Package 'robustX'

February 25, 2019
Type Package
Title 'eXtra' / 'eXperimental' Functionality for Robust Statistics
Version 1.2-4
Date 2019-02-25
Author Werner Stahel,
Martin Maechler [aut, cre] (https://orcid.org/0000-0002-8685-9910) and potentially others
Maintainer Martin Maechler maechler@stat.math.ethz.ch
Description Robustness -- 'eXperimental', 'eXtraneous', or 'eXtraordinary' Functionality for Robust Statistics. In other words, methods which are not yet well established, often related to methods in package 'robustbase'.
Imports grDevices, graphics, stats, utils, robustbase ($>=0.92-3$)
Suggests MASS, lattice
Enhances ICS
License GPL (>=2)
Encoding UTF-8
Repository CRAN
Repository/R-Forge/Project robustbase
Repository/R-Forge/Revision 836
Repository/R-Forge/DateTimeStamp 2019-02-25 09:25:22
Date/Publication 2019-02-25 11:30:03 UTC
NeedsCompilation no

R topics documented:

robustX-package 2
BACON 3
covNNC 5
L1median 7
mvBACON 9
Qrot 11
rbwheel 12
reclas 14
Index 17
robustX-package eXperimental eXtraneous ... Functionality for Robust Statistics

Description

The package robustX aims to be a collection of R functionality for robust statistics of methods and ideas that are considered as proposals, experimental, for experiences or just too much specialized to be part of the "Robust Basics" package robustbase.

Details

Package:	robustX
Type:	Package
Title:	'eXtra'/ 'eXperimental' Functionality for Robust Statistics
Version:	$1.2-4$
Date:	$2019-02-25$
Author:	Werner Stahel, Martin Maechler [aut, cre] (https://orcid.org/0000-0002-8685-9910
Maintainer:	Martin Maechler <maechler@ stat.math.ethz.ch>
Description:	Robustness - 'eXperimental', 'eXtraneous', or 'eXtraordinary' Functionality for Rob
Imports:	grDevices, graphics, stats, utils, robustbase (>=0.92-3)
Suggests:	MASS, lattice
Enhances:	ICS
License:	GPL (>=2)
Encoding:	UTF-8
Repository:	R-Forge
Repository/R-Forge/Project:	robustbase
Repository/R-Forge/Revision:	836
Repository/R-Forge/DateTimeStamp:	$2019-02-25$ 09:25:22
Date/Publication:	$2019-02-2509: 25: 22$

Index of help topics:

BACON	BACON for Regression or Multivariate Covariance Estimation
L1median	Compute the Multivariate L1-Median aka 'Spatial Median'
Qrot	Rotation Matrix to Specific Direction covNNC
Robust Covariance Estimation via Nearest	
Neighbor Cleaning	
BACON: Blocked Adaptive	

rbwheel	Computationally-Efficient Outlier Nominators Multivariate Barrow Wheel Distribution Random Vectors
reclas	Recursive Robust Median-like Location and Scale robustX-package
	experimental eXtraneous ... Functionality for Robust Statistics

Author(s)

Werner Stahel, Martin Maechler and potentially others
Maintainer: Martin Maechler

See Also

Package robustbase which it complements and on which it depends; further package robust and the whole CRAN task view on robust statistics, http://cran.CH.r-project.org/web/views/ Robust.html

Examples

```
pairs( rbwheel(100, 4) )
```


Description

BACON, short for 'Blocked Adaptive Computationally-Efficient Outlier Nominators', is a somewhat robust algorithm (set), with an implementation for regression or multivariate covariance estimation.
$\operatorname{BACON}()$ applies the multivariate (covariance estimation) algorithm, using mvBACON (x) in any case, and when y is not NULL adds a regression iteration phase, using the auxiliary. $\operatorname{lmBACON}()$ function.

