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Abstract

Taking advantage of the S4 class system of the programming environment R, which
facilitates the creation and maintenance of reusable and modular components, an object-
oriented solution for robust factor analysis is developed. The solution resides in the pack-
age robustfa. In the solution, new S4 classes "Fa", "FaClassic", "FaRobust", "FaCov",
"SummaryFa" are created. The robust factor analysis function FaCov() can deal with
maximum likelihood estimation, principal component analysis, and principal factor anal-
ysis methods. Consider the factor analysis methods (classical or robust), the data input
(data or the scaled data), and the running matrix (covariance or correlation) all together,
there are 8 combinations. We recommend classical and robust factor analysis using the
correlation matrix of the scaled data as the running matrix for theoretical and compu-
tational reasons. The design of the solution follows common statistical design patterns.
The application of the solution to multivariate data analysis is demonstrated on the hbk

data and the stock611 data which themselves are parts of the package robustfa.

Keywords: robustness, factor analysis, object-oriented solution, R, statistical design patterns.

1. Introduction

Outliers exist in virtually every data set in any application domain. In order to avoid the
masking effect, robust estimators are needed. The classical estimators of multivariate location
and scatter are the sample mean x̄ and the sample covariance matrix S. These estimates are
optimal if the data come from a multivariate normal distribution but are extremely sensitive
to the presence of even a few outliers. If outliers are present in the input data they will
influence the estimates x̄ and S and subsequently worsen the performance of the classical
factor analysis (Pison et al. 2003). Therefore it is important to consider robust alternatives
to these estimators. There are several robust estimators in the literature: MCD (Rousseeuw
1985; Rousseeuw and Driessen 1999), OGK (Maronna and Zamar 2002), MVE (Rousseeuw
1985), M (Rocke 1996), S (Davies 1987; Ruppert 1992; Woodruff and Rocke 1994; Rocke 1996;
He and Wang 1997; Salibian-Barrera and Yohai 2006) and Stahel-Donoho (Stahel 1981a,b;
Donoho 1982; Maronna and Yohai 1995). Substituting the classical location and scatter
estimates by their robust analogues is the most straightforward method for robustifying many
multivariate procedures (Maronna et al. 2006; Todorov and Filzmoser 2009), which is our
choice for robustifying the factor analysis procedure.

∗The research was supported by Natural Science Foundation Project of CQ CSTC CSTC2011BB0058.
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Taking advantage of the new S4 class system (Chambers 1998) of R (R Development Core
Team 2009) which facilitate the creation of reusable and modular components, an object-
oriented solution for robust factor analysis is implemented. The application of the solution
to multivariate data analysis is demonstrated on the hbk data and the stock611 data which
themselves are parts of the package robustfa (Zhang 2013). We follow the object-oriented
paradigm as applied to the R object model (naming conventions, access methods, coexistence
of S3 and S4 classes, usage of UML, etc.) which is described in (Todorov and Filzmoser 2009).

The rest of the paper is organized as follows. In the next Section 2 the design approach and
structure of the solution are given. Section 3 describes the robust factor analysis method,
some theoretical results, the computations, and the implementations. The Sections 3.1, 3.2,
3.3, and 3.4 are dedicated to the object model, method of robust factor analysis, a hbk data
example, and a stocks data example, respectively. Section 4 concludes.

2. Design approach and structure of the solution

We follow the route of (Todorov and Filzmoser 2009). The main part of the solution is
implemented in the package robustfa but it relies on codes in the packages rrcov (Todorov
2013), robustbase (Rousseeuw et al. 2013), and pcaPP (Filzmoser et al. 2013). The structure
of the solution and its relation to other R packages are shown in Figure 1. The package
robustfa extends rrcov with options for dealing with robust factor analysis problems like
robust (Wang et al. 2013).

robustfarobust

rrcov

pcaPProbustbase

Figure 1: Class diagram: structure of the solution and relation to other R packages.
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3. Robust factor analysis

3.1. Object model

The object model for the S4 classes and methods implementing the robust factor analysis
follows the Unified Modeling Language (UML) (OMG 2009a,b) class diagram and is presented
in Figure 2. A class is denoted by a box with three compartments which contain the name,
the attributes (slots) and operations (methods) of the class, respectively. The class names,
Fa and FaRobust, in italics indicate that the classes are abstract. Each attribute is followed
by its type and each operation is followed by the type of its return value. We use the R

types like numeric, vector, matrix, etc. but the type can be also a name of an S4 class (Fa,
FaClassic, or FaCov). The classes Ulogical, Unumeric etc. are class unions for optional
slots, e.g., for definition of slots which will be computed on demand. Relationships between
classes are denoted by arrows with different form. The inheritance relationship is depicted by
a large empty triangular arrowhead pointing to the base class. We see that both FaClassic

and FaRobust inherit from Fa, and FaCov inherits from FaRobust. Composition means that
one class contains another one as a slot. This relation is represented by an arrow with a solid
diamond on the side of the composed class. We see that SummaryFa is a composed class of
Fa.

As in (Todorov and Filzmoser 2009), all UML diagrams of the solution were created with the
open source UML toolArgoUML (Robbins 1999; Robbins and Redmiles 2000) which is avail-
able for download from http://argouml.tigris.org/. The naming conventions of the solution
follow the recommended Sun’s Java coding style. See http://java.sun.com/docs/codeconv/.

3.2. Factor analysis based on a robust covariance matrix

As in (Todorov and Filzmoser 2009), the most straightforward and intuitive method to obtain
robust factor analysis is to replace the classical estimates of location and covariance by their
robust analogues. The package stats in base R contains the function factanal() which
performs a factor analysis on a given numeric data matrix and returns the results as an object
of S3 class factanal. This function has an argument covmat which can take a covariance
matrix, or a covariance list as returned by cov.wt, and if supplied, it is used rather than
the covariance matrix of the input data. This allows to obtain robust factor analysis by
supplying the covariance matrix computed by cov.mve or cov.mcd from the package MASS.
The reason to include such type of function in the solution is the unification of the interfaces
by leveraging the object orientation provided by the S4 classes and methods. The function
FaCov() computes robust factor analysis by replacing the classical covariance matrix with
one of the robust covariance estimators available in the package rrcov—MCD, OGK, MVE,
M, S or Stahel-Donoho, i.e., the parameter cov.control can be any object of a class derived
from the base class CovControl. This control class will be used to compute a robust estimate
of the covariance matrix. If this parameter is omitted, MCD will be used by default. Of
course any newly developed estimator following the concepts of the framework in (Todorov
and Filzmoser 2009) can be used as input to the function FaCov().

There are three methods to perform a factor analysis: maximum likelihood estimation (MLE),
principal component analysis (PCA), and principal factor analysis (PFA). The function factanal()
performs a factor analysis using MLE. The function FaCov() deals with three methods using
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FaRobust FaClassic

FaClassic() : FaClassic

FaCov

FaCov() : FaCov

SummaryFa

faobj : Fa

importance : matrix

show() : void

Fa

call : language

converged : Ulogical

loadings : matrix

communality : Uvector

uniquenesses : vector

cor : Ulogical

covariance : matrix

correlation : matrix

usedMatrix : matrix

reducedCorrelation : Umatrix

criteria : Unumeric

factors : numeric

dof : Unumeric

method : character

scores : Umatrix

scoresMethod : character

scoringCoef : Umatrix

meanF : Uvector

corF : Umatrix

STATISTIC : Unumeric

PVAL : Unumeric

n.obs : numeric

center : Uvector

eigenvalues : vector

cov.control : UCovControl

show() : void

print() : void

plot() : void

summary() : SummaryFa

predict() : matrix

getCenter() : Uvector

getEigenvalues() : vector

getFa() : fa

getLoadings() : matrix

getQuan() : numeric

getScores() : Umatrix

getSdev() : vector

Figure 2: Object model for robust factor analysis.
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an argument ‘method = c("mle", "pca", "pfa")’. When the data set is large, factanal()
usually generates errors, and thus one can only resort to the PCA and PFA methods.

