichester:Wiley

Examples

a <- matrix(1:12, 3, 4)
b <- diag(1:4)
krp(a, b)
krp(b, a)
mtrace \quad The trace of a square numeric matrix

Description

Computes the trace of a square numeric matrix. If A is not numeric and square matrix, the function terminates with an error message.

Usage

mtrace (A)

Arguments

Value

the sum of the values on the diagonal of the matrix A, i.e. $\operatorname{sum}(\operatorname{diag}(A))$.

Author(s)

Valentin Todorov, valentin.todorov@chello.at

Examples

```
(a <- matrix(c(5, 2,3, 4,-3,7, 4,1,2), ncol=3))
(b <- matrix(c(1,0,1, 0,1,2, 1,0,3), ncol=3))
```

mtrace (a)
mtrace(b)
\#\# $\operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr}(\mathrm{A})+\operatorname{tr}(\mathrm{B})$
all.equal (mtrace(a) + mtrace(b), mtrace(a+b))
\#\# $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\prime}\right)$
all.equal(mtrace(a), mtrace(t(a)))
\#\# $\operatorname{tr}(a l p h A)=a l p h a t r(A)$
alpha <- 0.5
all.equal(mtrace(alpha*a), alpha*mtrace(a))
\#\# $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
all.equal(mtrace(a \%*\% b), mtrace(b \%*\% a))
\#\# $\quad \operatorname{tr}(A)=\operatorname{tr}(B A B-1)$
all.equal(mtrace(a), mtrace(b \%*\% a \%*\% solve(b)))
orth

Orthonormal basis for the column space of matrix

Description

Computes orthonormal basis for the column space of matrix (range space, image of a matrix)

Usage

orth(A)

Arguments

A A numeric matrix.

Value

B orthonormal basis for the column space of A.
orthmax 2

Examples

```
hilbert <- function(n) { i <- seq_len(n); 1/outer(i - 1L, i, "+") }
H12 <- hilbert(12)
rankMM(H12) # -> 11 - numerically more realistic
rankMM(H12, tol=0) # -> 12
B <- orth(H12)
t(B) %*% B
## pracma::subspace(H12, B)
```

orthmax2 Orthomax Rotation

Description

Performs simultaneous orthomax rotation of two matrices (using one rotation matrix).

Usage

orthmax2(A1, A2, gamma1, gamma2, conv = 1e-06)

Arguments

A1 A numeric matrix.
A2 A numeric matrix, with the same number of columns as A1
gamma1 orthmax parameter for A1
gamma2 orthmax parameter for A1
conv Convergence criterion (default is conv=1e-6)

Details

The function to be maximized is $\operatorname{sum}\left(\left(A 1^{\wedge} 2\right)-1 / \operatorname{nrow}(A 1) * \operatorname{gamma} 1 * \operatorname{sum}\left(\left(\operatorname{sum}\left(A 1^{\wedge} 2\right)\right)^{\wedge} 2\right)\right)^{\wedge} 2$ $+\operatorname{sum}\left(\left(A 2^{\wedge} 2\right)-1 / \operatorname{nrow}(A 2) * \operatorname{gamma} 2 * \operatorname{sum}\left(\left(\operatorname{sum}\left(A 2^{\wedge} 2\right)\right)^{\wedge} 2\right)\right)^{\wedge} 2$.

Value

A list with the following elements will be returned:

- B1 rotated version of A1
- B2 rotated version of A2
- T rotation matrix
- f orthomax function value

Parafac Robust Parafac estimator for compositional data

Description

Compute a robust Parafac model for compositional data

Usage

Parafac (X, ncomp $=2$, center $=$ FALSE, center.mode = c("A", "B", "C", "AB", "AC", "BC", "ABC"), scale=FALSE, scale.mode=c("B", "A", "C"), const="none", conv = 1e-06, start="svd", maxit=10000, robust $=$ FALSE, coda.transform=c("none", "ilr"),
ncomp.rpca $=0$, alpha $=0.75$, robiter $=100$, crit=0.975, trace $=$ FALSE)

