
Package ‘robustHD’
December 14, 2019

Type Package

Title Robust Methods for High-Dimensional Data

Version 0.6.1

Date 2019-12-13

Depends R (>= 3.2.0), ggplot2 (>= 0.9.2), perry (>= 0.2.0), robustbase
(>= 0.9-5)

Imports MASS, Rcpp (>= 0.9.10), grDevices, parallel, stats, utils

LinkingTo Rcpp (>= 0.9.10), RcppArmadillo (>= 0.3.0)

Suggests mvtnorm

Description Robust methods for high-dimensional data, in particular linear
model selection techniques based on least angle regression and sparse
regression.

License GPL (>= 2)

LazyLoad yes

Author Andreas Alfons [aut, cre]

Maintainer Andreas Alfons <alfons@ese.eur.nl>

Encoding UTF-8

RoxygenNote 6.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-12-14 17:40:05 UTC

R topics documented:
robustHD-package . 2
AIC.seqModel . 4
coef.seqModel . 6
coefPlot . 8
corHuber . 10
critPlot . 12

1

2 robustHD-package

diagnosticPlot . 14
fitted.seqModel . 17
fortify.seqModel . 18
getScale . 21
grplars . 22
lambda0 . 26
perry.seqModel . 28
plot.seqModel . 30
predict.seqModel . 32
residuals.seqModel . 34
rlars . 36
robustHD-deprecated . 40
sparseLTS . 41
standardize . 45
TopGear . 47
tsBlocks . 48
tslars . 49
tslarsP . 52
weights.sparseLTS . 55
winsorize . 57

Index 59

robustHD-package Robust Methods for High-Dimensional Data

Description

Robust methods for high-dimensional data, in particular linear model selection techniques based on
least angle regression and sparse regression.

Details

The DESCRIPTION file:

Package: robustHD
Type: Package
Title: Robust Methods for High-Dimensional Data
Version: 0.6.1
Date: 2019-12-13
Depends: R (>= 3.2.0), ggplot2 (>= 0.9.2), perry (>= 0.2.0), robustbase (>= 0.9-5)
Imports: MASS, Rcpp (>= 0.9.10), grDevices, parallel, stats, utils
LinkingTo: Rcpp (>= 0.9.10), RcppArmadillo (>= 0.3.0)
Suggests: mvtnorm
Description: Robust methods for high-dimensional data, in particular linear model selection techniques based on least angle regression and sparse regression.
License: GPL (>= 2)
LazyLoad: yes
Authors@R: person("Andreas", "Alfons", email = "alfons@ese.eur.nl", role = c("aut", "cre"))

robustHD-package 3

Author: Andreas Alfons [aut, cre]
Maintainer: Andreas Alfons <alfons@ese.eur.nl>
Encoding: UTF-8
RoxygenNote: 6.1.1

Index of help topics:

AIC.seqModel Information criteria for a sequence of
regression models

TopGear Top Gear car data
coef.seqModel Extract coefficients from a sequence of

regression models
coefPlot Coefficient plot of a sequence of regression

models
corHuber Robust correlation based on winsorization.
critPlot Optimality criterion plot of a sequence of

regression models
diagnosticPlot Diagnostic plots for a sequence of regression

models
fitted.seqModel Extract fitted values from a sequence of

regression models
fortify.seqModel Convert a sequence of regression models into a

data frame for plotting
getScale Extract the residual scale of a robust

regression model
grplars (Robust) groupwise least angle regression
lambda0 Penalty parameter for sparse LTS regression
perry.seqModel Resampling-based prediction error for a

sequential regression model
plot.seqModel Plot a sequence of regression models
predict.seqModel Predict from a sequence of regression models
residuals.seqModel Extract residuals from a sequence of regression

models
rlars Robust least angle regression
robustHD-deprecated Deprecated functions in package 'robustHD'
robustHD-package Robust Methods for High-Dimensional Data
sparseLTS Sparse least trimmed squares regression
standardize Data standardization
tsBlocks Construct predictor blocks for time series

models
tslars (Robust) least angle regression for time series

data
tslarsP (Robust) least angle regression for time series

data with fixed lag length
weights.sparseLTS Extract outlier weights from sparse LTS

regression models
winsorize Data cleaning by winsorization

4 AIC.seqModel

Author(s)

Andreas Alfons [aut, cre]

Maintainer: Andreas Alfons <alfons@ese.eur.nl>

AIC.seqModel Information criteria for a sequence of regression models

Description

Compute the Akaike or Bayes information criterion for for a sequence of regression models, such
as submodels along a robust least angle regression sequence, or sparse least trimmed squares re-
gression models for a grid of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
AIC(object, ..., k = 2)

S3 method for class 'sparseLTS'
AIC(object, ..., fit = c("reweighted", "raw",
"both"), k = 2)

S3 method for class 'seqModel'
BIC(object, ...)

S3 method for class 'sparseLTS'
BIC(object, ...)

Arguments

object the model fit for which to compute the information criterion.
... for the BIC method, additional arguments to be passed down to the AIC method.

For the AIC method, additional arguments are currently ignored.
k a numeric value giving the penalty per parameter to be used. The default is to

use 2 as in the classical definition of the AIC.
fit a character string specifying for which fit to compute the information criterion.

Possible values are "reweighted" (the default) for the information criterion of
the reweighted fit, "raw" for the information criterion of the raw fit, or "both"
for the information criteria of both fits.

Details

The information criteria are computed as n(log(2π)+1+log(σ̂2))+dfk, where n denotes the num-
ber of observations, σ̂ is the robust residual scale estimate, df is the number of nonzero coefficient
estimates, and k is penalty per parameter. The usual definition of the AIC uses k = 2, whereas the
BIC uses k = log(n). Consequently, the former is used as the default penalty of the AIC method,
whereas the BIC method calls the AIC method with the latter penalty.

AIC.seqModel 5

Value

A numeric vector or matrix giving the information criteria for the requested model fits.

Note

Computing information criteria for several objects supplied via the ... argument (as for the default
methods of AIC and BIC) is currently not implemented.

Author(s)

Andreas Alfons

References

Akaike, H. (1970) Statistical predictor identification. Annals of the Institute of Statistical Mathe-
matics, 22(2), 203–217.

Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

See Also

AIC, rlars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
compute AIC and BIC
AIC(fitRlars)
BIC(fitRlars)

fit sparse LTS model over a grid of values for lambda

6 coef.seqModel

frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
compute AIC and BIC
AIC(fitSparseLTS)
BIC(fitSparseLTS)

coef.seqModel Extract coefficients from a sequence of regression models

Description

Extract coefficients from a sequence of regression models, such as submodels along a robust or
groupwise least angle regression sequence, or sparse least trimmed squares regression models for a
grid of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
coef(object, s = NA, zeros = TRUE,
drop = !is.null(s), ...)

S3 method for class 'tslars'
coef(object, p, ...)

S3 method for class 'sparseLTS'
coef(object, s = NA, fit = c("reweighted", "raw",
"both"), zeros = TRUE, drop = !is.null(s), ...)

Arguments

object the model fit from which to extract coefficients.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract coefficients (the default is to use the optimal submodel).
For the "sparseLTS" method, an integer vector giving the indices of the models
for which to extract coefficients. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

zeros a logical indicating whether to keep zero coefficients (TRUE, the default) or to
omit them (FALSE).

drop a logical indicating whether to reduce the dimension to a vector in case of only
one submodel.

... for the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments are currently ignored.

coef.seqModel 7

p an integer giving the lag length for which to extract coefficients (the default is
to use the optimal lag length).

fit a character string specifying which coefficients to extract. Possible values are
"reweighted" (the default) for the coefficients from the reweighted estimator,
"raw" for the coefficients from the raw estimator, or "both" for the coefficients
from both estimators.

Value

A numeric vector or matrix containing the requested regression coefficients.

Author(s)

Andreas Alfons

See Also

coef, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract coefficients
coef(fitRlars, zeros = FALSE)
coef(fitRlars, s = 1:5, zeros = FALSE)

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract coefficients

8 coefPlot

coef(fitSparseLTS, zeros = FALSE)
coef(fitSparseLTS, fit = "both", zeros = FALSE)
coef(fitSparseLTS, s = NULL, zeros = FALSE)
coef(fitSparseLTS, fit = "both", s = NULL, zeros = FALSE)

coefPlot Coefficient plot of a sequence of regression models

Description

Produce a plot of the coefficients from a sequence of regression models, such as submodels along
a robust or groupwise least angle regression sequence, or sparse least trimmed squares regression
models for a grid of values for the penalty parameter.

Usage

coefPlot(x, ...)

S3 method for class 'seqModel'
coefPlot(x, abscissa = c("step", "df"),
zeros = FALSE, size = c(0.5, 2, 4), labels, offset = 1, ...)

S3 method for class 'tslars'
coefPlot(x, p, ...)

S3 method for class 'sparseLTS'
coefPlot(x, fit = c("reweighted", "raw", "both"),
abscissa = c("step", "df"), zeros = FALSE, size = c(0.5, 2, 4),
labels, offset = 1, ...)

Arguments

x the model fit to be plotted.

... for the generic function, additional arguments to be passed down to methods.
For the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments to be passed down to
geom_line and geom_point.

abscissa a character string specifying what to plot on the x-axis. Possible values are
"step" for the step number (the default), or "df" for the degrees of freedom.

zeros a logical indicating whether predictors that never enter the model and thus have
zero coefficients should be included in the plot (TRUE) or omitted (FALSE, the de-
fault). This is useful if the number of predictors is much larger than the number
of observations, in which case many coefficients are never nonzero.

size a numeric vector of length three giving the line width, the point size and the
label size, respectively.

coefPlot 9

labels an optional character vector containing labels for the predictors. Plotting labels
can be suppressed by setting this to NULL.

offset an integer giving the offset of the labels from the corresponding coefficient val-
ues from the last step (i.e., the number of blank characters to be prepended to
the label).

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

fit a character string specifying for which estimator to produce the plot. Possible
values are "reweighted" (the default) for the reweighted fits, "raw" for the raw
fits, or "both" for both estimators.

Value

An object of class "ggplot" (see ggplot).

Author(s)

Andreas Alfons

See Also

ggplot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plot
coefPlot(fitRlars)

sparse LTS over a grid of values for lambda

10 corHuber

fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
create plot
coefPlot(fitSparseLTS)
coefPlot(fitSparseLTS, fit = "both")

corHuber Robust correlation based on winsorization.

