Package 'rms.gof'

February 20, 2015

Type Package

Title Root-mean-square goodness-of-fit test for simple null hypothesis

Version 1.0

Date 2013-01-15

Author Shubhodeep Mukherji <deep.mukherji@utexas.edu>

Maintainer Shubhodeep Mukherji <deep.mukherji@utexas.edu>

Description This package can be used to test any simple null hypothesis using the root-mean-square goodness of fit test. Monte Carlo estimation is used to calculate the associated P-value.

License GPL-3

Repository CRAN

Date/Publication 2013-01-16 08:10:14

NeedsCompilation no

R topics documented:

	rms.gof-pa rms.pval . test.rms .	ckage 	• 	 • •	 	•	 •		•	 		•••		•	 		•		1 2 3	23
Index																			5	;

rms.gof-package Root-mean-square goodness-of-fit test for simple null hypothesis

Description

This package can be used to test any simple null hypothesis using the root-mean-square goodness of fit test. Monte Carlo estimation is used to calculate the associated P-value.

Details

rms.pval

Package:	rms.gof
Type:	Package
Version:	1.0
Date:	2013-01-15
License:	GPL-3

To use this package, the model must be a completely specified discrete probability distribution. The function rms.pval() returns the P-value.

Author(s)

Shubhodeep Mukherji <deep.mukherji@utexas.edu> Maintainer: Shubhodeep Mukherji <deep.mukherji@utexas.edu>

References

"Chi-square and classical exact tests often wildly misreport significance; the remedy lies in computers," by Will Perkins, Mark Tygert, and Rachel Ward.

See Also

rms.pval

rms.pval	P-value for root-mean-square goodness-of-fit test for simple null hy-
	pothesis

Description

Returns the P-value associated with a root-mean-square test.

Usage

```
rms.pval(observed, expected, num_sim= 1000)
```

Arguments

observed	The observed data
expected	The expected data
num_sim	Number of Monte-Carlo simulations desired. The default is 1,000 simulations

Details

This function calls on test.rms() to calculate the root-mean-square test statistic before calculating the P-value using Monte-Carlo simulation.

test.rms

Value

Returns the P-value associated with the root-mean-square test.

Author(s)

Shubhodeep Mukherji <deep.mukherji@utexas.edu>

References

"Chi-square and classical exact tests often wildly misreport significance; the remedy lies in computers," by Will Perkins, Mark Tygert, and Rachel Ward.

See Also

test.rms

Examples

#This example is from section 5.1.2 of the referenced text

```
k <- c(1:128)
#Define model distribution (exp) and observed distribution (obs)
C1 <- 1/sum(1/k)
exp <- C1/k
C2 <- 1/sum(1/k^2)
obs <- C2/k^2
rms.pval(obs,exp,10000)</pre>
```

test.rms

Computing the root-mean-square test statistic

Description

Calculates the root-mean-square test statistic between the observed data and fully-specified model distribution.

Usage

test.rms(observed, expected)

Arguments

observed	The observed data
expected	The expected data

test.rms

Details

Called on by rms.pval().

Author(s)

Shubhodeep Mukherji <deep.mukherji@utexas.edu>

References

"Chi-square and classical exact tests often wildly misreport significance; the remedy lies in computers," by Will Perkins, Mark Tygert, and Rachel Ward.

See Also

rms.pval

Index

*Topic package

rms.gof-package,1

rms.gof(rms.gof-package), 1
rms.gof-package, 1
rms.pval, 2, 2, 4

test.rms, 3, 3