
Package ‘rnaseqWrapper’
August 29, 2016

Type Package

Title Wrapper for several R packages and scripts to automate RNA-seq
analysis

Version 1.0-1

Date 2014-07-22

Author Mark Peterson

Maintainer Mark Peterson <mark.phillip.peterson@gmail.com>

Description This package is designed to streamline several of the common steps for RNA-seq
analysis, including differential expression and variant discovery.
For the development build, or to contribute changes to this package,
please see our repository at https://bitbucket.org/petersmp/rnaseqwrapper/

License GPL

Depends ecodist, gplots, gtools

Suggests topGO,seqinr,DESeq

NeedsCompilation no

Repository CRAN

Date/Publication 2014-07-23 15:59:32

R topics documented:
rnaseqWrapper-package . 2
calcBasicDE . 3
calcCombVals . 4
calcHornMatrix . 6
calcLogVal . 7
calculateThirdPosBias . 8
DESeqWrapper . 10
determineSynonymous . 12
heatmap.mark . 13
kaksFromVariants . 21
mergeCountFiles . 22
nSynNonSites . 24

1

2 rnaseqWrapper-package

parseVarScan . 25
readVariantFiles . 26
rnaseqWrapperCountData . 28
rnaseqWrapperData . 29
runGOAnalysis . 29

Index 32

rnaseqWrapper-package A Wrapper for RNAseq analysis

Description

This package wraps several aspects of RNAseq already implemented in R, including DE analysis
and analysis of variants. For the development build, or to contribute changes to this package, please
see our repository at https://bitbucket.org/petersmp/rnaseqwrapper/

Details

Package: rnaseqWrapper
Type: Package
Version: 1.0-1
Date: 2014-07-22
License: GPL

Author(s)

Mark Peterson

Maintainer: Mark Peterson <mark.phillip.peterson@gmail.com>

References

This package wraps access to several existing functions. Look at each function to see what other
pieces are used.

Examples

See the examples in each function, for your interests

calcBasicDE 3

calcBasicDE Calculate basics differential expression between pairs of columns

Description

Calculates the pairwise difference between a series of colums.

This assumes either differences between individuals, or between a single column for each group
(e.g. mean, median, or log there of).

This function does not calculate statistical significance, and it is intended only for quick, course-
scale analysis and visualization, not for final publication.

Usage

calcBasicDE(data,
colID = "_mean_FPKM_log2",
whichIndex = "allPairwise",
matchEnd = TRUE,
appendName = "diff")

Arguments

data data.frame or matrix with genes as rows and columns containing information,
such as counts, FPKM, etc.

colID Which columns should be used for DE analysis, takes a single column per group,
so expects either a single column per treatment (e.g. mean), or will report indi-
vidual differences.
Can be a vector for several things either character (to be grepped) or numeric to
indicate which cols to analyze.
Accepts regexp arguments, so be careful.

whichIndex Which colID (e.g. "Control") should the others be compared against.
Can be numeric (which of the colID to use) or characther for grep against the
names of the colID columns (can have regexp).
whichIndex="allPairwise" (default) calculates all pairwise comparisons.

matchEnd if colID is character, should only the end of the column name be matched.
This avoids matching unintended columns.

appendName What string should be added to the end of each output column?
Output column names will be "firstColName_minus_secondColName_appendName"

Details

This function calculates the difference between pairs of columns, but does not report a statistical
test.

It is a simple wrapper to find the raw numerical differences between several columns, and output
sensibly named columns.

4 calcCombVals

Value

Returns a data.frame with one column for each calculated difference.

Rows and names match the input data.frame, so can be appended to the original data.frame using
either cbind or merge.

Author(s)

Mark Peterson

See Also

DESeqWrapper, calcCombVals

Examples

Only run if DESeq is available
if(require(DESeq)){

Create sample data
Could be reads or FPKM from your input

exampleCounts <- counts(makeExampleCountDataSet())

testComb <- calcCombVals(exampleCounts,
groupID=c("A","B","*"),
colID=c("all"))

head(testComb)

basicTest <- calcBasicDE(testComb,"all_mean")

head(basicTest)

}

calcCombVals Calculate group values from RNAseq data

Description

This script uses grep to combine the data from all individuals in a group, for a specific data type(s),
and calculates the summary statistic requested.

calcCombVals 5

Usage

calcCombVals(data, groupID, colID = "FPKM", combineCols = TRUE,
matchEnd = TRUE, FUN = "mean", functionName = NULL)

Arguments

data A data.frame or matrix containing the individual data (columns) for several
genes (rows) from which to calculate the test statistic FUN

groupID A character vector or list. If character, include the group IDs, to be used as
patterns in grep.
Make sure the names are unique enough to match only what you want them to.
To include all groups for a data type, set groupID = "all","", or "*".
If a list, give the column numbers for each group, named with your desired group
output name (e.g. groupID = list(control = c(1,2,3), treated = c(4,5,6))
)

colID A character vector of the columns of interest (e.g. FPKM).
To include all columns for each group, set colID = "all","", or "*".
colID is ignored if groupID is a list.

combineCols Logical, should the resulting columns be put into one data.frame (default, combineCols = TRUE),
or left as enteries in a list.

matchEnd Logical, should the colId pattern only match the end of the string.

FUN Either be a function or a character that can be coerced to function using match.fun(FUN).
This will be used to name the output columns if functionName is not set.
If not a character, set functionName to assign column names for the output

functionName A string to use in naming the output columns or list names.
Defaults to as.character(FUN) if not set.