Description

Compute a robust correlation estimate based on winsorization, i.e., by shrinking outlying observa-
tions to the border of the main part of the data.

Usage

corHuber(x, y, type = c("bivariate", "adjusted", "univariate"),
standardized = FALSE, centerFun = median, scaleFun = mad,
const = 2, prob = 0.95, tol = .Machine$double.eps^0.5, ...)

Arguments

x a numeric vector.

y a numeric vector.

type a character string specifying the type of winsorization to be used. Possible val-
ues are "univariate" for univariate winsorization, "adjusted" for adjusted
univariate winsorization, or "bivariate" for bivariate winsorization.

standardized a logical indicating whether the data are already robustly standardized.

centerFun a function to compute a robust estimate for the center to be used for robust
standardization (defaults to median). Ignored if standardized is TRUE.

scaleFun a function to compute a robust estimate for the scale to be used for robust stan-
dardization (defaults to mad). Ignored if standardized is TRUE.

const numeric; tuning constant to be used in univariate or adjusted univariate win-
sorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in bivariate
winsorization (defaults to 0.95).

tol a small positive numeric value. This is used in bivariate winsorization to deter-
mine whether the initial estimate from adjusted univariate winsorization is close
to 1 in absolute value. In this case, bivariate winsorization would fail since the
points form almost a straight line, and the initial estimate is returned.

... additional arguments to be passed to robStandardize.

corHuber 11

Details

The borders of the main part of the data are defined on the scale of the robustly standardized data. In
univariate winsorization, the borders for each variable are given by +/−const, thus a symmetric
distribution is assumed. In adjusted univariate winsorization, the borders for the two diagonally
opposing quadrants containing the minority of the data are shrunken by a factor that depends on the
ratio between the number of observations in the major and minor quadrants. It is thus possible to
better account for the bivariate structure of the data while maintaining fast computation. In bivariate
winsorization, a bivariate normal distribution is assumed and the data are shrunken towards the
boundary of a tolerance ellipse with coverage probability prob. The boundary of this ellipse is
thereby given by all points that have a squared Mahalanobis distance equal to the quantile of the χ2

distribution given by prob. Furthermore, the initial correlation matrix required for the Mahalanobis
distances is computed based on adjusted univariate winsorization.

Value

The robust correlation estimate.

Author(s)

Andreas Alfons, based on code by Jafar A. Khan, Stefan Van Aelst and Ruben H. Zamar

References

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least
angle regression. Journal of the American Statistical Association, 102(480), 1289–1299.

See Also

winsorize

Examples

generate data
library("mvtnorm")
set.seed(1234) # for reproducibility
Sigma <- matrix(c(1, 0.6, 0.6, 1), 2, 2)
xy <- rmvnorm(100, sigma=Sigma)
x <- xy[, 1]
y <- xy[, 2]

introduce outlier
x[1] <- x[1] * 10
y[1] <- y[1] * (-5)

compute correlation
cor(x, y)
corHuber(x, y)

12 critPlot

critPlot Optimality criterion plot of a sequence of regression models

Description

Produce a plot of the values of the optimality criterion for a sequence of regression models, such
as submodels along a robust or groupwise least angle regression sequence, or sparse least trimmed
squares regression models for a grid of values for the penalty parameter.

Usage

critPlot(x, ...)

S3 method for class 'seqModel'
critPlot(x, size = c(0.5, 2), ...)

S3 method for class 'perrySeqModel'
critPlot(x, ...)

S3 method for class 'tslars'
critPlot(x, p, ...)

S3 method for class 'sparseLTS'
critPlot(x, fit = c("reweighted", "raw", "both"),
size = c(0.5, 2), ...)

S3 method for class 'perrySparseLTS'
critPlot(x, fit = c("reweighted", "raw",
"both"), ...)

Arguments

x the model fit to be plotted.

... for the generic function, additional arguments to be passed down to methods.
For the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the "seqModel" and "sparseLTS" methods, additional arguments
to be passed down to geom_line and geom_point. For the "perrySeqModel"
and "perrySparseLTS" methods, additional arguments to be passed down to
the plot method for the prediction error results.

size a numeric vector of length two giving the line width and the point size, respec-
tively.

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

fit a character string specifying for which estimator to produce the plot. Possible
values are "reweighted" (the default) for the reweighted fits, "raw" for the raw
fits, or "both" for both estimators.

critPlot 13

Value

An object of class "ggplot" (see ggplot).

Author(s)

Andreas Alfons

See Also

ggplot, perryPlot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plot
critPlot(fitRlars)

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
create plot
critPlot(fitSparseLTS)
critPlot(fitSparseLTS, fit = "both")

14 diagnosticPlot

diagnosticPlot Diagnostic plots for a sequence of regression models

Description

Produce diagnostic plots for a sequence of regression models, such as submodels along a robust
least angle regression sequence, or sparse least trimmed squares regression models for a grid of
values for the penalty parameter. Four plots are currently implemented.

Usage

diagnosticPlot(x, ...)

S3 method for class 'seqModel'
diagnosticPlot(x, s = NA, covArgs = list(), ...)

S3 method for class 'perrySeqModel'
diagnosticPlot(x, ...)

S3 method for class 'tslars'
diagnosticPlot(x, p, ...)

S3 method for class 'sparseLTS'
diagnosticPlot(x, s = NA, fit = c("reweighted",
"raw", "both"), covArgs = list(), ...)

S3 method for class 'perrySparseLTS'
diagnosticPlot(x, ...)

Default S3 method:
diagnosticPlot(x, which = c("all", "rqq", "rindex",
"rfit", "rdiag"), ask = (which == "all"), facets = attr(x, "facets"),
size = c(2, 4), id.n = NULL, ...)

Arguments

x the model fit for which to produce diagnostic plots, or a data frame containing all
necessary information for plotting (as generated by the corresponding fortify
method).

... for the generic function, additional arguments to be passed down to methods.
For the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the "perrySeqModel" and "perrySparseLTS" method, additional
arguments to be passed down to the "seqModel" and "sparseLTS" method,
respectively. For the "seqModel" and "sparseLTS" methods, additional argu-
ments to be passed down to the default method. For the default method, addi-
tional arguments to be passed down to geom_point.

diagnosticPlot 15

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to produce diagnostic plots (the default is to use the optimal sub-
model). For the "sparseLTS" method, an integer vector giving the indices of
the models for which to produce diagnostic plots (the default is to use the opti-
mal model for each of the requested fits).

covArgs a list of arguments to be passed to covMcd for the regression diagnostic plot (see
“Details”).

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

fit a character string specifying for which fit to produce diagnostic plots. Possible
values are "reweighted" (the default) for diagnostic plots for the reweighted
fit, "raw" for diagnostic plots for the raw fit, or "both" for diagnostic plots for
both fits.

which a character string indicating which plot to show. Possible values are "all" (the
default) for all of the following, "rqq" for a normal Q-Q plot of the standard-
ized residuals, "rindex" for a plot of the standardized residuals versus their
index, "rfit" for a plot of the standardized residuals versus the fitted values, or
"rdiag" for a regression diagnostic plot (standardized residuals versus robust
Mahalanobis distances of the predictor variables).

ask a logical indicating whether the user should be asked before each plot (see
devAskNewPage). The default is to ask if all plots are requested and not ask
otherwise.

facets a faceting formula to override the default behavior. If supplied, facet_wrap or
facet_grid is called depending on whether the formula is one-sided or two-
sided.

size a numeric vector of length two giving the point and label size, respectively.

id.n an integer giving the number of the most extreme observations to be identified
by a label. The default is to use the number of identified outliers, which can be
different for the different plots. See “Details” for more information.

Details

In the normal Q-Q plot of the standardized residuals, a reference line is drawn through the first and
third quartile. The id.n observations with the largest distances from that line are identified by a
label (the observation number). The default for id.n is the number of regression outliers, i.e., the
number of observations whose residuals are too large (cf. weights).

In the plots of the standardized residuals versus their index or the fitted values, horizontal reference
lines are drawn at 0 and +/-2.5. The id.n observations with the largest absolute values of the
standardized residuals are identified by a label (the observation number). The default for id.n is
the number of regression outliers, i.e., the number of observations whose absolute residuals are too
large (cf. weights).

For the regression diagnostic plot, the robust Mahalanobis distances of the predictor variables are
computed via the MCD based on only those predictors with non-zero coefficients (see covMcd).
Horizontal reference lines are drawn at +/-2.5 and a vertical reference line is drawn at the upper
97.5% quantile of the χ2 distribution with p degrees of freedom, where p denotes the number
of predictors with non-zero coefficients. The id.n observations with the largest absolute values

16 diagnosticPlot

of the standardized residuals and/or largest robust Mahalanobis distances are identified by a label
(the observation number). The default for id.n is the number of all outliers: regression outliers
(i.e., observations whose absolute residuals are too large, cf. weights) and leverage points (i.e.,
observations with robust Mahalanobis distance larger than the 97.5% quantile of the χ2 distribution
with p degrees of freedom).

Value

If only one plot is requested, an object of class "ggplot" (see ggplot), otherwise a list of such
objects.

Author(s)

Andreas Alfons

See Also

ggplot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS, plot.lts

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plot
diagnosticPlot(fitRlars)

sparse LTS
fit model
fitSparseLTS <- sparseLTS(x, y, lambda = 0.05, mode = "fraction")
create plot
diagnosticPlot(fitSparseLTS)
diagnosticPlot(fitSparseLTS, fit = "both")

fitted.seqModel 17

fitted.seqModel Extract fitted values from a sequence of regression models

Description

Extract fitted values from a sequence of regression models, such as submodels along a robust or
groupwise least angle regression sequence, or sparse least trimmed squares regression models for a
grid of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
fitted(object, s = NA, drop = !is.null(s), ...)

S3 method for class 'tslars'
fitted(object, p, ...)

S3 method for class 'sparseLTS'
fitted(object, s = NA, fit = c("reweighted", "raw",
"both"), drop = !is.null(s), ...)

Arguments

object the model fit from which to extract fitted values.
s for the "seqModel" method, an integer vector giving the steps of the submodels

for which to extract the fitted values (the default is to use the optimal submodel).
For the "sparseLTS" method, an integer vector giving the indices of the models
for which to extract fitted values. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

drop a logical indicating whether to reduce the dimension to a vector in case of only
one step.