Arguments

x	3-way array of data
ncomp	Number of components
center	Whether to center the data
center.mode	If centering the data, on which mode to do this
scale	Whether to scale the data
scale.mode	If scaling the data, on which mode to do this
const	Optional constraints for each mode. Can be a three element character vector or a single character, one of "none" for no constraints (default), "orth" for orthogonality constraints, "nonneg" for nonnegativity constraints or "zerocor" for zero correlation between the extracted factors. For example, const="orth" means orthogonality constraints for all modes, while const=c ("orth", "none", "none") sets the orthogonality constraint only for mode A.
conv	Convergence criterion, defaults to $1 \mathrm{e}-6$
start	Initial values for the A, B and C components. Can be "svd" for starting point of the algorithm from SVD's, "random" for random starting point (orthonormalized component matrices or nonnegative matrices in case of nonnegativity constraint), or a list containing user specified components.
maxit	Maximum number of iterations, default is maxit=10000.
robust	Whether to apply a robust estimation
coda.transform	If the data are a composition, use an ilr transformation. Default is non-compositional data, i.e. coda.transform="none"
ncomp.rpca	Number of components for robust PCA
alpha	Measures the fraction of outliers the algorithm should resist. Allowed values are between 0.5 and 1 and the default is 0.75
robiter	Maximal number of iterations for robust estimation
crit	Cut-off for identifying outliers, default crit=0.975
trace	Logical, provide trace output

Details

The function can compute four versions of the Parafac model:

1. Classical Parafac,
2. Parafac for compositional data,
3. Robust Parafac and
4. Robust Parafac for compositional data.

This is controlled though the paramters robust=TRUE and coda.transform=c("none", "ilr").

Value

An object of class "parafac" which is basically a list with components:

fit	Fit value
fp	Fit percentage
A	Orthogonal loading matrix for the A-mode
B	Orthogonal loading matrix for the A-mode
Bclr	Orthogonal loading matrix for the B-mode, clr transformed. Available only if coda.transform="ilr", otherwise NULL
C	Orthogonal loading matrix for the C-mode
Xhat	Robust reconstructed array
const	Optional constraints (same as the input parameter)
iter	Number of iterations
RD	Residual distances
flag	The observations whose residual distance RD is larger than cutoff.RD can be considered as outliers and receive a flag equal to zero. The regular observations receive a flag 1
robust	The paramater robust, whether robust method is used or not
coda.tr	The paramater coda. transform, whether ilr transformation is used or not

Author(s)

Valentin Todorov <valentin.todorov@chello. at> and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it

References

Harshman, R.A. (1970). Foundations of Parafac procedure: models and conditions for an "explanatory" multi-mode factor analysis. UCLA Working Papers in Phonetics, 16: 1-84.
Engelen, S., Frosch, S. and Jorgensen, B.M. (2009). A fully robust PARAFAC method analyzing fluorescence data. Journal of Chemometrics, 23(3): 124-131.
Kroonenberg, P.M. (1983).Three-mode principal component analysis: Theory and applications (Vol. 2), DSWO press.

Rousseeuw, P.J. and Driessen, K.V. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3): 212-223.
Egozcue J.J., Pawlowsky-Glahn V., Mateu-Figueras G. and Barcel'o-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3): 279-300

Examples

```
#############
##
## Example with the UNIDO Manufacturing value added data
data(va3way)
dim(va3way)
## Treat quickly and dirty the zeros in the data set (if any)
va3way[va3way==0] <- 0.001
##
res <- Parafac(va3way)
res
print(res$fit)
print(res$A)
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
data(ulabor)
res <- Parafac(ulabor, robust=TRUE, coda.transform="ilr")
res
## Plot Orthonormalized A-mode component plot
plot(res, which="comp", mode="A", main="Component plot, A-mode")
## Plot Orthonormalized B-mode component plot
plot(res, which="comp", mode="B", main="Component plot, B-mode")
## Plot Orthonormalized B-mode component plot
plot(res, which="comp", mode="C", main="Component plot, C-mode")
```

permute \quad Permutation of a matricized array

Description

Permutes the matricized $(n \times m \times p)$ array X to the matricized array Y of order $(m \times p \times n)$.