When compare the classical and robust factor analysis methods, there are two other issues to
consider. That is, whether we should use data or scale(data) as the data input; whether
we should use the covariance matrix or the correlation matrix as the running matrix (used
matrix)? Consider the factor analysis methods, the data input, and the running matrix all
together, there are 8 combinations, i.e.,

(1) classical, x = data, cor = FALSE

(2) classical, x = data, cor = TRUE

(3) classical, x = scale(data), cor = FALSE

(4) classical, x = scale(data), cor = TRUE

(5) robust, x = data, cor = FALSE

(6) robust, x = data, cor = TRUE

(7) robust, x = scale(data), cor = FALSE

(8) robust, x = scale(data), cor = TRUE

Here cor is a logical value indicating whether the calculation should use the covariance matrix
(cor = FALSE) or the correlation matrix (cor = TRUE).

There are 4 classical and robust factor analysis comparisons, i.e., (1) vs (5), (2) vs (6), (3) vs
(7), and (4) vs (8). We recommend (4) vs (8). The reasons are as follows. First, when the
variables have different units, it is common to standardize the variables, the sample covariance
matrix of the standardized variables is the correlation matrix of the original variables. Thus
it is common to use the correlation matrix as the running matrix. Second, we need to explain
the factors from the loading matrix. The entries of the loading matrix from the sample
covariance matrix are not limitted between 0 and 1, which makes the explanations of the
factors hard. The first two reasons suggest us to choose (2) vs (6) and (4) vs (8). However,
(2) and (4) ((6) and (8)) have the same running matrices, eigenvalues, loadings, uniquenesses,
scoring coefficients, scaled data matrices, and score matrices, see Theorem 3.2. That is, (2)
vs (6) and (4) vs (8) give us the same comparisons. We can choose any pair to do the
comparison. Third, we may not be able to compute the robust covariance matrix, and thus
the robust correlation matrix of the original data, as the stocks data example will illustrate.
Consequently, we should choose (4) vs (8).

The running matrices of the 8 combinations are given in Table 1. In the table,

correlation = cov2cor(covariance).

Table 1: The running matrices.

Classical Robust
data covariance (1) Sc (5) Sr

correlation (2) Rc (6) Rr

scale(data) covariance (3) S̃
c

(7) S̃
r

correlation (4) R̃
c

(8) R̃
r
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Let S = (sij)p×p
be a square matrix. Let v = diag (S) = (s11, s22, · · · , spp)⊤ be a vector

holding the diagonal elements of S. Let

D = diag (v) = diag (diag (S)) =











s11
s22

. . .

spp











be a diagonal matrix whose diagonal is the vector v. In fact,

diag (matrix) = vector,

diag (vector) = diagonal matrix.

Let

Xn×p =













X⊤

(1)

X⊤

(2)
...

X⊤

(n)













be the original data matrix, where X(k) = (xk1, xk2, · · · , xkp)⊤ (k = 1, 2, · · · , n) is the kth
observation, n is the number of observations. Let M be the number of regular observations
(excluding the outliers), without loss of generality, we can assume X(1),X(2), · · · ,X(M) as
the regular observations. Let

X̄ =
1

n

n
∑

k=1

X(k) = (x̄1, x̄2, · · · , x̄p)⊤

be the sample mean of X, where

x̄j =
1

n

n
∑

k=1

xkj , j = 1, 2, · · · , p.

Let

S = (sij)p×p
=

1

n− 1

n
∑

k=1

(

X(k) − X̄
) (

X(k) − X̄
)⊤

be the sample covariance matrix, where

sij =
1

n− 1

n
∑

k=1

(xki − x̄i) (xkj − x̄j) , i, j = 1, 2, · · · , p.
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Let X∗ be the scaled matrix of X, where

X∗ =













X∗⊤

(1)

X∗⊤

(2)
...

X∗⊤

(n)













=



















(

D−
1

2

(

X(1) − X̄
)

)⊤

(

D−
1

2

(

X(2) − X̄
)

)⊤

...
(

D−
1

2

(

X(n) − X̄
)

)⊤



















=













(

X(1) − X̄
)⊤

D−
1

2

(

X(2) − X̄
)⊤

D−
1

2

...
(

X(n) − X̄
)⊤

D−
1

2













=













X⊤

(1) − X̄
⊤

X⊤

(2) − X̄
⊤

...

X⊤

(n) − X̄
⊤













D−
1

2

=
(

X − 1X̄
⊤
)

D−
1

2 ,

1 = 1n×1 =











1
1
...
1











n×1

, D = diag (diag (S)) =











s11
s22

. . .

spp











,

D
1

2 = [diag (diag (S))]
1

2 = diag
(

[diag (S)]
1

2

)

=











√
s11 √

s22
. . .

√
spp











,

D−
1

2 = [diag (diag (S))]−
1

2 = diag
(

[diag (S)]−
1

2

)

=











1/
√
s11

1/
√
s22

. . .

1/
√
spp











,

X∗

(k) = D−
1

2

(

X(k) − X̄
)

=











1/
√
s11

1/
√
s22

. . .

1/
√
spp





















xk1 − x̄1
xk2 − x̄2

...
xkp − x̄p











=











(xk1 − x̄1) /
√
s11

(xk2 − x̄2) /
√
s22

...
(xkp − x̄p) /

√
spp











.

To compare the 8 combinations, we summarize some useful results in Tables 2 and 3. There
are some points in Tables 2 and 3 that are proved here.
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Table 2: Results of (1), (2), (5), and (6).

X, classical (1), (2) X, robust (5), (6)

data matrix X =













X⊤

(1)

X⊤

(2)

...

X⊤

(n)













X =













X⊤

(1)

X⊤

(2)

...

X⊤

(n)













number of
used observations

n M

sample used X(1),X(2), · · · ,X(n) X(1),X(2), · · · ,X(M)

kth observation X(k) X(k)

sample mean X̄
c
= 1

n

n
∑

k=1

X(k) X̄
r
= 1

M

M
∑

k=1

X(k)

sample covariance Sc = 1
n−1

n
∑

k=1

(

X(k) − X̄
c) (

X(k) − X̄
c)⊤

Sr = 1
M−1

M
∑

k=1

(

X(k) − X̄
r) (

X(k) − X̄
r)⊤

sample correlation Rc Rr

D Dc = diag (diag (Sc)) Dr = diag (diag (Sr))

scaledX

X∗c =
(

X − 1
(

X̄
c)⊤

)

(Dc)
−

1

2

=



















(

X∗c

(1)

)⊤

(

X∗c

(2)

)⊤

...
(

X∗c

(n)

)⊤



















X∗r =
(

X − 1
(

X̄
r)⊤

)

(Dr)
−

1

2

=



















(

X∗r

(1)

)⊤

(

X∗r

(2)

)⊤

...
(

X∗r

(n)

)⊤



















kth scaled observation X∗c

(k) = (Dc)
−

1

2

(

X(k) − X̄
c)

X∗r

(k) = (Dr)
−

1

2

(

X(k) − X̄
r)

sample mean of scaledX X̄
∗c

= 1
n

n
∑

k=1

X∗c

(k) = 0 X̄
∗r

= 1
M

M
∑

k=1

X∗r

(k) = 0 (a)

cov(scaledX)

S∗c = Rc

= 1
n−1

n
∑

k=1

(

X∗c

(k) − X̄
∗c
)(

X∗c

(k) − X̄
∗c
)⊤

= 1
n−1

n
∑

k=1

X∗c

(k)

(

X∗c

(k)

)⊤

= (Dc)
−

1

2 Sc (Dc)
−

1

2

S∗r = Rr

= 1
M−1

M
∑

k=1

(

X∗r

(k) − X̄
∗r
)(

X∗r

(k) − X̄
∗r
)⊤

= 1
M−1

M
∑

k=1

X∗r

(k)

(

X∗r

(k)

)⊤

= (Dr)
−

1

2 Sr (Dr)
−

1

2 (b)
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Table 3: Results of (3), (4), (7), and (8).