... for the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments are currently ignored.

p an integer giving the lag length for which to extract fitted values (the default is
to use the optimal lag length).

fit a character string specifying which fitted values to extract. Possible values are
"reweighted" (the default) for the fitted values from the reweighted estimator,
"raw" for the fitted values from the raw estimator, or "both" for the fitted values
from both estimators.

Value

A numeric vector or matrix containing the requested fitted values.

18 fortify.seqModel

Author(s)

Andreas Alfons

See Also

fitted, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract fitted values
fitted(fitRlars)
head(fitted(fitRlars, s = 1:5))

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract fitted values
fitted(fitSparseLTS)
head(fitted(fitSparseLTS, fit = "both"))
head(fitted(fitSparseLTS, s = NULL))
head(fitted(fitSparseLTS, fit = "both", s = NULL))

fortify.seqModel Convert a sequence of regression models into a data frame for plotting

fortify.seqModel 19

Description

Supplement the fitted values and residuals of a sequence of regression models (such as robust least
angle regression models or sparse least trimmed squares regression models) with other useful infor-
mation for diagnostic plots.

Usage

S3 method for class 'seqModel'
fortify(model, data, s = NA, covArgs = list(...),
...)

S3 method for class 'sparseLTS'
fortify(model, data, s = NA, fit = c("reweighted",
"raw", "both"), covArgs = list(...), ...)

Arguments

model the model fit to be converted.

data currently ignored.

s for the "seqModel" method, an integer vector giving the steps of the submodels
to be converted (the default is to use the optimal submodel). For the "sparseLTS"
method, an integer vector giving the indices of the models to be converted (the
default is to use the optimal model for each of the requested fits).

covArgs a list of arguments to be passed to covMcd for computing robust Mahalanobis
distances.

... additional arguments to be passed to covMcd can be specified directly instead of
via covArgs.

fit a character string specifying which fit to convert. Possible values are "reweighted"
(the default) to convert the reweighted fit, "raw" to convert the raw fit, or "both"
to convert both fits.

Value

A data frame containing the columns listed below, as well as additional information stored in the
attributes "qqLine" (intercepts and slopes of the respective reference lines to be displayed in resid-
ual Q-Q plots), "q" (quantiles of the Mahalanobis distribution used as cutoff points for detecting
leverage points), and "facets" (default faceting formula for the diagnostic plots).

step the steps (for the "seqModel" method) or indices (for the "sparseLTS" method) of the mod-
els (only returned if more than one model is requested).

fit the model fits (only returned if both the reweighted and raw fit are requested in the "sparseLTS"
method).

index the indices of the observations.

fitted the fitted values.

residual the standardized residuals.

theoretical the corresponding theoretical quantiles from the standard normal distribution.

20 fortify.seqModel

qqd the absolute distances from a reference line through the first and third sample and theoretical
quartiles.

rd the robust Mahalanobis distances computed via the MCD (see covMcd).
xyd the pairwise maxima of the absolute values of the standardized residuals and the robust Maha-

lanobis distances, divided by the respective other outlier detection cutoff point.
weight the weights indicating regression outliers.
leverage logicals indicating leverage points (i.e., outliers in the predictor space).
classification a factor with levels "outlier" (regression outliers) and "good" (data points fol-

lowing the model).

Author(s)

Andreas Alfons

See Also

fortify, diagnosticPlot, sparseLTS, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
convert to data for plotting
head(fortify(fitRlars))

sparse LTS
fit model
fitSparseLTS <- sparseLTS(x, y, lambda = 0.05, mode = "fraction")
convert to data for plotting
head(fortify(fitSparseLTS))
head(fortify(fitSparseLTS, fit = "both"))

getScale 21

getScale Extract the residual scale of a robust regression model

Description

Extract the robust scale estimate of the residuals from a robust regression model.

Usage

getScale(x, ...)

S3 method for class 'seqModel'
getScale(x, s = NA, ...)

S3 method for class 'sparseLTS'
getScale(x, s = NA, fit = c("reweighted", "raw",
"both"), ...)

Arguments

x the model fit from which to extract the robust residual scale estimate.

... additional arguments to be passed down to methods.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract the robust residual scale estimate (the default is to use the
optimal submodel). For the "sparseLTS" method, an integer vector giving the
indices of the models from which to extract the robust residual scale estimate. If
fit is "both", this can be a list with two components, with the first component
giving the indices of the reweighted fits and the second the indices of the raw
fits. The default is to use the optimal model for each of the requested estima-
tors. Note that the optimal models may not correspond to the same value of the
penalty parameter for the reweighted and the raw estimator.

fit a character string specifying from which fit to extract the robust residual scale
estimate. Possible values are "reweighted" (the default) for the residual scale
of the reweighted fit, "raw" for the residual scale of the raw fit, or "both" for
the residual scale of both fits.

Details

Methods are implemented for models of class "lmrob" (see lmrob), "lts" (see ltsReg), "rlm" (see
rlm), "seqModel" (see rlars) and "sparseLTS" (see sparseLTS). The default method computes
the MAD of the residuals.

Value

A numeric vector or matrix giving the robust residual scale estimates for the requested model fits.

22 grplars

Author(s)

Andreas Alfons

See Also

AIC, lmrob, ltsReg, rlm, rlars, sparseLTS

Examples

data("coleman")
fit <- lmrob(Y ~ ., data=coleman)
getScale(fit)

grplars (Robust) groupwise least angle regression

Description

(Robustly) sequence groups of candidate predictors according to their predictive content and find
the optimal model along the sequence.

Usage

grplars(x, ...)

S3 method for class 'formula'
grplars(formula, data, ...)

S3 method for class 'data.frame'
grplars(x, y, ...)

Default S3 method:
grplars(x, y, sMax = NA, assign, fit = TRUE,
s = c(0, sMax), crit = c("BIC", "PE"), splits = foldControl(),
cost = rmspe, costArgs = list(), selectBest = c("hastie", "min"),
seFactor = 1, ncores = 1, cl = NULL, seed = NULL, model = TRUE,
...)

rgrplars(x, ...)

S3 method for class 'formula'
rgrplars(formula, data, ...)

S3 method for class 'data.frame'
rgrplars(x, y, ...)

grplars 23

Default S3 method:
rgrplars(x, y, sMax = NA, assign, centerFun = median,
scaleFun = mad, regFun = lmrob, regArgs = list(),
combine = c("min", "euclidean", "mahalanobis"), const = 2,
prob = 0.95, fit = TRUE, s = c(0, sMax), crit = c("BIC", "PE"),
splits = foldControl(), cost = rtmspe, costArgs = list(),
selectBest = c("hastie", "min"), seFactor = 1, ncores = 1,
cl = NULL, seed = NULL, model = TRUE, ...)

Arguments

x a matrix or data frame containing the candidate predictors.

... additional arguments to be passed down.

formula a formula describing the full model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which grplars or rgrplars is called.

y a numeric vector containing the response.

sMax an integer giving the number of predictor groups to be sequenced. If it is NA
(the default), predictor groups are sequenced as long as there are twice as many
observations as expected predictor variables (number of predictor groups times
the average number of predictor variables per group).

assign an integer vector giving the predictor group to which each predictor variable
belongs.

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all groups along the sequence (step
sMax). If the second element is NA, predictor groups are added to the model as
long as there are twice as many observations as predictor variables. If only one
value is supplied, it is recycled.

crit a character string specifying the optimality criterion to be used for selecting the
final model. Possible values are "BIC" for the Bayes information criterion and
"PE" for resampling-based prediction error estimation.

splits an object giving data splits to be used for prediction error estimation (see perry).

cost a cost function measuring prediction loss (see perry for some requirements).
The default is to use the root trimmed mean squared prediction error for a robust
fit and the root mean squared prediction error otherwise (see cost).

costArgs a list of additional arguments to be passed to the prediction loss function cost.
selectBest, seFactor

arguments specifying a criterion for selecting the best model (see perrySelect).
The default is to use a one-standard-error rule.

24 grplars

ncores a positive integer giving the number of processor cores to be used for paral-
lel computing (the default is 1 for no parallelization). If this is set to NA, all
available processor cores are used. For obtaining the data cleaning weights,
for fitting models along the sequence and for prediction error estimation, par-
allel computing is implemented on the R level using package parallel. Oth-
erwise parallel computing for some of of the more computer-intensive compu-
tations in the sequencing step is implemented on the C++ level via OpenMP
(http://openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

seed optional initial seed for the random number generator (see .Random.seed). This
is useful because many robust regression functions (including lmrob) involve
randomness, or for prediction error estimation. On parallel R worker processes,
random number streams are used and the seed is set via clusterSetRNGStream.

model a logical indicating whether the model data should be included in the returned
object.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

regFun a function to compute robust linear regressions that can be interpreted as weighted
least squares (defaults to lmrob).

regArgs a list of arguments to be passed to regFun.

combine a character string specifying how to combine the data cleaning weights from
the robust regressions with each predictor group. Possible values are "min"
for taking the minimum weight for each observation, "euclidean" for weights
based on Euclidean distances of the multivariate set of standardized residuals
(i.e., multivariate winsorization of the standardized residuals assuming indepen-
dence), or "mahalanobis" for weights based on Mahalanobis distances of the
multivariate set of standardized residuals (i.e., multivariate winsorization of the
standardized residuals).

const numeric; tuning constant for multivariate winsorization to be used in the initial
corralation estimates based on adjusted univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

Value

If fit is FALSE, an integer vector containing the indices of the sequenced predictor groups.

Else if crit is "PE", an object of class "perrySeqModel" (inheriting from classes "perryTuning",
see perryTuning). It contains information on the prediction error criterion, and includes the final
model as component finalModel.

Otherwise an object of class "grplars" (inheriting from class "seqModel") with the following
components:

active an integer vector containing the sequence of predictor groups.

http://openmp.org/

grplars 25

s an integer vector containing the steps for which submodels along the sequence have been com-
puted.

coefficients a numeric matrix in which each column contains the regression coefficients of the
corresponding submodel along the sequence.

fitted.values a numeric matrix in which each column contains the fitted values of the corre-
sponding submodel along the sequence.

residuals a numeric matrix in which each column contains the residuals of the corresponding
submodel along the sequence.

df an integer vector containing the degrees of freedom of the submodels along the sequence (i.e.,
the number of estimated coefficients).

robust a logical indicating whether a robust fit was computed.

scale a numeric vector giving the robust residual scale estimates for the submodels along the
sequence (only returned for a robust fit).

