
Package ‘rplos’
April 8, 2020

Title Interface to the Search API for 'PLoS' Journals

Description A programmatic interface to the 'SOLR' based
search API (<http://api.plos.org/>) provided by the Public
Library of Science journals to search their articles.
Functions are included for searching for articles, retrieving
articles, making plots, doing 'faceted' searches,
'highlight' searches, and viewing results of 'highlighted'
searches in a browser.

Version 0.9.0

License MIT + file LICENSE

URL https://docs.ropensci.org/rplos (website)

https://github.com/ropensci/rplos

BugReports https://github.com/ropensci/rplos/issues

LazyData true

VignetteBuilder knitr

Encoding UTF-8

Language en-US

Imports ggplot2, crul (>= 0.7.4), jsonlite, dplyr, plyr, lubridate,
reshape2, whisker, solrium (>= 1.0.2)

Suggests xml2, knitr, testthat, webmockr, vcr (>= 0.2.6)

RoxygenNote 7.1.0

X-schema.org-applicationCategory Literature

X-schema.org-keywords PLOS, library, science, JSON, XML, API, web,
api-client, article, full text

X-schema.org-isPartOf https://ropensci.org

NeedsCompilation no

Author Scott Chamberlain [aut, cre] (<https://orcid.org/0000-0003-1444-9135>),
Carl Boettiger [aut],
Karthik Ram [aut]

Maintainer Scott Chamberlain <myrmecocystus@gmail.com>

1

https://docs.ropensci.org/rplos
https://github.com/ropensci/rplos
https://github.com/ropensci/rplos/issues

2 facetplos

Repository CRAN

Date/Publication 2020-04-08 04:40:02 UTC

R topics documented:
facetplos . 2
full_text_urls . 6
highbrow . 7
highplos . 8
isocodes . 13
journalnamekey . 13
plosabstract . 14
plosauthor . 16
plosfields . 18
plosfigtabcaps . 18
plossubject . 21
plostitle . 23
plosviews . 25
plosword . 26
plos_fulltext . 27
plot_throughtime . 28
rplos . 29
rplos-defunct . 30
searchplos . 30

Index 34

facetplos Do faceted searches on PLOS Journals full-text content

Description

Do faceted searches on PLOS Journals full-text content

Usage

facetplos(
q = "*:*",
facet.query = NA,
facet.field = NA,
facet.prefix = NA,
facet.sort = NA,
facet.limit = NA,
facet.offset = NA,
facet.mincount = NA,
facet.missing = NA,
facet.method = NA,

facetplos 3

facet.enum.cache.minDf = NA,
facet.threads = NA,
facet.date = NA,
facet.date.start = NA,
facet.date.end = NA,
facet.date.gap = NA,
facet.date.hardend = NA,
facet.date.other = NA,
facet.date.include = NA,
facet.range = NA,
facet.range.start = NA,
facet.range.end = NA,
facet.range.gap = NA,
facet.range.hardend = NA,
facet.range.other = NA,
facet.range.include = NA,
start = NA,
rows = NA,
url = NA,
sleep = 6,
errors = "simple",
proxy = NULL,
callopts = list(),
...

)

Arguments

q Query terms.

facet.query This param allows you to specify an arbitrary query in the Lucene default syntax
to generate a facet count. By default, faceting returns a count of the unique
terms for a "field", while facet.query allows you to determine counts for arbitrary
terms or expressions. This parameter can be specified multiple times to indicate
that multiple queries should be used as separate facet constraints. It can be
particularly useful for numeric range based facets, or prefix based facets – see
example below (i.e. price:[* TO 500] and price:[501 TO *]).

facet.field This param allows you to specify a field which should be treated as a facet. It
will iterate over each Term in the field and generate a facet count using that Term
as the constraint. This parameter can be specified multiple times to indicate
multiple facet fields. None of the other params in this section will have any
effect without specifying at least one field name using this param.

facet.prefix Limits the terms on which to facet to those starting with the given string prefix.
Note that unlike fq, this does not change the search results – it merely reduces the
facet values returned to those beginning with the specified prefix. This parameter
can be specified on a per field basis.

facet.sort See solr_facet.

facet.limit This param indicates the maximum number of constraint counts that should be

4 facetplos

returned for the facet fields. A negative value means unlimited. Default: 100.
Can be specified on a per field basis.

facet.offset This param indicates an offset into the list of constraints to allow paging. De-
fault: 0. This parameter can be specified on a per field basis.

facet.mincount This param indicates the minimum counts for facet fields should be included in
the response. Default: 0. This parameter can be specified on a per field basis.

facet.missing Set to "true" this param indicates that in addition to the Term based constraints
of a facet field, a count of all matching results which have no value for the field
should be computed. Default: FALSE. This parameter can be specified on a per
field basis.

facet.method See solr_facet.
facet.enum.cache.minDf

This param indicates the minimum document frequency (number of documents
matching a term) for which the filterCache should be used when determining
the constraint count for that term. This is only used when facet.method=enum
method of faceting. A value greater than zero will decrease memory usage of
the filterCache, but increase the query time. When faceting on a field with a very
large number of terms, and you wish to decrease memory usage, try a low value
of 25 to 50 first. Default: 0, causing the filterCache to be used for all terms in
the field. This parameter can be specified on a per field basis.

facet.threads This param will cause loading the underlying fields used in faceting to be exe-
cuted in parallel with the number of threads specified. Specify as facet.threads=#
where # is the maximum number of threads used. Omitting this parameter
or specifying the thread count as 0 will not spawn any threads just as before.
Specifying a negative number of threads will spin up to Integer.MAX_VALUE
threads. Currently this is limited to the fields, range and query facets are not yet
supported. In at least one case this has reduced warmup times from 20 seconds
to under 5 seconds.

facet.date Specify names of fields (of type DateField) which should be treated as date
facets. Can be specified multiple times to indicate multiple date facet fields.

facet.date.start

The lower bound for the first date range for all Date Faceting on this field. This
should be a single date expression which may use the DateMathParser syntax.
Can be specified on a per field basis.

facet.date.end The minimum upper bound for the last date range for all Date Faceting on this
field (see facet.date.hardend for an explanation of what the actual end value
may be greater). This should be a single date expression which may use the
DateMathParser syntax. Can be specified on a per field basis.

facet.date.gap The size of each date range expressed as an interval to be added to the lower
bound using the DateMathParser syntax. Eg: facet.date.gap=+1DAY. Can be
specified on a per field basis.

facet.date.hardend

A Boolean parameter instructing Solr what to do in the event that facet.date.gap
does not divide evenly between facet.date.start and facet.date.end. If this is true,
the last date range constraint will have an upper bound of facet.date.end; if
false, the last date range will have the smallest possible upper bound greater

facetplos 5

then facet.date.end such that the range is exactly facet.date.gap wide. Default:
FALSE. This parameter can be specified on a per field basis.