Usage

```
    BACON \((x, y=N U L L\), intercept \(=\) TRUE,
        \(\mathrm{m}=\min (c o l l e c t * p, n * 0.5)\),
        init.sel = c("Mahalanobis", "dUniMedian", "random", "manual"),
        man.sel, init.fraction \(=0\), collect \(=4\),
        alpha \(=0.95\), maxsteps \(=100\), verbose \(=\) TRUE)
    \#\# *Auxiliary* function:
    . \(\operatorname{lmBACON}(x, y\), intercept \(=\) TRUE,
        init.dis, init.fraction \(=0\), collect \(=4\),
        alpha \(=0.95\), maxsteps \(=100\), verbose \(=\) TRUE)
```


Arguments

$x \quad$ a multivariate matrix of dimension [$\mathrm{n} \times \mathrm{p}$] considered as containing no missing values.
y the response (n vector) in the case of regression, or NULL for the multivariate case, where just mvBACON() is returned.
intercept logical indicating if an intercept has to be used for the regression.
m
integer in 1:n specifying the size of the initial basic subset; used only when init.sel is not "manual"; see mvBACON.
init.sel character string, specifying the initial selection mode; see mvBACON.
man.sel only when init.sel == "manual", the indices of observations determining the initial basic subset (and $m<-\quad$ length(man.sel)).
init. dis the distances of the x matrix used for the initial subset determined by mvBACON.
init.fraction if this parameter is >0 then the tedious steps of selecting the initial subset are skipped and an initial subset of size $n *$ init.fraction is chosen (with smallest dis)
collect numeric factor chosen by the user to define the size of the initial subset (p * collect)
alpha significance level.
maxsteps the maximal number of iteration steps (to prevent infinite loops)
verbose logical indicating if messages are printed which trace progress of the algorithm.

Details

Notably about the initial selection mode, init.sel, see its description in the mvBACON arguments list.

Value

$\operatorname{BACON}(\mathrm{x}, \mathrm{y}, \ldots)$ (for regression) returns a list with components
subset the observation indices (in $1: n$) denoting a subset of "good" supposedly outlierfree observations.
tis the $t_{i}\left(y_{m}, X_{m}\right)$ of eq (6) in the reference; the clean "basic subset" in the algorithm is defined the observations i with the smallest $\left|t_{i}\right|$, and the t_{i} can be regarded as scaled predicted errors.
mv.dis the (final) discrepancies or distances of mvBACON().
mv. subset the "good" subset from mvBACON(), used to start the regression iterations.

Note

"BACON" was also chosen in honor of Francis Bacon:
Whoever knows the ways of Nature will more easily notice her deviations; and, on the other hand, whoever knows her deviations will more accurately describe her ways.
Francis Bacon (1620), Novum Organum II 29.

Author(s)

Ueli Oetliker, Swiss Federal Statistical Office, for S-plus 5.1; 25.05.2001; modified six times till 17.6.2001.

Port to R, testing etc, by Martin Maechler. Daniel Weeks (at pitt.edu) proposed a fix to a long standing buglet in GiveTis() computing the t_{i}, which was further improved Maechler, for robustX version 1.2-3 (Feb. 2019).

References

Billor, N., Hadi, A. S., and Velleman, P. F. (2000). BACON: Blocked Adaptive ComputationallyEfficient Outlier Nominators; Computational Statistics and Data Analysis 34, 279-298. doi: 10.1016/ S01679473(99)001012

See Also

mvBACON, the multivariate version of the BACON algorithm.

Examples

```
data(starsCYG, package = "robustbase")
## Plot simple data and fitted lines
plot(starsCYG)
lmST <- lm(log.light ~ log.Te, data = starsCYG)
abline(lmST, col = "gray") # least squares line
str(B.ST <- with(starsCYG, BACON(x = log.Te, y = log.light)))
## 'subset': A good set of of points (to determine regression):
colB <- adjustcolor(2, 1/2)
points(log.light ~ log.Te, data = starsCYG, subset = B.ST$subset,
    pch = 19, cex = 1.5, col = colB)
## A BACON-derived line:
lmB <- lm(log.light ~ log.Te, data = starsCYG, subset = B.ST$subset)
abline(lmB, col = colB, lwd = 2)
require(robustbase)
(RlmST <- lmrob(log.light ~ log.Te, data = starsCYG))
abline(RlmST, col = "blue")
```

covNNC

Description

covNNC() estimates robust covariance/dispersion matrices by the nearest neighbor variance estimation (NNVE) or (rather) "Nearest Neighbor Cleaning" (NNC) method of Wang and Raftery (2002, $J A S A$).