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument s indicates more than one step along
the sequence).

muX a numeric vector containing the center estimates of the predictor variables.

sigmaX a numeric vector containing the scale estimates of the predictor variables.

muY numeric; the center estimate of the response.

sigmaY numeric; the scale estimate of the response.

x the matrix of candidate predictors (if model is TRUE).

y the response (if model is TRUE).

assign an integer vector giving the predictor group to which each predictor variable belongs.

w a numeric vector giving the data cleaning weights (only returned for a robust fit).

call the matched function call.

Author(s)

Andreas Alfons

See Also

coef, fitted, plot, predict, residuals, lmrob

Examples

data("TopGear")
keep complete observations
keep <- complete.cases(TopGear)
TopGear <- TopGear[keep,]
remove information on car model
info <- TopGear[, 1:3]
TopGear <- TopGear[, -(1:3)]
log-transform price
TopGear$Price <- log(TopGear$Price)

26 lambda0

robust groupwise LARS
rgrplars(MPG ~ ., data = TopGear, sMax = 15)

lambda0 Penalty parameter for sparse LTS regression

Description

Use bivariate winsorization to estimate the smallest value of the penalty parameter for sparse least
trimmed squares regression that sets all coefficients to zero.

Usage

lambda0(x, y, normalize = TRUE, intercept = TRUE, const = 2,
prob = 0.95, tol = .Machine$double.eps^0.5,
eps = .Machine$double.eps, ...)

Arguments

x a numeric matrix containing the predictor variables.

y a numeric vector containing the response variable.

normalize a logical indicating whether the winsorized predictor variables should be nor-
malized to have unit L2 norm (the default is TRUE).

intercept a logical indicating whether a constant term should be included in the model
(the default is TRUE).

const numeric; tuning constant to be used in univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in bivariate
winsorization (defaults to 0.95).

tol a small positive numeric value used to determine singularity issues in the com-
putation of correlation estimates for bivariate winsorization (see corHuber).

eps a small positive numeric value used to determine whether the robust scale esti-
mate of a variable is too small (an effective zero).

... additional arguments to be passed to robStandardize.

Details

The estimation procedure is inspired by the calculation of the respective penalty parameter in the
first step of the classical LARS algorithm. First, two-dimensional data blocks consisting of the
response with each predictor variable are cleaned via bivariate winsorization. For each block, the
following computations are then performed. If an intercept is included in the model, the cleaned
response is centered and the corresponding cleaned predictor is centered and scaled to have unit
norm. Otherwise the variables are not centered, but the predictor is scaled to have unit norm.
Finally, the dot product of the response and the corresponding predictor is computed. The largest
absolute value of those dot products, rescaled to fit the parametrization of the sparse LTS definition,
yields the estimate of the smallest penalty parameter that sets all coefficients to zero.

lambda0 27

Value

A robust estimate of the smallest value of the penalty parameter for sparse LTS regression that sets
all coefficients to zero.

Author(s)

Andreas Alfons

References

Alfons, A., Croux, C. and Gelper, S. (2013) Sparse least trimmed squares regression for analyzing
high-dimensional large data sets. The Annals of Applied Statistics, 7(1), 226–248.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression. The Annals of
Statistics, 32(2), 407–499.

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least
angle regression. Journal of the American Statistical Association, 102(480), 1289–1299.

See Also

sparseLTS, winsorize

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

estimate smallest value of the penalty parameter
that sets all coefficients to 0
lambda0(x, y)

28 perry.seqModel

perry.seqModel Resampling-based prediction error for a sequential regression model

Description

Estimate the prediction error of a previously fit sequential regression model such as a robust least
angle regression model or a sparse least trimmed squares regression model.

Usage

S3 method for class 'seqModel'
perry(object, splits = foldControl(), cost,
ncores = 1, cl = NULL, seed = NULL, ...)

S3 method for class 'sparseLTS'
perry(object, splits = foldControl(),
fit = c("reweighted", "raw", "both"), cost = rtmspe, ncores = 1,
cl = NULL, seed = NULL, ...)

Arguments

object the model fit for which to estimate the prediction error.

splits an object of class "cvFolds" (as returned by cvFolds) or a control object
of class "foldControl" (see foldControl) defining the folds of the data for
(repeated) K-fold cross-validation, an object of class "randomSplits" (as re-
turned by randomSplits) or a control object of class "splitControl" (see
splitControl) defining random data splits, or an object of class "bootSamples"
(as returned by bootSamples) or a control object of class "bootControl" (see
bootControl) defining bootstrap samples.

cost a cost function measuring prediction loss. It should expect vectors to be passed
as its first two arguments, the first corresponding to the observed values of the
response and the second to the predicted values, and must return a non-negative
scalar value. The default is to use the root mean squared prediction error for non-
robust models and the root trimmed mean squared prediction error for robust
models (see cost).

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used.

cl a parallel cluster for parallel computing as generated by makeCluster. If sup-
plied, this is preferred over ncores.

seed optional initial seed for the random number generator (see .Random.seed).
Note that also in case of parallel computing, resampling is performed on the
manager process rather than the worker processes. On the parallel worker pro-
cesses, random number streams are used and the seed is set via clusterSetRNGStream.

... additional arguments to be passed to the prediction loss function cost.

perry.seqModel 29

fit a character string specifying for which fit to estimate the prediction error. Possi-
ble values are "reweighted" (the default) for the prediction error of the reweighted
fit, "raw" for the prediction error of the raw fit, or "both" for the prediction error
of both fits.

Details

The prediction error can be estimated via (repeated) K-fold cross-validation, (repeated) random
splitting (also known as random subsampling or Monte Carlo cross-validation), or the bootstrap.
In each iteration, the optimal model is thereby selected from the training data and used to make
predictions for the test data.

Value

An object of class "perry" with the following components:

pe a numeric vector containing the estimated prediction errors for the requested model fits. In case
of more than one replication, this gives the average value over all replications.

se a numeric vector containing the estimated standard errors of the prediction loss for the requested
model fits.

reps a numeric matrix in which each column contains the estimated prediction errors from all
replications for the requested model fits. This is only returned in case of more than one
replication.

splits an object giving the data splits used to estimate the prediction error.

y the response.

yHat a list containing the predicted values from all replications.

call the matched function call.

Author(s)

Andreas Alfons

See Also

rlars, sparseLTS, predict, perry, cost

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix

30 plot.seqModel

e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

fit and evaluate robust LARS model
fitRlars <- rlars(x, y, sMax = 10)
perry(fitRlars)

fit and evaluate sparse LTS model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
perry(fitSparseLTS)

plot.seqModel Plot a sequence of regression models

Description

Produce a plot of the coefficients, the values of the optimality criterion, or diagnostic plots for a se-
quence of regression models, such as submodels along a robust or groupwise least angle regression
sequence, or sparse least trimmed squares regression models for a grid of values for the penalty
parameter.

Usage

S3 method for class 'seqModel'
plot(x, method = c("coefficients", "crit",
"diagnostic"), ...)

S3 method for class 'perrySeqModel'
plot(x, method = c("crit", "diagnostic"), ...)

S3 method for class 'tslars'
plot(x, p, method = c("coefficients", "crit",
"diagnostic"), ...)

S3 method for class 'sparseLTS'
plot(x, method = c("coefficients", "crit",
"diagnostic"), ...)

S3 method for class 'perrySparseLTS'
plot(x, method = c("crit", "diagnostic"), ...)

plot.seqModel 31

Arguments

x the model fit to be plotted.

method a character string specifying the type of plot. Possible values are "coefficients"
to plot the coefficients from the submodels via coefPlot (only for the "seqModel"
and "sparseLTS" methods), "crit" to plot the values of the optimality crite-
rion for the submodels via critPlot, or "diagnostic" for diagnostic plots via
diagnosticPlot.

... additional arguments to be passed down.

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

Value

An object of class "ggplot" (see ggplot).

Author(s)

Andreas Alfons

See Also

coefPlot, critPlot, diagnosticPlot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars,
rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plots
plot(fitRlars, method = "coef")
plot(fitRlars, method = "crit")

32 predict.seqModel

plot(fitRlars, method = "diagnostic")

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
create plots
plot(fitSparseLTS, method = "coef")
plot(fitSparseLTS, method = "crit")
plot(fitSparseLTS, method = "diagnostic")

predict.seqModel Predict from a sequence of regression models

Description

Make predictions from a sequence of regression models, such as submodels along a robust or group-
wise least angle regression sequence, or sparse least trimmed squares regression models for a grid
of values for the penalty parameter. For autoregressive time series models with exogenous inputs,
h-step ahead forecasts are performed.

Usage

S3 method for class 'seqModel'
predict(object, newdata, s = NA, ...)

S3 method for class 'tslarsP'
predict(object, newdata, ...)

S3 method for class 'tslars'
predict(object, newdata, p, ...)

S3 method for class 'sparseLTS'
predict(object, newdata, s = NA,
fit = c("reweighted", "raw", "both"), ...)

Arguments

object the model fit from which to make predictions.

newdata new data for the predictors. If the model fit was computed with the formula
method, this should be a data frame from which to extract the predictor variables.
Otherwise this should be a matrix containing the same variables as the predictor
matrix used to fit the model (including a column of ones to account for the
intercept).

predict.seqModel 33

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to make predictions (the default is to use the optimal submodel). For
the "sparseLTS" method, an integer vector giving the indices of the models
for which to make predictions. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

... for the "tslars" method, additional arguments to be passed down to the "tslarsP"
method. For the other methods, additional arguments to be passed down to the
respective method of coef.

p an integer giving the lag length for which to make predictions (the default is to
use the optimal lag length).

fit a character string specifying for which fit to make predictions. Possible values
are "reweighted" (the default) for predicting values from the reweighted fit,
"raw" for predicting values from the raw fit, or "both" for predicting values
from both fits.

Details

The newdata argument defaults to the matrix of predictors used to fit the model such that the fitted
values are computed.

For autoregressive time series models with exogenous inputs with forecast horizon h, the h most
recent observations of the predictors are omitted from fitting the model since there are no cor-
responding values for the response. Hence the newdata argument for predict.tslarsP and
predict.tslars defaults to those h observations of the predictors.

Value

A numeric vector or matrix containing the requested predicted values.

Author(s)

Andreas Alfons

See Also

predict, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients

34 residuals.seqModel

sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
compute fitted values via predict method
predict(fitRlars)
head(predict(fitRlars, s = 1:5))

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
compute fitted values via predict method
predict(fitSparseLTS)
head(predict(fitSparseLTS, fit = "both"))
head(predict(fitSparseLTS, s = NULL))
head(predict(fitSparseLTS, fit = "both", s = NULL))

residuals.seqModel Extract residuals from a sequence of regression models

Description

Extract residuals from a sequence of regression models, such as submodels along a robust or group-
wise least angle regression sequence, or sparse least trimmed squares regression models for a grid
of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
residuals(object, s = NA, standardized = FALSE,
drop = !is.null(s), ...)

