Package 'robustX'

February 25, 2019

Type Package							
Title 'eXtra' / 'eXperimental' Functionality for Robust Statistics							
Version 1.2-4							
Date 2019-02-25							
Author Werner Stahel, Martin Maechler [aut, cre] (https://orcid.org/0000-0002-8685-9910) and potentially others							
Maintainer Martin Maechler <maechler@stat.math.ethz.ch></maechler@stat.math.ethz.ch>							
Description Robustness 'eXperimental', 'eXtraneous', or 'eXtraordinary' Functionality for Robust Statistics. In other words, methods which are not yet well established, often related to methods in package 'robustbase'.							
Imports grDevices, graphics, stats, utils, robustbase (>= 0.92-3)							
Suggests MASS, lattice							
Enhances ICS							
License GPL (>= 2)							
Encoding UTF-8							
Repository CRAN							
Repository/R-Forge/Project robustbase							
Repository/R-Forge/Revision 836							
Repository/R-Forge/DateTimeStamp 2019-02-25 09:25:22							
Date/Publication 2019-02-25 11:30:03 UTC							
NeedsCompilation no							
R topics documented:							
robustX-package BACON covNNC L1median mvBACON							

2 robustX-package

	Qrot rbwheel reclas .																				12
Index																					17

robustX-package

eXperimental eXtraneous ... Functionality for Robust Statistics

Description

The package **robustX** aims to be a collection of R functionality for robust statistics of methods and ideas that are considered as proposals, experimental, for experiences or just too much specialized to be part of the "Robust Basics" package **robustbase**.

Details

Package: robustX Type: Package

Title: 'eXtra' / 'eXperimental' Functionality for Robust Statistics

Version: 1.2-4 Date: 2019-02-25

Author: 2019-02-25

Werner Stahel, Martin Maechler [aut, cre] (https://orcid.org/0000-0002-8685-9910

Maintainer: Martin Maechler <maechler@stat.math.ethz.ch>

Description: Robustness – 'eXperimental', 'eXtraneous', or 'eXtraordinary' Functionality for Rob

Imports: grDevices, graphics, stats, utils, robustbase (>= 0.92-3)

Suggests: MASS, lattice

Enhances: ICS
License: GPL (>= 2)
Encoding: UTF-8
Repository: R-Forge
Repository/R-Forge/Project: robustbase
Repository/R-Forge/Revision: 836

Repository/R-Forge/DateTimeStamp: 2019-02-25 09:25:22 Date/Publication: 2019-02-25 09:25:22

Index of help topics:

BACON for Regression or Multivariate Covariance

Estimation

L1median Compute the Multivariate L1-Median aka 'Spatial

Median'

Qrot Rotation Matrix to Specific Direction covNNC Robust Covariance Estimation via Nearest

Neighbor Cleaning

mvBACON BACON: Blocked Adaptive

BACON 3

Computationally-Efficient Outlier Nominators
rbwheel Multivariate Barrow Wheel Distribution Random
Vectors
reclas Recursive Robust Median-like Location and Scale
robustX-package eXperimental eXtraneous ... Functionality for

Robust Statistics

Author(s)

Werner Stahel, Martin Maechler and potentially others

Maintainer: Martin Maechler

See Also

Package **robustbase** which it complements and on which it depends; further package **robust** and the whole CRAN task view on robust statistics, http://cran.CH.r-project.org/web/views/Robust.html

Examples

```
pairs( rbwheel(100, 4) )
```

BACON

BACON for Regression or Multivariate Covariance Estimation

Description

BACON, short for 'Blocked Adaptive Computationally-Efficient Outlier Nominators', is a somewhat robust algorithm (set), with an implementation for regression or multivariate covariance estimation.

BACON() applies the multivariate (covariance estimation) algorithm, using mvBACON(x) in any case, and when y is not NULL adds a regression iteration phase, using the auxiliary .1mBACON() function.