facet.date.other

See solr_facet.
facet.date.include

See solr_facet.

facet.range Indicates what field to create range facets for. Example: facet.range=price&facet.range=age
facet.range.start

The lower bound of the ranges. Can be specified on a per field basis. Example:
f.price.facet.range.start=0.0&f.age.facet.range.start=10

facet.range.end

The upper bound of the ranges. Can be specified on a per field basis. Example:
f.price.facet.range.end=1000.0&f.age.facet.range.start=99

facet.range.gap

The size of each range expressed as a value to be added to the lower bound.
For date fields, this should be expressed using the DateMathParser syntax. (ie:
facet.range.gap=+1DAY). Can be specified on a per field basis. Example: f.price.facet.range.gap=100&f.age.facet.range.gap=10

facet.range.hardend

A Boolean parameter instructing Solr what to do in the event that facet.range.gap
does not divide evenly between facet.range.start and facet.range.end. If this is
true, the last range constraint will have an upper bound of facet.range.end; if
false, the last range will have the smallest possible upper bound greater then
facet.range.end such that the range is exactly facet.range.gap wide. Default:
FALSE. This parameter can be specified on a per field basis.

facet.range.other

See solr_facet.
facet.range.include

See solr_facet.

start Record to start at, default to beginning.

rows Number of records to return.

url URL endpoint

sleep Number of seconds to wait between requests. No need to use this for a single
call. However, if you are doing many calls in a loop or lapply type call, sleep
parameter is used to prevent your IP address from being blocked. You can only
do 10 requests per minute, so one request every 6 seconds is about right.

errors (character) One of simple or complete. Simple gives http code and error message
on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

callopts Further args passed on to HttpClient

... Further args to solr_facet

6 full_text_urls

Value

A list

Examples

Not run:
Facet on a single field
facetplos(q='*:*', facet.field='journal')
facetplos(q='alcohol', facet.field='article_type')

Facet on multiple fields
facetplos(q='alcohol', facet.field=c('journal','subject'))

Using mincount
facetplos(q='alcohol', facet.field='journal', facet.mincount='500')

Using facet.query to get counts
A single facet.query term
facetplos(q='*:*', facet.field='journal', facet.query='cell')
Many facet.query terms
facetplos(q='*:*', facet.field='journal', facet.query='cell,bird')

Range faceting
facetplos(q='*:*', url=url, facet.range='counter_total_all',

facet.range.start=5, facet.range.end=1000, facet.range.gap=10)
facetplos(q='alcohol', facet.range='alm_facebookCount', facet.range.start=1000,

facet.range.end=5000, facet.range.gap = 100)

Range faceting with > 1 field, same settings
facetplos(q='*:*', url=url, facet.range=c('counter_total_all','alm_twitterCount'),
facet.range.start=5, facet.range.end=1000, facet.range.gap=10)

Range faceting with > 1 field, different settings
facetplos(q='*:*', url=url, facet.range=c('counter_total_all','alm_twitterCount'),
f.counter_total_all.facet.range.start=5, f.counter_total_all.facet.range.end=1000,
f.counter_total_all.facet.range.gap=10, f.alm_twitterCount.facet.range.start=5,
f.alm_twitterCount.facet.range.end=1000, f.alm_twitterCount.facet.range.gap=10)

End(Not run)

full_text_urls Create urls for full text articles in PLOS journals.

Description

Create urls for full text articles in PLOS journals.

Usage

full_text_urls(doi)

highbrow 7

Arguments

doi One or more doi’s

Details

We give NA for DOIs that are for annotations. Those can easily be removed like Filter(Negate(is.na),res)

Value

One or more urls, same length as input vector of dois

Examples

Not run:
full_text_urls(doi='10.1371/journal.pone.0086169')
full_text_urls(doi='10.1371/journal.pbio.1001845')
full_text_urls(doi=c('10.1371/journal.pone.0086169',

'10.1371/journal.pbio.1001845'))

contains some annotation DOIs
dois <- searchplos(q = "*:*", fq='doc_type:full', limit=20)$data$id
full_text_urls(dois)

contains no annotation DOIs
dois <- searchplos(q = "*:*",

fq=list('doc_type:full', 'article_type:"Research Article"'),
limit=20)$data$id
full_text_urls(dois)

End(Not run)

highbrow Browse highlighted fragments in your default browser.

Description

Browse highlighted fragments in your default browser.

Usage

highbrow(input = NULL, output = NULL, browse = TRUE)

Arguments

input Input, usually output from a call to highplos

output Path and file name for output file. If NULL, a temp file is used.

browse Browse file in your default browse immediately after file creation. If FALSE,
the file is written, but not opened.

8 highplos

Examples

Not run:
out <- highplos(q='alcohol', hl.fl = 'abstract', rows=10)
highbrow(out)

out <- highplos(q='alcohol', hl.fl = 'abstract', rows=100)
highbrow(out)

End(Not run)

highplos Do highlighted searches on PLOS Journals full-text content

Description

Do highlighted searches on PLOS Journals full-text content

Usage

highplos(
q,
fl = NULL,
fq = NULL,
hl.fl = NULL,
hl.snippets = NULL,
hl.fragsize = NULL,
hl.q = NULL,
hl.mergeContiguous = NULL,
hl.requireFieldMatch = NULL,
hl.maxAnalyzedChars = NULL,
hl.alternateField = NULL,
hl.maxAlternateFieldLength = NULL,
hl.preserveMulti = NULL,
hl.maxMultiValuedToExamine = NULL,
hl.maxMultiValuedToMatch = NULL,
hl.formatter = NULL,
hl.simple.pre = NULL,
hl.simple.post = NULL,
hl.fragmenter = NULL,
hl.fragListBuilder = NULL,
hl.fragmentsBuilder = NULL,
hl.boundaryScanner = NULL,
hl.bs.maxScan = NULL,
hl.bs.chars = NULL,
hl.bs.type = NULL,
hl.bs.language = NULL,
hl.bs.country = NULL,

highplos 9

hl.useFastVectorHighlighter = NULL,
hl.usePhraseHighlighter = NULL,
hl.highlightMultiTerm = NULL,
hl.regex.slop = NULL,
hl.regex.pattern = NULL,
hl.regex.maxAnalyzedChars = NULL,
start = 0,
rows = NULL,
errors = "simple",
proxy = NULL,
callopts = list(),
sleep = 6,
...