Y , classical (3), (4) Y , robust (7), (8)

data matrix
Y = scale (X) = X∗c

=
(

X − 1
(

X̄
c)⊤

)

(Dc)
−

1

2

Y = scale (X) = X∗c

=
(

X − 1
(

X̄
c)⊤

)

(Dc)
−

1

2

number of
used observations

n M

sample used Y (1),Y (2), · · · ,Y (n) Y (1),Y (2), · · · ,Y (M)

kth observation Y (k) = (Dc)
−

1

2

(

X(k) − X̄
c)

= X∗c

(k) Y (k) = (Dc)
−

1

2

(

X(k) − X̄
c)

= X∗c

(k)

sample mean Ȳ
c
= 1

n

n
∑

k=1

Y (k) = 0 (c)
Ȳ

r
= 1

M

M
∑

k=1

Y (k)

= (Dc)
−

1

2

(

X̄
r − X̄

c)
(f)

sample covariance

S̃
c

= 1
n−1

n
∑

k=1

(

Y (k) − Ȳ
c) (

Y (k) − Ȳ
c)⊤

= 1
n−1

n
∑

k=1

Y (k)Y
⊤

(k)

S̃
r

= 1
M−1

M
∑

k=1

(

Y (k) − Ȳ
r) (

Y (k) − Ȳ
r)⊤

sample correlation R̃
c

R̃
r

D D̃
c

= diag
(

diag
(

S̃
c
))

= E (d) D̃
r

= diag
(

diag
(

S̃
r
))

scaledX

Y ∗c =
(

Y − 1
(

Ȳ
c)⊤

)(

D̃
c
)−

1

2

=



















(

Y ∗c

(1)

)⊤

(

Y ∗c

(2)

)⊤

...
(

Y ∗c

(n)

)⊤



















Y ∗r =
(

Y − 1
(

Ȳ
r)⊤

)(

D̃
r
)−

1

2

=



















(

Y ∗r

(1)

)⊤

(

Y ∗r

(2)

)⊤

...
(

Y ∗r

(n)

)⊤



















kth scaled observation Y ∗c

(k) =
(

D̃
c
)−

1

2 (

Y (k) − Ȳ
c)

= Y (k) (e) Y ∗r

(k) =
(

D̃
r
)−

1

2 (

Y (k) − Ȳ
r)

sample mean of scaledX Ȳ
∗c

= 1
n

n
∑

k=1

Y ∗c

(k) = 0 Ȳ
∗r

= 1
M

M
∑

k=1

Y ∗r

(k) = 0 (g)

cov(scaledX)

S̃
∗c

= R̃
c

= 1
n−1

n
∑

k=1

(

Y ∗c

(k) − Ȳ
∗c
)(

Y ∗c

(k) − Ȳ
∗c
)⊤

= 1
n−1

n
∑

k=1

Y ∗c

(k)

(

Y ∗c

(k)

)⊤

=
(

D̃
c
)−

1

2

S̃
c
(

D̃
c
)−

1

2

S̃
∗r

= R̃
r

= 1
M−1

M
∑

k=1

(

Y ∗r

(k) − Ȳ
∗r
)(

Y ∗r

(k) − Ȳ
∗r
)⊤

= 1
M−1

M
∑

k=1

Y ∗r

(k)

(

Y ∗r

(k)

)⊤

=
(

D̃
r
)−

1

2

S̃
r
(

D̃
r
)−

1

2

(h)
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Proof. (a)

X̄
∗r

=
1

M

M
∑

k=1

X∗r
(k)

=
1

M

M
∑

k=1

(Dr)−
1

2

(

X(k) − X̄
r)

= (Dr)−
1

2

1

M

M
∑

k=1

(

X(k) − X̄
r)

= (Dr)−
1

2

(

X̄
r − X̄

r)

= 0.

(b)

S∗r = Rr

=
1

M − 1

M
∑

k=1

(

X∗r
(k) − X̄

∗r
)(

X∗r
(k) − X̄

∗r
)⊤

=
1

M − 1

M
∑

k=1

X∗r
(k)

(

X∗r
(k)

)⊤

=
1

M − 1

M
∑

k=1

(Dr)−
1

2

(

X(k) − X̄
r) (

X(k) − X̄
r)⊤

(Dr)−
1

2

= (Dr)−
1

2

[

1

M − 1

M
∑

k=1

(

X(k) − X̄
r) (

X(k) − X̄
r)⊤

]

(Dr)−
1

2

= (Dr)−
1

2 Sr (Dr)−
1

2 .

(c)

Ȳ
c
=

1

n

n
∑

k=1

Y (k)

=
1

n

n
∑

k=1

(Dc)−
1

2

(

X(k) − X̄
c)

= (Dc)−
1

2

1

n

n
∑

k=1

(

X(k) − X̄
c)

= (Dc)−
1

2

(

X̄
c − X̄

c)

= 0.
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(d) By Theorem 3.1, we have S̃
c
= Rc, thus

D̃
c
= diag

(

diag
(

S̃
c
))

= diag (diag (Rc))

= diag ((1, 1, · · · , 1))
= E.

(e)

Y ∗c
(k) =

(

D̃
c
)−

1

2
(

Y (k) − Ȳ
c)

= E−
1

2

(

Y (k) − 0
)

= Y (k).

(f)

Ȳ
r
=

1

M

M
∑

k=1

Y (k)

=
1

M

M
∑

k=1

(Dc)−
1

2

(

X(k) − X̄
c)

= (Dc)−
1

2

1

M

M
∑

k=1

(

X(k) − X̄
c)

= (Dc)−
1

2

(

X̄
r − X̄

c)
.

(g)

Ȳ
∗r

=
1

M

M
∑

k=1

Y ∗r
(k)

=
1

M

M
∑

k=1

(

D̃
r
)−

1

2
(

Y (k) − Ȳ
r)

=
(

D̃
r
)−

1

2 1

M

M
∑

k=1

(

Y (k) − Ȳ
r)

=
(

D̃
r
)−

1

2
(

Ȳ
r − Ȳ

r)

= 0.
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(h)

S̃
∗r

= R̃
r

=
1

M − 1

M
∑

k=1

(

Y ∗r
(k) − Ȳ

∗r
)(

Y ∗r
(k) − Ȳ

∗r
)⊤

=
1

M − 1

M
∑

k=1

Y ∗r
(k)

(

Y ∗r
(k)

)⊤

=
1

M − 1

M
∑

k=1

(

D̃
r
)−

1

2
(

Y (k) − Ȳ
r) (

Y (k) − Ȳ
r)⊤

(

D̃
r
)−

1

2

=
(

D̃
r
)−

1

2

[

1

M − 1

M
∑

k=1

(

Y (k) − Ȳ
r) (

Y (k) − Ȳ
r)⊤

]

(

D̃
r
)−

1

2

=
(

D̃
r
)−

1

2

S̃
r
(

D̃
r
)−

1

2

.

Define the multiplication of two vectors by

x · y = (x1, x2, · · · , xp) · (y1, y2, · · · , yp)
= (x1y1, x2y2, · · · , xpyp) .

To prove Theorem 3.1, we need the following lemma.

Lemma 3.1 Let

Λ1 =











λ1

λ2

. . .

λp











, Λ2 =











µ1

µ2

. . .

µp











, A = (aij)p×p
.

Then

diag (Λ1AΛ2) = diag (Λ1) · diag (A) · diag (Λ2) ,

diag (Λ1Λ2) = diag (Λ1) · diag (Λ2) .

Proof.

Λ1AΛ2 =











λ1

λ2

. . .

λp





















a11 a12 · · · a1p
a21 a22 · · · a2p
...

...
. . .