S3 method for class 'tslars'
residuals(object, p, ...)

S3 method for class 'sparseLTS'
residuals(object, s = NA, fit = c("reweighted",
"raw", "both"), standardized = FALSE, drop = !is.null(s), ...)

residuals.seqModel 35

Arguments

object the model fit from which to extract residuals.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract the residuals (the default is to use the optimal submodel).
For the "sparseLTS" method, an integer vector giving the indices of the models
for which to extract residuals. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

standardized a logical indicating whether the residuals should be standardized (the default is
FALSE).

drop a logical indicating whether to reduce the dimension to a vector in case of only
one step.

... for the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments are currently ignored.

p an integer giving the lag length for which to extract residuals (the default is to
use the optimal lag length).

fit a character string specifying which residuals to extract. Possible values are
"reweighted" (the default) for the residuals from the reweighted estimator,
"raw" for the residuals from the raw estimator, or "both" for the residuals from
both estimators.

Value

A numeric vector or matrix containing the requested residuals.

Author(s)

Andreas Alfons

See Also

residuals, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))

36 rlars

x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract residuals
residuals(fitRlars)
head(residuals(fitRlars, s = 1:5))

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract residuals
residuals(fitSparseLTS)
head(residuals(fitSparseLTS, fit = "both"))
head(residuals(fitSparseLTS, s = NULL))
head(residuals(fitSparseLTS, fit = "both", s = NULL))

rlars Robust least angle regression

Description

Robustly sequence candidate predictors according to their predictive content and find the optimal
model along the sequence.

Usage

rlars(x, ...)

S3 method for class 'formula'
rlars(formula, data, ...)

Default S3 method:
rlars(x, y, sMax = NA, centerFun = median,
scaleFun = mad, winsorize = FALSE, const = 2, prob = 0.95,
fit = TRUE, s = c(0, sMax), regFun = lmrob, regArgs = list(),
crit = c("BIC", "PE"), splits = foldControl(), cost = rtmspe,
costArgs = list(), selectBest = c("hastie", "min"), seFactor = 1,
ncores = 1, cl = NULL, seed = NULL, model = TRUE,
tol = .Machine$double.eps^0.5, ...)

rlars 37

Arguments

x a matrix or data frame containing the candidate predictors.

... additional arguments to be passed down. For the default method, additional
arguments to be passed down to robStandardize.

formula a formula describing the full model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which rlars is called.

y a numeric vector containing the response.

sMax an integer giving the number of predictors to be sequenced. If it is NA (the de-
fault), predictors are sequenced as long as there are twice as many observations
as predictors.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

winsorize a logical indicating whether to clean the full data set by multivariate winsoriza-
tion, i.e., to perform data cleaning RLARS instead of plug-in RLARS (defaults
to FALSE).

const numeric; tuning constant to be used in the initial corralation estimates based on
adjusted univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in bivariate
or multivariate winsorization (defaults to 0.95).

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all variables along the sequence
(step sMax). If the second element is NA, predictors are added to the model as
long as there are twice as many observations as predictors. If only one value is
supplied, it is recycled.

regFun a function to compute robust linear regressions along the sequence (defaults to
lmrob).

regArgs a list of arguments to be passed to regFun.

crit a character string specifying the optimality criterion to be used for selecting the
final model. Possible values are "BIC" for the Bayes information criterion and
"PE" for resampling-based prediction error estimation.

splits an object giving data splits to be used for prediction error estimation (see perry).

cost a cost function measuring prediction loss (see perry for some requirements).
The default is to use the root trimmed mean squared prediction error (see cost).

costArgs a list of additional arguments to be passed to the prediction loss function cost.
selectBest, seFactor

arguments specifying a criterion for selecting the best model (see perrySelect).
The default is to use a one-standard-error rule.

38 rlars

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all avail-
able processor cores are used. For fitting models along the sequence and for
prediction error estimation, parallel computing is implemented on the R level
using package parallel. Otherwise parallel computing for some of of the more
computer-intensive computations in the sequencing step is implemented on the
C++ level via OpenMP (http://openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

seed optional initial seed for the random number generator (see .Random.seed). This
is useful because many robust regression functions (including lmrob) involve
randomness, or for prediction error estimation. On parallel R worker processes,
random number streams are used and the seed is set via clusterSetRNGStream.

model a logical indicating whether the model data should be included in the returned
object.

tol a small positive numeric value. This is used in bivariate winsorization to deter-
mine whether the initial estimate from adjusted univariate winsorization is close
to 1 in absolute value. In this case, bivariate winsorization would fail since the
points form almost a straight line, and the initial estimate is returned.

Value

If fit is FALSE, an integer vector containing the indices of the sequenced predictors.

Else if crit is "PE", an object of class "perrySeqModel" (inheriting from class "perrySelect",
see perrySelect). It contains information on the prediction error criterion, and includes the final
model as component finalModel.

Otherwise an object of class "rlars" (inheriting from class "seqModel") with the following com-
ponents:

active an integer vector containing the indices of the sequenced predictors.

s an integer vector containing the steps for which submodels along the sequence have been com-
puted.

coefficients a numeric matrix in which each column contains the regression coefficients of the
corresponding submodel along the sequence.

fitted.values a numeric matrix in which each column contains the fitted values of the corre-
sponding submodel along the sequence.

residuals a numeric matrix in which each column contains the residuals of the corresponding
submodel along the sequence.

df an integer vector containing the degrees of freedom of the submodels along the sequence (i.e.,
the number of estimated coefficients).

robust a logical indicating whether a robust fit was computed (TRUE for "rlars" models).

scale a numeric vector giving the robust residual scale estimates for the submodels along the
sequence.

http://openmp.org/

rlars 39

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument s indicates more than one step along
the sequence).

muX a numeric vector containing the center estimates of the predictors.

sigmaX a numeric vector containing the scale estimates of the predictors.

muY numeric; the center estimate of the response.

sigmaY numeric; the scale estimate of the response.

x the matrix of candidate predictors (if model is TRUE).

y the response (if model is TRUE).

w a numeric vector giving the data cleaning weights (if winsorize is TRUE).

call the matched function call.

Author(s)

Andreas Alfons, based on code by Jafar A. Khan, Stefan Van Aelst and Ruben H. Zamar

References

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least
angle regression. Journal of the American Statistical Association, 102(480), 1289–1299.

See Also

coef, fitted, plot, predict, residuals, lmrob

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

fit robust LARS model
rlars(x, y, sMax = 10)

40 robustHD-deprecated

robustHD-deprecated Deprecated functions in package robustHD

Description

These functions are provided for compatibility with older versions only, and may be defunct as soon
as the next release.

Usage

sparseLTSGrid(x, ...)

S3 method for class 'formula'
sparseLTSGrid(formula, data, ...)

Default S3 method:
sparseLTSGrid(x, y, lambda, mode = c("lambda",
"fraction"), ...)

wt(object, ...)

S3 method for class 'sparseLTS'
wt(object, ...)

Arguments

x a numeric matrix containing the predictor variables.

... additional arguments to be passed down.

formula a formula describing the model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which sparseLTSGrid is called.

y a numeric vector containing the response variable.

lambda a numeric vector of non-negative values to be used as penalty parameter.

mode a character string specifying the type of penalty parameter. If "lambda", lambda
gives the grid of values for the penalty parameter directly. If "fraction", the
smallest value of the penalty parameter that sets all coefficients to 0 is first esti-
mated based on bivariate winsorization, then lambda gives the fractions of that
estimate to be used (hence all values of lambda should be in the interval [0,1] in
that case).

object the model fit from which to extract outlier weights.

sparseLTS 41

Details

sparseLTSGrid is a wrapper function for sparseLTS that only differs in the default values for the
penalty parameter lambda.

wt is a wrapper function for weights. Its method for objects of class "sparseLTS" is a wrapper for
weights(object,type = "robustness",...).

Author(s)

Andreas Alfons

See Also

Deprecated

sparseLTS Sparse least trimmed squares regression

Description

Compute least trimmed squares regression with an L1 penalty on the regression coefficients, which
allows for sparse model estimates.

Usage

sparseLTS(x, ...)

S3 method for class 'formula'
sparseLTS(formula, data, ...)

Default S3 method:
sparseLTS(x, y, lambda, mode = c("lambda", "fraction"),
alpha = 0.75, normalize = TRUE, intercept = TRUE, nsamp = c(500,
10), initial = c("sparse", "hyperplane", "random"), ncstep = 2,
use.correction = TRUE, tol = .Machine$double.eps^0.5,
eps = .Machine$double.eps, use.Gram, crit = c("BIC", "PE"),
splits = foldControl(), cost = rtmspe, costArgs = list(),
selectBest = c("hastie", "min"), seFactor = 1, ncores = 1,
cl = NULL, seed = NULL, model = TRUE, ...)

Arguments

x a numeric matrix containing the predictor variables.

... additional arguments to be passed down.

formula a formula describing the model.