Details

This function uses grep to grab a series of columns (by group and by column type), and then runs a
summary function (FUN) on each set.

This can effectivley calculate group statistics for visualization and course analysis, such as means,
medians, etc.

Value

If combineCols = TRUE, returns a data.frame with one column for each set (groupID by colID).

If combineCols = FALSE, returns a list with one entry for each set (groupID by colID).

Author(s)

Mark Peterson

See Also

calcBasicDE

6 calcHornMatrix

Examples

Only run if DESeq is available
if(require(DESeq)){

Create sample data
Could be reads or FPKM from your input
exampleCounts <- counts(makeExampleCountDataSet())

testComb <- calcCombVals(exampleCounts,
groupID=c("A","B","*"),
colID=c("all"))

head(testComb)
}

calcHornMatrix Calculate a Horn distance matrix

Description

This function calculates the pairwise Horn distance between samples based on relative presence of
observed variables.

Usage

calcHornMatrix(inputTable)

Arguments

inputTable A matrix or data.frame of relative frequencies of whatever is being measured.
Each row is a variable (e.g. gene) and each column is a sample (e.g. individual).
The algorithm expects each column to sum to 1.
That is, each entry should be the portion of observations (e.g. reads) representing
the variable (gene) from the total observations for a sample (individual).

Value

Returns a matrix of pair-wise similarity scores for each column.

Author(s)

Mark Peterson

References

This was (heavily) modified from a script provided by a collaborator of Gina Lamendella’s. I need
to get more information

calcLogVal 7

Examples

Only run if DESeq is available
if(require(DESeq)){

Create sample counts
Thes could be the reads or FPKM from input data instead
require(DESeq)
exampleCounts <- counts(makeExampleCountDataSet())

testHorn <- calcHornMatrix(exampleCounts)
head(testHorn)

Plot the results
distMat <-as.dist((1-testHorn), diag=FALSE, upper=FALSE)

scores to plot MDS (ecodist)
scores_ADNA <-nmds(distMat, mindim=2, maxdim=2)
scores_ADNA <- nmds.min(scores_ADNA)

Set colors to match treatments
treatCol <- c("red","red","blue","blue","blue")

plot(scores_ADNA[,1:2],pch=19,col=treatCol)

}

calcLogVal Calculate log value of RNAseq columns

Description

Calculate the log value of a series of columns, allowing an offset to avoid returning "-Inf."

Usage

calcLogVal(data, colID = "FPKM", offset = 0.1,
setBase = 2, matchEnd = TRUE)

Arguments

data A matrix or data.frame containing gene (row) data for several individuals (columns).

colID Either a numeric vector of columns to calculate the log of, or a character vector
with patterns (e.g., FPKM) to match in the names of data.
If a character vector, make sure the names are unique enough to match only what
you want them to, as they will be called to grep.

8 calculateThirdPosBias

offset How much to add before taking log to avoid returning -Inf.

setBase A positive number to pass to log to set the logarthimic base.
Defaults to setBase = 2

matchEnd Logical, should the colId pattern only match the end of the string.

Value

Returns a data.frame with the log value of the desired columns.

Rows match the input data, so can be appended using cbind or merge.

Author(s)

Mark Peterson

Examples

Only run if DESeq is available
if(require(DESeq)){

Create sample data
Could be reads or FPKM from your input
exampleCounts <- counts(makeExampleCountDataSet())

Only calculate for the "2" columns
This could be reads, if you have multiple column types
testLog <- calcLogVal(exampleCounts,

colID="2",
matchEnd=TRUE)

head(testLog)

Calculate log of all columns
testLog2 <- calcLogVal(exampleCounts,

colID="*",
setBase=2)

head(testLog2)

}

calculateThirdPosBias Calculate the third position bias of polymorphisms

Description

Determines which variant positions are in the third codon position, or estimates that based on fre-
quency, and reports the proportion of variants in each gene that are in the third position.

These are presumed to be synonomous more often, but if codon information is known, users should
run determineSynonymous instead.

calculateThirdPosBias 9

Usage

calculateThirdPosBias(varTable,
seqIDcol = 1,
refPosCol = "Reference.Position",
readCutoffs = 0,
colprepend = "nVar_",
codonStartPos = NULL)

Arguments

varTable A data.frame with rows for each position in each gene with a variant present.
Columns give various information for each included individual.
This is expecting the format from readVariantFiles, which should be easy to
emulate

seqIDcol Which column is the sequence ID in? Can be numeric or character.

refPosCol Which column is the referencece position in? Can be numeric or character.

readCutoffs How many variable positions need to be present to calculate bias. Set to 1 (or
0 or NULL) to include all. Without a reference, small numbers will be almost
meaningless.

colprepend What name should the output columns be prepended with

codonStartPos If "cds" assumes all start at position 1 (default).
If NULL, will treat the frame as unknown and assign the most frequent position
as the putative third position.
In the future, can be a vector giving which position each gene starts at; currently
not handled.

Value

Returns a matrix with genes as rows and with the number of variants in each position and proportion
of variants in the third position as columns.

Author(s)

Mark Peterson

See Also

readVariantFiles, determineSynonymous

Examples

Load example data
data(varScanExample)

calculateThirdPosBias(varScanExample,
refPosCol="Position",

10 DESeqWrapper

codonStartPos="cds")

DESeqWrapper A wrapper for DESeq

Description

This function provides a useful wrapper for the DESeq package, automating several of the manual
steps to provide a basic DE analysis.

Users should use this as a guide, not necessarily as a final analysis.