Usage

```
\(\operatorname{covNNC}(X, k=\min (12, \mathrm{n}-1), \operatorname{pnoise}=0.05\), emconv \(=0.001\),
            bound \(=1.5\), extension \(=\) TRUE, devsm \(=0.01\) )
```


Arguments

$X \quad$ matrix in which each row represents an observation or point and each column represents a variable.
$k \quad$ desired number of nearest neighbors (default is 12)
pnoise percent of added noise
emconv convergence tolerance for EM
bound value used to identify surges in variance caused by outliers wrongly included as signal points (bound $=1.5$ means a 50 percent increase)
extension whether or not to continue after reaching the last chi-square distance. The default is to continue, which is indicated by setting extension $=$ TRUE.
devsm when extension = TRUE, the algorithm stops if the relative difference in variance is less than devsm. (default is 0.01)

Value

A list with components

cov	covariance matrix
mu	mean vector
postprob	posterior probability
classification	classification $(0=$ noise otherwise 1) obtained by rounding postprob
innc	list of initial nearest neighbor cleaning results (components are the covariance, mean, posterior probability and classification)

Note

Terms of use: GPL version 2 or newer.
MM: Even though covNNC() is backed by a serious scientific publication, I cannot recommend its use at all.

Author(s)

Naisyin Wang nwang@stat.tamu.edu and Adrian Raftery raftery@stat.washington.edu with contributions from Chris Fraley <fraley@stat. washington.edu>.
covNNC(), then named cov. nnve(), used to be (the only function) in CRAN package covRobust (2003), which was archived in 2012.

Martin Maechler allowed $n \operatorname{col}(X)==1$, sped up the original code, by reducing the amount of scaling; further, the accuracy was increased (using internal q. dDk()). The original version is available, unexported as robustX: : : covNNC1.

References

Wang, N. and Raftery, A. (2002) Nearest neighbor variance estimation (NNVE): Robust covariance estimation via nearest neighbor cleaning (with discussion). Journal of the American Statistical Association 97, 994-1019.
see also University of Washington Statistics Technical Report 368 (2000) https://www.stat. washington.edu/research/reports

See Also

cov.mcd from package MASS; covMcd, and covOGK from package robustbase.
The whole package rrcov.

Examples

```
data(iris)
covNNC(iris[-5])
```

data(hbk, package="robustbase")
hbk.x <- data.matrix(hbk[, 1:3])
covNNC(hbk.x)

Description

Compute the multivariate L_{1}-median m, also called "Spatial Median", i.e., the minimizer of

$$
\sum_{i=1}^{n}\left\|x_{i}-m\right\|
$$

where $\|u\|=\sqrt{\sum_{j=1}^{p} u_{j}^{2}}$.
As a convex problem, there's always a global minimizer, computable not by a closed formula but rather an iterative search. As the (partial) first derivatives of the objective function is undefined at the data points, the minimization is not entirely trivial.

Usage

```
L1median(X, m.init = colMedians(X), weights = NULL,
method = c("nlm", "HoCrJo", "VardiZhang", optimMethods, nlminbMethods),
pscale = apply(abs(centr(X, m.init)), 2, mean, trim = 0.40),
tol = 1e-08, maxit = 200, trace = FALSE,
zero.tol = 1e-15, ...)
```


Arguments

X
m.init
weights optional numeric vector of non-negative weights; currently only implemented for method "VardiZhang".
method character string specifying the computational method, i.e., the algorithm to be used (can be abbreviated).
pscale numeric p-vector of positive numbers, the coordinate-wise scale (typical size of δm_{j}), where m is the problem's solution.
tol positive number specifying the (relative) convergence tolerance.
maxit positive integer specifying the maximal number of iterations (before the iterations are stopped prematurely if necessary).
trace an integer specifying the tracing level of the iterations; 0 does no tracing
zero.tol for method "VardiZhang", a small positive number specifying the tolerance for determining that the iteration is 'exactly' at a data point (which is a singularity).
... optional arguments to $n l m$ () or the control (list) arguments of optim(), or nlminb(), respectively.