42 sparseLTS

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which sparseLTS is called.

y a numeric vector containing the response variable.

lambda a numeric vector of non-negative values to be used as penalty parameter.

mode a character string specifying the type of penalty parameter. If "lambda", lambda
gives the grid of values for the penalty parameter directly. If "fraction", the
smallest value of the penalty parameter that sets all coefficients to 0 is first esti-
mated based on bivariate winsorization, then lambda gives the fractions of that
estimate to be used (hence all values of lambda should be in the interval [0,1] in
that case).

alpha a numeric value giving the percentage of the residuals for which the L1 penal-
ized sum of squares should be minimized (the default is 0.75).

normalize a logical indicating whether the predictor variables should be normalized to have
unit L2 norm (the default is TRUE). Note that normalization is performed on the
subsamples rather than the full data set.

intercept a logical indicating whether a constant term should be included in the model
(the default is TRUE).

nsamp a numeric vector giving the number of subsamples to be used in the two phases
of the algorithm. The first element gives the number of initial subsamples to
be used. The second element gives the number of subsamples to keep after the
first phase of ncstep C-steps. For those remaining subsets, additional C-steps
are performed until convergence. The default is to first perform ncstep C-steps
on 500 initial subsamples, and then to keep the 10 subsamples with the lowest
value of the objective function for additional C-steps until convergence.

initial a character string specifying the type of initial subsamples to be used. If "sparse",
the lasso fit given by three randomly selected data points is first computed. The
corresponding initial subsample is then formed by the fraction alpha of data
points with the smallest squared residuals. Note that this is optimal from a ro-
bustness point of view, as the probability of including an outlier in the initial
lasso fit is minimized. If "hyperplane", a hyperplane through p randomly se-
lected data points is first computed, where p denotes the number of variables.
The corresponding initial subsample is then again formed by the fraction alpha
of data points with the smallest squared residuals. Note that this cannot be ap-
plied if p is larger than the number of observations. Nevertheless, the probabil-
ity of including an outlier increases with increasing dimension p. If "random",
the initial subsamples are given by a fraction alpha of randomly selected data
points. Note that this leads to the largest probability of including an outlier.

ncstep a positive integer giving the number of C-steps to perform on all subsamples in
the first phase of the algorithm (the default is to perform two C-steps).

use.correction currently ignored. Small sample correction factors may be added in the future.

tol a small positive numeric value giving the tolerance for convergence.

eps a small positive numeric value used to determine whether the variability within
a variable is too small (an effective zero).

sparseLTS 43

use.Gram a logical indicating whether the Gram matrix of the explanatory variables should
be precomputed in the lasso fits on the subsamples. If the number of variables
is large, computation may be faster when this is set to FALSE. The default is to
use TRUE if the number of variables is smaller than the number of observations
in the subsamples and smaller than 100, and FALSE otherwise.

crit a character string specifying the optimality criterion to be used for selecting the
final model. Possible values are "BIC" for the Bayes information criterion and
"PE" for resampling-based prediction error estimation.

splits an object giving data splits to be used for prediction error estimation (see perryTuning).

cost a cost function measuring prediction loss (see perryTuning for some require-
ments). The default is to use the root trimmed mean squared prediction error
(see cost).

costArgs a list of additional arguments to be passed to the prediction loss function cost.
selectBest, seFactor

arguments specifying a criterion for selecting the best model (see perryTuning).
The default is to use a one-standard-error rule.

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used. For prediction error estimation, parallel computing is
implemented on the R level using package parallel. Otherwise parallel comput-
ing is implemented on the C++ level via OpenMP (http://openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for prediction error estimation, in which case ncores is
only used on the C++ level for computing the final model.

seed optional initial seed for the random number generator (see .Random.seed). On
parallel R worker processes for prediction error estimation, random number
streams are used and the seed is set via clusterSetRNGStream.

model a logical indicating whether the data x and y should be added to the return object.
If intercept is TRUE, a column of ones is added to x to account for the intercept.

Value

If crit is "PE", an object of class "perrySparseLTS" (inheriting from class "perryTuning", see
perryTuning). It contains information on the prediction error criterion, and includes the final model
with the optimal tuning paramter as component finalModel.

Otherwise an object of class "sparseLTS" with the following components:

lambda a numeric vector giving the values of the penalty parameter.

best an integer vector or matrix containing the respective best subsets of h observations found and
used for computing the raw estimates.

objective a numeric vector giving the respective values of the sparse LTS objective function, i.e.,
the L1 penalized sums of the h smallest squared residuals from the raw fits.

coefficients a numeric vector or matrix containing the respective coefficient estimates from the
reweighted fits.

http://openmp.org/

44 sparseLTS

fitted.values a numeric vector or matrix containing the respective fitted values of the response
from the reweighted fits.

residuals a numeric vector or matrix containing the respective residuals from the reweighted fits.

center a numeric vector giving the robust center estimates of the corresponding reweighted resid-
uals.

scale a numeric vector giving the robust scale estimates of the corresponding reweighted residuals.

cnp2 a numeric vector giving the respective consistency factors applied to the scale estimates of
the reweighted residuals.

wt an integer vector or matrix containing binary weights that indicate outliers from the respec-
tive reweighted fits, i.e., the weights are 1 for observations with reasonably small reweighted
residuals and 0 for observations with large reweighted residuals.

df an integer vector giving the respective degrees of freedom of the obtained reweighted model
fits, i.e., the number of nonzero coefficient estimates.

intercept a logical indicating whether the model includes a constant term.

alpha a numeric value giving the percentage of the residuals for which the L1 penalized sum of
squares was minimized.

quan the number h of observations used to compute the raw estimates.

raw.coefficients a numeric vector or matrix containing the respective coefficient estimates from
the raw fits.

raw.fitted.values a numeric vector or matrix containing the respective fitted values of the re-
sponse from the raw fits.

raw.residuals a numeric vector or matrix containing the respective residuals from the raw fits.

raw.center a numeric vector giving the robust center estimates of the corresponding raw residuals.

raw.scale a numeric vector giving the robust scale estimates of the corresponding raw residuals.

raw.cnp2 a numeric value giving the consistency factor applied to the scale estimate of the raw
residuals.

raw.wt an integer vector or matrix containing binary weights that indicate outliers from the respec-
tive raw fits, i.e., the weights used for the reweighted fits.

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument lambda contains more than one value
for the penalty parameter).

x the predictor matrix (if model is TRUE).

y the response variable (if model is TRUE).

call the matched function call.

Note

The underlying C++ code uses the C++ library Armadillo. From package version 0.6.0, the back
end for sparse least trimmed squares from package sparseLTSEigen, which uses the C++ library
Eigen, is no longer supported and can no longer be used.

Parallel computing is implemented via OpenMP (http://openmp.org/).

http://openmp.org/

standardize 45

Author(s)

Andreas Alfons

References

Alfons, A., Croux, C. and Gelper, S. (2013) Sparse least trimmed squares regression for analyzing
high-dimensional large data sets. The Annals of Applied Statistics, 7(1), 226–248.

See Also

coef, fitted, plot, predict, residuals, weights, ltsReg

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

fit sparse LTS model for one value of lambda
sparseLTS(x, y, lambda = 0.05, mode = "fraction")

fit sparse LTS models over a grid of values for lambda
frac <- seq(0.2, 0.05, by = -0.05)
sparseLTS(x, y, lambda = frac, mode = "fraction")

standardize Data standardization

Description

Standardize data with given functions for computing center and scale.

Usage

standardize(x, centerFun = mean, scaleFun = sd)

robStandardize(x, centerFun = median, scaleFun = mad,
fallback = FALSE, eps = .Machine$double.eps, ...)

46 standardize

Arguments

x a numeric vector, matrix or data frame to be standardized.

centerFun a function to compute an estimate of the center of a variable (defaults to mean).

scaleFun a function to compute an estimate of the scale of a variable (defaults to sd).

fallback a logical indicating whether standardization with mean and sd should be per-
formed as a fallback mode for variables whose robust scale estimate is too small.
This is useful, e.g., for data containing dummy variables.

eps a small positive numeric value used to determine whether the robust scale esti-
mate of a variable is too small (an effective zero).

... currently ignored.

Details

robStandardize is a wrapper function for robust standardization, hence the default is to use median
and mad.

Value

An object of the same type as the original data x containing the centered and scaled data. The
center and scale estimates of the original data are returned as attributes "center" and "scale",
respectively.

Note

The implementation contains special cases for the typically used combinations mean/sd and median/mad
in order to reduce computation time.

Author(s)

Andreas Alfons

See Also

scale, sweep

Examples

generate data
set.seed(1234) # for reproducibility
x <- rnorm(10) # standard normal
x[1] <- x[1] * 10 # introduce outlier

standardize data
x
standardize(x) # mean and sd
robStandardize(x) # median and MAD

TopGear 47

TopGear Top Gear car data

Description

The data set contains information on cars featured on the website of the popular BBC television
show Top Gear.

Usage

data("TopGear")

Format

A data frame with 297 observations on the following 32 variables.

Maker factor; the car maker.

Model factor; the car model.

Type factor; the exact model type.

Fuel factor; the type of fuel ("Diesel" or "Petrol").

Price numeric; the list price (in UK pounds)

Cylinders numeric; the number of cylinders in the engine.

Displacement numeric; the displacement of the engine (in cc).

DriveWheel factor; the type of drive wheel ("4WD", "Front" or "Rear").

BHP numeric; the power of the engine (in bhp).

Torque numeric; the torque of the engine (in lb/ft).

Acceleration numeric; the time it takes the car to get from 0 to 62 mph (in seconds).

TopSpeed numeric; the car’s top speed (in mph).

MPG numeric; the combined fuel consuption (urban + extra urban; in miles per gallon).

Weight numeric; the car’s curb weight (in kg).

Length numeric; the car’s length (in mm).

Width numeric; the car’s width (in mm).

Height numeric; the car’s height (in mm).

AdaptiveHeadlights factor; whether the car has adaptive headlights ("no", "optional" or "standard").

AdjustableSteering factor; whether the car has adjustable steering ("no" or "standard").

AlarmSystem factor; whether the car has an alarm system ("no/optional" or "standard").

Automatic factor; whether the car has an automatic transmission ("no", "optional" or "standard").

Bluetooth factor; whether the car has bluetooth ("no", "optional" or "standard").

ClimateControl factor; whether the car has climate control ("no", "optional" or "standard").

CruiseControl factor; whether the car has cruise control ("no", "optional" or "standard").

48 tsBlocks

ElectricSeats factor; whether the car has electric seats ("no", "optional" or "standard").

Leather factor; whether the car has a leather interior ("no", "optional" or "standard").

ParkingSensors factor; whether the car has parking sensors ("no", "optional" or "standard").

PowerSteering factor; whether the car has power steering ("no" or "standard").

SatNav factor; whether the car has a satellite navigation system ("no", "optional" or "standard").

ESP factor; whether the car has ESP ("no", "optional" or "standard").

Verdict numeric; review score between 1 (lowest) and 10 (highest).

Origin factor; the origin of the car maker ("Asia", "Europe" or "USA").

Source

The data were scraped from http://www.topgear.com/uk/ on 2014-02-24. Variable Origin was
added based on the car maker information.

Examples

data("TopGear")
summary(TopGear)

tsBlocks Construct predictor blocks for time series models

Description

Construct blocks of original and lagged values for autoregressive time series models with exogenous
inputs. The typical use case is to supply the output as newdata argument to the predict method of
robust groupwise least angle regression models.