...
ap1 ap2 · · · app





















µ1

µ2

. . .

µp











=











λ1a11µ1 ∗ · · · ∗
∗ λ2a22µ2 · · · ∗
...

...
. . .

...
∗ ∗ · · · λpappµp











,
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diag (Λ1AΛ2) = (λ1a11µ1, λ2a22µ2, · · · , λpappµp)

= (λ1, λ2, · · · , λp) · (a11, a22, · · · , app) · (µ1, µ2, · · · , µp)

= diag (Λ1) · diag (A) · diag (Λ2) .

Λ1Λ2 =











λ1

λ2

. . .

λp





















µ1

µ2

. . .

µp











=











λ1µ1

λ2µ2

. . .

λpµp











,

diag (Λ1Λ2) = (λ1µ1, λ2µ2, · · · , λpµp)

= (λ1, λ2, · · · , λp) · (µ1, µ2, · · · , µp)

= diag (Λ1) · diag (Λ2) .

�

Theorem 3.1 (a) Rc = S̃
c
= R̃

c
. (b) Rr = R̃

r
.

Proof. (a) We prove Rc = S̃
c
first. Since Y (k) = (Dc)−

1

2

(

X(k) − X̄
c)

= X∗c
(k),

Rc =
1

n− 1

n
∑

k=1

X∗c
(k)

(

X∗c
(k)

)⊤

=
1

n− 1

n
∑

k=1

Y (k)Y
⊤

(k)

= S̃
c
.

Next we prove R̃
c
= S̃

c
. From Table 3 (e), we have Y ∗c

(k) = Y (k), thus

R̃
c
=

1

n− 1

n
∑

k=1

Y ∗c
(k)

(

Y ∗c
(k)

)⊤

=
1

n− 1

n
∑

k=1

Y (k)Y
⊤

(k)

= S̃
c
.

(b) We have

Rr = S∗r =
1

M − 1

M
∑

k=1

X∗r
(k)

(

X∗r
(k)

)⊤

,

R̃
r
= S̃

∗r
=

1

M − 1

M
∑

k=1

Y ∗r
(k)

(

Y ∗r
(k)

)⊤

.



14 An OOS for Robust Factor Analysis

To prove that Rr = R̃
r
, it suffices to prove that

X∗r
(k) = Y ∗r

(k). (3.1)

Write

X∗r
(k) = (Dr)−

1

2

(

X(k) − X̄
r)

,

Y ∗r
(k) =

(

D̃
r
)−

1

2
(

Y (k) − Ȳ
r)

,

Y (k) = (Dc)−
1

2

(

X(k) − X̄
c)

,

from Table 3 (f), we have

Ȳ
r
= (Dc)−

1

2

(

X̄
r − X̄

c)
.

Thus

Y ∗r
(k) =

(

D̃
r
)−

1

2
(

Y (k) − Ȳ
r)

=
(

D̃
r
)−

1

2

[

(Dc)−
1

2

(

X(k) − X̄
c)− (Dc)−

1

2

(

X̄
r − X̄

c)
]

=
(

D̃
r
)−

1

2

(Dc)−
1

2

(

X(k) − X̄
r)

.

To prove (3.1), it suffices to prove

(

D̃
r
)−

1

2

(Dc)−
1

2 = (Dr)−
1

2 ,

which reduces to prove
D̃

r
Dc = Dr,

that is,

diag
(

diag
(

S̃
r
))

· diag (diag (Sc)) = diag (diag (Sr)) ,

which is equivalent to

diag
(

S̃
r
)

· diag (Sc) = diag (Sr) .

We have just proved

Y (k) − Ȳ
r
= (Dc)−

1

2

(

X(k) − X̄
r)

,

and thus

S̃
r
=

1

M − 1

M
∑

k=1

(

Y (k) − Ȳ
r) (

Y (k) − Ȳ
r)⊤

=
1

M − 1

M
∑

k=1

(Dc)−
1

2

(

X(k) − X̄
r) (

X(k) − X̄
r)⊤

(Dc)−
1

2

= (Dc)−
1

2

[

1

M − 1

M
∑

k=1

(

X(k) − X̄
r) (

X(k) − X̄
r)⊤

]

(Dc)−
1

2

= (Dc)−
1

2 Sr (Dc)−
1

2 .
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Consequently,

diag
(

S̃
r
)

= diag
(

(Dc)−
1

2 Sr (Dc)−
1

2

)

= diag
(

(Dc)−
1

2

)

· diag (Sr) · diag
(

(Dc)−
1

2

)

(Lemma 3.1)

= diag
(

(Dc)−
1

2

)

· diag
(

(Dc)−
1

2

)

· diag (Sr)

= diag
(

(Dc)−1
)

· diag (Sr) (Lemma 3.1).

Finally,

diag
(

S̃
r
)

· diag (Sc) = diag
(

(Dc)−1
)

· diag (Sr) · diag (Sc)

= diag
(

(Dc)−1
)

· diag (Sr) · diag (Dc)

= diag
(

(Dc)−1
)

· diag (Dc) · diag (Sr)

= diag (E) · diag (Sr) (Lemma 3.1)

= diag (Sr) .

The proof is complete. �

The score of the kth observation is summarized in Table 4. The scores method can be
“regression” or “Bartlett”. The running matrix can be the covariance matrix (S) or the
correlation matrix (R).

Table 4: The score of the kth observation.

regression Bartlett

cor = FALSE f̃ (k) = L̂
⊤

S−1
(

X(k) − X̄
)

f̂ (k) =
(

L̂
⊤

Ψ̂
−1

L̂
)−1

L̂
⊤

Ψ̂
−1 (

X(k) − X̄
)

cor = TRUE f̃
∗

(k) = L̂
∗⊤

R−1X∗

(k) f̂
∗

(k) =
(

L̂
∗⊤

Ψ̂
∗−1

L̂
∗
)−1

L̂
∗⊤

Ψ̂
∗−1

X∗

(k)

If we define the scoring coefficient Sc by

Sc =



























L̂
⊤

S−1, cor = FALSE, scoresMethod = “regression”,
(

L̂
⊤

Ψ̂
−1

L̂
)−1

L̂
⊤

Ψ̂
−1

, cor = FALSE, scoresMethod = “Bartlett”,

L̂
∗⊤

R−1, cor = TRUE, scoresMethod = “regression”,
(

L̂
∗⊤

Ψ̂
∗−1

L̂
∗
)−1

L̂
∗⊤

Ψ̂
∗−1

, cor = TRUE, scoresMethod = “Bartlett”,

then the score of the kth observation simplifies to

f (k) =

{

Sc

(

X(k) − X̄
)

, cor = FALSE,

ScX
∗

(k), cor = TRUE.
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If cor = FALSE, then the score matrix is

F =













f⊤

(1)

f⊤

(2)
...

f⊤

(n)













=













(

X(1) − X̄
)⊤

S⊤

c
(

X(2) − X̄
)⊤

S⊤

c
...

(

X(n) − X̄
)⊤

S⊤

c













=













(

X(1) − X̄
)⊤

(

X(2) − X̄
)⊤

...
(

X(n) − X̄
)⊤













S⊤

c =
(

X − 1X̄
⊤
)

S⊤

c .

If cor = TRUE, then the score matrix is

F =













f⊤

(1)

f⊤

(2)
...

f⊤

(n)













=













X∗⊤

(1)S
⊤

c

X∗⊤

(2)S
⊤

c

...

X∗⊤

(n)S
⊤

c













=













X∗⊤

(1)

X∗⊤

(2)
...

X∗⊤

(n)













S⊤

c = X∗S⊤

c ,

where X∗ =
(

X − 1X̄
⊤
)

D−
1

2 . If we define

scaledX =

{

X − 1X̄
⊤
, cor = FALSE,

X∗, cor = TRUE,

then
F = scaledX · S⊤

c . (3.2)

Theorem 3.2 The running matrices (R), eigenvalues (λ), loadings (L), uniquenesses (Ψ),
scoring coefficients (Sc), scaled data matrices (scaledX), score matrices (F ) are the same for

(a) combinations (2) and (4),

(b) combinations (6) and (8).