Details

Currently, we have to refer to the "References" below.

Value

currently the result depends strongly on the method used.
FIXME. This will change considerably.

Author(s)

Martin Maechler. Method "HoCrJo" is mostly based on Kristel Joossens' R function, implementing Hossjer and Croux (1995).

References

Hossjer and Croux, C. (1995). Generalizing Univariate Signed Rank Statistics for Testing and Estimating a Multivariate Location Parameter. Non-parametric Statistics 4, 293-308.
Vardi, Y. and Zhang, C.-H. (2000). The multivariate L_{1}-median and associated data depth. Proc. National Academy of Science 97(4), 1423-1426.
Fritz, H. and Filzmoser, P. and Croux, C. (2012) A comparison of algorithms for the multivariate L1-median. Computational Statistics 27, 393-410.
Kent, J. T., Er, F. and Constable, P. D. L. (2015) Algorithms for the spatial median;, in K. Nordhausen and S. Taskinen (eds), Modern Nonparametric, Robust and Multivariate Methods: Festschrift in Honour of Hannu Oja, Springer International Publishing, chapter 12, pp. 205-224. doi: 10.1007/ 9783319224046_12

See Also

median, covMcd
CRAN package pcaPP added more L1 median methods, re-implementing our R versions in $\mathrm{C}++$, see Fritz et al.(2012) and e.g., 11 median_NLM().

Examples

```
data(stackloss)
L1median(stackloss)
L1median(stackloss, method = "HoCrJo")
## Explore all methods:
m <- eval(formals(L1median)$method); allMeths <- m[m != "Brent"]
L1m <- sapply(allMeths, function(meth) L1median(stackloss, method = meth))
## --> with a warning for L-BFGS-B
str(L1m)
pm <- sapply(L1m, function(.) if(is.numeric(.)) . else .$par)
t(pm) # SANN differs a bit; same objective ?
```

mvBACON BACON: Blocked Adaptive Computationally-Efficient Outlier Nomi-
nators

Description

This function performs an outlier identification algorithm to the data in the x array [$\mathrm{n} \times \mathrm{p}$] and y vector $[\mathrm{n}]$ following the lines described by Hadi et al. for their BACON outlier procedure.

Usage

```
mvBACON(x, collect = 4, m = min(collect * p, n * 0.5), alpha = 0.95,
    init.sel = c("Mahalanobis", "dUniMedian", "random", "manual"),
    man.sel, maxsteps = 100, allowSingular = FALSE, verbose = TRUE)
```


Arguments

x
collect
m
alpha significance level for the χ^{2} cutoff, used to define the next iterations basic subset.
init.sel character string, specifying the initial selection mode; implemented modes are:
"Mahalanobis" based on Mahalanobis distances (default); the version $V 1$ of the reference; affine invariant but not robust.
'dUniMedian" based on the distances from the univariate medians; ; the version $V 2$ of the reference; robust but not affine invariant.
"random" based on a random selection, i.e., reproducible only via set. seed().
"manual" based on manual selection; in this case, a vector man. sel containing the indices of the selected observations must be specified.
"Mahalanobis", "dUniMedian" where proposed by Hadi and the other authors in the reference as versions 'V_1' and 'V_2', as well as "manual", while "random" is provided in order to study the behaviour of BACON.

man.sel	only when init.sel == "manual", the indices of observations determining the initial basic subset (and $\mathrm{m}<-\quad$ length(man. sel)).
maxsteps	maximal number of iteration steps.
allowSingular	logical indicating a solution should be sought also when no matrix of rank p is found.
verbose	logical indicating if messages are printed which trace progress of the algorithm.

Value

a list with components
subset logical vector of length n where the i-th entry is true iff the i-th observation is part of the final selection.
dis numeric vector of length n with the (Mahalanobis) distances.
cov $\quad p \times p$ matrix, the corresponding robust estimate of covariance.