Usage

```
permute(X,n,m,p)
```


Arguments

X
$n \quad$ Number of A-mode entities of the array X
$m \quad$ Number of B-mode entities of the array X
p \quad Number of C-mode entities of the array X

Value

Y Matrix containing the permuted matricized array

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14:105-122.

Examples

```
X <- array (1:24, c(4,3,2))
dim(X)
## matricize the array
##matricized X with the A-mode entities in its rows
Xa <- unfold(X)
dim(Xa)
Xa
## matricized X with the B-mode entities in its rows
Xb <- permute(Xa, 4, 3, 2)
dim(Xb)
Xb
## matricized X with the C-mode entities in its rows
Xc <- permute(Xb, 3, 2, 4)
dim(Xc)
Xc
```

```
plot.tucker3 Plot a tucker3 object
```


Description

Different plots for the results of Tucker3 analysis, stored in a tucker 3 object, see Details.

Usage

\#\# S3 method for class 'tucker3'
plot(x, which = c("dd", "comp", "allcomp", "jbplot",
"tjplot", "all"), ask = (which == "all" \&\& dev.interactive(TRUE)), id.n, ...)
\#\# S3 method for class 'parafac'
plot(x, which = c("dd", "comp", "percomp", "allcomp",
"all"), ask = (which == "all" \&\& dev.interactive(TRUE)), id.n, ...)

Arguments

x
which
ask Generates all plots in interactive mode
id.n Number of items to highlight
... Other parameters to be passed to the lower level functions.

A tucker3 object

Which plot to select (see Details). Default is dd, Distance-distance plot.

Details

Different plots for a tucker3 or parafac object will be produced. Use the parameter which to select which plot to produce:
dd Distance-distance plot
comp Paired components plot
percomp Per-component plot
allcomp All components plot
jbplot Joint biplot
tjplot Trajectory plot

Author(s)

Valentin Todorov <valentin. todorov@chello. at> and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it

References

Kiers, H.A. (2000).Some procedures for displaying results from three-way methods. Journal of Chemometrics. 14(3): 151-170.
Kroonenberg, P.M. (1983).Three-mode principal component analysis: Theory and applications (Vol. 2), DSWO press.

Examples

```
#############
##
## Example with the UNIDO Manufacturing value added data
data(va3way)
```

```
dim(va3way)
## Treat quickly and dirty the zeros in the data set (if any)
va3way[va3way==0] <- 0.001
##
res <- Tucker3(va3way)
res
print(res$fit)
print(res$A)
## Print the core matrix
print(res$GA)
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", choices=c(1:4), arrows=FALSE, main="Trajectory biplot")
```

toArray Matrix to array conversion

Description

Restore an array from its matricization with all the frontal slices of the array next to each other (mode="A")

Usage

toArray $(x, n, m, r, m o d e=c(" A ", " B ", " C "))$

Arguments

x
n
m
number of C-mode elements
mode in which mode is the matricized array

Value

Three way array

Author(s)

Valentin Todorov <valentin. todorov@chello. at> and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics, 14: 105-122.