The functions plotDE and plotDispEsts are only called from within this function.

Usage

DESeqWrapper(countData,
conditions,
whichGeneNames = 0,
outNamePrefix = "DESeqOutputs",
comps = "allPairwise",
conds = NULL,
colorSet = NULL,
makePDFs = TRUE,
writeScaled = FALSE,
writeDE = TRUE,
pCut = 0.05,
dispMethod = "pooled",
dispSharingMode = "maximum")

Arguments

countData A data.frame or matrix with raw count data for each gene (row) and sample
(column).

conditions Character vector with the groups to be analyzed.

whichGeneNames Numeric or character, which column has the gene names. Defaults to 0, which
is rownames (preferred).

outNamePrefix A string to prepend to written files; can included path specification.

comps character vector of which contrasts to run in the format 1vs2 with numbers
matching order of conditions above

conds A character vector of the conditions for each column, matching the order of
the columns in countData. If "NULL" (default) the function will use grep on
conditions against column names to automatically generate the groups

colorSet Vector of colors, specified in any valid R format, to use as labels for the condi-
tions. If "NULL" (default), default colors will be used.

DESeqWrapper 11

makePDFs Logical, should figures be output as pdfs. If false, no figures will be generated.

writeScaled Logical, should the scaled countData be written as a .txt file.

writeDE Logical, should the DE results be written as .txt files.

pCut What (FDR-corrected) q-value should be used as a cut-off.

dispMethod Which method should be used for estimating dispersion by DESeq? See estimateDispersions
for details and available options.

dispSharingMode

Which sharing mode should be used for estimating dispersion by DESeq? See
estimateDispersions for details and available options.

Value

Writes txt and pdf files as run, and returns a list with:

deOutputs A list with one data.frame for each contrast analyzed
normalizedReads

The normalized read data

isSignificant A data.frame telling whether each gene is sig for each contrast

Author(s)

Mark Peterson

Examples

Only run if DESeq is available
if(require(DESeq)){

Create an example count data set
exampleCounts <- counts(makeExampleCountDataSet())[1:500,]

Note, from your data, this might look like:
exampleCounts <- myInputData[,grep("READS",names(myInputData))]
row.names(exampleCounts) <- myInputData$geneNameColumn

Note, outputs save to disk are turned off
Set each to TRUE to save to your working directory
test <- DESeqWrapper(exampleCounts,

conditions=c("A","B"),
writeScaled=FALSE,
writeDE=FALSE,
makePDFs=FALSE)

Look at the outputs
head(test$deOutputs$AvsB)
head(test$normalizedReads)
head(test$isSignificant)

}

12 determineSynonymous

determineSynonymous Determine whether or not variants are synonomous

Description

From a table of variants, determine whether each is synonymous or non-synonomous, assuming all
are in the coding region.

Usage

determineSynonymous(varTable,
seqIDcol = 1,
refPosCol = "Reference.Position",
refAlleleCol = "Reference",
varAlleleCol = "Allele",
readCutoffs = 1,
colprepend = "snvs_",
codonStartPos = "cds",
referenceSeqs)

Arguments

varTable A data.frame with rows for each position in each gene with a variant present.
Columns give various information for each included individual.
This is expecting the format from readVariantFiles, which should be easy to
emulate

seqIDcol Which column is the sequence ID in? Can be numeric or character.

refPosCol Which column is the referencece position in? Can be numeric or character.

refAlleleCol Which column has the reference allele? Can be numeric or character.

varAlleleCol Which column has the variable alleles? Can be numeric or character.

readCutoffs How many variable positions need to be present to calculate bias. Set to 1 (or
0 or NULL) to include all. Without a reference, small numbers will be almost
meaningless.

colprepend What name should the output columns be prepended with.

codonStartPos If "cds" assumes all start at position 1 (default).
In the future, can be a vector giving which position each gene starts at; currently
not handled.

referenceSeqs List of FASTA sequences, with names being gene names as listed in seqIDcol
and containing the sequences. This is the format produced by read.fasta, but
can be emulated.

heatmap.mark 13

Value

Returns a list with:

variantInfo A matrix of info for each variant, including the reference and variant values for
allele and amino acid, and whether or not is synonomous

geneInfo A matrix of info for each gene, with number and proportion for both synony-
mous and non-synonomous variants for the gene.

Author(s)

Mark Peterson

See Also

read.fasta, nSynNonSites, kaksFromVariants

Examples

Load needed data
data(varScanExample)
data(fastaExample)

determineSynonymous(varTable=varScanExample,
refPosCol=2,
refAlleleCol="Ref",
varAlleleCol="Var",
referenceSeqs=fastaExample)

heatmap.mark Enhanced Heat Map, further modified

Description

This heatmap adds some functional control to the extensions provided by heatmap.2 to the standard
R heatmap function. Namely, this function adds the ability to suppress the label of the color key,
and modifies the defaults for scale, trace, col, and density.info to match the more common
usage in RNAseq analysis. In addition, it allows the suppression of the hardcoded layouts, using
plotNew = FALSE to allow combining multiple heatmaps in a single figure, though caution is
warranted in arranging your own layout.

Usage and details below are borrowed from that function; for more complete examples, see those
help pages.