Usage

```
BACON(x, y = NULL, intercept = TRUE,
    m = min(collect * p, n * 0.5),
    init.sel = c("Mahalanobis", "dUniMedian", "random", "manual"),
    man.sel, init.fraction = 0, collect = 4,
    alpha = 0.95, maxsteps = 100, verbose = TRUE)

## *Auxiliary* function:
.lmBACON(x, y, intercept = TRUE,
    init.dis, init.fraction = 0, collect = 4,
    alpha = 0.95, maxsteps = 100, verbose = TRUE)
```

BACON

Arguments

X	a multivariate matrix of dimension [n x p] considered as containing no missing values.
у	the response (n vector) in the case of regression, or NULL for the multivariate case, where just $mvBACON()$ is returned.
intercept	logical indicating if an intercept has to be used for the regression.
m	integer in 1:n specifying the size of the initial basic subset; used only when init.sel is not "manual"; see mvBACON.
init.sel	character string, specifying the initial selection mode; see mvBACON.
man.sel	<pre>only when init.sel == "manual", the indices of observations determining the initial basic subset (and m <- length(man.sel)).</pre>
init.dis	the distances of the x matrix used for the initial subset determined by $mvBACON$.
init.fraction	if this parameter is > 0 then the tedious steps of selecting the initial subset are skipped and an initial subset of size n * init.fraction is chosen (with smallest dis)
collect	numeric factor chosen by the user to define the size of the initial subset (p * collect)
alpha	significance level.
maxsteps	the maximal number of iteration steps (to prevent infinite loops)
verbose	logical indicating if messages are printed which trace progress of the algorithm.

Details

Notably about the initial selection mode, init.sel, see its description in the mvBACON arguments list

Value

BACON(x,y,) (for regression) returns a list with components					
subset	the observation indices (in $1:n$) denoting a subset of "good" supposedly outlier-free observations.				
tis	the $t_i(y_m, X_m)$ of eq (6) in the reference; the clean "basic subset" in the algorithm is defined the observations i with the smallest $ t_i $, and the t_i can be regarded as scaled predicted errors.				
mv.dis	the (final) discrepancies or distances of mvBACON().				
mv.subset	the "good" subset from mvBACON(), used to start the regression iterations.				

Note

"BACON" was also chosen in honor of Francis Bacon:

Whoever knows the ways of Nature will more easily notice her deviations; and, on the other hand, whoever knows her deviations will more accurately describe her ways.

Francis Bacon (1620), Novum Organum II 29.

covNNC 5

Author(s)

Ueli Oetliker, Swiss Federal Statistical Office, for S-plus 5.1; 25.05.2001; modified six times till 17.6.2001.

Port to R, testing etc, by Martin Maechler. Daniel Weeks (at pitt.edu) proposed a fix to a long standing buglet in GiveTis() computing the t_i , which was further improved Maechler, for **robustX** version 1.2-3 (Feb. 2019).

References

Billor, N., Hadi, A. S., and Velleman, P. F. (2000). BACON: Blocked Adaptive Computationally-Efficient Outlier Nominators; *Computational Statistics and Data Analysis* **34**, 279–298. doi: 10.1016/S01679473(99)001012

See Also

mvBACON, the multivariate version of the BACON algorithm.

Examples

```
data(starsCYG, package = "robustbase")
## Plot simple data and fitted lines
plot(starsCYG)
lmST <- lm(log.light ~ log.Te, data = starsCYG)</pre>
abline(lmST, col = "gray") # least squares line
str(B.ST \leftarrow with(starsCYG, BACON(x = log.Te, y = log.light)))
## 'subset': A good set of of points (to determine regression):
colB <- adjustcolor(2, 1/2)</pre>
points(log.light ~ log.Te, data = starsCYG, subset = B.ST$subset,
       pch = 19, cex = 1.5, col = colB)
## A BACON-derived line:
lmB <- lm(log.light ~ log.Te, data = starsCYG, subset = B.ST$subset)</pre>
abline(lmB, col = colB, lwd = 2)
require(robustbase)
(RlmST <- lmrob(log.light ~ log.Te, data = starsCYG))</pre>
abline(RlmST, col = "blue")
```

covNNC

Robust Covariance Estimation via Nearest Neighbor Cleaning

Description

covNNC() estimates robust covariance/dispersion matrices by the nearest neighbor variance estimation (NNVE) or (rather) "Nearest Neighbor Cleaning" (NNC) method of Wang and Raftery (2002, *JASA*).