Usage

tsBlocks(x, y, p = 2, subset = NULL, intercept = TRUE)

Arguments

x a numeric matrix or data frame containing the exogenous predictor series.

y a numeric vector containing the response series.

p an integer giving the number of lags to include (defaults to 2).

subset a logical or integer vector defining a subset of observations from which to con-
struct the matrix of predictor blocks.

intercept a logical indicating whether a column of ones should be added to the matrix of
predictor blocks to account for the intercept.

Value

A matrix containing blocks of original and lagged values of the time series y and x.

http://www.topgear.com/uk/

tslars 49

Author(s)

Andreas Alfons

See Also

predict.tslars, tslars, predict.tslarsP, tslarsP

tslars (Robust) least angle regression for time series data

Description

(Robustly) sequence groups of candidate predictors and their respective lagged values according to
their predictive content and find the optimal model along the sequence. Note that lagged values of
the response are included as a predictor group as well.

Usage

tslars(x, ...)

S3 method for class 'formula'
tslars(formula, data, ...)

Default S3 method:
tslars(x, y, h = 1, pMax = 3, sMax = NA,
fit = TRUE, s = c(0, sMax), crit = "BIC", ncores = 1,
cl = NULL, model = TRUE, ...)

rtslars(x, ...)

S3 method for class 'formula'
rtslars(formula, data, ...)

Default S3 method:
rtslars(x, y, h = 1, pMax = 3, sMax = NA,
centerFun = median, scaleFun = mad, regFun = lmrob,
regArgs = list(), combine = c("min", "euclidean", "mahalanobis"),
winsorize = FALSE, const = 2, prob = 0.95, fit = TRUE, s = c(0,
sMax), crit = "BIC", ncores = 1, cl = NULL, seed = NULL,
model = TRUE, ...)

Arguments

x a numeric matrix or data frame containing the candidate predictor series.

... additional arguments to be passed down.

formula a formula describing the full model.

50 tslars

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which tslars or rtslars is called.

y a numeric vector containing the response series.

h an integer giving the forecast horizon (defaults to 1).

pMax an integer giving the maximum number of lags in the model (defaults to 3).

sMax an integer giving the number of predictor series to be sequenced. If it is NA
(the default), predictor groups are sequenced as long as there are twice as many
observations as predictor variables.

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all series along the sequence (step
sMax). If the second element is NA, predictor groups are added to the model as
long as there are twice as many observations as predictor variables. If only one
value is supplied, it is recycled.

crit a character string specifying the optimality criterion to be used for selecting
the final model. Currently, only "BIC" for the Bayes information criterion is
implemented.

ncores a positive integer giving the number of processor cores to be used for paral-
lel computing (the default is 1 for no parallelization). If this is set to NA, all
available processor cores are used. For each lag length, parallel computing for
obtaining the data cleaning weights and for fitting models along the sequence is
implemented on the R level using package parallel. Otherwise parallel comput-
ing for some of of the more computer-intensive computations in the sequencing
step is implemented on the C++ level via OpenMP (http://openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

model a logical indicating whether the model data should be included in the returned
object.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

regFun a function to compute robust linear regressions that can be interpreted as weighted
least squares (defaults to lmrob).

regArgs a list of arguments to be passed to regFun.

combine a character string specifying how to combine the data cleaning weights from
the robust regressions with each predictor group. Possible values are "min"
for taking the minimum weight for each observation, "euclidean" for weights
based on Euclidean distances of the multivariate set of standardized residuals
(i.e., multivariate winsorization of the standardized residuals assuming indepen-
dence), or "mahalanobis" for weights based on Mahalanobis distances of the

http://openmp.org/

tslars 51

multivariate set of standardized residuals (i.e., multivariate winsorization of the
standardized residuals).

winsorize a logical indicating whether to clean the data by multivariate winsorization.

const numeric; tuning constant for multivariate winsorization to be used in the initial
corralation estimates based on adjusted univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

seed optional initial seed for the random number generator (see .Random.seed),
which is useful because many robust regression functions (including lmrob) in-
volve randomness. On parallel R worker processes, random number streams are
used and the seed is set via clusterSetRNGStream.

Value

If fit is FALSE, an integer matrix in which each column contains the indices of the sequenced
predictor series for the corresponding lag length.

Otherwise an object of class "tslars" with the following components:

pFit a list containing the fits for the respective lag lengths (see tslarsP).

pOpt an integer giving the optimal number of lags.

pMax the maximum number of lags considered.

x the matrix of candidate predictor series (if model is TRUE).

y the response series (if model is TRUE).

call the matched function call.

Note

The predictor group of lagged values of the response is indicated by the index 0.

Author(s)

Andreas Alfons, based on code by Sarah Gelper

References

Gelper, S. and Croux, C. (2010) Time series least angle regression for selecting predictive economic
sentiment series. Working paper.

See Also

coef, fitted, plot, predict, residuals, tslarsP, lmrob

52 tslarsP

tslarsP (Robust) least angle regression for time series data with fixed lag
length

Description

(Robustly) sequence groups of candidate predictors and their respective lagged values according to
their predictive content and find the optimal model along the sequence. Note that lagged values of
the response are included as a predictor group as well.

Usage

tslarsP(x, ...)

S3 method for class 'formula'
tslarsP(formula, data, ...)

Default S3 method:
tslarsP(x, y, h = 1, p = 2, sMax = NA,
fit = TRUE, s = c(0, sMax), crit = "BIC", ncores = 1,
cl = NULL, model = TRUE, ...)

rtslarsP(x, ...)

S3 method for class 'formula'
rtslarsP(formula, data, ...)

Default S3 method:
rtslarsP(x, y, h = 1, p = 2, sMax = NA,
centerFun = median, scaleFun = mad, regFun = lmrob,
regArgs = list(), combine = c("min", "euclidean", "mahalanobis"),
winsorize = FALSE, const = 2, prob = 0.95, fit = TRUE, s = c(0,
sMax), crit = "BIC", ncores = 1, cl = NULL, seed = NULL,
model = TRUE, ...)

Arguments

x a numeric matrix or data frame containing the candidate predictor series.

... additional arguments to be passed down.

formula a formula describing the full model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which tslarsP or rtslarsP is called.

y a numeric vector containing the response series.

tslarsP 53

h an integer giving the forecast horizon (defaults to 1).

p an integer giving the number of lags in the model (defaults to 2).

sMax an integer giving the number of predictor series to be sequenced. If it is NA
(the default), predictor groups are sequenced as long as there are twice as many
observations as predictor variables.

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all series along the sequence (step
sMax). If the second element is NA, predictor groups are added to the model as
long as there are twice as many observations as predictor variables. If only one
value is supplied, it is recycled.

crit a character string specifying the optimality criterion to be used for selecting
the final model. Currently, only "BIC" for the Bayes information criterion is
implemented.

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used. For obtaining the data cleaning weights and for fitting
models along the sequence, parallel computing is implemented on the R level
using package parallel. Otherwise parallel computing for some of of the more
computer-intensive computations in the sequencing step is implemented on the
C++ level via OpenMP (http://openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

model a logical indicating whether the model data should be included in the returned
object.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

regFun a function to compute robust linear regressions that can be interpreted as weighted
least squares (defaults to lmrob).

regArgs a list of arguments to be passed to regFun.

combine a character string specifying how to combine the data cleaning weights from
the robust regressions with each predictor group. Possible values are "min"
for taking the minimum weight for each observation, "euclidean" for weights
based on Euclidean distances of the multivariate set of standardized residuals
(i.e., multivariate winsorization of the standardized residuals assuming indepen-
dence), or "mahalanobis" for weights based on Mahalanobis distances of the
multivariate set of standardized residuals (i.e., multivariate winsorization of the
standardized residuals).

winsorize a logical indicating whether to clean the data by multivariate winsorization.

const numeric; tuning constant for multivariate winsorization to be used in the initial
corralation estimates based on adjusted univariate winsorization (defaults to 2).

http://openmp.org/

54 tslarsP

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

seed optional initial seed for the random number generator (see .Random.seed),
which is useful because many robust regression functions (including lmrob) in-
volve randomness. On parallel R worker processes, random number streams are
used and the seed is set via clusterSetRNGStream.

Value

If fit is FALSE, an integer vector containing the indices of the sequenced predictor series.

Otherwise an object of class "tslarsP" (inheriting from classes "grplars" and "seqModel") with
the following components:

active an integer vector containing the sequence of predictor series.

s an integer vector containing the steps for which submodels along the sequence have been com-
puted.

coefficients a numeric matrix in which each column contains the regression coefficients of the
corresponding submodel along the sequence.

fitted.values a numeric matrix in which each column contains the fitted values of the corre-
sponding submodel along the sequence.

residuals a numeric matrix in which each column contains the residuals of the corresponding
submodel along the sequence.

df an integer vector containing the degrees of freedom of the submodels along the sequence (i.e.,
the number of estimated coefficients).

robust a logical indicating whether a robust fit was computed.

scale a numeric vector giving the robust residual scale estimates for the submodels along the
sequence (only returned for a robust fit).

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument s indicates more than one step along
the sequence).

muX a numeric vector containing the center estimates of the predictor variables.

sigmaX a numeric vector containing the scale estimates of the predictor variables.

muY numeric; the center estimate of the response.

sigmaY numeric; the scale estimate of the response.

x the matrix of candidate predictor series (if model is TRUE).

y the response series (if model is TRUE).

assign an integer vector giving the predictor group to which each predictor variable belongs.

w a numeric vector giving the data cleaning weights (only returned for a robust fit).

h the forecast horizon.

p the number of lags in the model.

call the matched function call.

weights.sparseLTS 55

Note

The predictor group of lagged values of the response is indicated by the index 0.

Author(s)

Andreas Alfons, based on code by Sarah Gelper

References

Gelper, S. and Croux, C. (2010) Time series least angle regression for selecting predictive economic
sentiment series. Working paper.

See Also

coef, fitted, plot, predict, residuals, tslars, lmrob

weights.sparseLTS Extract outlier weights from sparse LTS regression models

Description

Extract binary weights that indicate outliers from sparse least trimmed squares regression models.

Usage

S3 method for class 'sparseLTS'
weights(object, type = "robustness", s = NA,
fit = c("reweighted", "raw", "both"), drop = !is.null(s), ...)