14 heatmap.mark

Usage

heatmap.mark (x,

dendrogram control
Rowv = TRUE,
Colv=if(symm)"Rowv" else TRUE,
distfun = dist,
hclustfun = hclust,
dendrogram = c("both","row","column","none"),
symm = FALSE,

data scaling
scale = c("row","none", "column"),
na.rm=TRUE,

image plot
revC = identical(Colv, "Rowv"),
add.expr,

mapping data to colors
breaks,
symbreaks=min(x < 0, na.rm=TRUE) || scale!="none",

colors
col="rnaSeqColors",

block sepration
colsep,
rowsep,
sepcolor="white",
sepwidth=c(0.05,0.05),

cell labeling
cellnote,
notecex=1.0,
notecol="cyan",
na.color=par("bg"),

level trace
trace=c("none","column","row","both"),
tracecol="cyan",
hline=median(breaks),
vline=median(breaks),
linecol=tracecol,

Row/Column Labeling
margins = c(5, 5),
ColSideColors,

heatmap.mark 15

RowSideColors,
cexRow = 0.2 + 1/log10(nr),
cexCol = 0.2 + 1/log10(nc),
labRow = NULL,
labCol = NULL,
srtRow = NULL,
srtCol = NULL,
adjRow = c(0,NA),
adjCol = c(NA,0),
offsetRow = 0.5,
offsetCol = 0.5,

color key + density info
key = TRUE,
keysize = 1.5,
density.info=c("none","histogram","density"),
denscol=tracecol,
symkey = min(x < 0, na.rm=TRUE) || symbreaks,
densadj = 0.25,

plot labels
main = NULL,
xlab = NULL,
ylab = NULL,

plot layout
lmat = NULL,
lhei = NULL,
lwid = NULL,

extras for this function
scaleLabel = NULL,
plotNew = TRUE,
...
)

Arguments

x numeric matrix of the values to be plotted.

Rowv determines if and how the row dendrogram should be reordered. By default, it
is TRUE, which implies dendrogram is computed and reordered based on row
means. If NULL or FALSE, then no dendrogram is computed and no reordering
is done. If a dendrogram, then it is used "as-is", ie without any reordering. If
a vector of integers, then dendrogram is computed and reordered based on the
order of the vector.

Colv determines if and how the column dendrogram should be reordered. Has the
options as the Rowv argument above and additionally when x is a square matrix,

16 heatmap.mark

Colv = "Rowv" means that columns should be treated identically to the
rows.

distfun function used to compute the distance (dissimilarity) between both rows and
columns. Defaults to dist.

hclustfun function used to compute the hierarchical clustering when Rowv or Colv are not
dendrograms. Defaults to hclust.

dendrogram character string indicating whether to draw ’none’, ’row’, ’column’ or ’both’
dendrograms. Defaults to ’both’. However, if Rowv (or Colv) is FALSE or
NULL and dendrogram is ’both’, then a warning is issued and Rowv (or Colv)
arguments are honoured.

symm logical indicating if x should be treated symmetrically; can only be true when x
is a square matrix.

scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. The default is "row" if symm false,
and "none" otherwise.

na.rm logical indicating whether NA’s should be removed.

revC logical indicating if the column order should be reversed for plotting, such that
e.g., for the symmetric case, the symmetry axis is as usual.

add.expr expression that will be evaluated after the call to image. Can be used to add
components to the plot.

breaks (optional) Either a numeric vector indicating the splitting points for binning x
into colors, or a integer number of break points to be used, in which case the
break points will be spaced equally between min(x) and max(x).

symbreaks Boolean indicating whether breaks should be made symmetric about 0. Defaults
to TRUE if the data includes negative values, and to FALSE otherwise.

col colors used for the image. Defaults to heat colors (heat.colors).
colsep, rowsep, sepcolor

(optional) vector of integers indicating which columns or rows should be sepa-
rated from the preceding columns or rows by a narrow space of color sepcolor.

sepwidth (optional) Vector of length 2 giving the width (colsep) or height (rowsep) the
separator box drawn by colsep and rowsep as a function of the width (colsep) or
height (rowsep) of a cell. Defaults to c(0.05, 0.05)

cellnote (optional) matrix of character strings which will be placed within each color
cell, e.g. p-value symbols.

notecex (optional) numeric scaling factor for cellnote items.

notecol (optional) character string specifying the color for cellnote text. Defaults to
"green".

na.color Color to use for missing value (NA). Defaults to the plot background color.

trace character string indicating whether a solid "trace" line should be drawn across
’row’s or down ’column’s, ’both’ or ’none’. The distance of the line from the
center of each color-cell is proportional to the size of the measurement. Defaults
to ’none’.

tracecol character string giving the color for "trace" line. Defaults to "cyan".

heatmap.mark 17

hline, vline, linecol

Vector of values within cells where a horizontal or vertical dotted line should
be drawn. The color of the line is controlled by linecol. Horizontal lines
are only plotted if trace is ’row’ or ’both’. Vertical lines are only drawn if
trace ’column’ or ’both’. hline and vline default to the median of the breaks,
linecol defaults to the value of tracecol.

margins numeric vector of length 2 containing the margins (see par(mar= *)) for col-
umn and row names, respectively.

ColSideColors (optional) character vector of length ncol(x) containing the color names for a
horizontal side bar that may be used to annotate the columns of x.