Proof. If the running matrices (R) are the same, then the eigenvalues (λ), loadings (L),
uniquenesses (Ψ) are the same. If R,L,Ψ are the same, then by the definition of scoring
coefficient Sc, we know that Sc are the same. If the scaled data matrices (scaledX) are the
same, then by (3.2), the score matrices (F ) are the same. Thus it suffices to show that R

and scaledX are the same.

(a) The running matrices Rc = R̃
c
by Theorem 3.1. From Table 3, we see that

Y ∗c
(k) = Y (k) = X∗c

(k),

thus the scaledX are the same.

(b) The running matrices Rr = R̃
r
by Theorem 3.1. By (3.1), we have X∗r

(k) = Y ∗r
(k), thus

the scaledX are the same. �

3.3. Example: hbk data

In this subsection, a data set hbk is used to show the base functionalities of the robust factor
analysis solution. The Hawkins, Bradu and Kass data set hbk is from the package robustbase
consists of 75 observations in 4 dimensions (one response and three explanatory variables).
The first 10 observations are bad leverage points, and the next four points are good leverage
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points (i.e., their x are outlying, but the corresponding y fit the model quite well). We will
consider only the X-part of the data.

Robust factor analysis is represented by the class FaCov which inherits from class Fa by class
FaRobust of distance 2, and uses all slots and methods defined from Fa. The function FaCov()

serves as a constructor (generating function) of the class. It can be called either by providing
a data frame or matrix or a formula with no response variable, referring only to numeric
variables. The usage of the default method of FaCov is:

FaCov(x, factors = 2, cor = FALSE, cov.control = CovControlMcd(),

method = c("mle", "pca", "pfa"),

scoresMethod = c("none", "regression", "Bartlett"), ...)

where x is a numeric matrix or an object that can be coerced to a numeric matrix. factors
is the number of factors to be fitted. cor is a logical value indicating whether the calcula-
tion should use the correlation matrix (cor = TRUE) or the covariance matrix (cor = FALSE).
cov.control specifies which covariance estimator to use by providing a CovControl-class

object. The default is CovControlMcd-class which will indirectly call CovMcd. If cov.control
= NULL is specified, the classical estimates will be used by calling CovClassic. method is the
method of factor analysis, one of "mle" (the default), "pca", and "pfa". scoresMethod spec-
ifies which type of scores to produce. The default is "none", "regression" gives Thompson’s
scores, and "Bartlett" gives Bartlett’s weighted least-squares scores (Johnson and Wichern
2007; Xue and Chen 2007). The usage of the formula interface of FaCov is:

FaCov(formula, data = NULL, factors = 2, cor = FALSE,

method = "mle", scoresMethod = "none", ...)

where formula is a formula with no response variable, referring only to numeric variables.
data is an optional data frame containing the variables in the formula. Classical factor anal-
ysis is represented by the class FaClassic which inherits directly from Fa, and uses all slots
and methods defined there. The function FaClassic() serves as a constructor (generating
function) of the class. It also has its default method and formula interface as FaCov().

The code lines

R> ##

R> ## faCovPcaRegMcd is obtained from FaCov.default

R> ##

R> faCovPcaRegMcd = FaCov(x = hbk.x, factors = 2, method = "pca",

+ scoresMethod = "regression", cov.control = CovControlMcd());

R> faCovPcaRegMcd

generate an object faCovPcaRegMcd of class FaCov. In fact, it is equivalent to use the formula
interface

R> faCovForPcaRegMcd = FaCov(~., data = as.data.frame(hbk.x),

+ factors = 2, method = "pca", scoresMethod = "regression",

+ cov.control = CovControlMcd())
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That is faCovForPcaRegMcd = faCovPcaRegMcd. Type

R> class(faCovPcaRegMcd)

[1] "FaCov"

attr(,"package")

[1] "robustfa"

We see that the class FaCov is defined in the package robustfa. For an object obj of class Fa,
we have

obj = show(obj) = print(obj) = myFaPrint(obj).

Here show() and print() are S4 generic functions, while myFaPrint() is an S3 function
acting as a function definition for setMethod of the generic functions show and print.

R> show(faCovPcaRegMcd)

Call:

FaCov(x = hbk.x, factors = 2, cov.control = CovControlMcd(),

method = "pca", scoresMethod = "regression")

Standard deviations:

[1] 1.391072 1.261732 1.170626

Loadings:

Factor1 Factor2

X1 -0.004150242 1.2079697

X2 1.180797866 -0.1246965

X3 0.646169668 0.4903801

From Figure 2 we see that summary() generates an object of class SummaryFa which has its
own show() method.

R> summaryFaCovPcaRegMcd = summary(faCovPcaRegMcd);

R> summaryFaCovPcaRegMcd

Call:

FaCov(x = hbk.x, factors = 2, cov.control = CovControlMcd(),

method = "pca", scoresMethod = "regression")

Importance of components:

Factor1 Factor2

SS loadings 1.812 1.715

Proportion Var 0.370 0.350

Cumulative Var 0.370 0.720
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From the summary result of faCovPcaRegMcd, we see that the first two factors accout for
about 72.0% of its total variance.

Next we calculate prediction/scores using predict(). The usage is predict(object, ...),
where object is an object of class Fa. If missing ...(newdata), the scores slot of object is
used. To save space, only the first five and last five rows of the scores are displayed.

R> predict(faCovPcaRegMcd)

Factor1 Factor2

1 20.1391070 10.4105484

2 20.9770640 10.0136763

3 21.3980990 11.4405912

4 22.5484289 10.8723961

5 22.0558985 11.0589128

71 0.6381775 0.5281550

72 0.1462415 -0.7438318

73 0.2005665 -0.7383855

74 0.3525364 -1.1721414

75 -0.5293472 -0.4594629

If not missing ..., then ... must have the name newdata. Moreover, newdata should
be scaled first. For example, the original data is x = hbk.x, and newdata is a one row
data.frame.

R> newdata = hbk.x[1, ]

R> cor = FALSE # the default

R> newdata = { if (cor == TRUE)

+ # standardized transformation

+ scale(newdata, center = faCovPcaRegMcd@center,

+ scale = sqrt(diag(faCovPcaRegMcd@covariance)))

+ else # cor == FALSE

+ # centralized transformation

+ scale(newdata, center = faCovPcaRegMcd@center, scale = FALSE)

+ }

Finally we get

R> prediction = predict(faCovPcaRegMcd, newdata = newdata)

R> prediction

Factor1 Factor2

1 20.13911 10.41055

One can easily check that

prediction = predict(faCovPcaRegMcd)[1,] = faCovPcaRegMcd@scores[1,]
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To visualize the factor analysis results, the plot method can be used. We have setMethod

plot with signature

x = "Fa", y = "missing".

The usage is

plot(x, which = c("factorScore", "screeplot"), choices = 1:2).

Where x is an object of class Fa. The argument which indicates what kind of plot. If which =

"factorScore", then a scatterplot of the factor scores is produced; if which = "screeplot",
then the eigenvalues plot is created and is helpful to select the number of factors. The
argument choices is an integer vector of length two indicating which columns of the factor
scores to plot. To see how plot is functioning, we first generate an Fa object.

R> faClassicPcaReg = FaClassic(x = hbk.x, factors = 2, method = "pca",

+ scoresMethod = "regression"); faClassicPcaReg

Call:

FaClassic(x = hbk.x, factors = 2, method = "pca", scoresMethod = "regression")

Standard deviations:

[1] 14.7024532 1.4075073 0.9572508

Loadings:

Factor1 Factor2

X1 3.411036 0.936662

X2 7.278529 3.860723

X3 11.270812 3.273734

R> summary(faClassicPcaReg)

Call:

FaClassic(x = hbk.x, factors = 2, method = "pca", scoresMethod = "regression")

Importance of components:

Factor1 Factor2

SS loadings 191.643 26.500

Proportion Var 0.875 0.121

Cumulative Var 0.875 0.996

faClassicPcaReg is an object of class FaClassic. From the summary result of faClassicPcaReg,
we see that the first two factors accout for about 99.6% of its total variance. Next we generate
an object faCovPcaRegMcd of class FaCov using the same data set. The show and summary

results have already been shown before.

