Package 'rootWishart'

March 17, 2018

Title Distribution of Largest Root for Single and Double Wishart

Description Functions for hypothesis testing in single and double Wishart

Settings **Version** 0.4.1

settings, based on Roy's largest root. This test statistic is especially
useful in multivariate analysis. The computations are based on results by
Chiani (2014) <doi:10.1016 j.jmva.2014.04.002=""> and Chiani (2016)</doi:10.1016>
<doi:10.1016 j.jmva.2015.10.007="">. They use the fact that the CDF is related</doi:10.1016>
to the Pfaffian of a matrix that can be computed in a finite number of
iterations. This package takes advantage of the Boost and Eigen C++ libraries
to perform multi-precision linear algebra.
Depends R (>= $3.1.0$)
License GPL (>= 2)
Encoding UTF-8
LazyData true
NeedsCompilation yes
RoxygenNote 6.0.1
LinkingTo Rcpp, RcppEigen, BH
Imports Rcpp
<pre>URL http://github.com/turgeonmaxime/rootWishart</pre>
BugReports http://github.com/turgeonmaxime/rootWishart/issues
Suggests testthat
Author Maxime Turgeon [aut, cre]
Maintainer Maxime Turgeon <maxime.turgeon@mail.mcgill.ca></maxime.turgeon@mail.mcgill.ca>
Repository CRAN
Date/Publication 2018-03-17 04:19:44 UTC
Danis de servicia de
R topics documented:
singleWishart

2 singleWishart

Index 4

singleWishart

Distribution of the largest root

Description

Computes the cumulative distribution function of the largest root in the single and double Wishart setting.

Usage

```
singleWishart(x, p, n, type = c("double", "multiple"))
doubleWishart(x, p, n, m, type = c("double", "multiple"))
```

Arguments

x Vector of numeric values at which to compute the CDF.

p, n, m Parameters of the single and double Wishart settings. See details.

type Character string. Select type = "multi" for multiprecision; select type = "double"

for double precision. Defaults to adaptive selection of the precision type based

on the input parameters.

Details

If S follows a Wishart(p, n) distribution, e.g. if we can write

$$S = X^T X$$

where X is an nxp matrix with i.i.d rows coming from a p-variate standard normal, then singleWishart gives the distribution of the largest root of S.

As its name indicates, the double Wishart setting involves two Wishart variables: let A and B be Wishart(p,m) and Wishart(p,n), respectively. If A+B is invertible, then doubleWishart gives the distribution of the largest root of

$$(A + B)^{-}1B$$
.

Alternatively, it gives the distribution of the largest root of the determinental equation

$$det(B - \theta(A + B)).$$

Value

Returns the value of the CDF at x.

singleWishart 3

Examples

```
x1 <- seq(0, 30, length.out = 50)
y1 <- singleWishart(x1, p = 5, n = 10)
plot(x1, y1, type='l')

x2 <- seq(0, 1, length.out = 50)
y2 <- doubleWishart(x2, p = 10, n = 10, m = 200)
plot(x2, y2, type='l')</pre>
```

Index

 $\label{eq:condition} \mbox{doubleWishart (singleWishart)}, 2 \\ \mbox{singleWishart}, 2 \\$