RowSideColors (optional) character vector of length nrow(x) containing the color names for a
vertical side bar that may be used to annotate the rows of x.

cexRow, cexCol positive numbers, used as cex.axis in for the row or column axis labeling. The
defaults currently only use number of rows or columns, respectively.

labRow, labCol character vectors with row and column labels to use; these default to rownames(x)
or colnames(x), respectively.

srtRow, srtCol angle of row/column labels, in degrees from horizontal

adjRow, adjCol 2-element vector giving the (left-right, top-bottom) justification of row/column
labels (relative to the text orientation).

offsetRow, offsetCol

Number of character-width spaces to place between row/column labels and the
edge of the plotting region.

key logical indicating whether a color-key should be shown.

keysize numeric value indicating the size of the key

density.info character string indicating whether to superimpose a ’histogram’, a ’density’
plot, or no plot (’none’) on the color-key.

denscol character string giving the color for the density display specified by density.info,
defaults to the same value as tracecol.

symkey Boolean indicating whether the color key should be made symmetric about 0.
Defaults to TRUE if the data includes negative values, and to FALSE otherwise.

densadj Numeric scaling value for tuning the kernel width when a density plot is drawn
on the color key. (See the adjust parameter for the density function for de-
tails.) Defaults to 0.25.

main, xlab, ylab

main, x- and y-axis titles; defaults to none.
lmat, lhei, lwid

visual layout: position matrix, column height, column width. See below for
details

scaleLabel What label should be used for the colorkey? "NULL" suppresses the label

plotNew Logical. Should this heatmap be drawn on a new plot. If FALSE, you need to
provide your own layout that will encompass all plots you intend to put in the
figure. Refer to the argument information for lmat, lhei, and lwid as well as
the details and examples below for more information on your options for this.

... additional arguments passed on to image

18 heatmap.mark

Details

If either Rowv or Colv are dendrograms they are honored (and not reordered). Otherwise, dendro-
grams are computed as dd <- as.dendrogram(hclustfun(distfun(X))) where X is either x or
t(x).

If either is a vector (of “weights”) then the appropriate dendrogram is reordered according to the
supplied values subject to the constraints imposed by the dendrogram, by reorder(dd, Rowv),
in the row case.

If either is missing, as by default, then the ordering of the corresponding dendrogram is by the mean
value of the rows/columns, i.e., in the case of rows, Rowv <- rowMeans(x, na.rm=na.rm).

If either is NULL, no reordering will be done for the corresponding side.

If scale="row" the rows are scaled to have mean zero and standard deviation one. There is some
empirical evidence from genomic plotting that this is useful.

The default colors range from red to white (heat.colors) and are not pretty. Consider using en-
hancements such as the RColorBrewer package, http://cran.r-project.org/src/contrib/
PACKAGES.html#RColorBrewer to select better colors.

By default four components will be displayed in the plot. At the top left is the color key, top
right is the column dendogram, bottom left is the row dendogram, bottom right is the image plot.
When RowSideColor or ColSideColor are provided, an additional row or column is inserted in the
appropriate location. This layout can be overriden by specifiying appropriate values for lmat, lwid,
and lhei. lmat controls the relative postition of each element, while lwid controls the column
width, and lhei controls the row height. See the help page for layout for details on how to use
these arguments.

If plotNew = FALSE, then heatmap.mark will not reset the current layout before plotting. Thus, if
this operates on a brand new plot, each of the four elements (described above) will be plotted as a
separate plot. Instead, before running the first plot you intend to include, using layout or a similar
function to specify the order in which plots should be placed. See the usage examples below for an
example.

Value

Invisibly, a list with components

rowInd row index permutation vector as returned by order.dendrogram.

colInd column index permutation vector.

call the matched call
rowMeans, rowSDs

mean and standard deviation of each row: only present if scale="row"
colMeans, colSDs

mean and standard deviation of each column: only present if scale="column"

carpet reordered and scaled ’x’ values used generate the main ’carpet’

rowDendrogram row dendrogram, if present

colDendrogram column dendrogram, if present

breaks values used for color break points

http://cran.r-project.org/src/contrib/PACKAGES.html#RColorBrewer
http://cran.r-project.org/src/contrib/PACKAGES.html#RColorBrewer

heatmap.mark 19

col colors used

vline center-line value used for column trace, present only if trace="both" or trace="column"

hline center-line value used for row trace, present only if trace="both" or trace="row"

colorTable A three-column data frame providing the lower and upper bound and color for
each bin

Note

The original rows and columns are reordered in any case to match the dendrogram, e.g., the rows
by order.dendrogram(Rowv) where Rowv is the (possibly reorder()ed) row dendrogram.

heatmap.2() uses layout and draws the image in the lower right corner of a 2x2 layout. Con-
sequentially, it can not be used in a multi column/row layout, i.e., when par(mfrow= *) or
(mfcol= *) has been called.

heatmap.mark() allows this behavior to be over-ridden using plotNew = FALSE, though the user
is cautioned that arranging the output manually may take substantial effort.

Author(s)

Mark Peterson, making small revisions to the fantastic code of Andy Liaw, original; and R. Gentle-
man, M. Maechler, W. Huber, G. Warnes, revisions.

