Package ‘rotor’

January 7, 2020
Type Package
Title Log Rotation and Conditional Backups
Version 0.2.4
Maintainer Stefan Fleck <stefan.b.fleck@gmail.com>

Description Conditionally rotate or back-up files based on
their size or the date of the last backup; inspired by the 'Linux’
utility 'logrotate’.

License MIT + file LICENSE
URL https://s-fleck.github.io/rotor/

BugReports https://github.com/s-fleck/rotor/issues

Imports dint, R6, tools

Suggests covr, crayon, rmarkdown, testthat, withr, zip

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2.9000

NeedsCompilation no

Author Stefan Fleck [aut, cre] (<https://orcid.org/0000-0003-3344-9851>)
Repository CRAN

Date/Publication 2020-01-07 19:10:02 UTC

R topics documented:

BackupQueue e
backup_info e e
TOLALE . . o o o e e e e e e e e e e

Index

https://s-fleck.github.io/rotor/
https://github.com/s-fleck/rotor/issues

2 BackupQueue

BackupQueue An R6 class for managing backups

Description

BackupQueue & co are part of the R6 API of rotor. They are used internally by rotate() and
related functions and are not designed for interactive use. Rather, if you are a package developer
and want to integrate rotor in one of your package, the BackupQueue subclasses give you a bit of
extra control.

As of now, the R6 API is still experimental and subject to change.

Methods

pad_index() Pad the indices in the filenames of indexed backups to the number of digits of the
largest index. Usually does not have to be called manually.

prune() Delete all backups except max_backups. See prune_backups()

push_backup() <BackupQueuelndex> Create a new backup with index 1, push back all other in-
dices. Always calls $prune() before it terminates.

push_backup(overwrite = FALSE, now = Sys.time()) <BackupQueueDate> <BackupQueueDateteime>
Create a new backup with a timestamp. The now parameter override the real system time. If
overwrite is TRUE existing backups with the same filename (i.e timestamp) are overwritten.
Always calls $prune() before it terminates.

backup_dir, set_backup_dir(x) character scalar. Set a directory in which to place the backups

cache_backups, set_cache_backups(x) TRUE or FALSE. If TRUE (the default) the list of backups
is cached, if FALSE it is read from disk every time this appender triggers. Caching brings a
significant speedup for checking whether to rotate or not based on the age of the last backup,
but is only safe if there are no other programs/functions (except this appender) interacting with
the backups.

compression, set_compression See compression argument of rotate()
file, set_file(x) character scalar. The file to backup/rotate

fmt, set_fmt(x) character scalar. See format argument of rotate_date()
max_backups, set_max_backups(x) See max_backups argument of rotate()

should_rotate(size) <BackupQueuelndex> Should a file of size be rotated? See size argument of
rotate()

should_rotate(size, age, now = Sys.time(), last_rotation = self$last_rotation) <BackupQueueDate> <BackupQueueDateteim
Should a file of size and age be rotated? See size and age arguments of rotate_date().
now overrides the current system time, ‘last_rotation* overrides the date of the last rotation.

update_backups_cache() Force update of the backups cache. Only does something if $cache_backups
is TRUE.

backup_info 3

Usage

x <- BackupQueueIndex$new(file, backup_dir = dirname(file), max_backups = Inf,
compression = FALSE)

x <- BackupQueueDate$new(file, backup_dir = dirname(file), max_backups = Inf,
compression = FALSE, fmt = "%Y-%m-%d", cache_backups = FALSE)

x <- BackupQueueDateTime$new(file, backup_dir = dirname(file), max_backups =
Inf, compression = FALSE, fmt = "%Y-%m-%d--%H-%M-%S", cache_backups = FALSE)

x$increment_index(n
x$pad_index ()
x$print()
x$prune(max_backups = self$max_backups)

x$push_backup ()

x$push_backup(overwrite = FALSE, now = Sys.time())

x$set_backup_dir(x)

x$set_cache_backups(x)

x$set_compression(x)

x$set_file(x)

x$set_fmt (x)

x$set_max_backups(x)

x$should_rotate(size, age, now = Sys.time(), last_rotation = self$last_rotation %||% file.info(self$fi
x$should_rotate(size, verbose = FALSE)

x$update_backups_cache()