Examples

data(elind)
di <- dim(elind)
toArray(unfold(elind), di[1], di[2], di[3])

Tucker3

Robust Tucker3 estimator for compositional data

Description

Compute a robust Tucker3 model for compositional data

Usage

Tucker3(X, $P=2, Q=2, R=2$, conv $=1 \mathrm{e}-06$,
center $=$ FALSE, center.mode $=c(" A ", ~ " B ", ~ " C ", ~ " A B ", ~ " A C ", ~ " B C ", ~ " A B C "), ~$
scale $=$ FALSE, scale.mode $=c(" B ", " A ", " C ")$,
robust = FALSE, coda.transform=c("none", "ilr"),
ncomp.rpca $=0$, alpha $=0.75$,
maxiter=100, crit=0.975, trace $=$ FALSE)

Arguments

X	3-way array of data
P	Number of A-mode components
Q	Number of B-mode components
R	Number of C-mode components
conv	Convergence criterion, defaults to 1e-6
center	Whether to center the data
center.mode	If scaling the data, on which mode to do this
scale	Whether to scale the data

\(\left.\begin{array}{ll}scale.mode \& If centering the data, on which mode to do this

robust \& Whether to apply a robust estimation\end{array}\right\}\)| coda.transform | If the data are a composition, use an ilr transformation. Default is non-compositional
 data, i.e. coda. transform="none" |
| :--- | :--- |
| ncomp.rpca | Number of components for robust PCA |
| alpha | Measures the fraction of outliers the algorithm should resist. Allowed values are
 between 0.5 and 1 and the default is 0.75 |
| maxiter | Maximal number of iterations |
| crit | Cut-off for identifying outliers, default crit=0.975 |
| trace | Logical, provide trace output |

Details

The function can compute four versions of the Tucker3 model:

1. Classical Tucker3,
2. Tucker3 for compositional data,
3. Robust Tucker3 and
4. Robust Tucker3 for compositional data.

This is controlled through the parameters robust=TRUE and coda.transform="ilr".

Value

An object of class "tucker3" which is basically a list with components:
fit Fit value
fp Fit percentage
A Orthogonal loading matrix for the A-mode
B Orthogonal loading matrix for the B-mode
Bclr Orthogonal loading matrix for the B-mode, clr transformed. Available only if coda.transform="ilr", otherwise NULL

C Orthogonal loading matrix for the C-mode
GA Core matrix, which describes the relation between A, B and C, unfolded in Aform. The largest squared elements of the core matrix indicate the most important factors in the model of X.
iter Number of iterations
RD Residual distances
flag The observations whose residual distance RD is larger than cutoff.RD can be considered as outliers and receive a flag equal to zero. The regular observations receive a flag 1

Author(s)

Valentin Todorov <valentin. todorov@chello. at> and Maria Anna Di Palma madipalma@unior.it and Michele Gallo mgallo@unior.it

References

Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31: 279-311.

Egozcue J.J., Pawlowsky-Glahn, V., Mateu-Figueras G. and Barcel'o-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3): 279-300.

Examples

```
#############
##
## Example with the UNIDO Manufacturing value added data
data(va3way)
dim(va3way)
## Treat quickly and dirty the zeros in the data set (if any)
va3way[va3way==0] <- 0.001
##
res <- Tucker3(va3way)
res
print(res$fit)
print(res$A)
## Print the core matrix
print(res$GA)
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", choices=c(1:4), arrows=FALSE, main="Trajectory biplot")
```

ulabor Undeclared labor by region in Italy

Description

The dataset contains the undeclared labor in thousands work units. The data originate from Italy and are recorded at a regional level over a certain time horizon for five macroeconomic activities defined according to NACE Rev. 1.1 classification.

Usage

```
data("ulabor")
```


Format

A three-way array with dimension $22 \times 5 \times 5$. The first dimension refers to 22 regions in Italy. The second dimension refers to the 5 economic activities. The third dimension refers to the years in the period 2001-2009.

Source

http://www.istat.it/it/archivio/39522

References

ISTAT (2011). Note metodologiche, la misura dell'occupazione non regolare nelle stime di contabilita nazionale [online]. Roma. Available at: http://www.istat.it/it/archivio/39522.
Di Palma M.A., Filzmoser P., Gallo M. and Hron, K. (2016). A robust CP model for compositional data, submitted.