See Also

image, hclust,heatmap.2

Examples

Below are examples of the changes made from heatmap.2()
for more complete examples of all this code can do
see ?heatmap.2

######################################
Read in and prepare data to plot
######################################

Find where the data is stored (or use your own)
pathToData <- try(system.file("",package="rnaseqWrapper",mustWork=TRUE))

if(class(pathToData) != "try-error"){
Make sure the data were found before proceeding

Read in the data
Note, the files here are compressed,
but yours do not need to be
countData <- mergeCountFiles(paste(pathToData,"/data/",sep=""),".genes.results.txt.gz")

limit to count data for 50 rows
note that these are not, necessarily DE genes
toPlot <- countData[51:100,grep(".expected_count",names(countData))]

20 heatmap.mark

Trim the names to make the plots a bit nicer:
names(toPlot) <- gsub(".expected_count","", names(toPlot))

#################
Simple plot
#################

heatmap.mark(as.matrix(toPlot),cexCol = 0.75,labRow = FALSE)

###
More complex, add labels and legend
###

myLabelColors <- rep(c("red","blue"),each = dim(toPlot)[2]/2)

heatmap.mark(as.matrix(toPlot),
cexCol = 0.75,labRow = FALSE,
scaleLabel = "",
ColSideColors = myLabelColors)

par(xpd=TRUE) ## To allow legend on top of other stuff
legend(x="topleft",inset=c(-.02,.08),

bty="n", cex=.8,
legend= c("Female","Male"),
fill=unique(myLabelColors),
title="Sex")

par(xpd=FALSE) ## To reset

##########################
With multiple panels
##########################

Set your own layout
Note, that each heatmap plots 4 objects when no color labels are included
So the offset for each additional one needs to b 4 + the options
If you use row or column labels, additional plots are drawn
In addition, you will likely want to play with the widths and
heights of each element.

baseLayout <- matrix(c(4,3,2,1), nrow = 2, byrow = TRUE)

layout(cbind(baseLayout,baseLayout + 4),
widths = c(1,2,1,2), heights = c(1,2), respect = FALSE)

heatmap.mark(as.matrix(toPlot),
cexCol = 0.75,labRow = FALSE,
scaleLabel = "",
plotNew = FALSE)

kaksFromVariants 21

heatmap.mark(as.matrix(toPlot),
cexCol = 0.75,labRow = FALSE,
scaleLabel = "",
plotNew = FALSE)

}

kaksFromVariants Calculate Ka/Ks ratios from a table of variants

Description

From a table of variants, determine the ka/ks ratio and the number of synonomous/non-synonomous
sites.

Usage

kaksFromVariants(varTable,
seqIDcol = 1,
refPosCol = "Reference.Position",
refAlleleCol = "Reference",
varAlleleCol = "Allele",
readCutoffs = 1,
codonStartPos = "cds",
referenceSeqs)

Arguments

varTable A data.frame with rows for each position in each gene with a variant present.
Columns give various information for each included individual.
This is expecting the format from readVariantFiles, which should be easy to
emulate. Small changes to the names make it ideal for VarScan formats as well.

seqIDcol Which column is the sequence ID in? Can be numeric or character.

refPosCol Which column is the referencece position in? Can be numeric or character.

refAlleleCol Which column has the reference allele? Can be numeric or character.
varAlleleCol Which column has the variable alleles? Can be numeric or character.
readCutoffs How many variable positions need to be present to calculate bias. Set to 1 (or

0 or NULL) to include all. Without a reference, small numbers will be almost
meaningless.

codonStartPos If "cds" assumes all start at position 1 (default).
In the future, can be a vector giving which position each gene starts at; currently
not handled.

22 mergeCountFiles

referenceSeqs List of FASTA sequences, with names being gene names as listed in seqIDcol
and containing the sequences. This is the format produced by read.fasta, but
can be emulated.

Value

Returns a matrix of info for each gene with:

ka rate of non-synonomous subsitutions

ks rate of synonomous subsitutions

kaks the ka/ks ratio; Note that ka/ks will be NA for genes with no scored variants and
for any gene for which ka or ks are returned as negative

nSynSites the number of sites deemed synonomous (includes half of the two-fold syn-
onomous sites)

nNonSynSites the number of sites deemed non-synonomous (includes half of the two-fold syn-
onomous sites)

Author(s)

Mark Peterson

See Also

nSynNonSites, determineSynonymous, kaks, read.fasta

Examples

Load needed data
data(varScanExample)
data(fastaExample)

kaksFromVariants(varTable=varScanExample,
refPosCol=2,
refAlleleCol="Ref",
varAlleleCol="Var",
referenceSeqs=fastaExample)

mergeCountFiles Merge multiple expression count data files for RNAseq

Description

Reads in the count data files from each sample of an RNAseq experiment and then combines the
files into a single data.frame, useful for several downstream applications.

mergeCountFiles 23

Usage

mergeCountFiles(fileDir,
fileID = "*.genes.results$",
fileSep = "\t",
seqIDcol = 1,
colsToKeep = c("expected_count","FPKM"),
idCols = NULL,
minMatchToMerge = 0.5)

Arguments

fileDir The path to the directory containing all of the count data files.

fileID Character to use to limit which files are imported; regular expressions allowed.
This fileID is also removed from the file names when naming the output columns.

fileSep The column delimiter used in the file (e.g. "," or "\t")

seqIDcol Which column has the gene name or other identifier? Can be numeric or char-
acter.

colsToKeep Which columns of info should be kept for the output? Can be a vector of either
numeric or character.

idCols Which columns of general site information should be kept? This limits these to
one single column, rather than one for each sample. Note, that row.names of the
output will already match seqIDcol. This can be a vector of either numeric or
character, but must match the format of seqIDcol if the rows of your input data
are not all in the same order.

minMatchToMerge

If your data are not in the same order, what portion of gene names must be in
common to proceed with merge? This is a protection step to avoid accidentally
merging datasets from different references.

Details

Reads in the count data files from fileDir and merges by gene. It checks to see if the information
is all in the same order, and issues a warning if not because it may suggest data are from different
reference files.