6 covNNC

Usage

```
covNNC(X, k = min(12, n - 1), pnoise = 0.05, emconv = 0.001, bound = 1.5, extension = TRUE, devsm = 0.01)
```

Arguments

X matrix in which each row represents an observation or point and each column

represents a variable.

k desired number of nearest neighbors (default is 12)

pnoise percent of added noise

emconv convergence tolerance for EM

bound value used to identify surges in variance caused by outliers wrongly included as

signal points (bound = 1.5 means a 50 percent increase)

extension whether or not to continue after reaching the last chi-square distance. The de-

fault is to continue, which is indicated by setting extension = TRUE.

devsm when extension = TRUE, the algorithm stops if the relative difference in vari-

ance is less than devsm. (default is 0.01)

Value

A list with components

cov covariance matrix mu mean vector

postprob posterior probability

classification classification (0=noise otherwise 1) obtained by rounding postprob

innc list of initial nearest neighbor cleaning results (components are the covariance,

mean, posterior probability and classification)

Note

Terms of use: GPL version 2 or newer.

MM: Even though covNNC() is backed by a serious scientific publication, I cannot recommend its use at all.

Author(s)

Naisyin Wang <nwang@stat.tamu.edu> and Adrian Raftery <raftery@stat.washington.edu> with contributions from Chris Fraley <fraley@stat.washington.edu>.

covNNC(), then named cov.nnve(), used to be (the only function) in CRAN package **covRobust** (2003), which was archived in 2012.

Martin Maechler allowed ncol(X) == 1, sped up the original code, by reducing the amount of scaling; further, the accuracy was increased (using internal q.dDk()). The original version is available, unexported as robustX:::covNNC1.

L1median 7

References

Wang, N. and Raftery, A. (2002) Nearest neighbor variance estimation (NNVE): Robust covariance estimation via nearest neighbor cleaning (with discussion). *Journal of the American Statistical Association* **97**, 994–1019.

see also University of Washington Statistics Technical Report 368 (2000) https://www.stat.washington.edu/research/reports

See Also

cov.mcd from package MASS; covMcd, and covOGK from package robustbase.

The whole package **rrcov**.

Examples

```
data(iris)
covNNC(iris[-5])

data(hbk, package="robustbase")
hbk.x <- data.matrix(hbk[, 1:3])
covNNC(hbk.x)</pre>
```

L1median

Compute the Multivariate L1-Median aka 'Spatial Median'

Description

Compute the multivariate L_1 -median m, also called "Spatial Median", i.e., the minimizer of

$$\sum_{i=1}^{n} ||x_i - m||,$$

where
$$||u|| = \sqrt{\sum_{j=1}^{p} u_j^2}$$
.

As a convex problem, there's always a global minimizer, computable not by a closed formula but rather an iterative search. As the (partial) first derivatives of the objective function is undefined at the data points, the minimization is not entirely trivial.

Usage

```
L1median(X, m.init = colMedians(X), weights = NULL, method = c("nlm", "HoCrJo", "VardiZhang", optimMethods, nlminbMethods), pscale = apply(abs(centr(X, m.init)), 2, mean, trim = 0.40), tol = 1e-08, maxit = 200, trace = FALSE, zero.tol = 1e-15, ...)
```

8 L1median

Arguments

Χ	numeric matrix of dimension $n \times p$, say.
m.init	starting value for m ; typically and by default the coordinatewise median.
weights	optional numeric vector of non-negative weights; currently only implemented for method "VardiZhang".
method	character string specifying the computational method, i.e., the algorithm to be used (can be abbreviated).
pscale	numeric p-vector of positive numbers, the coordinate-wise scale (typical size of δm_j), where m is the problem's solution.
tol	positive number specifying the (relative) convergence tolerance.
maxit	positive integer specifying the maximal number of iterations (before the iterations are stopped prematurely if necessary).
trace	an integer specifying the tracing level of the iterations; 0 does no tracing
zero.tol	for method "VardiZhang", a small positive number specifying the tolerance for determining that the iteration is 'exactly' at a data point (which is a singularity).
• • •	optional arguments to nlm() or the control (list) arguments of optim(), or nlminb(), respectively.