D

x$backup_dir
x$backups
x$cache_backups
x$compression
x$file

x$fmt
x$has_backups
x$last_rotation
x$max_backups
x$n_backups

backup_info Discover existing backups

Description

These function return information on the backups of a file (if any exist)

4 backup_info
Usage

backup_info(file, backup_dir = dirname(file))

list_backups(file, backup_dir = dirname(file))

n_backups(file, backup_dir = dirname(file))

newest_backup(file, backup_dir = dirname(file))

oldest_backup(file, backup_dir = dirname(file))

Arguments
file character scalar: Path to a file.
backup_dir character scalar. The directory in which the backups of file are stored (de-
faults to dirname(file))
Value

backup_info() returns a data. frame similar to the output of file.info()
list_backups() returns the paths to all backups of file
n_backups () returns the number of backups of file as an integer scalar

newest_backup() and oldest_backup() return the paths to the newest or oldest backup of file
(or an empty character vector if none exist)

Intervals

In rotor, an interval is a character string in the form "<number> <interval>". The following inter-
vals are possible: "day(s)”, "week(s)", "month(s)"”, "quarter(s)", "year(s)". The plural "s"
is optional (so "2 weeks"” and "2 week" are equivalent). Please be aware that weeks are ISOweeks

and start on Monday (not Sunday as in some countries).

Interval strings can be used as arguments when backing up or rotating files, or for pruning backup
queues (i.e. limiting the number of backups of a single) file.

When rotating/backing up "1 months” means "make a new backup if the last backup is from the pre-
ceding month". E.g if the last backup of myfile is from 2019-02-01 then backup_time(myfile, age
= "1 month") will only create a backup if the current date is at least 2019-03-01.

When pruning/limiting backup queues, "1 year"” means "keep at least most one year worth of back-
ups". So if you call backup_time(myfile,max_backups = "1 year") on 2019-03-01, it will cre-
ate a backup and then remove all backups of myfile before 2019-01-01.

See Also

rotate()

https://en.wikipedia.org/wiki/ISO_week_date

rotate 5

Examples

setup example files

tf <- tempfile("test”, fileext = ".rds")
saveRDS(cars, tf)

backup(tf)

backup(tf)

backup_info(tf)
list_backups(tf)
n_backups(tf)
newest_backup(tf)
oldest_backup(tf)

cleanup
prune_backups(tf, 0)
n_backups(tf)
file.remove(tf)

rotate Rotate or backup files

Description

Functions starting with backup create backups of a file, while functions starting with rotate do
the same but also replace the original file with an empty one (this is useful for log rotation)

prune_backups () physically deletes all backups of a file based on max_backups

Usage
rotate(
file,
size = 1,
max_backups = Inf,
compression = FALSE,

backup_dir = dirname(file),
create_file = TRUE,
dry_run = FALSE,

verbose = dry_run

backup(
file,
size = 0,
max_backups = Inf,
compression = FALSE,
backup_dir = dirname(file),
dry_run = FALSE,

)

verbose = dry_run

prune_backups(

)

file,

max_backups,

backup_dir = dirname(file),
dry_run = FALSE,

verbose = dry_run

rotate_date(

)

file,

age = 1,

size = 1,
max_backups = Inf,
compression = FALSE,
format = "%Y-%m-%d",
backup_dir = dirname(file),
overwrite = FALSE,
create_file = TRUE,
now = Sys.Date(),
dry_run = FALSE,
verbose = dry_run

backup_date(

)