)

Arguments

q Search terms (character). You can search on specific fields by doing ’field:your
query’. For example, a real query on a specific field would be ’author:Smith’.

fl Fields to return from search (character) [e.g., ’id,title’], any combination of
search fields [type ’data(plosfields)’, then ’plosfields’].

fq List specific fields to filter the query on (if NA, all queried). The options for
this parameter are the same as those for the fl parameter. Note that using this
parameter doesn’t influence the actual query, but is used to filter the resuls to a
subset of those you want returned. For example, if you want full articles only,
you can do ’doc_type:full’. In another example, if you want only results from the
journal PLOS One, you can do ’journal_key:PLoSONE’. See journalnamekey()
for journal abbreviations.

hl.fl A comma-separated list of fields for which to generate highlighted snippets. If
left blank, the fields highlighted for the LuceneQParser are the defaultSearch-
Field (or the df param if used) and for the DisMax parser the qf fields are used.
A ’*’ can be used to match field globs, e.g. ’text_*’ or even ’*’ to highlight
on all fields where highlighting is possible. When using ’*’, consider adding
hl.requireFieldMatch=TRUE.

hl.snippets Max no. of highlighted snippets to generate per field. Note: it is possible for
any number of snippets from zero to this value to be generated. This parameter
accepts per-field overrides. Default: 1.

hl.fragsize The size, in characters, of the snippets (aka fragments) created by the high-
lighter. In the original Highlighter, "0" indicates that the whole field value
should be used with no fragmenting. See http://wiki.apache.org/solr/
HighlightingParameters for more info.

hl.q Set a query request to be highlighted. It overrides q parameter for highlighting.
Solr query syntax is acceptable for this parameter.

hl.mergeContiguous

Collapse contiguous fragments into a single fragment. "true" indicates contigu-
ous fragments will be collapsed into single fragment. This parameter accepts

http://wiki.apache.org/solr/HighlightingParameters
http://wiki.apache.org/solr/HighlightingParameters

10 highplos

per-field overrides. This parameter makes sense for the original Highlighter
only. Default: FALSE.

hl.requireFieldMatch

If TRUE, then a field will only be highlighted if the query matched in this par-
ticular field (normally, terms are highlighted in all requested fields regardless of
which field matched the query). This only takes effect if "hl.usePhraseHighlighter"
is TRUE. Default: FALSE.

hl.maxAnalyzedChars

How many characters into a document to look for suitable snippets. This pa-
rameter makes sense for the original Highlighter only. Default: 51200. You can
assign a large value to this parameter and use hl.fragsize=0 to return highlighting
in large fields that have size greater than 51200 characters.

hl.alternateField

If a snippet cannot be generated (due to no terms matching), you can specify a
field to use as the fallback. This parameter accepts per-field overrides.

hl.maxAlternateFieldLength

If hl.alternateField is specified, this parameter specifies the maximum number
of characters of the field to return. Any value less than or equal to 0 means
unlimited. Default: unlimited.

hl.preserveMulti

Preserve order of values in a multiValued list. Default: FALSE.
hl.maxMultiValuedToExamine

When highlighting a multiValued field, stop examining the individual entries
after looking at this many of them. Will potentially return 0 snippets if this limit
is reached before any snippets are found. If maxMultiValuedToMatch is also
specified, whichever limit is hit first will terminate looking for more. Default:
Integer.MAX_VALUE

hl.maxMultiValuedToMatch

When highlighting a multiValued field, stop examining the individual entries
after looking at this many matches are found. If maxMultiValuedToExamine
is also specified, whichever limit is hit first will terminate looking for more.
Default: Integer.MAX_VALUE

hl.formatter Specify a formatter for the highlight output. Currently the only legal value is
"simple", which surrounds a highlighted term with a customizable pre- and post
text snippet. This parameter accepts per-field overrides. This parameter makes
sense for the original Highlighter only.

hl.simple.pre The text which appears before and after a highlighted term when using the sim-
ple formatter. This parameter accepts per-field overrides. The default values are
"" and "" This parameter makes sense for the original Highlighter
only. Use hl.tag.pre and hl.tag.post for FastVectorHighlighter (see example un-
der hl.fragmentsBuilder)

hl.simple.post The text which appears before and after a highlighted term when using the sim-
ple formatter. This parameter accepts per-field overrides. The default values are
"" and "" This parameter makes sense for the original Highlighter
only. Use hl.tag.pre and hl.tag.post for FastVectorHighlighter (see example un-
der hl.fragmentsBuilder)

highplos 11

hl.fragmenter Specify a text snippet generator for highlighted text. The standard fragmenter
is gap (which is so called because it creates fixed-sized fragments with gaps for
multi-valued fields). Another option is regex, which tries to create fragments
that "look like" a certain regular expression. This parameter accepts per-field
overrides. Default: "gap"

hl.fragListBuilder

Specify the name of SolrFragListBuilder. This parameter makes sense for FastVec-
torHighlighter only. To create a fragSize=0 with the FastVectorHighlighter, use
the SingleFragListBuilder. This field supports per-field overrides.

hl.fragmentsBuilder

Specify the name of SolrFragmentsBuilder. This parameter makes sense for
FastVectorHighlighter only.

hl.boundaryScanner

Configures how the boundaries of fragments are determined. By default, bound-
aries will split at the character level, creating a fragment such as "uick brown
fox jumps over the la". Valid entries are breakIterator or simple, with breakIter-
ator being the most commonly used. This parameter makes sense for FastVec-
torHighlighter only.

hl.bs.maxScan Specify the length of characters to be scanned by SimpleBoundaryScanner. De-
fault: 10. This parameter makes sense for FastVectorHighlighter only.

hl.bs.chars Specify the boundary characters, used by SimpleBoundaryScanner. This param-
eter makes sense for FastVectorHighlighter only.

hl.bs.type Specify one of CHARACTER, WORD, SENTENCE and LINE, used by BreakIt-
eratorBoundaryScanner. Default: WORD. This parameter makes sense for FastVec-
torHighlighter only.

hl.bs.language Specify the language for Locale that is used by BreakIteratorBoundaryScanner.
This parameter makes sense for FastVectorHighlighter only. Valid entries take
the form of ISO 639-1 strings.

hl.bs.country Specify the country for Locale that is used by BreakIteratorBoundaryScanner.
This parameter makes sense for FastVectorHighlighter only. Valid entries take
the form of ISO 3166-1 alpha-2 strings.

hl.useFastVectorHighlighter

Use FastVectorHighlighter. FastVectorHighlighter requires the field is termVec-
tors=on, termPositions=on and termOffsets=on. This parameter accepts per-
field overrides. Default: FALSE

hl.usePhraseHighlighter

Use SpanScorer to highlight phrase terms only when they appear within the
query phrase in the document. Default: TRUE.

hl.highlightMultiTerm

If the SpanScorer is also being used, enables highlighting for range/wildcard/fuzzy/prefix
queries. Default: FALSE. This parameter makes sense for the original High-
lighter only.