Details

Currently, we have to refer to the "References" below.

Value

currently the result depends strongly on the method used.

FIXME. This will change considerably.

Author(s)

Martin Maechler. Method "HoCrJo" is mostly based on Kristel Joossens' R function, implementing Hossjer and Croux (1995).

References

Hossjer and Croux, C. (1995). Generalizing Univariate Signed Rank Statistics for Testing and Estimating a Multivariate Location Parameter. *Non-parametric Statistics* **4**, 293–308.

Vardi, Y. and Zhang, C.-H. (2000). The multivariate L_1 -median and associated data depth. *Proc. National Academy of Science* **97**(4), 1423–1426.

Fritz, H. and Filzmoser, P. and Croux, C. (2012) A comparison of algorithms for the multivariate L1-median. *Computational Statistics* **27**, 393–410.

Kent, J. T., Er, F. and Constable, P. D. L. (2015) Algorithms for the spatial median;, in K. Nordhausen and S. Taskinen (eds), *Modern Nonparametric, Robust and Multivariate Methods: Festschrift in Honour of Hannu Oja*, Springer International Publishing, chapter 12, pp. 205–224. doi: 10.1007/9783319224046_12

mvBACON 9

See Also

```
median, covMcd
```

CRAN package **pcaPP** added more L1 median methods, re-implementing our R versions in C++, see Fritz et al.(2012) and e.g., l1median_NLM().

Examples

```
data(stackloss)
L1median(stackloss, method = "HoCrJo")

## Explore all methods:
m <- eval(formals(L1median)$method); allMeths <- m[m != "Brent"]
L1m <- sapply(allMeths, function(meth) L1median(stackloss, method = meth))
## --> with a warning for L-BFGS-B
str(L1m)
pm <- sapply(L1m, function(.) if(is.numeric(.)) . else .$par)
t(pm) # SANN differs a bit; same objective ?</pre>
```

mvBACON

BACON: Blocked Adaptive Computationally-Efficient Outlier Nominators

Description

This function performs an outlier identification algorithm to the data in the x array [n x p] and y vector [n] following the lines described by Hadi et al. for their BACON outlier procedure.

Usage

Arguments

X	numeric matrix (of dimension $[nxp]$), not supposed to contain missing values.
collect	a multiplication factor c , when init.sel is not "manual", to define m , the size of the initial basic subset, as $m:=c\cdot p$, in practice, m <- min(p * collect, n/2).
m	integer in 1:n specifying the <i>size</i> of the initial basic subset; used only when init.sel is not "manual".
alpha	significance level for the χ^2 cutoff, used to define the next iterations basic subset.
init.sel	character string, specifying the initial selection mode; implemented modes are:
	"Mahalanobis" based on Mahalanobis distances (default); the version $V1$ of the reference; affine invariant but not robust.

10 mvBACON

"dUniMedian" based on the distances from the univariate medians; ; the version V2 of the reference; robust but not affine invariant.

"random" based on a random selection, i.e., reproducible only via set. seed().

"manual" based on manual selection; in this case, a vector man. sel containing the indices of the selected observations must be specified.

"Mahalanobis", "dUniMedian" where proposed by Hadi and the other authors in the reference as versions 'V_1' and 'V_2', as well as "manual", while "random" is provided in order to study the behaviour of BACON.

man.sel only when init.sel == "manual", the indices of observations determining the

initial basic subset (and m <- length(man.sel)).</pre>

maxsteps maximal number of iteration steps.

allowSingular logical indicating a solution should be sought also when no matrix of rank p is

found

verbose logical indicating if messages are printed which trace progress of the algorithm.