The following code lines generate classical and robust scatterplots of the first two factor scores.
See Figure 3.
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R> usr <- par(mfrow=c(1,2))

R> plot(faClassicPcaReg, which = "factorScore", choices = 1:2)

R> plot(faCovPcaRegMcd, which = "factorScore", choices = 1:2)

R> par(usr)
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Figure 3: Classical and robust scatterplots of the first two factor scores of the hbk data.

The following code lines generate classical and robust scree plots. See Figure 4.

R> usr <- par(mfrow=c(1,2))

R> plot(faClassicPcaReg, which = "screeplot")

R> plot(faCovPcaRegMcd, which = "screeplot")

R> par(usr)

Next we impose a 97.5% tolerance ellipse on the scatterplot of the first two factor scores of
the hbk data by using a function rrcov:::.myellipse. See Figure 5. The left panel shows
the classical 97.5% tolerance ellipse, which is very large and contains the outliers 1-13. The
regular points are not well seperated from the outliers. The right panel shows the robust
97.5% tolerance ellipse which clearly separates the regular points and outliers. We see that
the estimate of the center of the regular points is located at the origin (where the mean of the
scores should be located). The following code lines compute the means of the classical and
robust scores. We see that the mean of all observations of the classical scores equals 0, while
the mean of good observations (regular points, excluding the outliers) of the robust scores
equals 0.

R> colMeans(faClassicPcaReg@scores)

Factor1 Factor2

-1.452310e-16 3.376871e-16

R> colMeans(faCovPcaRegMcd@scores)
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Figure 4: Classical and robust scree plots of the hbk data.
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Figure 5: Classical and robust scatterplot of the first two factor scores of the hbk data with
a 97.5% tolerance ellipse.
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Factor1 Factor2

4.272569 2.072818

R> colMeans(faClassicPcaReg@scores[15:75,])

Factor1 Factor2

-0.4523799 -0.1358260

R> colMeans(faCovPcaRegMcd@scores[15:75,])

Factor1 Factor2

-8.167419e-17 -3.185066e-18
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Figure 6: A distance-distance plot for hbk data.

Next we plot a Cov-class. See Figure 6. The figure shows a distance-distance plot. We
see that the robust (mahalanobis) distances are far larger than the (classical) mahalanobis
distances. The outliers have large robust distances. The figure is generated by myplotDD(x

= covMcd). myplotDD() is a revised version of .myddplot() in plot-utils.R in the package
rrcov. In myplotDD(), id.n and ind are printed out. Here id.n is the number of observations
to identify by a label. By default, the number of observations with robust distances larger
than cutoff is used. By default cutoff = sqrt(qchisq(0.975, p)). ind is the index of
robust distances whose values are larger than cutoff.

cutoff = 3.057516

id.n <- length(which(rd>cutoff))

id.n = 14
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Here y is the robust distance (rd).

sort.y = (To save space, only the smallest five and largest five

elements of sort.y$x and sort.y$ix are shown.)

$x

67 18 72 71 28 4

0.4553524 0.6505517 0.7631246 0.8306446 0.8570290 27.1972578

11 13 12 14

30.3225470 30.5536038 31.4123574 34.0079508

$ix

[1] 67 18 72 71 28 4 11 13 12 14

ind =

[1] 1 8 2 6 7 10 3 9 5 4 11 13 12 14

From the above results we see that the cutoff is computed as 3.057516. There are id.n

= 14 observations with robust distance larger than cutoff. sort.y is a list containing the
sorted values of y (the robust distance). sort.y$x is arranged in increasing order. To save
space, only the smallest five and largest five robust distances with their indices are shown.
sort.y$ix contains the indices. ind shows the indices of the largest id.n = 14 observations
whose robust distances are larger than cutoff.

The accessor functions getCenter(), getEigenvalues(), getLoadings(), getQuan(), getScores(),
and getSdev() are used to access the corresponding slots. For instance

R> getEigenvalues(faCovPcaRegMcd)

[1] 1.935081 1.591967 1.370366

The function getFa(), which is used in predict() and screeplot(), returns a list of class
"fa".

Note that our previous comparisons in this subsection are just (1) vs (5), i.e., classical and
robust factor analysis comparisons using x = hbk.x as the data input and the covariance
matrix (cor = FALSE) as the running matrix.

For x = hbk.x, we checked that Sr 6= S̃
r
, and Rr = R̃

r
for control = "mcd", "ogk", "m",

"mve", "sfast", "bisquare", "rocke", small differences between Rr and R̃
r
for control =

"sde", "surreal". The results illustrate Theorem 3.1.

The eigenvalues of the running matrices of the hbk data of the 8 combinations are given in
Table 5. From Table 5 we see that the eigenvalues of (2), (3), and (4) are the same, the
eigenvalues of (6) and (8) are the same. The results illustrate Theorems 3.1 and 3.2.

Classical and robust (MCD) scatterplots of the first two factor scores of the hbk data with
97.5% tolerance ellipses are ploted in Figure 7. We see that the scores of (2), (3), and (4)
are the same, the scores of (6) and (8) are the same, in agree with Theorem 3.2. Note that
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Table 5: The eigenvalues of the running matrices for hbk data.

Classical Robust (MCD)
hbk.x covariance (1) 216.162129 1.981077 0.916329 (5) 1.935081 1.591967 1.370366

correlation (2) 2.92435228 0.05668483 0.01896288 (6) 1.1890834 0.9563255 0.8545911
scale(hbk.x) covariance (3) 2.92435228 0.05668483 0.01896288 (7) 0.12408511 0.02501676 0.01089401

correlation (4) 2.92435228 0.05668483 0.01896288 (8) 1.1890834 0.9563255 0.8545911

the tolerance ellipse is very large for (1), since the outliers severely affected the eigenvalues of
the running matrix Sc. While the tolerance ellipses are very small for (2), (3), and (4), also
due to the outliers severely affected the eigenvalues of the running matrices Rc = S̃

c
= R̃

c
.

The tolerance ellipse is very small for (7) and it does not cover the regular points, due to
the first two eigenvalues of (7) are very small. It exemplifies that the results from robust
covariance matrix of the scaled data is not very reliable. The tolerance ellipses of (6) and (8)
well seperate the regular points and the outliers.

3.4. Example: Stocks data

In this subsection, we apply the robust factor analysis solution to a real data set stock611.
This data set consists of 611 observations with 12 variables. The data set is from Chinese
stock market in the year 2001. It is used in (Wang 2009) to illustrate factor analysis methods.

For x = stock611[,3:12],

cov_x = CovRobust(x = x, control = control)

gets error message for control = "mcd", "m", "mve", "sde", "sfast", thus we can not
compute cov_x, Sr, and Rr for these robust estimators. That is, we can not get results for
combinations (5) and (6) for these robust estimators. However, for x = scale(stock611[,3:12]),
we can compute cov_x, S̃

r
, and R̃

r
for these robust estimators, and we can get results for

combinations (7) and (8). Although (6) and (8) have the same running matrices (R), eigen-
values (λ), loadings (L), uniquenesses (Ψ), scoring coefficients (Sc), scaled data matrices
(scaledX), and score matrices (F ), as were proved in Theorem 3.2, we may not be able to get
results for (6) due to computational error for cov_x, while for (8) the computational error
does not occur. That is why we recommend (4) vs (8) for classical and robust factor analysis.