Author(s)

Ueli Oetliker, Swiss Federal Statistical Office, for S-plus 5.1. Port to R, testing etc, by Martin Maechler

References

Billor, N., Hadi, A. S., and Velleman , P. F. (2000). BACON: Blocked Adaptive ComputationallyEfficient Outlier Nominators; Computational Statistics and Data Analysis 34, 279-298. doi: 10.1016/ S01679473(99)001012

See Also

covMcd for a high-breakdown (but more computer intensive) method; BACON for a "generalization", notably to regression.

Examples

```
    require(robustbase) # for example data and covMcd():
## simple 2D example :
    plot(starsCYG, main = "starsCYG data (n=47)")
    B.st <- mvBACON(starsCYG)
    points(starsCYG[ ! B.st$subset,], pch = 4, col = 2, cex = 1.5)
    stopifnot(identical(which(!B.st$subset), c(7L,9L,11L,14L,20L,30L,34L)))
```

```
## finds the clear outliers (and 3 "borderline")
## 'coleman' from pkg 'robustbase'
coleman.x <- data.matrix(coleman[, 1:6])
Cc <- covMcd (coleman.x) # truly robust
summary(Cc) # -> 6 outliers (1,3,10,12,17,18)
Cb1 <- mvBACON(coleman.x) ##-> subset is all TRUE hmm??
Cb2 <- mvBACON(coleman.x, init.sel = "dUniMedian")
stopifnot(all.equal(Cb1, Cb2))
Cb.r <- lapply(1:20, function(i) { set.seed(i)
                            mvBACON(coleman.x, init.sel="random", verbose=FALSE) })
nm <- names(Cb.r[[1]]); nm <- nm[nm != "steps"]
all(eqC <- sapply(Cb.r[-1], function(CC) all.equal(CC[nm], Cb.r[[1]][nm]))) # TRUE
## --> BACON always breaks down, i.e., does not see the outliers here
## breaks down even when manually starting with all the non-outliers:
Cb.man <- mvBACON(coleman.x, init.sel = "manual",
    man.sel = setdiff(1:20, c(1,3,10,12,17,18)))
    which( ! Cb.man$subset) # the outliers according to mvBACON : _none_
```

Qrot

Rotation Matrix to Specific Direction

Description

Construct the $p \times p$ rotation matrix that rotates the unit vector $(1,0, \ldots .0)$, i.e., the x_{1}-axis, onto $(1,1,1, \ldots 1) / \sqrt{p}$, or more generally to $u /\|u\|$ ($u:=$ unit.image).

Usage

Qrot(p, transpose = FALSE, unit.image = rep(1, p$)$)

Arguments

p
integer; the dimension (of the vectors involved).
transpose logical indicating if the transposed matrix is to returned.
unit.image numeric vector of length p onto which the unit vector should be rotated; defaults to "the diagonal" $\propto(1,1,1, \ldots, 1)$.

Details

The qr decomposition is used for a Gram-Schmitt basis orthogonalization.

Value

$p \times p$ orthogonal matrix which rotates $(1,0, \ldots, 0)$ onto a vector proportional to unit.image.

Author(s)

Martin Maechler

See Also

qr , matrix (and vector) multiplication, $\% * \%$.

Examples

```
Q <- Qrot(6)
zapsmall(crossprod(Q)) # 6 x 6 unity <==> Q'Q = I <==> Q orthogonal
if(require("MASS")) {
    Qt <- Qrot(6, transpose = TRUE)
    stopifnot(all.equal(Qt, t(Q)))
    fractions(Qt ^2) # --> 1/6 1/30 etc, in an almost lower-triagonal matrix
}
```

rbwheel Multivariate Barrow Wheel Distribution Random Vectors

Description

Generate p-dimensional random vectors according to Stahel's Barrow Wheel Distribution.