Value

a list with components

subset logical vector of length n where the i-th entry is true iff the i-th observation is

part of the final selection.

dis numeric vector of length n with the (Mahalanobis) distances.

cov $p \times p$ matrix, the corresponding robust estimate of covariance.

Author(s)

Ueli Oetliker, Swiss Federal Statistical Office, for S-plus 5.1. Port to R, testing etc, by Martin Maechler

References

Billor, N., Hadi, A. S., and Velleman, P. F. (2000). BACON: Blocked Adaptive Computationally-Efficient Outlier Nominators; *Computational Statistics and Data Analysis* **34**, 279–298. doi: 10.1016/S01679473(99)001012

See Also

covMcd for a high-breakdown (but more computer intensive) method; BACON for a "generalization", notably to *regression*.

Examples

```
require(robustbase) # for example data and covMcd():
## simple 2D example :
plot(starsCYG, main = "starsCYG data (n=47)")
B.st <- mvBACON(starsCYG)
points(starsCYG[ ! B.st$subset,], pch = 4, col = 2, cex = 1.5)
stopifnot(identical(which(!B.st$subset), c(7L,9L,11L,14L,20L,30L,34L)))</pre>
```

Qrot 11

```
## finds the clear outliers (and 3 "borderline")
## 'coleman' from pkg 'robustbase'
coleman.x <- data.matrix(coleman[, 1:6])</pre>
Cc <- covMcd (coleman.x) # truly robust</pre>
summary(Cc) # -> 6 outliers (1,3,10,12,17,18)
Cb1 <- mvBACON(coleman.x) ##-> subset is all TRUE hmm??
Cb2 <- mvBACON(coleman.x, init.sel = "dUniMedian")</pre>
stopifnot(all.equal(Cb1, Cb2))
Cb.r <- lapply(1:20, function(i) { set.seed(i)
                    mvBACON(coleman.x, init.sel="random", verbose=FALSE) })
nm <- names(Cb.r[[1]]); nm <- nm[nm != "steps"]</pre>
all(eqC <- sapply(Cb.r[-1], function(CC) all.equal(CC[nm], Cb.r[[1]][nm]))) # TRUE
## --> BACON always breaks down, i.e., does not see the outliers here
## breaks down even when manually starting with all the non-outliers:
Cb.man <- mvBACON(coleman.x, init.sel = "manual",</pre>
                  man.sel = setdiff(1:20, c(1,3,10,12,17,18)))
which( ! Cb.man$subset) # the outliers according to mvBACON : _none_
```

Qrot

Rotation Matrix to Specific Direction

Description

Construct the $p \times p$ rotation matrix that rotates the unit vector (1,0,...0), i.e., the x_1 -axis, onto $(1,1,1,...1)/\sqrt{p}$, or more generally to $u/\|u\|$ (u:=unit.image).

Usage

```
Orot(p, transpose = FALSE, unit.image = rep(1, p))
```

Arguments

p integer; the dimension (of the vectors involved).

transpose logical indicating if the *transposed* matrix is to returned.

 $\verb"unit.image"$ numeric vector of length p onto which the unit vector should be rotated; defaults

to "the diagonal" $\propto (1, 1, 1, ..., 1)$.

Details

The qr decomposition is used for a Gram-Schmitt basis orthogonalization.

Value

 $p \times p$ orthogonal matrix which rotates (1,0,...,0) onto a vector proportional to unit.image.

Author(s)

Martin Maechler

12 rbwheel

See Also

qr, matrix (and vector) multiplication, %*%.

Examples

```
Q <- Qrot(6)
zapsmall(crossprod(Q)) # 6 x 6 unity <==> Q'Q = I <==> Q orthogonal

if(require("MASS")) {
   Qt <- Qrot(6, transpose = TRUE)
   stopifnot(all.equal(Qt, t(Q)))
   fractions(Qt ^2) # --> 1/6  1/30  etc, in an almost lower-triagonal matrix
}
```

rbwheel

Multivariate Barrow Wheel Distribution Random Vectors

Description

Generate p-dimensional random vectors according to Stahel's Barrow Wheel Distribution.