The first two eigenvalues of the running matrices of the stock611 data of the 8 combinations
are given in Table 6. From Table 6 we see that the eigenvalues of (2), (3), and (4) are the
same, the eigenvalues of (6) and (8) are the same. The results also illustrate Theorems 3.1
and 3.2.

Classical and robust (OGK) scatterplots of the first two factor scores of the stock611 data
with 97.5% tolerance ellipses are ploted in Figure 8. The scatterplots of the first two factor
scores of combinations (1) and (5) are not shown, because errors occur in

solve.default(S): system is computationally singular.

To get a clearer view of the scatterplots, we zoom in the scatterplots. We see that the scores
of (2), (3), and (4) are the same, the scores of (6) and (8) are the same, in agree with Theorem



26 An OOS for Robust Factor Analysis

●●
●
●●●
●
●●●
●

●

●

●

●●●
●
●●
●
●●●

●

●
●
●
●
●
●

●●

●●
●
●●

●

●

●●

●

●
●
●●
●
●●●
●
●

●
●●

●

●

●●

●
●

●
●

●

●●
●●
●●●●
●

●

−40 0 20 40

−
5

0
5

10
15

20
25

Classical

Factor1

Fa
ct

or
2

1−13

14

●●

●
●●●●●●●

●

●

●

●

●
●

●

●

●

●●

●
●
●●●

●
●
●
●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●
●●
●●
●●

●

●
●●
●●
●●
●●●●

●●

●
●
●
●●
●

●●●
●

−40 0 20 40

−
5

0
5

10
15

20
25

Robust (MCD)

Factor1

Fa
ct

or
2

11
12
13

14
1−10

●
●
●
●●
●●●
●●●
●
●

●

●●

●

●

●

●●

●

●
●●
●

●
●●●

●

●
●●

●

●
●

●
●

●

●

●
●

●●●
●●●
●
●
●

●●●
●
●●●
●●

●●

●●

●
●
●

●

●
●
●●●
●

−40 0 20 40

−
5

0
5

10
15

20
25

Classical

Factor1

Fa
ct

or
2

1−13

14

●
●●
●●
●●
●
●
●

●
●

●

●

●
●

●●
●
●
●

●
●●

●

●
●

●●●
●

●
●

●

●●
●

●
●

●●
●

●

●
●
●
●

●
●●

●
●●

●●
●

●

●
●
●

●

●

●
●

●
●●

●
●

●●●●●

●

−40 0 20 40

−
5

0
5

10
15

20
25

Robust (MCD)

Factor1

Fa
ct

or
2

1211
13

14

1−10

●
●
●
●●
●●●
●●●
●
●

●

●●

●

●

●

●●

●

●
●●
●

●
●●●

●

●
●●

●

●
●

●
●

●

●

●
●

●●●
●●●
●
●
●

●●●
●
●●●
●●

●●

●●

●
●
●

●

●
●
●●●
●

−40 0 20 40

−
5

0
5

10
15

20
25

Classical

Factor1

Fa
ct

or
2

1−13

14

●
●

●
●●●●●●●

●

●

●

●

●
●

●

●

●

●●

●
●
●●●

●
●
●
●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●
●●
●●
●●

●

●
●●
●●
●●
●●●●

●●

●
●
●
●●
●

●●
●
●

−40 0 20 40

−
5

0
5

10
15

20
25

Robust (MCD)

Factor1

Fa
ct

or
2

1113
12

141−10

●
●
●
●●
●●●
●●●
●
●

●

●●

●

●

●

●●

●

●
●●
●

●
●●●

●

●
●●

●

●
●

●
●

●

●

●
●

●●●
●●●
●
●
●

●●●
●
●●●
●●

●●

●●

●
●
●

●

●
●
●●●
●

−40 0 20 40

−
5

0
5

10
15

20
25

Classical

Factor1

Fa
ct

or
2

1−13

14

●
●

●
●●●●●●●

●

●

●

●

●
●

●

●

●

●●

●
●
●●●

●
●
●
●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●
●●
●●
●●

●

●
●●
●●
●●
●●●●

●●

●
●
●
●●
●

●●
●
●

−40 0 20 40

−
5

0
5

10
15

20
25

Robust (MCD)

Factor1

Fa
ct

or
2

1113
12

14
1−10

Figure 7: Classical and robust (MCD) scatterplots of the first two factor scores of the hbk
data with 97.5% tolerance ellipses. First row: (1) vs (5); (3) vs (7). Second row: (2) vs (6);
(4) vs (8).

Table 6: The first two eigenvalues of the running matrices of the stock611 data.

Classical Robust (MCD)
stock611[,3:12]) covariance (1) 4.272384e+20 1.985165e+19 (5) 3.990230e+17 7.358056e+16

correlation (2) 5.7900498488 2.3189552681 (6) 5.15840672 2.40502329
scale(stock611[,3:12])) covariance (3) 5.7900498488 2.3189552681 (7) 7.527778e-01 2.967432e-01

correlation (4) 5.7900498488 2.3189552681 (8) 5.15840672 2.40502329
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3.2. Note that the tolerance ellipses for (2), (3), and (4) cover the outliers, due to the outliers
severely affected the eigenvalues of the running matricesRc = S̃

c
= R̃

c
. The tolerance ellipses

of (6) and (8) well seperated the regular points and the outliers.

Next we plot a Cov-class for the stock611 data using the function myplotDD(). See Figure 9.
The figure shows a distance-distance plot. We see that the robust (mahalanobis) distances are
far larger than the (classical) mahalanobis distances. The outliers have large robust distances.

cutoff = 4.525834

id.n <- length(which(rd>cutoff))

id.n = 287

Here y is the robust distance (rd).

sort.y = (To save space, only the smallest five and largest five

elements of sort.y$x and sort.y$ix are shown.)

$x

281 368 239 312 229

0.6880160 0.8109610 0.9234880 0.9763902 1.0429306

379 539 337 79 338

180.7741644 264.6799442 531.0887434 923.0346401 1315.6544592

$ix

[1] 281 368 239 312 229 379 539 337 79 338

ind =

[1] 601 577 36 202 429 387 466 290 570 46 203 566 29 559 313 397

[17] 582 122 597 517 192 596 489 261 417 133 30 266 105 549 585 462

[33] 493 565 591 547 469 513 289 420 222 502 382 163 194 406 252 41

[49] 69 532 73 34 602 435 372 150 481 276 148 38 278 139 401 350

[65] 340 70 273 132 72 374 314 366 96 586 394 169 81 49 506 407

[81] 184 173 603 524 391 39 141 356 561 599 102 357 538 418 568 37

[97] 220 124 187 293 84 578 590 437 459 144 33 518 523 225 156 198

[113] 419 531 83 600 322 254 519 454 384 495 260 22 554 35 63 23

[129] 351 609 354 399 448 449 213 174 478 557 188 607 166 442 503 190

[145] 558 574 104 371 343 365 598 145 176 31 467 486 40 463 287 103

[161] 567 253 346 61 608 563 117 140 552 409 182 378 26 579 575 28

[177] 332 97 415 610 53 546 320 108 479 295 341 548 21 32 584 94

[193] 20 272 471 42 611 544 160 18 87 377 526 288 339 321 138 44

[209] 606 226 25 153 66 24 14 592 595 92 13 605 7 344 57 16

[225] 175 309 9 11 19 193 4 413 345 303 504 206 604 216 472 553

[241] 17 15 1 230 580 3 307 27 10 6 114 562 594 5 56 588

[257] 541 492 490 540 583 542 424 593 581 569 572 285 75 444 129 82

[273] 237 589 576 12 571 74 2 113 8 59 379 539 337 79 338
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Figure 8: Classical and robust (OGK) scatterplots of the first two factor scores of the stock611
data with 97.5% tolerance ellipses. First row: (2) vs (6). Second row: (3) vs (7). Third row:
(4) vs (8).
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Figure 9: A distance-distance plot for stock611 data.