hl.regex.slop Factor by which the regex fragmenter can stray from the ideal fragment size
(given by hl.fragsize) to accomodate the regular expression. For instance, a
slop of 0.2 with fragsize of 100 should yield fragments between 80 and 120
characters in length. It is usually good to provide a slightly smaller fragsize

12 highplos

when using the regex fragmenter. Default: .6. This parameter makes sense for
the original Highlighter only.

hl.regex.pattern

The regular expression for fragmenting. This could be used to extract sentences
(see example solrconfig.xml) This parameter makes sense for the original High-
lighter only.

hl.regex.maxAnalyzedChars

Only analyze this many characters from a field when using the regex fragmenter
(after which, the fragmenter produces fixed-sized fragments). Applying a com-
plicated regex to a huge field is expensive. Default: 10000. This parameter
makes sense for the original Highlighter only.

start Record to start at (used in combination with limit when you need to cycle
through more results than the max allowed=1000)

rows Number of results to return (integer)
errors (character) One of simple or complete. Simple gives http code and error message

on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

callopts Optional additional curl options passed to HttpClient

sleep Number of seconds to wait between requests. No need to use this for a single
call to searchplos. However, if you are using searchplos in a loop or lapply type
call, do sleep parameter is used to prevent your IP address from being blocked.
You can only do 10 requests per minute, so one request every 6 seconds is about
right.

... Further arguments passed on to solr_highlight

Value

A list.

Examples

Not run:
highplos(q='alcohol', hl.fl = 'abstract', rows=10)
highplos(q='alcohol', hl.fl = c('abstract','title'), rows=10)
highplos(q='everything:"sports alcohol"~7', hl.fl='everything')
highplos(q='alcohol', hl.fl='abstract', hl.fragsize=20, rows=5)
highplos(q='alcohol', hl.fl='abstract', hl.snippets=5, rows=5)
highplos(q='alcohol', hl.fl='abstract', hl.snippets=5,

hl.mergeContiguous='true', rows=5)
highplos(q='alcohol', hl.fl='abstract', hl.useFastVectorHighlighter='true',

rows=5)
highplos(q='everything:"experiment"', fq='doc_type:full', rows=100,

hl.fl = 'title')

End(Not run)

isocodes 13

isocodes Country names and FIPS codes

Description

Country names and FIPS codes

journalnamekey Get short keys for journals to use in searching specific journals.

Description

Get short keys for journals to use in searching specific journals.

Usage

journalnamekey(...)

Arguments

... optional curl options passed to HttpClient

Value

(character) journal name keys

Examples

Not run:
journalnamekey()

End(Not run)

14 plosabstract

plosabstract Search PLoS Journals abstracts.

Description

Search PLoS Journals abstracts.

Usage

plosabstract(
q = NULL,
fl = "id",
fq = NULL,
sort = NULL,
start = 0,
limit = 10,
sleep = 6,
errors = "simple",
proxy = NULL,
callopts = NULL,
progress = NULL,
...

)

Arguments

q Search terms (character). You can search on specific fields by doing ’field:your
query’. For example, a real query on a specific field would be ’author:Smith’.

fl Fields to return from search (character) [e.g., ’id,title’], any combination of
search fields (see the dataset plosfields)

fq List specific fields to filter the query on (if NA, all queried). The options for this
parameter are the same as those for the fl parameter. Note that using this parame-
ter doesn’t influence the actual query, but is used to filter the results to a subset of
those you want returned. For example, if you want full articles only, you can do
'doc_type:full'. In another example, if you want only results from the jour-
nal PLOS One, you can do 'journal_key:PLoSONE'. See journalnamekey for
journal abbreviations.

sort Sort results according to a particular field, and specify ascending (asc) or de-
scending (desc) after a space; see examples. For example, to sort the counter_total_all
field in descending fashion, do sort=’counter_total_all desc’

start Record to start at (used in combination with limit when you need to cycle
through more results than the max allowed=1000). See Pagination below

limit Number of results to return (integer). Setting limit=0 returns only metadata.
See Pagination below

plosabstract 15

sleep Number of seconds to wait between requests. No need to use this for a single
call to searchplos. However, if you are using searchplos in a loop or lapply type
call, do sleep parameter is used to prevent your IP address from being blocked.
You can only do 10 requests per minute, so one request every 6 seconds is about
right.

errors (character) One of simple or complete. Simple gives http code and error message
on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

callopts (list) optional curl options passed to HttpClient

progress a function with logic for printing a progress bar for an HTTP request, ultimately
passed down to curl. only supports httr::progress()

... Additional Solr arguments

Details

Details:

Value

Abstract content, in addition to any other fields requested in a list.

Faceting

Read more about faceting here: urlhttp://wiki.apache.org/solr/SimpleFacetParameters

Website vs. API behavior

Don’t be surprised if queries you perform in a scripting language, like using rplos in R, give
different results than when searching for articles on the PLOS website. I am not sure what exact
defaults they use on their website. There are a few things to consider. You can tweak which types
of articles are returned: Try using the article_type filter in the fq parameter. For which journal
to search, e.g., do 'journal_key:PLoSONE'. See journalnamekey() for journal abbreviations.

Phrase searching

To search phrases, e.g., synthetic biology as a single item, rather than separate occurrences of
synthetic and biology, simply put double quotes around the phrase. For example, to search for
cases of synthetic biology, do searchplos(q = '"synthetic biology"').

You can modify phrase searches as well. For example, searchplos(q = '"synthetic biology" ~
10') asks for cases of synthetic biology within 10 words of each other. See examples.

16 plosauthor

Pagination

The searchplos function and the many functions that are wrappers around searchplos all do
paginatino internally for you. That is, if you request for example, 2000 results, the max you can get
in any one request is 1000, so we’ll do two requests for you. And so on for larger requests.

You can always do your own paginatino by doing a lapply type call or a for loop to cycle through
pages of results.

Examples

Not run:
plosabstract(q = 'drosophila', fl='abstract', limit=10)
plosabstract(q = 'drosophila', fl=c('id','author'), limit = 5)
plosabstract(q = 'drosophila', fl='author', limit = 5)
plosabstract(q = 'drosophila', fl=c('id','author','title'), limit = 5)

End(Not run)

plosauthor Search PLoS Journals authors.

Description

Search PLoS Journals authors.

Usage

plosauthor(
q = NULL,
fl = "id",
fq = NULL,
sort = NULL,
start = 0,
limit = 10,
sleep = 6,
errors = "simple",
proxy = NULL,
callopts = NULL,
progress = NULL,
...

