Package ‘rpartitions’
August 29, 2016

Title Code for integer partitioning

Description Provides algorithims for randomly sampling a feasible set defined
by a given total and number of elements using integer partitioning.

Version 0.1

Author Ken Locey, Daniel McGlinn

Maintainer Daniel McGlinn <danmcglinn@gmail . com>
Depends R (>=2.15.1), hash

Suggests testthat (>=0.2)

NeedsCompilation yes

Repository CRAN

URL https://github.com/klocey/partitions
License MIT

LazyData true

Collate 'rpartitions.R' 'rpartitions-package.r'
Date/Publication 2013-12-11 07:34:59

R topics documented:

DOMOM_UP o o o e e e e e e e e e e
COMJUEALE .« . v v v v e o e e e e e e e e e e e e e e e e e e e
divide_and_conquer e
get_multiplicity
get_rand_int L
Iast e e e e
multiplicity e e e e e
NrParts e e e e e e

rand_partitions L. e e
TPArtitionso e e e e e
Op_dOWNn e e e

Index

https://github.com/klocey/partitions

2 conjugate

bottom_up Bottom up method of generating uniform random partitions of Q hav-
ing N parts.

Description

Bottom up method of generating uniform random partitions of Q having N parts.

Usage

bottom_up(part, Q, D, rand_int, use_c, use_hash)

Arguments
part a list to hold the partition
Q the total sum of the partition
D a dictionary for the number of partitions of Q having N or less parts (or N or less
as the largest part), i.e. P(Q + N, N).
rand_int a number representing a member of the feasible set
use_c boolean if TRUE then compiled c code is used
use_hash boolean, if TRUE then a hash table is used
Examples

bottom_up(c(5, 4), 4, list(), 1, TRUE, FALSE)

conjugate Find the conjugate of an integer partition Recoded
(orginally on 24-Apr-2013) from the Sage source code:
http://www.sagenb.org/src/combinat/partition.py

Description
Find the conjugate of an integer partition Recoded (orginally on 24-Apr-2013) from the Sage source
code: http://www.sagenb.org/src/combinat/partition.py

Usage

conjugate(partition, use_c = TRUE)

Arguments

partition a vector that represents an integer partition

use_c logical, defaults to TRUE, the conjugate is computed in ¢

divide_and_conquer 3

Examples

conjugate(c(3,3,1,1), FALSE)

divide_and_conquer Divide and conquer method of generating uniform random partitions
of Q having N parts.

Description

Divide and conquer method of generating uniform random partitions of Q having N parts.

Usage
divide_and_conquer(part, Q, N, D, rand_int, use_c,
use_hash)
Arguments
part a list to hold the partition
Q the total sum of the partition
N Number of parts to sum over
D a dictionary for the number of partitions of Q having N or less parts (or N or less
as the largest part), i.e. P(Q, Q + N).
rand_int a number representing a member of the feasible set
use_c boolean if TRUE then compiled c code is used
use_hash boolean, if TRUE then a hash table is used
Examples

divide_and_conquer(c(5, 4), 5, 4, hash(), 2, TRUE, FALSE)

get_multiplicity Find the number of times a value k occurs in a partition that is being
generated at random by the multiplicity() function. The resulting mul-
tiplicity is then passed back to the multiplicity() function along with an
updated value of count and an updated dictionary D

Description

Find the number of times a value k occurs in a partition that is being generated at random by the
multiplicity() function. The resulting multiplicity is then passed back to the multiplicity() function
along with an updated value of count and an updated dictionary D

Usage

get_rand_int

get_multiplicity(Q, k, D, rand_int, count, use_c,

use_hash)

Arguments

Q
k

D

rand_int
count
use_c

use_hash

Examples

the total sum of the partition
the size of the largest (and also first) part

a dictionary for the number of partitions of Q having N or less parts (or N or less
as the largest part), i.e. P(Q, Q + N).

the random integer

count < rand_int

boolean if TRUE then compiled ¢ code is used
boolean, if TRUE then a hash table is used

get_multiplicity(1@, 5, hash(), 3, 2, TRUE, FALSE)

get_rand_int

Generate a random integer between two integers

Description

Generate a random integer between two integers

Usage

get_rand_int(min = @, max = 1)

Arguments
min

max

Examples

minimum value

maximum value

get_rand_int(min=0, max=10)

last 5

last Returns the last element of a vector

Description

Returns the last element of a vector

Usage

last(x)

Arguments

X a vector

Examples

last(1:10)
last(letters[1:10])

multiplicity multiplicity method of generating uniform random partitions of Q hav-
ing N parts.

Description

multiplicity method of generating uniform random partitions of Q having N parts.

Usage

multiplicity(part, Q, D, rand_int, use_c, use_hash)

Arguments
part a vector to hold the partition
Q the total sum of the partition
D a dictionary for the number of partitions of Q having N or less parts (or N or less
as the largest part), i.e. P(Q, Q + N).
rand_int random integer
use_c boolean if TRUE then compiled c code is used
use_hash boolean, if TRUE then a hash table is used
Examples

multiplicity(c(5, 4), 4, hash(), 1, TRUE, FALSE)

NrParts

Find the number of partitions for a given total Q and number of parts
N.