file,

age = 1,

size = 1,
max_backups = Inf,
compression = FALSE,
format = "%Y-%m-%d",
backup_dir = dirname(file),
overwrite = FALSE,
now = Sys.Date(),
dry_run = FALSE,
verbose = dry_run

rotate_time(

file,
age = -1,
size = 1,

max_backups = Inf,

compression = FALSE,

format = "%Y-%m-%d--%H-%M-%S" ,
backup_dir = dirname(file),

rotate

rotate

overwrite = FALSE,
create_file = TRUE,

now = Sys.time(),

dry_run =

FALSE,

verbose = dry_run

)

backup_time(

file,
age = -1,
size = 1,

max_backups
compression

Inf,
FALSE,

format = "%Y-%m-%d--%H-%M-%S",
backup_dir = dirname(file),

overwrite = FALSE,
now = Sys.time(),
dry_run = FALSE,
verbose = dry_run

)

Arguments
file character scalar: file to backup/rotate
size scalar integer, character or Inf. Backup/rotate only if file is larger than this

max_backups

compression

backup_dir

size. Integers are interpreted as bytes. You can pass character vectors that
contain a file size suffix like 1k (kilobytes), 3M (megabytes), 4G (gigabytes), 5T
(terabytes). Instead of these short forms you can also be explicit and use the IEC
suffixes KiB, MiB, GiB, TiB. In Both cases 1 kilobyte is 1024 bytes, 1 megabyte
is 1024 kilobytes, etc... .

maximum number of backups to keep
* an integer scalar: Maximum number of backups to keep
In addition for timestamped backups the following value are supported:
* aDate scalar: Remove all backups before this date
* acharacter scalar representing a Date in ISO format (e.g. "2019-12-31")
» acharacter scalar representing an Interval in the form "<number> <interval>"
(see below for more info)
Whether or not backups should be compressed
¢ FALSE for uncompressed backups,
* TRUE for zip compression; uses zip()
 ascalar integer between 1 and 9 to specify a compression level (requires
the zip package, see its documentation for details)
* the character scalars "utils::zip()" or "zip: :zipr" to force a specific
zip command
character scalar. The directory in which the backups of file are stored (de-
faults to dirname(file))

https://CRAN.R-project.org/package=zip

8 rotate

create_file logical scalar. If TRUE create an empty file in place of file after rotating.

dry_run logical scalar. If TRUE no changes are applied to the file system (no files are
created or deleted)

verbose logical scalar. If TRUE additional informative messages are printed

age minimum age after which to backup/rotate a file; can be

n

* acharacter scalar representing an Interval in the form "<number> <interval>
(e.g. "2 months", see Intervals section below).

* aDate or a character scalar representing a Date for a fixed point in time
after which to backup/rotate. See format for which Date/Datetime formats
are supported by rotor.

format a scalar character that can be a subset of of valid strftime() formatting
strings. The default setting is "%Y-%m-%d—--%H-%M-%S".

* You can use an arbitrary number of dashes anywhere in the format, so
"%Y-%m-%d--%H-%M-%S" and "%Y%m%d%H%M%S" are both legal.

* T and _ can also be used as separators. For example, the following datetime
formats are also possible: %Y-%m-%d_%H-%M-%S (Python logging de-
fault), %Y %om%dT%H%M%S (ISO 8601)

 All datetime components except %Y are optional. If you leave out part of
the timestamp, the first point in time in the period is assumed. For example
(assuming the current year is 2019) %Y is identical to 2019-01-01--00-00-00.

* The timestamps must be lexically sortable, so "%Y-%m-%d" is legal, "%m-%d-%Y"
and %Y-%d are not.

overwrite logical scalar. If TRUE overwrite backups if a backup of the same name (usually
due to timestamp collision) exists.

now The current Date or time (POSIXct) as a scalar. You can pass a custom value
here to to override the real system time. As a convenience you can also pass
in character strings that follow the guidelines outlined above for format, but
please note that these differ from the formats understood by as.POSIXct() or
as.Date().