Value

Returns a data.frame with a row for each gene, and columns (named from the file names), for each
sample for each data type kept

Author(s)

Mark Peterson

24 nSynNonSites

Examples

Find where the data is stored (or use your own)
pathToData <- try(system.file("",package="rnaseqWrapper",mustWork=TRUE))

if(class(pathToData) != "try-error"){
Make sure the data were found before proceeding

Read in the data
Note, the files here are compressed,
but yours do not need to be
testCountData <- mergeCountFiles(paste(pathToData,"/data/",sep=""),".genes.results.txt.gz")

Display the contents
head(testCountData)

}

Not run:
On your data, it will look more like:
mergedCountData <- mergeCountFiles("/path/to/countData")
head(mergedCountData)

End(Not run)

nSynNonSites Calculate the number of (non) synonomous sites

Description

From gene sequences, determine the number of synonomous/non-synonomous sites.

Usage

nSynNonSites(geneNames,
codonStartPos = "cds",
referenceSeqs)

Arguments

geneNames A character vector or list (each with character element) giving the gene names
to be analyzed.

codonStartPos If "cds" assumes all start at position 1 (default).
In the future, can be a vector giving which position each gene starts at; currently
not handled.

referenceSeqs List of FASTA sequences, with names being gene names as listed in seqIDcol
and containing the sequences. This is the format produced by read.fasta, but
can be emulated.

parseVarScan 25

Value

Returns a matrix of info for each gene with:

nSynSites the number of sites deemed synonomous (includes half of the two-fold syn-
onomous sites)

nNonSynSites the number of sites deemed non-synonomous (includes half of the two-fold syn-
onomous sites)

Author(s)

Mark Peterson

See Also

determineSynonymous, kaksFromVariants, kaks, read.fasta

Examples

Load needed data
data(fastaExample)

nSynNonSites(names(fastaExample),
referenceSeqs=fastaExample)

parseVarScan Parse a VarScan output

Description

Separate the pool and sample call information into usable columns.

Usage

parseVarScan(file, sampleNames = NULL, ignoreIndels = TRUE)

Arguments

file Either a character vector of length 1 giving the name of a tab-separated VarScan
file to read in, or a data.frame or matrix containing the VarScan output table.

sampleNames A character vector giving the names to assign to the split sample calls.

ignoreIndels Logical: should positions with indels be omitted from the returned file (default:
TRUE)

26 readVariantFiles

Details

This assumes that the headers have not been modified

Value

Returns a data.frame with rows for each row (ommiting the indels if ignoreIndels == TRUE), but
with each portion of the calls separated.

Author(s)

Mark Peterson

References

Relies on the VarScan output documented here: http://varscan.sourceforge.net/using-varscan.html

Examples

Get example data
This could be just read in using read.table for your data
data(varScanExample)

parseTest <- parseVarScan(varScanExample,
sampleNames=LETTERS[1:10])

head(parseTest)

readVariantFiles Read in variant files for RNAseq

Description

Reads in the variant files from each sample of an RNAseq experiment and then combines the files
into a single data.frame, useful for several downstream applications.

Usage

readVariantFiles(fileDir,
sepSymbol = "_",
fileID = "*_variants.txt",
firstColName = "SEQ_ID",
fileSep = "\t",
idCols = 5,
refPosCol = "Reference.Position",

readVariantFiles 27

colToSort = "Coverage",
removeDups = TRUE,
returnMerged = TRUE,
returnSing = FALSE,
limitGenes = NULL,
omitRefMatches = TRUE,
refAlleleCol = "Reference$",
varAlleleCol = "Allele")

Arguments

fileDir The path to the directory containing all of the variant files.

sepSymbol The symbol that separates the sample names from other info in the file name.
Used to pull names for columns in the combined file. Set to "" if the full file
name should be used.

fileID character to use to limit which files are imported; regular expressions allowed

firstColName What should the first column be renamed to. Set to NULL or "" to leave the
column as is. Intended to stanardize and to match the column names in other
parts of the analysis pipeline.

fileSep The column delimiter used in the file (e.g. "," or "\t")

idCols How many columns of position information are there? Avoids including dupli-
cated information in the combined ouput.

refPosCol Which column has the reference position? Can be numeric or character

colToSort Which column should be used to keep one line per position, if removeDups == TRUE?
Can be numeric or character.

removeDups Logical, should duplicates at a position be removed? This is necessary to avoid
massive over merging

returnMerged Logical, should the merged variants be returned?

returnSing Logical, should each of the separate variant files be returned?

limitGenes A character vector listing the genes to include.
This can be useful if your variant files include genes that you are not interested
in analyzing (e.g. things without a blast hit).

omitRefMatches Logical, should ’variants’ which match the reference be excluded? This is useful
if your variant file includes rows for reads aligning to the reference allele, which
may be accidentally set as the main ’variant’ in this function. Defaults to TRUE.

refAlleleCol Which column has the reference allele? Can be numeric or character.

varAlleleCol Which column has the variable alleles? Can be numeric or character.

Details

Reads in the variant files from fileDir and merges by gene and position.

28 rnaseqWrapperCountData

Value

Output is based on returnMerged & returnSing returns:

If returnMerged: a data.frame with the merged variants

If returnSing: a list of the singVariants (cleaned if removeDups=TRUE)

If both TRUE: a list with both of the above

Author(s)

Mark Peterson

Examples

Not run:

mergedVariants <- readVariantFiles (
fileDir="path/to/variant/directory",
fileID = "*_variants.txt",
firstColName = "SEQ_ID",
idCols = 4,
refPosCol = "Region"
)

End(Not run)

rnaseqWrapperCountData

Expression data for use in examples for the rnaseqWrapper package

Description

Example expression data for 2654 genes, each of six files is data for a different sample. (read in
with mergeCountFiles).