)

Arguments

q Search terms (character). You can search on specific fields by doing ’field:your
query’. For example, a real query on a specific field would be ’author:Smith’.

fl Fields to return from search (character) [e.g., ’id,title’], any combination of
search fields (see the dataset plosfields)

plosauthor 17

fq List specific fields to filter the query on (if NA, all queried). The options for this
parameter are the same as those for the fl parameter. Note that using this parame-
ter doesn’t influence the actual query, but is used to filter the results to a subset of
those you want returned. For example, if you want full articles only, you can do
'doc_type:full'. In another example, if you want only results from the jour-
nal PLOS One, you can do 'journal_key:PLoSONE'. See journalnamekey for
journal abbreviations.

sort Sort results according to a particular field, and specify ascending (asc) or de-
scending (desc) after a space; see examples. For example, to sort the counter_total_all
field in descending fashion, do sort=’counter_total_all desc’

start Record to start at (used in combination with limit when you need to cycle
through more results than the max allowed=1000). See Pagination below

limit Number of results to return (integer). Setting limit=0 returns only metadata.
See Pagination below

sleep Number of seconds to wait between requests. No need to use this for a single
call to searchplos. However, if you are using searchplos in a loop or lapply type
call, do sleep parameter is used to prevent your IP address from being blocked.
You can only do 10 requests per minute, so one request every 6 seconds is about
right.

errors (character) One of simple or complete. Simple gives http code and error message
on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

callopts (list) optional curl options passed to HttpClient

progress a function with logic for printing a progress bar for an HTTP request, ultimately
passed down to curl. only supports httr::progress()

... Additional Solr arguments

Details

Details:

Value

Author names, in addition to any other fields requested in a data.frame.

Faceting

Read more about faceting here: urlhttp://wiki.apache.org/solr/SimpleFacetParameters

Website vs. API behavior

Don’t be surprised if queries you perform in a scripting language, like using rplos in R, give
different results than when searching for articles on the PLOS website. I am not sure what exact
defaults they use on their website. There are a few things to consider. You can tweak which types

18 plosfigtabcaps

of articles are returned: Try using the article_type filter in the fq parameter. For which journal
to search, e.g., do 'journal_key:PLoSONE'. See journalnamekey() for journal abbreviations.

Phrase searching

To search phrases, e.g., synthetic biology as a single item, rather than separate occurrences of
synthetic and biology, simply put double quotes around the phrase. For example, to search for
cases of synthetic biology, do searchplos(q = '"synthetic biology"').

You can modify phrase searches as well. For example, searchplos(q = '"synthetic biology" ~
10') asks for cases of synthetic biology within 10 words of each other. See examples.

Pagination

The searchplos function and the many functions that are wrappers around searchplos all do
paginatino internally for you. That is, if you request for example, 2000 results, the max you can get
in any one request is 1000, so we’ll do two requests for you. And so on for larger requests.

You can always do your own paginatino by doing a lapply type call or a for loop to cycle through
pages of results.

Examples

Not run:
plosauthor('Smith', 'id', limit=50)
plosauthor(q='Smith', fl=c('id','author'), limit=10)

End(Not run)

plosfields PLoS API fields to use for searching/retreiving data.

Description

PLoS API fields to use for searching/retreiving data.

plosfigtabcaps Search PLoS Journals figure and table captions.

Description

Search PLoS Journals figure and table captions.

plosfigtabcaps 19

Usage

plosfigtabcaps(
q = NULL,
fl = "id",
fq = NULL,
sort = NULL,
start = 0,
limit = 10,
sleep = 6,
errors = "simple",
proxy = NULL,
callopts = NULL,
progress = NULL,
...

)

Arguments

q Search terms (character). You can search on specific fields by doing ’field:your
query’. For example, a real query on a specific field would be ’author:Smith’.

fl Fields to return from search (character) [e.g., ’id,title’], any combination of
search fields (see the dataset plosfields)

fq List specific fields to filter the query on (if NA, all queried). The options for this
parameter are the same as those for the fl parameter. Note that using this parame-
ter doesn’t influence the actual query, but is used to filter the results to a subset of
those you want returned. For example, if you want full articles only, you can do
'doc_type:full'. In another example, if you want only results from the jour-
nal PLOS One, you can do 'journal_key:PLoSONE'. See journalnamekey for
journal abbreviations.

sort Sort results according to a particular field, and specify ascending (asc) or de-
scending (desc) after a space; see examples. For example, to sort the counter_total_all
field in descending fashion, do sort=’counter_total_all desc’

start Record to start at (used in combination with limit when you need to cycle
through more results than the max allowed=1000). See Pagination below

limit Number of results to return (integer). Setting limit=0 returns only metadata.
See Pagination below

sleep Number of seconds to wait between requests. No need to use this for a single
call to searchplos. However, if you are using searchplos in a loop or lapply type
call, do sleep parameter is used to prevent your IP address from being blocked.
You can only do 10 requests per minute, so one request every 6 seconds is about
right.

errors (character) One of simple or complete. Simple gives http code and error message
on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

20 plosfigtabcaps

callopts (list) optional curl options passed to HttpClient

progress a function with logic for printing a progress bar for an HTTP request, ultimately
passed down to curl. only supports httr::progress()

... Additional Solr arguments

Details

Details:

Value

fields that you specify to return in a data.frame, along with the DOI’s found.

Faceting

Read more about faceting here: urlhttp://wiki.apache.org/solr/SimpleFacetParameters

Website vs. API behavior

Don’t be surprised if queries you perform in a scripting language, like using rplos in R, give
different results than when searching for articles on the PLOS website. I am not sure what exact
defaults they use on their website. There are a few things to consider. You can tweak which types
of articles are returned: Try using the article_type filter in the fq parameter. For which journal
to search, e.g., do 'journal_key:PLoSONE'. See journalnamekey() for journal abbreviations.

Phrase searching

To search phrases, e.g., synthetic biology as a single item, rather than separate occurrences of
synthetic and biology, simply put double quotes around the phrase. For example, to search for
cases of synthetic biology, do searchplos(q = '"synthetic biology"').

You can modify phrase searches as well. For example, searchplos(q = '"synthetic biology" ~
10') asks for cases of synthetic biology within 10 words of each other. See examples.

Pagination

The searchplos function and the many functions that are wrappers around searchplos all do
paginatino internally for you. That is, if you request for example, 2000 results, the max you can get
in any one request is 1000, so we’ll do two requests for you. And so on for larger requests.

You can always do your own paginatino by doing a lapply type call or a for loop to cycle through
pages of results.

Examples

Not run:
plosfigtabcaps('ecology', 'id', limit=100)
plosfigtabcaps(q='ecology', fl='figure_table_caption', limit=10)

End(Not run)

plossubject 21

plossubject Search PLoS Journals subjects.

Description

Search PLoS Journals subjects.