Usage

Arguments

n	integer, specifying the sample size.
р	integer, specifying the dimension (aka number of variables).
frac	numeric, the proportion of outliers. The default, $1/p$, corresponds to the (asymptotic) breakdown point of M-estimators.
sig1	thickness of the "wheel", (= σ (good[,1])), a non-negative numeric.
sig2	thickness of the "axis" (compared to 1).
rGood	function; the generator for "good" observations.
r0ut	function, generating the outlier observations.
U1	p-vector to which $(1,0,\ldots,0)$ is rotated.
scaleAfter	logical indicating if the matrix is re-scaled <i>after</i> rotation (via scale()) Default TRUE; note that this used to be false by default in the first public version.
scaleBefore	logical indicating if the matrix is re-scaled before rotation (via scale()).

rbwheel 13

spherize	logical indicating if the matrix is to be "spherized", i.e., rotated and scaled to have empirical covariance I_p . This means that the principal components are used (before rotation).
fullResult	logical indicating if in addition to the $n \times p$ matrix, some intermediate quantities are returned as well.

Details

....

Value

By default (when fullResult is FALSE), an $n \times p$ matrix of n sample vectors of the p dimensional barrow wheel distribution, with an attribute, n1 specifying the exact number of "good" observations, $n1 \approx (1-f) \cdot n$, f = frac.

If fullResult is TRUE, a list with components

```
X the n \times p matrix of above, X = X0 %*% A, where A <- Qrot(p, u = U1), and X0 is the corresponding matrix before rotation, see below.

X0 ........

A the p \times p rotation matrix, see above.

11 the number of "good" observations, see above.

12 the number of "outlying" observations, n2 = n - n1.
```

Author(s)

Werner Stahel and Martin Maechler

References

```
http://stat.ethz.ch/people/maechler/robustness
```

Stahel, W.~A. and Mächler, M. (2009). Comment on "invariant co-ordinate selection", *Journal of the Royal Statistical Society B* **71**, 584–586.

Examples

14 reclas

```
pairs(r <- rbwheel(n,6))</pre>
## show explicitly
n1 \leftarrow attr(r,"n1") ; pairs(r, col=1+((1:n) > n1))
## but increasing sig2 does help:
pairs(r \leftarrow rbwheel(n,6, sig2 = .2))
## show explicitly
n1 <- attr(r,"n1") ; pairs(r, col=1+((1:n) > n1))
set.seed(12)
pairs(X <- rbwheel(n, 7, spherize=TRUE))</pre>
colSums(X) # already centered
if(require("ICS") && require("robustbase")) {
  \# ICS: Compare M-estimate [Max.Lik. of t_{df = 2}] with high-breakdown :
  stopifnot(require("MASS"))
  X.paM \leftarrow ics(X, S1 = cov, S2 = function(.) cov.trob(., nu=2)$cov, stdKurt = FALSE)
  X.paM. \leftarrow ics(X, S1 = cov, S2 = function(.) tM(., df=2)$V, stdKurt = FALSE)
  X.paR <- ics(X, S1 = cov, S2 = function(.) covMcd(.)$cov, stdKurt = FALSE)</pre>
  plot(X.paM) # not at all clear
  plot(X.paM.)# ditto
  plot(X.paR)# very clear
## Similar such experiments ---> demo(rbwheel_d) and demo(rbwheel_ics)
##
```

reclas

Recursive Robust Median-like Location and Scale

Description

Calculate an estimate of location, asymptotically equivalent to the median, and an estimate of scale equal to the **MEAN** absolute deviation. Both done recursively.