Examples

```
data(ulabor)
dim(ulabor)
str(ulabor)
## Plot robust and non-robust DD-plots of the ilr-transformed data
usr <- par(mfrow=c(1,2))
res1 <- Parafac(ulabor, robust=TRUE, coda.transform="ilr")
res2 <- Parafac(ulabor, coda.transform="ilr")
plot(res1)
plot(res2)
par(usr)
## Not run:
## Plot Orthonormalized A-mode component plot
res <- Parafac(ulabor, robust=TRUE, coda.transform="ilr")
```

```
plot(res, which="comp", mode="A", main="Component plot, A-mode")
## Plot Orthonormalized B-mode component plot
plot(res, which="comp", mode="B", main="Component plot, B-mode")
## Plot Orthonormalized B-mode component plot
plot(res, which="comp", mode="C", main="Component plot, C-mode")
## Per component plot
## adapted for the example and only for robust, ilr transformed model
##
##
res <- Parafac(ulabor, robust=TRUE, coda.transform="ilr")
plot(res, which="percomp") # component 1
plot(res, which="percomp", comp=2) # component 2
## End(Not run)
```

```
unfold Matrix unfolding
```


Description

Conducts matricizations of a three-way array into matrices according to the selected mode.

Usage

$$
\text { unfold }(x, \operatorname{mode}=c(" A ", " B ", " C "))
$$

Arguments

x
mode the selected mode for unfolding

Value

A matrix represnting the input array, according to the selected mode:

- Mode=A: B-mode entities are nested within C-mode entities (all the frontal slices of the array next to each other) item Mode=B: C-mode entities nested within A-mode entities (all the horizontal slices of the array next to each other) item Mode C: A-mode entities nested within B-mode entities (all the lateral slices of the array next to each other)

Author(s)

Valentin Todorov valentin.todorov@chello.at

References

H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14:105-122.

Examples

```
(X <- array(1:24, c(4,3,2)))
dim(X)
## matricize the array
## matricized X with the A-mode entities in its rows
## all the frontal slices of the array next to each other
##
(Xa <- unfold(X))
dim(Xa)
## matricized X with the B-mode entities in its rows
## all the horizontal slices of the array next to each other
##
(Xb <- unfold(X, mode="B"))
dim(Xb)
## matricized X with the C-mode entities in its rows
## all the lateral slices of the array next to each other
##
(Xc <- unfold(X, mode="C"))
dim(Xc)
```


Description

A three-way array containing manufacturing value added by technology intensity for 55 countries in the period 2000-2010. UNIDO maintains a unique database containing key industrial statistics indicators for more than 160 countries in the world in the period 1963-2011: INDSTAT 2, available at http://stat. unido.org. The data are organized according to the International Standard Industrial Classification of all economic activities (ISIC) Revision 3 at 2-digit level. The present data set was created by aggregating the 23 2-digit divisions into five groups according to technology intensity, using the UNIDO derived classification (Upadhyaya, 2011). Then 55 countries were selected which have relatively complete data in the period 2000-2010.

Usage

data(va3way)

Format

A three-way array with dimension $55 \times 5 \times 11$. The first dimension refers to 55 countries. The second dimension refers to the five categories of technology intensity described above. The third dimension refers to the years in the period 2000-2010.

Details

Note that the values in the second mode (sectors) sum up to a constant - the total manufacturing value added of a country in a given year and thus the data set has a compositional character.

Source

http://stat.unido.org

References

Upahdyaya S (2011). Derived classifications for industrial performance indicators. In Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS022).
Upadhyaya S, Todorov V (2008). UNIDO Data Quality. UNIDO Staff Working Paper, Vienna.