Usage

plossubject(
q = NULL,
fl = "id",
fq = NULL,
sort = NULL,
start = 0,
limit = 10,
sleep = 6,
errors = "simple",
proxy = NULL,
callopts = NULL,
progress = NULL,
...

)

Arguments

q Search terms (character). You can search on specific fields by doing ’field:your
query’. For example, a real query on a specific field would be ’author:Smith’.

fl Fields to return from search (character) [e.g., ’id,title’], any combination of
search fields (see the dataset plosfields)

fq List specific fields to filter the query on (if NA, all queried). The options for this
parameter are the same as those for the fl parameter. Note that using this parame-
ter doesn’t influence the actual query, but is used to filter the results to a subset of
those you want returned. For example, if you want full articles only, you can do
'doc_type:full'. In another example, if you want only results from the jour-
nal PLOS One, you can do 'journal_key:PLoSONE'. See journalnamekey for
journal abbreviations.

sort Sort results according to a particular field, and specify ascending (asc) or de-
scending (desc) after a space; see examples. For example, to sort the counter_total_all
field in descending fashion, do sort=’counter_total_all desc’

start Record to start at (used in combination with limit when you need to cycle
through more results than the max allowed=1000). See Pagination below

limit Number of results to return (integer). Setting limit=0 returns only metadata.
See Pagination below

22 plossubject

sleep Number of seconds to wait between requests. No need to use this for a single
call to searchplos. However, if you are using searchplos in a loop or lapply type
call, do sleep parameter is used to prevent your IP address from being blocked.
You can only do 10 requests per minute, so one request every 6 seconds is about
right.

errors (character) One of simple or complete. Simple gives http code and error message
on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

callopts (list) optional curl options passed to HttpClient

progress a function with logic for printing a progress bar for an HTTP request, ultimately
passed down to curl. only supports httr::progress()

... Additional Solr arguments

Details

Details:

See http://www.plosone.org/taxonomy for subject areas.

Value

Subject content, in addition to any other fields requested in a data.frame.

Faceting

Read more about faceting here: urlhttp://wiki.apache.org/solr/SimpleFacetParameters

Website vs. API behavior

Don’t be surprised if queries you perform in a scripting language, like using rplos in R, give
different results than when searching for articles on the PLOS website. I am not sure what exact
defaults they use on their website. There are a few things to consider. You can tweak which types
of articles are returned: Try using the article_type filter in the fq parameter. For which journal
to search, e.g., do 'journal_key:PLoSONE'. See journalnamekey() for journal abbreviations.

Phrase searching

To search phrases, e.g., synthetic biology as a single item, rather than separate occurrences of
synthetic and biology, simply put double quotes around the phrase. For example, to search for
cases of synthetic biology, do searchplos(q = '"synthetic biology"').

You can modify phrase searches as well. For example, searchplos(q = '"synthetic biology" ~
10') asks for cases of synthetic biology within 10 words of each other. See examples.

http://www.plosone.org/taxonomy

plostitle 23

Pagination

The searchplos function and the many functions that are wrappers around searchplos all do
paginatino internally for you. That is, if you request for example, 2000 results, the max you can get
in any one request is 1000, so we’ll do two requests for you. And so on for larger requests.

You can always do your own paginatino by doing a lapply type call or a for loop to cycle through
pages of results.

Examples

Not run:
plossubject('marine ecology', limit = 5)
plossubject(q='marine ecology', fl = c('id','journal','title'), limit = 20)
plossubject(q='marine ecology', fl = c('id','journal'),

fq='doc_type:full', limit = 9)
plossubject(q='marine ecology', fl = c('id','journal'),

fq=list('doc_type:full','!article_type_facet:"Issue%20Image"'),
limit = 9)

End(Not run)

plostitle Search PLoS Journals titles.

Description

Search PLoS Journals titles.

Usage

plostitle(
q = NULL,
fl = "id",
fq = NULL,
sort = NULL,
start = 0,
limit = 10,
sleep = 6,
errors = "simple",
proxy = NULL,
callopts = NULL,
progress = NULL,
...

)

24 plostitle

Arguments

q Search terms (character). You can search on specific fields by doing ’field:your
query’. For example, a real query on a specific field would be ’author:Smith’.

fl Fields to return from search (character) [e.g., ’id,title’], any combination of
search fields (see the dataset plosfields)

fq List specific fields to filter the query on (if NA, all queried). The options for this
parameter are the same as those for the fl parameter. Note that using this parame-
ter doesn’t influence the actual query, but is used to filter the results to a subset of
those you want returned. For example, if you want full articles only, you can do
'doc_type:full'. In another example, if you want only results from the jour-
nal PLOS One, you can do 'journal_key:PLoSONE'. See journalnamekey for
journal abbreviations.

sort Sort results according to a particular field, and specify ascending (asc) or de-
scending (desc) after a space; see examples. For example, to sort the counter_total_all
field in descending fashion, do sort=’counter_total_all desc’

start Record to start at (used in combination with limit when you need to cycle
through more results than the max allowed=1000). See Pagination below

limit Number of results to return (integer). Setting limit=0 returns only metadata.
See Pagination below

sleep Number of seconds to wait between requests. No need to use this for a single
call to searchplos. However, if you are using searchplos in a loop or lapply type
call, do sleep parameter is used to prevent your IP address from being blocked.
You can only do 10 requests per minute, so one request every 6 seconds is about
right.

errors (character) One of simple or complete. Simple gives http code and error message
on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

callopts (list) optional curl options passed to HttpClient

progress a function with logic for printing a progress bar for an HTTP request, ultimately
passed down to curl. only supports httr::progress()

... Additional Solr arguments

Details

Details:

Value

Titles, in addition to any other fields requested in a data.frame.

Faceting

Read more about faceting here: urlhttp://wiki.apache.org/solr/SimpleFacetParameters

plosviews 25

Website vs. API behavior

Don’t be surprised if queries you perform in a scripting language, like using rplos in R, give
different results than when searching for articles on the PLOS website. I am not sure what exact
defaults they use on their website. There are a few things to consider. You can tweak which types
of articles are returned: Try using the article_type filter in the fq parameter. For which journal
to search, e.g., do 'journal_key:PLoSONE'. See journalnamekey() for journal abbreviations.

Phrase searching

To search phrases, e.g., synthetic biology as a single item, rather than separate occurrences of
synthetic and biology, simply put double quotes around the phrase. For example, to search for
cases of synthetic biology, do searchplos(q = '"synthetic biology"').

You can modify phrase searches as well. For example, searchplos(q = '"synthetic biology" ~
10') asks for cases of synthetic biology within 10 words of each other. See examples.

Pagination

The searchplos function and the many functions that are wrappers around searchplos all do
paginatino internally for you. That is, if you request for example, 2000 results, the max you can get
in any one request is 1000, so we’ll do two requests for you. And so on for larger requests.