Usage

```
\(\operatorname{rbwheel}(\mathrm{n}, \mathrm{p}, \mathrm{frac}=1 / \mathrm{p}, \operatorname{sig} 1=0.05, \operatorname{sig} 2=1 / 10\),
        rGood = rnorm,
        rOut \(=\) function \((n) \operatorname{sqrt}(\operatorname{rchisq}(n, p-1)) * \operatorname{sign}(\operatorname{runif}(n,-1,1))\),
        \(\mathrm{U} 1=\operatorname{rep}(1, \mathrm{p})\),
        scaleAfter = TRUE, scaleBefore = FALSE, spherize = FALSE,
        fullResult = FALSE)
```


Arguments

$\mathrm{n} \quad$ integer, specifying the sample size.
$\mathrm{p} \quad$ integer, specifying the dimension (aka number of variables).
frac numeric, the proportion of outliers. The default, $1 / p$, corresponds to the (asymptotic) breakdown point of M-estimators.
sig1 thickness of the "wheel", $(=\sigma(\operatorname{good}[, 1]))$, a non-negative numeric.
sig2 thickness of the "axis" (compared to 1).
rGood function; the generator for "good" observations.
rOut function, generating the outlier observations.
U1 p -vector to which $(1,0, \ldots, 0)$ is rotated.
scaleAfter logical indicating if the matrix is re-scaled after rotation (via scale()).. Default TRUE; note that this used to be false by default in the first public version.
scaleBefore logical indicating if the matrix is re-scaled before rotation (via scale()).
spherize logical indicating if the matrix is to be "spherized", i.e., rotated and scaled to have empirical covariance I_{p}. This means that the principal components are used (before rotation).
fullResult logical indicating if in addition to the $n \times p$ matrix, some intermediate quantities are returned as well.

Details

Value

By default (when fullResult is FALSE), an $n \times p$ matrix of n sample vectors of the p dimensional barrow wheel distribution, with an attribute, n 1 specifying the exact number of "good" observations, $n 1 \approx(1-f) \cdot n, f=\mathrm{frac}$.
If fullResult is TRUE, a list with components
$\mathrm{X} \quad$ the $n \times p$ matrix of above, $\mathrm{X}=\mathrm{X} 0 \% * \% \mathrm{~A}$, where $\mathrm{A}<-\operatorname{Qrot}(\mathrm{p}, \mathrm{u}=\mathrm{U} 1)$, and X 0 is the corresponding matrix before rotation, see below.

X0
the $p \times p$ rotation matrix, see above.
n1 the number of "good" observations, see above.
n2 the number of "outlying" observations, $n 2=n-n 1$.

Author(s)

Werner Stahel and Martin Maechler

References

http://stat.ethz.ch/people/maechler/robustness
Stahel, W.~A. and Mächler, M. (2009). Comment on "invariant co-ordinate selection", Journal of the Royal Statistical Society B 71, 584-586.

Examples

```
set.seed(17)
rX8 <- rbwheel(1000,8, fullResult = TRUE, scaleAfter=FALSE)
with(rX8, stopifnot(all.equal(X, X0 %*% A, tol = 1e-15),
    all.equal(X0, X %*% t(A), tol = 1e-15)))
##--> here, don't need to keep X0 (nor A, since that is Qrot(p))
## for n = 100, you don't see "it", but may guess .. :
n <- 100
pairs(r <- rbwheel(n,6))
n1 <- attr(r,"n1") ; pairs(r, col=1+((1:n) > n1))
## for n = 500, you *do* see it :
n <- 500
```

```
pairs(r <- rbwheel(n,6))
## show explicitly
n1 <- attr(r,"n1") ; pairs(r, col=1+((1:n) > n1))
## but increasing sig2 does help:
pairs(r <- rbwheel(n,6, sig2 = .2))
## show explicitly
n1 <- attr(r,"n1") ; pairs(r, col=1+((1:n) > n1))
set.seed(12)
pairs(X <- rbwheel(n, 7, spherize=TRUE))
colSums(X) # already centered
if(require("ICS") && require("robustbase")) {
    # ICS: Compare M-estimate [Max.Lik. of t_{df = 2}] with high-breakdown :
    stopifnot(require("MASS"))
    X.paM <- ics(X, S1 = cov, S2 = function(.) cov.trob(., nu=2)$cov, stdKurt = FALSE)
    X.paM.<- ics(X, S1 = cov, S2 = function(.) tM(., df=2)$V, stdKurt = FALSE)
    X.paR <- ics(X, S1 = cov, S2 = function(.) covMcd(.)$cov, stdKurt = FALSE)
        plot(X.paM) # not at all clear
        plot(X.paM.)# ditto
        plot(X.paR)# very clear
}
## Similar such experiments ---> demo(rbwheel_d) and demo(rbwheel_ics)
##
```

reclas Recursive Robust Median-like Location and Scale

Description

Calculate an estimate of location, asymptotically equivalent to the median, and an estimate of scale equal to the MEAN absolute deviation. Both done recursively.