Examples

```
data(va3way)
ct <- 2
x <- va3way[ct,,]/1000000
plot(colnames(x), x[1,], ylim=c(min(x), max(x)), type="n", ylab="Manufacturing Value
    Added in million USD", xlab="Years")
for(i in 1:nrow(x))
    lines(colnames(x), x[i,], col=i)
legend("topleft", legend=rownames(x), col=1:nrow(x), lwd=1)
title(paste("Coutnry: ", rownames(va3way[,,1])[ct]))
## Treat quickly and dirty the zeros in the data set (if any)
## in order to be able to perform ilr transformation:
va3way[va3way==0] <- 0.001
res <- Tucker3(va3way)
##
## Not yet a print function
##
print(res$fit)
print(res$A)
## Print the core matrix
print(res$GA)
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
```

```
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", main="Trajectory biplot")
```

Water quality data in Wyoming, USA

Description

Water quality data for three years of seasonal compositional groundwater chemistry data for 14 wells at a study site in Wyoming, USA. Routine water quality monitoring typically involves measurement of J parameters and constituents measured at I number of static locations at K sets of seasonal occurrences.

Usage

data("waterquality")

Format

A three-way array with dimension $14 \times 12 \times 10$. The first dimension refers to 14 wells at a study site in Wyoming, USA. The second dimension refers to the ten most reactive and indicative dissolved constituents at the site: $\mathrm{B}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cl}, \mathrm{K}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Si}, \mathrm{Sr}$, and SO 4 . In addition, the concentration of water in each sample was calculated. The third dimension refers to the time of collection - ten occasions.

References

Engle, M.A., Gallo, M., Schroeder, K.T., Geboy, N.J., Zupancic, J.W., (2014). Three-way compositional analysis of water quality monitoring data. Environmental and Ecological Statistics, 21(3):565-581.

Examples

```
data(waterquality)
dim(waterquality) # [1] 14 12 10
dim(waterquality[,,1]) # [1] 14 12
rownames(waterquality[,,1]) # the 14 wells
colnames(waterquality[,,1]) # the 12 chemical compositions
```

```
dim(waterquality[,1,]) # [1] 14 10
colnames(waterquality[,1,]) # the ten occasions
(res <- Tucker3(waterquality, robust=FALSE, coda.transform="ilr"))
## Distance-distance plot
plot(res, which="dd", main="Distance-distance plot")
## Paired component plot, mode A
plot(res, which="comp", main="Paired component plot (mode A)")
## Paired component plot, mode B
plot(res, which="comp", mode="B", main="Paired component plot (mode B)")
## Joint biplot
plot(res, which="jbplot", main="Joint biplot")
## Trajectory
plot(res, which="tjplot", main="Trajectory biplot")
```


Index

*Topic Multivariate
Parafac, 20
plot.tucker3, 23
Tucker3, 26
*Topic Robust
Parafac, 20
plot.tucker3, 23
Tucker3, 26
*Topic algebra
do3Postprocess, 8
do3Scale, 10
permute, 22
toArray, 25
unfold, 30
$*$ Topic array
do3Postprocess, 8
do3Scale, 10
permute, 22
toArray, 25
unfold, 30
$*$ Topic datasets
amino, 2
Arno, 3
elind, 12
girls, 13
Kojima, 15
ulabor, 29
va3way, 31
waterquality, 33
*Topic multivariate
do3Postprocess, 8
do3Scale, 10
permute, 22
toArray, 25
unfold, 30
amino, 2
Arno, 3
congruence, 5

```
coordinates (do3Postprocess), 8
cp_als,6
do3Postprocess,8
do3Rotate, 10
do3Scale, 10
elind, 12
girls,13
is.orthogonal (do3Postprocess), 8
is.orthonormal (do3Postprocess), 8
Kojima, 15
krp,16
mtrace, 17
orth,18
orthmax2,19
Parafac, 20
permute, 22
plot.parafac (plot.tucker3), 23
plot.tucker3,23
print.parafac (Parafac), 20
print.tucker3(Tucker3), 26
reflect(do3Postprocess), 8
reorder (do3Postprocess), 8
tall2wide (do3Postprocess), 8
tallArray (do3Postprocess), 8
toArray, }2
Tucker3,26
ulabor, 29
unfold, 30
va3way,31
waterquality,33
weights (do3Postprocess), 8
wideArray (do3Postprocess), 8
```