You can always do your own paginatino by doing a lapply type call or a for loop to cycle through
pages of results.

Examples

Not run:
plostitle(q='drosophila', fl='title', limit=99)
plostitle(q='drosophila', fl=c('title','journal'), limit=10)
plostitle(q='drosophila', limit = 5)

End(Not run)

plosviews Search PLoS Journals by article views.

Description

Search PLoS Journals by article views.

Usage

plosviews(search, byfield = NULL, views = "alltime", limit = NULL, ...)

26 plosword

Arguments

search search terms (character)

byfield field to search by, e.g., subject, author, etc. (character)

views views all time (alltime) or views last 30 days (last30) (character)

limit number of results to return (integer)

... Optional additional curl options passed to HttpClient

Examples

Not run:
plosviews('10.1371/journal.pone.0002154', 'id', 'alltime')
plosviews('10.1371/journal.pone.0002154', 'id', 'last30')
plosviews('10.1371/journal.pone.0002154', 'id', 'alltime,last30')
plosviews(search='marine ecology', byfield='subject', limit=50)
plosviews(search='evolution', views = 'alltime', limit = 99)
plosviews('bird', views = 'alltime', limit = 99)

End(Not run)

plosword Search results on a keyword over all fields in PLoS Journals.

Description

Search results on a keyword over all fields in PLoS Journals.

Usage

plosword(terms, vis = FALSE, ...)

Arguments

terms search terms (character)

vis visualize results in bar plot or not (TRUE or FALSE)

... Optional additional curl options passed to HttpClient

Value

Number of search results (vis = FALSE), or number of search in a table and a histogram of results
(vis = TRUE).

plos_fulltext 27

Examples

Not run:
plosword('Helianthus')
plosword(list('monkey','replication','design','sunflower','whale'),

vis = TRUE)

End(Not run)

plos_fulltext Get full text xml of PLOS papers given a DOI

Description

Get full text xml of PLOS papers given a DOI

Usage

plos_fulltext(doi, ...)

S3 method for class 'plosft'
print(x, ...)

Arguments

doi One or more DOIs

... Curl options passed on to HttpClient

x Input to print method

Value

Character string of XML.

Examples

Not run:
plos_fulltext(doi='10.1371/journal.pone.0086169')
plos_fulltext(c('10.1371/journal.pone.0086169',

'10.1371/journal.pbio.1001845'))
dois <- searchplos(q = "*:*",

fq = list('doc_type:full', 'article_type:"Research Article"'),
limit = 3)$data$id

out <- plos_fulltext(dois)
out[dois[1]]
out[1:2]

Extract text from the XML strings - xml2 package required
if (requireNamespace("xml2")) {

library("xml2")

28 plot_throughtime

lapply(out, function(x){
tmp <- xml2::read_xml(x)
xml2::xml_find_all(tmp, "//ref-list//ref")

})
}

End(Not run)

plot_throughtime Plot results through time for serach results from PLoS Journals.

Description

Plot results through time for serach results from PLoS Journals.

Usage

plot_throughtime(terms, limit = NA, ...)

Arguments

terms search terms (character)

limit number of results to return (integer)

... optional curl options passed to HttpClient

Value

Number of search results (vis = FALSE), or number of search in a table and a histogram of results
(vis = TRUE).

Examples

Not run:
plot_throughtime(terms='phylogeny', limit=300)
plot_throughtime(list('drosophila','monkey'), 100)
plot_throughtime(list('drosophila','flower','dolphin','cell','cloud'), 100)

End(Not run)

rplos 29

rplos Connect with PLoS API data

Description

rplos provides an R interface to the PLoS Search API. More information about each function can
be found in its help documentation.

rplos functions

rplos functions make HTTP requests using the crul package, and parse json using the jsonlite
package.

PLoS API key

You used to need an API key to use this package - no longer needed

Tutorials

See the rOpenSci website for a tutorial: https://ropensci.org/tutorials/rplos_tutorial.html

Throttling

Beware, PLOS recently has started throttling requests. That is, they will give error messages like
"(503) Service Unavailable - The server cannot process the request due to a high load", which
probably means you’ve done too many requests in a certain time period.

Here’s what they say (http://api.plos.org/solr/faq/#solr_api_recommended_usage) on the matter:

"Please limit your API requests to 7200 requests a day, 300 per hour, 10 per minute and allow 5
seconds for your search to return results. If you exceed this threshold, we will lock out your IP
address. If you’re a high-volume user of the PLOS Search API and need more API requests a day,
please contact us at api@plos.org to discuss your options. We currently limit API users to no more
than five concurrent connections from a single IP address.""

Author(s)

Scott Chamberlain <myrmecocystus@gmail.com>

Carl Boettiger <cboettig@gmail.com>

Karthik Ram <karthik.ram@gmail.com>

Examples

Not run:
searchplos(q='ecology', fl=c('id','publication_date'), limit = 2)

Get only full article DOIs
out <- searchplos(q="*:*", fl='id', fq='doc_type:full', start=0, limit=250)
head(out$data)

30 searchplos

Get DOIs for only PLoS One articles
out <- searchplos(q="*:*", fl='id', fq='journal_key:PLoSONE',

start=0, limit=15)
head(out$data)

End(Not run)

rplos-defunct Defunct functions in rplos

Description

• crossref: service no longer provided - see the package rcrossref

• citations: service no longer available

searchplos Base function to search PLoS Journals

Description

Base function to search PLoS Journals

Usage

searchplos(
q = NULL,
fl = "id",
fq = NULL,
sort = NULL,
start = 0,
limit = 10,
sleep = 6,
errors = "simple",
proxy = NULL,
callopts = list(),
progress = NULL,
...

)

searchplos 31

Arguments

q Search terms (character). You can search on specific fields by doing ’field:your
query’. For example, a real query on a specific field would be ’author:Smith’.

fl Fields to return from search (character) [e.g., ’id,title’], any combination of
search fields (see the dataset plosfields)

fq List specific fields to filter the query on (if NA, all queried). The options for this
parameter are the same as those for the fl parameter. Note that using this parame-
ter doesn’t influence the actual query, but is used to filter the results to a subset of
those you want returned. For example, if you want full articles only, you can do
'doc_type:full'. In another example, if you want only results from the jour-
nal PLOS One, you can do 'journal_key:PLoSONE'. See journalnamekey for
journal abbreviations.

sort Sort results according to a particular field, and specify ascending (asc) or de-
scending (desc) after a space; see examples. For example, to sort the counter_total_all
field in descending fashion, do sort=’counter_total_all desc’

start Record to start at (used in combination with limit when you need to cycle
through more results than the max allowed=1000). See Pagination below

limit Number of results to return (integer). Setting limit=0 returns only metadata.
See Pagination below

sleep Number of seconds to wait between requests. No need to use this for a single
call to searchplos. However, if you are using searchplos in a loop or lapply type
call, do sleep parameter is used to prevent your IP address from being blocked.
You can only do 10 requests per minute, so one request every 6 seconds is about
right.

errors (character) One of simple or complete. Simple gives http code and error message
on an error, while complete gives both http code and error message, and stack
trace, if available.

proxy List of arguments for a proxy connection, including one or more of: url, port,
username, password, and auth. See proxy for help, which is used to construct
the proxy connection.

callopts (list) optional curl options passed to HttpClient

progress a function with logic for printing a progress bar for an HTTP request, ultimately
passed down to curl. only supports httr::progress()

... Additional Solr arguments

Details

Details:

Value

An object of class "plos", with a list of length two, each element being a list itself.