Usage

data(male_1.genes.results)

Format

Each file is a tab-delimited output from RSEM.

Source

These are from a currently unpublished analysis, and were randomly chosen.

rnaseqWrapperData 29

See Also

mergeCountFiles

Examples

data(male_1.genes.results)

Will normally read in with mergeCountData()

rnaseqWrapperData Data for use in examples for the rnaseqWrapper package

Description

A sample of 86 rows (from three genes) of a VarScan output, and the corrresponding fasta sequence
information (read in with read.fasta).

Usage

data(varScanExample)
data(fastaExample)

Source

These are from a currently unpublished analysis, and were randomly chosen.

Examples

data(varScanExample)
head(varScanExample)

data(fastaExample)
fastaExample

runGOAnalysis Run basic GO analysis

Description

This function wraps the topGO-package an provides a streamlined appraoch to GO analysis.

Sensible defaults are included, though may not be sufficient for all uses.

30 runGOAnalysis

Usage

runGOAnalysis(sigGenes,
expGenes,
goAnno,
pValThresh = 1,
plotGO = FALSE,
ontology = "BP",
algorithm = "weight",
statistic = "fisher",
description = NULL)

Arguments

sigGenes A character vector with the names of significant genes.

expGenes A character vector with the names of all reference genes, for example, those
expressed in the tissu of interest.

goAnno A (named) list of of character vectors with GO identifiers for each gene, such as
returned by readMappings

pValThresh Numeric, what p-value (not corrected, see value below) threshold should be used
to determine what should be returned.
Defaults to 1 to return all GO terms analyzed to allow the user to perform
multiple-testing corrections as desired.

plotGO Logical - Should a plot be generated? If TRUE, plots to the currently active
device.

ontology Which ontology should be analyzed by runTest? Can be any of "BP", "MF",
or "CC", for Biological Process, Molecular Function, or Cellular Component,
respectively.

algorithm Which algorithm should be used by runTest? Available values can be found
with whichAlgorithms; defaults to "weight".

statistic Which statistic should be used by runTest? Available values can be found with
whichTests; defaults to "fisher".

description A string to use in describing the go data set. Not currently used because the
GOData object is not returned.

Value

Returns a data.frame with a row for each significant GO term. Note that it returns p-values, rather
than adjusted p-values. The authors of topGO appear to feel strongly about this, so I have deferred
to their choice.

I do agree with them that the GO graph is inherently non-independent making most methods for
correction overly-conservative.

In addition, the default method ("weight") has a built in correction.

Author(s)

Mark Peterson

runGOAnalysis 31

Examples

Only run if topGO is available
if(require(topGO)){

Load the sample data from topGO
data(GOdata)

Recreate the GO annotation
NB: you will likely do this with readMappings()
goAnno <- inverseList(genesInTerm(GOdata,usedGO(GOdata)))

testOut <- runGOAnalysis(sigGenes(GOdata),
allGenes(GOdata),
goAnno,
algorithm = "classic",
pValThresh = 0.05)

head(testOut)

}

Index

∗Topic datasets
rnaseqWrapperCountData, 28
rnaseqWrapperData, 29

∗Topic hplot
heatmap.mark, 13

∗Topic package
rnaseqWrapper-package, 2

calcBasicDE, 3, 5
calcCombVals, 4, 4
calcHornMatrix, 6
calcLogVal, 7
calculateThirdPosBias, 8

dendrogram, 15
DESeqWrapper, 4, 10
determineSynonymous, 9, 12, 22, 25
dist, 16

estimateDispersions, 11

fastaExample (rnaseqWrapperData), 29
female_1.genes.results

(rnaseqWrapperCountData), 28
female_2.genes.results

(rnaseqWrapperCountData), 28
female_3.genes.results

(rnaseqWrapperCountData), 28

hclust, 16, 19
heatmap, 13
heatmap.2, 13, 19
heatmap.mark, 13

image, 17, 19

kaks, 22, 25
kaksFromVariants, 13, 21, 25

layout, 18, 19

male_1.genes.results
(rnaseqWrapperCountData), 28

male_2.genes.results
(rnaseqWrapperCountData), 28

male_3.genes.results
(rnaseqWrapperCountData), 28

mergeCountFiles, 22, 29

nSynNonSites, 13, 22, 24
NULL, 18

order.dendrogram, 18, 19

par, 17, 19
parseVarScan, 25
plotDE (DESeqWrapper), 10
plotDispEsts (DESeqWrapper), 10

read.fasta, 13, 22, 25
readMappings, 30
readVariantFiles, 9, 12, 21, 26
reorder, 18, 19
rev, 16
rnaseqWrapper (rnaseqWrapper-package), 2
rnaseqWrapper-package, 2
rnaseqWrapperCountData, 28
rnaseqWrapperData, 29
runGOAnalysis, 29
runTest, 30

varScanExample (rnaseqWrapperData), 29

whichAlgorithms, 30
whichTests, 30

32

	rnaseqWrapper-package
	calcBasicDE
	calcCombVals
	calcHornMatrix
	calcLogVal
	calculateThirdPosBias
	DESeqWrapper
	determineSynonymous
	heatmap.mark
	kaksFromVariants
	mergeCountFiles
	nSynNonSites
	parseVarScan
	readVariantFiles
	rnaseqWrapperCountData
	rnaseqWrapperData
	runGOAnalysis
	Index