From the above results we see that the cutoff is computed as 4.525834. There are id.n =

287 observations with robust distances larger than cutoff. sort.y is a list containing the
sorted values of y (the robust distance). sort.y$x is arranged in increasing order. To save
space, only the smallest five and largest five robust distances with their indices are shown.
sort.y$ix contains the indices. ind shows the indices of the largest id.n = 287 observations
whose robust distances are larger than cutoff.

From the above results, we recommend (4) vs (8) when one needs to compare classical and
robust factor analysis. The following code lines generate an object faClassic4 of class
FaClassic.

R> ## (4) classical, x = scale(stock611[,3:12]), cor = TRUE (correlation matrix)

R> faClassic4 = FaClassic(x = scale(stock611[,3:12]), factors = 2, cor = TRUE,

+ method = "pca", scoresMethod = "regression"); faClassic4

Call:

FaClassic(x = scale(stock611[, 3:12]), factors = 2, cor = TRUE,

method = "pca", scoresMethod = "regression")

Standard deviations:

[1] 2.40625224 1.52281163 1.00433419 0.75771973 0.37846924 0.31490830

[7] 0.22719326 0.09697058 0.06300416 0.02779799

Loadings:

Factor1 Factor2

X1 0.98781949 -0.02611587

X2 0.99154548 -0.00633362

X3 0.99222167 0.05353998

X4 0.98486045 0.07865320
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X5 0.05473434 0.95570764

X6 -0.01321817 0.62527581

X7 0.01924642 0.48022545

X8 0.04578987 0.88138600

X9 0.94053884 -0.01792872

X10 0.99068004 -0.04474676

R> summary(faClassic4)

Call:

FaClassic(x = scale(stock611[, 3:12]), factors = 2, cor = TRUE,

method = "pca", scoresMethod = "regression")

Importance of components:

Factor1 Factor2

SS loadings 5.785 2.324

Proportion Var 0.579 0.232

Cumulative Var 0.579 0.811

Since we use the correlation matrix (cor = TRUE) as the running matrix, the entries of the
loading matrix are limitted between 0 and 1, which makes the explanations of the factors
easy. From the show result of faClassic4, we see that its Factor1 explains variables x1-x4,
x9, x10; its Factor2 explains variables x5-x8 (with loadings larger than 0.48). From the
summary result of faClassic4, we see that the first two factors accout for about 81.1% of its
total variance.

Next we generate an object faCov8 of class FaCov using the same data set.

R> ## (8) robust, x = scale(stock611[,3:12]), cor = TRUE (correlation matrix)

R> faCov8 = FaCov(x = scale(stock611[,3:12]), factors = 2, cor = TRUE, method = "pca",

+ scoresMethod = "regression", cov.control = CovControlOgk()); faCov8

Call:

FaCov(x = scale(stock611[, 3:12]), factors = 2, cor = TRUE, cov.control = CovControlOgk(),

method = "pca", scoresMethod = "regression")

Standard deviations:

[1] 2.2712126 1.5508138 1.0753673 0.8269330 0.4632001 0.4302182

[7] 0.3448025 0.1828619 0.1768218 0.1144628

Loadings:

Factor1 Factor2

X1 0.1192720 0.771765320

X2 0.3585258 0.808017502

X3 0.7582825 0.596037255

X4 0.7604049 0.586322722

X5 0.9546105 0.072062014

X6 0.4300313 0.111234443
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X7 0.8787653 -0.002537877

X8 0.9349237 -0.028219013

X9 0.0457114 0.931164519

X10 -0.0712708 0.827516094

R> summary(faCov8)

Call:

FaCov(x = scale(stock611[, 3:12]), factors = 2, cor = TRUE, cov.control = CovControlOgk(),

method = "pca", scoresMethod = "regression")

Importance of components:

Factor1 Factor2

SS loadings 4.046 3.518

Proportion Var 0.405 0.352

Cumulative Var 0.405 0.756

From the show result of faCov8, we see that its Factor1 explains variables x3-x8 (with
loadings larger than 0.43); its Factor2 explains variables x1-x4, x9, x10. Thus Factor1

(Factor2) of faClassic4 and Factor2 (Factor1) of faCov8 are similar. In fact, this is
not the general case. That is, in most of the situations, the explanations of the factors of
faClassic4 and faCov8 should be the same. From the summary result of faCov8, we see that
the first two factors accout for about 75.6% of its total variance.

The classical and robust scatterplots of the first two factor scores of the stock611 data are
shown in Figure 10. From the figure we see that Factor1 (Factor2) of faClassic4 and
Factor2 (Factor1) of faCov8 are similar in patterns.
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Figure 10: Classical and robust scatterplots of the first two factor scores of the stock611 data.

Furthermore, by inspecting the classical and robust ordered scores, we find that they are
quite different. In the following, orderedFsC[[1]] and orderedFsOgk[[1]] are decreasing
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according to their first column; orderedFsC[[2]] and orderedFsOgk[[2]] are decreasing
according to their second column.

R> orderedFsC = fsOrder(faClassic4@scores[,2:1]); orderedFsC

R> Lst=list(orderedFsC[[1]][1:10,], orderedFsC[[2]][1:10,]); Lst

[[1]]

Factor2 Factor1

583 3.898163 1.442520e-01

337 3.681513 -1.520371e-01

606 3.263503 -5.357695e-02

486 2.503726 -1.257069e-01

563 2.252890 -8.903074e-03

598 2.247478 -1.065788e-01

454 2.129092 -1.118824e-01

572 2.123974 5.649819e-01

588 2.006510 1.021676e-01

526 1.995515 1.440485e-05

[[2]]

Factor2 Factor1

338 -1.22930368 23.8967397

379 -0.10141001 3.2591570

539 1.48465281 3.0500510

79 0.17308239 2.3347627

571 0.74880375 0.9807258

59 -0.89391045 0.8830250

74 -0.92530280 0.7621726

444 0.01917557 0.7219354

589 1.81077486 0.6714384

113 -0.78396701 0.6627497

R> orderedFsOgk = fsOrder(faCov8@scores[,1:2]); orderedFsOgk

R> Lst=list(orderedFsOgk[[1]][1:10,], orderedFsOgk[[2]][1:10,]); Lst

[[1]]

Factor1 Factor2

337 38.809139 -16.399416

539 22.810633 91.478265

589 9.979105 20.071925

576 8.842042 15.095968

583 7.537310 6.476780

569 6.961884 16.455123

571 6.904237 34.271241

572 6.224583 21.041747
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606 6.135567 -0.857162

581 5.437048 17.934172

[[2]]

Factor1 Factor2

338 -17.8843840 899.42807

379 3.1144936 117.91379

79 -19.1832143 109.18835

539 22.8106327 91.47826

59 -13.9358175 48.77925

74 -10.2725106 41.54875

113 -8.9311254 35.37131

571 6.9042366 34.27124

444 0.1627833 28.57266

75 -5.7843270 23.48737

4. Conclusions

We presented an object-oriented solution for robust factor analysis developed in the S4

class system of the programming environment R. In the solution, new S4 classes "Fa",
"FaClassic", "FaRobust", "FaCov", "SummaryFa" are created. The classical factor analysis
function FaClassic() and the robust factor analysis function FaCov() both can deal with
maximum likelihood estimation, principal component analysis, and principal factor analysis
methods. Consider the factor analysis methods (classical or robust), the data input (data or
the scaled data), and the running matrix (covariance or correlation) all together, there are
8 combinations. We recommend (4) (classical factor analysis using the correlation matrix of
the scaled data as the running matrix) vs (8) (robust factor analysis using the correlation
matrix of the scaled data as the running matrix) for theoretical and computational reasons.
The application of the solution to multivariate data analysis is demonstrated on the hbk data
and the stock611 data which themselves are parts of the package robustfa. A major design
goal of the object-oriented solution was the openness to extensions by the development of
new robust factor analysis methods in the package robustfa or in other packages depending
on robustfa.
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