Faceting

Read more about faceting here: urlhttp://wiki.apache.org/solr/SimpleFacetParameters

32 searchplos

Website vs. API behavior

Don’t be surprised if queries you perform in a scripting language, like using rplos in R, give
different results than when searching for articles on the PLOS website. I am not sure what exact
defaults they use on their website. There are a few things to consider. You can tweak which types
of articles are returned: Try using the article_type filter in the fq parameter. For which journal
to search, e.g., do 'journal_key:PLoSONE'. See journalnamekey() for journal abbreviations.

Phrase searching

To search phrases, e.g., synthetic biology as a single item, rather than separate occurrences of
synthetic and biology, simply put double quotes around the phrase. For example, to search for
cases of synthetic biology, do searchplos(q = '"synthetic biology"').

You can modify phrase searches as well. For example, searchplos(q = '"synthetic biology" ~
10') asks for cases of synthetic biology within 10 words of each other. See examples.

Pagination

The searchplos function and the many functions that are wrappers around searchplos all do
paginatino internally for you. That is, if you request for example, 2000 results, the max you can get
in any one request is 1000, so we’ll do two requests for you. And so on for larger requests.

You can always do your own paginatino by doing a lapply type call or a for loop to cycle through
pages of results.

Examples

Not run:
searchplos(q='ecology', fl=c('id','publication_date'), limit = 2)
searchplos('ecology', fl=c('id','publication_date'), limit = 2)
searchplos('ecology', c('id','title'), limit = 2)

Get only full article DOIs
out <- searchplos(q="*:*", fl='id', fq='doc_type:full', start=0, limit=250)
head(out$data)

Get DOIs for only PLoS One articles
out <- searchplos(q="*:*", fl='id', fq='journal_key:PLoSONE', start=0, limit=15)
out$data

Get DOIs for full article in PLoS One
out <- searchplos(q="*:*", fl='id', fq=list('journal_key:PLoSONE',

'doc_type:full'), limit=50)
out$data

Serch for many q
q <- c('ecology','evolution','science')
lapply(q, function(x) searchplos(x, limit=2))

Query to get some PLOS article-level metrics, notice difference between two outputs
out <- searchplos(q="*:*", fl=c('id','counter_total_all','alm_twitterCount'),fq='doc_type:full')
out_sorted <- searchplos(q="*:*", fl=c('id','counter_total_all','alm_twitterCount'),

searchplos 33

fq='doc_type:full', sort='counter_total_all desc')
out$data
out_sorted$data

Show me all articles that have these two words less then about 15 words apart.
searchplos(q='everything:"sports alcohol"~15', fl='title', fq='doc_type:full')

Now let's try to narrow our results to 7 words apart. Here I'm changing the ~15 to ~7
searchplos(q='everything:"sports alcohol"~7', fl='title', fq='doc_type:full')

A list of articles about social networks that are popular on a social network
searchplos(q="*:*",fl=c('id','alm_twitterCount'),
fq=list('doc_type:full','subject:"Social networks"','alm_twitterCount:[100 TO 10000]'),
sort='counter_total_month desc')

Now, lets also only look at articles that have seen some activity on twitter.
Add "fq=alm_twitterCount:[1 TO *]" as a parameter within the fq argument.
searchplos(q='everything:"sports alcohol"~7', fl=c('alm_twitterCount','title'),

fq=list('doc_type:full','alm_twitterCount:[1 TO *]'))
searchplos(q='everything:"sports alcohol"~7', fl=c('alm_twitterCount','title'),

fq=list('doc_type:full','alm_twitterCount:[1 TO *]'),
sort='counter_total_month desc')

Return partial doc parts
Return Abstracts only
out <- searchplos(q='*:*', fl=c('doc_partial_body','doc_partial_parent_id'),

fq=list('doc_type:partial', 'doc_partial_type:Abstract'), limit=3)
Return Title's only
out <- searchplos(q='*:*', fl=c('doc_partial_body','doc_partial_parent_id'),

fq=list('doc_type:partial', 'doc_partial_type:Title'), limit=3)

Remove DOIs for annotations (i.e., corrections)
searchplos(q='*:*', fl=c('id','article_type'),

fq='-article_type:correction', limit=100)

Remove DOIs for annotations (i.e., corrections) and Viewpoints articles
searchplos(q='*:*', fl=c('id','article_type'),

fq=list('-article_type:correction','-article_type:viewpoints'), limit=100)

Get eissn codes
searchplos(q='*:*', fl=c('id','journal','eissn','cross_published_journal_eissn'),

fq="doc_type:full", limit = 60)

searchplos(q='*:*', fl=c('id','journal','eissn','cross_published_journal_eissn'),
limit = 2000)

End(Not run)

Index

∗Topic datasets
isocodes, 13
plosfields, 18

∗Topic package
rplos, 29

citations, 30
crossref, 30

facetplos, 2
full_text_urls, 6

highbrow, 7
highplos, 7, 8
HttpClient, 5, 12, 13, 15, 17, 20, 22, 24,

26–28, 31

isocodes, 13

journalnamekey, 13, 14, 17, 19, 21, 24, 31

plos_fulltext, 27
plosabstract, 14
plosauthor, 16
plosfields, 18
plosfigtabcaps, 18
plossubject, 21
plostitle, 23
plosviews, 25
plosword, 26
plot_throughtime, 28
print.plosft (plos_fulltext), 27
proxy, 5, 12, 15, 17, 19, 22, 24, 31

rplos, 29
rplos-defunct, 30
rplos-package (rplos), 29

searchplos, 30
solr_facet, 3–5

34

	facetplos
	full_text_urls
	highbrow
	highplos
	isocodes
	journalnamekey
	plosabstract
	plosauthor
	plosfields
	plosfigtabcaps
	plossubject
	plostitle
	plosviews
	plosword
	plos_fulltext
	plot_throughtime
	rplos
	rplos-defunct
	searchplos
	Index