Usage

```
reclas(y, b = 0.2, mfn = function(n) 0.1 * n^(-0.25),
    nstart = 30, m0 = median(y0),
    scon=NULL, updateScale = is.null(scon))
```

reclas 15

Arguments

y numeric vector of i.i.d. data whose location and scale parameters are to be estimated.

b numeric tuning parameter (default value equal to that used by Holst, 1987).

mfn a function of the index of the data which must be positive and and tend to 0 as

the index tends to infinity. The default function is that used by Holst, 1987.

nstart number of starting values: Starting values for the algorithm are formed from the

first nstart values of y. The default value is that used in Cameron and Turner,

1993.

mo value for the initial approximate median; by default, the median of the first

nstart observations.

scon value for the scale parameter s, a function or NULL. When NULL, as by de-

fault, the scale is initialized to the mean of the absolute differences between the first nstart y values and m0. If scon is a function, the initial scale is set to scon(y0, m0), where y0 is the vector of the first nstart y values. Note that

scon also determines the default for updateScale.

updateScale a logical indicating if the scale, initialized from scon should be updated in each

iteration. Otherwise, the the scale is held constant throughout and the algorithm

becomes equivalent to the algorithm of Holst.

Value

An S3 "object" of class "reclas"; simply a list with entries

locn the successive recursive estimates of location. The first nstart - 1 of these are

NA.

scale the successive recursive estimates of scale if updateScale is true; otherwise the

constant value used for the scale.

updateScale the same as the function argument.
call the function call, i.e., match.call.

There is a plot method for "reclas", see the examples.

Author(s)

<r.turner@auckland.ac.nz>http://www.stat.auckland.ac.nz/~rolf

Extensions by Martin Maechler (scon as function; updateScale, plot()).

References

Cameron, Murray A. and Turner, T. Rolf (1993). Recursive location and scale estimators. *Commun. Statist.* — *Theory Meth.* **22**(9) 2503–2515.

Holst, U. (1987). Recursive estimators of location. *Commun. Statist.* — *Theory Meth.* **16** (8) 2201–2226.

reclas reclas

Examples

```
set.seed(42)
y <- rt(10000, df = 1.5) # not quite Gaussian ...
z1 <- reclas(y)</pre>
z3 <- reclas(y, scon= 1 ) # correct fixed scale</pre>
z4 <- reclas(y, scon= 100) # wrong fixed scale
z2 <- reclas(y, # a more robust initial scale:</pre>
            scon = function(y0, m0) robustbase::Qn(y0 - m0),
            updateScale = TRUE) # still updated
## Visualizing -- using the plot() method for "reclas":
M \leftarrow median(y) ; yl \leftarrow c(-1,1)* 0.5
OP <- par(mfrow=c(2,2), mar=.1+c(3,3,1,1), mgp=c(1.5, .6, \emptyset))
 plot(z1, M=M, ylim=yl)
 plot(z2, M=M, ylim=yl)
 plot(z3, M=M, ylim=yl)
 plot(z4, M=M, ylim=yl)
par(OP)
```

Index

*Topic array Qrot, 11	median, $9, 15$ mvBACON, $3-5, 9$
*Topic distribution	
rbwheel, 12	nlm,8
*Topic multivariate	nlminb, 8
covNNC, 5	nlminbMethods(L1median), 7
L1median, 7	
mvBACON, 9	optim, 8
*Topic package	optimMethods (L1median), 7
robustX-package, 2	1 . 15
*Topic regression	plot, 15
BACON, 3	plot.reclas(reclas), 14
*Topic robust	an 11 12
BACON, 3	qr, 11, 12
covNNC, 5	Qrot, 11, <i>13</i>
L1median, 7	rbwheel, 12
mvBACON, 9	reclas, 14
rbwheel, 12	robustX (robustX-package), 2
reclas, 14	robustX-package, 2
*Topic univar	Tobustx-package, 2
reclas, 14	scale, <i>12</i>
.1mBACON (BACON), 3	set.seed, 10
%*%, <i>12</i>	Set. Seed, TV
/6^/6, 12	
BACON, 3, 10	
class, 15	
cov.mcd, 7	
cov.med, //	
covMcd, 7, 9, 10	
covNNC, 5	
cov0GK, 7	
function, 15	
L1median, 7	
l1median_NLM, 9	
list, 4	
1131, 7	
match.call, 15	
matrix, 8	