Description

This function was recoded and modified from GAP source code: www.gap-system.org. Modifica-
tions for speed were based on the proposition that the number of partitions of Q having N parts is
equal to the number of partitions of Q having N parts is equal to the number of partitions of Q - N,
if N > Q/2 (for odd Q) or if N >= Q/2 (for even Q)

Usage

NrParts(Q, N = NULL, use_c = TRUE)

Arguments

Q
N

use_c

Examples

NrParts(100)

NrParts(100, 10)

Total sum

Number of items to sum across, if not specified than all possible values are
considered

logical, defaults to TRUE, the number of partitions is computed in ¢

Number of partitions of Q with k or less parts.

Description

This function was derived using the following theorem and proposition. The number of partitions
of Q with k or less parts equals the number of partitions of Q with k or less as the largest part
(see Bona 2006). This is a mathematical symmetry, i.e. congruency. Additionally, the number of
partitions of Q with k or less parts equals the number of partitions of Q+k with k as the largest part
when k>0, i.e. P(Q + k, k). We do not have a source for this proposition, but it can be shown when
enumerating the entire feasible set or using the Sage computing enviornment

Usage

P(D, Q, k, use_c, use_hash)

rand_partitions 7

Arguments
D lookup table for numbers of partitions of Q having k or less parts (or k or less as
the largest part), i.e. P(Q, Q + k)
Q total (i.e., sum across all k or n parts)
k the number of parts and also the size of the largest part (congruency)
use_c boolean, if TRUE the number of partitions is computed in ¢
use_hash boolean, if TRUE then a hash table is used instead of R’s native list to store the
information
Value

a two element list, the first element is D the lookup table and the second element is the number of
partitions for the specified Q and k value.

References
Bona, M. (2006). A Walk Through Combinatorics: An Introduction to Enumeration and Graph
Theory. 2nd Ed. World Scientific Publishing Co. Singapore.

Examples

P(list(), 100, 10, FALSE, FALSE)

rand_partitions Generate uniform random partitions of Q having N parts.

Description

Generate uniform random partitions of Q having N parts.

Usage
rand_partitions(Q, N, sample_size, method = "best”,
D = hash(), zeros = FALSE, use_c = TRUE,
use_hash = FALSE)
Arguments
Q Total sum across parts
N Number of parts to sum over
sample_size number of random partitions to generate
method : method to use for generating the partition, options include: ’bottom_up’,
"top_down’, ’divide_and_conquer’, *multiplicity’, and ’best’. Defaults to ’best’
D a dictionary for the number of partitions of Q having N or less parts (or N or less

as the largest part), i.e. P(Q, Q + N). Defaults to a blank dictionary.

8 top_down

zeros boolean if True partitions can have zero values, if False partitions have only
positive values, defaults to False
use_c boolean if TRUE then compiled c code is used, defaults to TRUE
use_hash boolean, if TRUE then a hash table is used, defaults to FALSE
Value

A matrix where each column is a random partition

Note

method ’best’ attempts to use the values of Q and N to infer what the fastest method to compute the
partition.

if zeros are allowed, then we must ask whether Q >= N. if not, then the total Q is partitioned among
a greater number of parts than there are, say, individuals. In which case, some parts must be zero.
A random partition would then be any random partition of Q with zeros appended at the end. But,
if Q >= N, then Q is partitioned among less number of parts than there are individuals. In which
case, a random partition would be any random partition of Q having N or less parts.

Examples

rand_partitions(100, 10, 5)

rpartitions rpartitions
Description
rpartitions
top_down Top down method of generating uniform random partitions of Q hav-
ing N parts.
Description

Top down method of generating uniform random partitions of Q having N parts.

Usage

top_down(part, Q, D, rand_int, use_c, use_hash)

top_down

Arguments

part

Q
D

rand_int
use_c

use_hash

Examples

a list to hold the partition
the total sum of the partition

a dictionary for the number of partitions of Q having N or less parts (or N or less
as the largest part), i.e. P(Q + N, N).

a number representing a member of the feasible set
boolean if TRUE then compiled ¢ code is used
boolean, if TRUE then a hash table is used

top_down(c(5, 4), 4, hash(), 1, TRUE, FALSE)

Index

bottom_up, 2
conjugate, 2
divide_and_conquer, 3

get_multiplicity, 3
get_rand_int, 4

last, 5

multiplicity, 5

NrParts, 6

P, 6

rand_partitions, 7

rpartitions, 8

rpartitions-package (rpartitions), 8

top_down, 8

10

	bottom_up
	conjugate
	divide_and_conquer
	get_multiplicity
	get_rand_int
	last
	multiplicity
	NrParts
	P
	rand_partitions
	rpartitions
	top_down
	Index