Usage

```
reclas(y, b = 0.2, mfn = function(n) 0.1 * n^(-0.25),
    nstart = 30, m0 = median(y0),
    scon=NULL, updateScale = is.null(scon))
```

reclas

Arguments

y
b
mfn
nstart
m0
scon
value for the scale parameter s, a function or NULL. When NULL, as by default, the scale is initialized to the mean of the absolute differences between the first nstart y values and m0. If scon is a function, the initial scale is set to $\operatorname{scon}(\mathrm{y} 0, \mathrm{~m} 0$), where y 0 is the vector of the first nstart y values. Note that scon also determines the default for updateScale.
updateScale a logical indicating if the scale, initialized from scon should be updated in each iteration. Otherwise, the the scale is held constant throughout and the algorithm becomes equivalent to the algorithm of Holst.

Value

An S3 "object" of class "reclas"; simply a list with entries
locn the successive recursive estimates of location. The first nstart - 1 of these are NA.
scale the successive recursive estimates of scale if updateScale is true; otherwise the constant value used for the scale.
updateScale the same as the function argument.
call the function call, i.e., match.call.
There is a plot method for "reclas", see the examples.

Author(s)

r.turner@auckland.ac.nzhttp://www.stat.auckland.ac.nz/~rolf
Extensions by Martin Maechler (scon as function; updateScale, plot()).

References

Cameron, Murray A. and Turner, T. Rolf (1993). Recursive location and scale estimators. Commun. Statist. — Theory Meth. 22(9) 2503-2515.
Holst, U. (1987). Recursive estimators of location. Commun. Statist. - Theory Meth. 16 (8) 2201-2226.

Examples

```
set.seed(42)
y <- rt(10000, df = 1.5) # not quite Gaussian ...
z1 <- reclas(y)
z3 <- reclas(y, scon= 1 ) # correct fixed scale
z4 <- reclas(y, scon= 100) # wrong fixed scale
z2 <- reclas(y, # a more robust initial scale:
    scon = function(y0, m0) robustbase::Qn(y0 - m0),
    updateScale = TRUE) # still updated
## Visualizing -- using the plot() method for "reclas":
M <- median(y) ; yl <- c(-1,1)* 0.5
OP <- par(mfrow=c(2,2), mar=.1+c(3,3,1,1), mgp=c(1.5, .6, 0))
    plot(z1, M=M, ylim=yl)
    plot(z2, M=M, ylim=yl)
    plot(z3, M=M, ylim=yl)
    plot(z4, M=M, ylim=yl)
par(OP)
```


Index

*Topic array
Qrot, 11
*Topic distribution
rbwheel, 12
*Topic multivariate
covNNC, 5
L1median, 7
mvBACON, 9
*Topic package robustX-package, 2
$*$ Topic regression BACON, 3
*Topic robust
BACON, 3
covNNC, 5
L1median, 7
mvBACON, 9
rbwheel, 12
reclas, 14
*Topic univar
reclas, 14
. 1 mBACON (BACON), 3
$\% * \%, 12$
BACON, 3, 10
class, 15
cov.mcd, 7
cov.nnve (covNNC), 5
covMcd, 7, 9, 10
covNNC, 5
covOGK, 7
function, 15
L1median, 7
11median_NLM, 9
list, 4
match.call, 15
matrix, 8
median, 9, 15
mvBACON, 3-5, 9
nlm, 8
nlminb, 8
nlminbMethods (L1median), 7
optim, 8
optimMethods (L1median), 7
plot, 15
plot.reclas (reclas), 14
qr, 11, 12
Qrot, 11, 13
rbwheel, 12
reclas, 14
robustX (robustX-package), 2
robustX-package, 2
scale, 12
set. seed, 10