Arguments

object the model fit from which to extract outlier weights.

type the type of weights to be returned. Currently only robustness weights are imple-
mented ("robustness").

s an integer vector giving the indices of the models for which to extract outlier
weights. If fit is "both", this can be a list with two components, with the first
component giving the indices of the reweighted fits and the second the indices
of the raw fits. The default is to use the optimal model for each of the requested
estimators. Note that the optimal models may not correspond to the same value
of the penalty parameter for the reweighted and the raw estimator.

fit a character string specifying for which estimator to extract outlier weights. Pos-
sible values are "reweighted" (the default) for weights indicating outliers from
the reweighted fit, "raw" for weights indicating outliers from the raw fit, or
"both" for the outlier weights from both estimators.

drop a logical indicating whether to reduce the dimension to a vector in case of only
one model.

... currently ignored.

56 weights.sparseLTS

Value

A numeric vector or matrix containing the requested outlier weights.

Note

The weights are 1 for observations with reasonably small residuals and 0 for observations with large
residuals.

Author(s)

Andreas Alfons

See Also

sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitGrid <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract outlier weights
weights(fitGrid)
head(weights(fitGrid, fit = "both"))
head(weights(fitGrid, s = NULL))
head(weights(fitGrid, fit = "both", s = NULL))

winsorize 57

winsorize Data cleaning by winsorization

Description

Clean data by means of winsorization, i.e., by shrinking outlying observations to the border of the
main part of the data.

Usage

winsorize(x, ...)

Default S3 method:
winsorize(x, standardized = FALSE,

centerFun = median, scaleFun = mad, const = 2, return = c("data",
"weights"), ...)

S3 method for class 'matrix'
winsorize(x, standardized = FALSE, centerFun = median,
scaleFun = mad, const = 2, prob = 0.95,
tol = .Machine$double.eps^0.5, return = c("data", "weights"), ...)

S3 method for class 'data.frame'
winsorize(x, ...)

Arguments

x a numeric vector, matrix or data frame to be cleaned.

... for the generic function, additional arguments to be passed down to methods.
For the "data.frame" method, additional arguments to be passed down to the
"matrix" method. For the other methods, additional arguments to be passed
down to robStandardize.

standardized a logical indicating whether the data are already robustly standardized.

centerFun a function to compute a robust estimate for the center to be used for robust
standardization (defaults to median). Ignored if standardized is TRUE.

scaleFun a function to compute a robust estimate for the scale to be used for robust stan-
dardization (defaults to mad). Ignored if standardized is TRUE.

const numeric; tuning constant to be used in univariate winsorization (defaults to 2).

return character string; if standardized is TRUE, this specifies the type of return value.
Possible values are "data" for returning the cleaned data, or "weights" for
returning data cleaning weights.

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

tol a small positive numeric value used to determine singularity issues in the compu-
tation of correlation estimates based on bivariate winsorization (see corHuber).

58 winsorize

Details

The borders of the main part of the data are defined on the scale of the robustly standardized data. In
the univariate case, the borders are given by +/−const, thus a symmetric distribution is assumed.
In the multivariate case, a normal distribution is assumed and the data are shrunken towards the
boundary of a tolerance ellipse with coverage probability prob. The boundary of this ellipse is
thereby given by all points that have a squared Mahalanobis distance equal to the quantile of the χ2

distribution given by prob.

Value

If standardize is TRUE and return is "weights", a set of data cleaning weights. Multiplying each
observation of the standardized data by the corresponding weight yields the cleaned standardized
data.

Otherwise an object of the same type as the original data x containing the cleaned data is returned.

Note

Data cleaning weights are only meaningful for standardized data. In the general case, the data
need to be standardized first, then the data cleaning weights can be computed and applied to the
standardized data, after which the cleaned standardized data need to be backtransformed to the
original scale.

Author(s)

Andreas Alfons, based on code by Jafar A. Khan, Stefan Van Aelst and Ruben H. Zamar

References

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least
angle regression. Journal of the American Statistical Association, 102(480), 1289–1299.

See Also

corHuber

Examples

generate data
set.seed(1234) # for reproducibility
x <- rnorm(10) # standard normal
x[1] <- x[1] * 10 # introduce outlier

winsorize data
x
winsorize(x)

Index

∗Topic array
standardize, 45

∗Topic datasets
TopGear, 47

∗Topic hplot
coefPlot, 8
critPlot, 12
diagnosticPlot, 14
plot.seqModel, 30

∗Topic multivariate
corHuber, 10

∗Topic package
robustHD-package, 2

∗Topic regression
AIC.seqModel, 4
coef.seqModel, 6
fitted.seqModel, 17
getScale, 21
grplars, 22
predict.seqModel, 32
residuals.seqModel, 34
rlars, 36
robustHD-deprecated, 40
sparseLTS, 41
tslars, 49
tslarsP, 52
weights.sparseLTS, 55

∗Topic robust
corHuber, 10
grplars, 22
lambda0, 26
rlars, 36
robustHD-deprecated, 40
sparseLTS, 41
tslars, 49
tslarsP, 52
winsorize, 57

∗Topic ts
tsBlocks, 48

tslars, 49
tslarsP, 52

∗Topic utilities
fortify.seqModel, 18
lambda0, 26
perry.seqModel, 28

.Random.seed, 24, 28, 38, 43, 51, 54

AIC, 5, 22
AIC.seqModel, 4
AIC.sparseLTS (AIC.seqModel), 4
as.data.frame, 23, 37, 40, 42, 50, 52

BIC.seqModel (AIC.seqModel), 4
BIC.sparseLTS (AIC.seqModel), 4
bootControl, 28
bootSamples, 28

clusterSetRNGStream, 24, 28, 38, 43, 51, 54
coef, 7, 25, 33, 39, 45, 51, 55
coef.grplars (coef.seqModel), 6
coef.rlars (coef.seqModel), 6
coef.seqModel, 6
coef.sparseLTS (coef.seqModel), 6
coef.tslars (coef.seqModel), 6
coef.tslarsP (coef.seqModel), 6
coefPlot, 8, 31
corHuber, 10, 26, 57, 58
cost, 23, 28, 29, 37, 43
covMcd, 15, 19, 20
critPlot, 12, 31
cvFolds, 28

Deprecated, 41
devAskNewPage, 15
diagnosticPlot, 14, 20, 31

facet_grid, 15
facet_wrap, 15
fitted, 18, 25, 39, 45, 51, 55
fitted.grplars (fitted.seqModel), 17

59

60 INDEX

fitted.rlars (fitted.seqModel), 17
fitted.seqModel, 17
fitted.sparseLTS (fitted.seqModel), 17
fitted.tslars (fitted.seqModel), 17
fitted.tslarsP (fitted.seqModel), 17
foldControl, 28
fortify, 14, 20
fortify.rlars (fortify.seqModel), 18
fortify.seqModel, 18
fortify.sparseLTS (fortify.seqModel), 18

geom_line, 8, 12
geom_point, 8, 12, 14
getScale, 21
ggplot, 9, 13, 16, 31
grplars, 7, 9, 13, 16, 18, 22, 31, 33, 35

lambda0, 26
lmrob, 21, 22, 24, 25, 37–39, 50, 51, 53–55
ltsReg, 21, 22, 45

mad, 10, 24, 37, 46, 50, 53, 57
makeCluster, 24, 28, 38, 43, 50, 53
mean, 46
median, 10, 24, 37, 46, 50, 53, 57

perry, 23, 29, 37
perry.rlars (perry.seqModel), 28
perry.seqModel, 28
perry.sparseLTS (perry.seqModel), 28
perryPlot, 13
perrySelect, 23, 37, 38
perryTuning, 24, 43
plot, 12, 25, 39, 45, 51, 55
plot.grplars (plot.seqModel), 30
plot.lts, 16
plot.perrySeqModel (plot.seqModel), 30
plot.perrySparseLTS (plot.seqModel), 30
plot.rlars (plot.seqModel), 30
plot.seqModel, 30
plot.sparseLTS (plot.seqModel), 30
plot.tslars (plot.seqModel), 30
plot.tslarsP (plot.seqModel), 30
predict, 25, 29, 33, 39, 45, 48, 51, 55
predict.grplars (predict.seqModel), 32
predict.rlars (predict.seqModel), 32
predict.seqModel, 32
predict.sparseLTS (predict.seqModel), 32
predict.tslars, 49

predict.tslars (predict.seqModel), 32
predict.tslarsP, 49
predict.tslarsP (predict.seqModel), 32
print.grplars (grplars), 22
print.rlars (rlars), 36
print.sparseLTS (sparseLTS), 41
print.tslars (tslars), 49
print.tslarsP (tslarsP), 52

randomSplits, 28
residuals, 25, 35, 39, 45, 51, 55
residuals.grplars (residuals.seqModel),

34
residuals.rlars (residuals.seqModel), 34
residuals.seqModel, 34
residuals.sparseLTS

(residuals.seqModel), 34
residuals.tslars (residuals.seqModel),

34
residuals.tslarsP (residuals.seqModel),

34
rgrplars, 7, 9, 13, 16, 18, 31, 33, 35
rgrplars (grplars), 22
rlars, 5, 7, 9, 13, 16, 18, 21, 22, 29, 31, 33,

35, 36
rlm, 21, 22
robStandardize, 10, 26, 37, 57
robStandardize (standardize), 45
robustHD (robustHD-package), 2
robustHD-deprecated, 40
robustHD-package, 2
rtslars, 7, 9, 13, 16, 18, 31, 33, 35
rtslars (tslars), 49
rtslarsP, 7, 9, 13, 16, 18, 31, 33, 35
rtslarsP (tslarsP), 52

scale, 46
sd, 46
sparseLTS, 5, 7, 9, 13, 16, 18, 20–22, 27, 29,

31, 33, 35, 41, 41, 56
sparseLTSGrid (robustHD-deprecated), 40
splitControl, 28
standardize, 45
sweep, 46

TopGear, 47
tsBlocks, 48
tslars, 7, 9, 13, 16, 18, 31, 33, 35, 49, 49, 55
tslarsP, 7, 9, 13, 16, 18, 31, 33, 35, 49, 51, 52

INDEX 61

weights, 15, 16, 41, 45
weights.sparseLTS, 55
winsorize, 11, 27, 57
wt (robustHD-deprecated), 40

	robustHD-package
	AIC.seqModel
	coef.seqModel
	coefPlot
	corHuber
	critPlot
	diagnosticPlot
	fitted.seqModel
	fortify.seqModel
	getScale
	grplars
	lambda0
	perry.seqModel
	plot.seqModel
	predict.seqModel
	residuals.seqModel
	rlars
	robustHD-deprecated
	sparseLTS
	standardize
	TopGear
	tsBlocks
	tslars
	tslarsP
	weights.sparseLTS
	winsorize
	Index