Value

file as a character scalar (invisibly)

Side Effects

backup(), backup_date(), and backup_time() may create files (if the specified conditions are
met). They may also delete backups, based on max_backup.

rotate(), rotate_date() and rotate_time() do the same, but in addition delete the input file,
or replace it with an empty file if create_file == TRUE (the default).

prune_backups () may delete files, depending on max_backups.

https://en.wikipedia.org/wiki/ISO_8601

rotate 9

Intervals

In rotor, an interval is a character string in the form "<number> <interval>". The following inter-
vals are possible: "day(s)", "week(s)", "month(s)", "quarter(s)"”, "year(s)". The plural "s"
is optional (so "2 weeks" and "2 week" are equivalent). Please be aware that weeks are ISOweeks

and start on Monday (not Sunday as in some countries).

Interval strings can be used as arguments when backing up or rotating files, or for pruning backup
queues (i.e. limiting the number of backups of a single) file.

When rotating/backing up "1 months"” means "make a new backup if the last backup is from the pre-
ceding month". E.g if the last backup of myfile is from 2019-02-01 then backup_time(myfile, age
= "1 month") will only create a backup if the current date is at least 2019-03-01.

When pruning/limiting backup queues, "1 year” means "keep at least most one year worth of back-
ups". So if you call backup_time(myfile,max_backups = "1 year") on 2019-03-01, it will cre-
ate a backup and then remove all backups of myfile before 2019-01-01.

See Also
list_backups()

Examples

setup example file
tf <- tempfile("test”, fileext = ".rds")
saveRDS(cars, tf)

create two backups of “tf**

backup(tf)

backup(tf)

list_backups(tf) # find all backups of a file

If ‘size‘ is set, a backup is only created if the target file is at least
that big. This is more useful for log rotation than for backups.
backup(tf, size = "100 mb") # no backup becuase ‘tf‘ is to small
list_backups(tf)

If “dry_run® is TRUE, backup() only shows what would happen without
actually creating or deleting files
backup(tf, size = "0.1kb", dry_run = TRUE)

rotate() is the same as backup(), but replaces ‘tf*‘ with an empty file
rotate(tf)

list_backups(tf)

file.size(tf)

file.size(list_backups(tf))

prune_backups() can remove old backups
prune_backups(tf, 1) # keep only one backup
list_backups(tf)

rotate/backup_date() adds a date instead of an index
you should not mix index backups and timestamp backups

https://en.wikipedia.org/wiki/ISO_week_date

10

so we clean up first
prune_backups(tf, 0)
saveRDS(cars, tf)

backup_date() adds the date instead of an index to the filename
backup_date(tf)

‘age‘ sets the minimum age of the last backup before creating a new one.
the example below creates no new backup since it's less than a week

since the last.

backup_date(tf, age = "1 week")

‘now' overrides the current date.
backup_date(tf, age = "1 year”, now = "2999-12-31")
list_backups(tf)

backup_time() creates backups with a full timestamp
backup_time(tf)

It's okay to mix backup_date() and backup_time()
list_backups(tf)

cleanup
prune_backups(tf, @)
file.remove(tf)

rotate

Index

as.Date(), 8
as.POSIXct(), 8

backup (rotate), 5

backup_date (rotate), 5
backup_info, 3

backup_time (rotate), 5
BackupQueue, 2

BackupQueueDate (BackupQueue), 2
BackupQueueDateTime (BackupQueue), 2
BackupQueueIndex (BackupQueue), 2

file.info(), 4

list_backups (backup_info), 3
list_backups(), 9

n_backups (backup_info), 3
newest_backup (backup_info), 3

oldest_backup (backup_info), 3

prune_backups (rotate), 5
prune_backups(), 2

R6, 2

rotate, 5

rotate(), 2,4
rotate_date (rotate), 5
rotate_date(), 2
rotate_time (rotate), 5

zip(), 7

	BackupQueue
	backup_info
	rotate
	Index

