
Package ‘rlang’
July 9, 2020

Version 0.4.7

Title Functions for Base Types and Core R and 'Tidyverse' Features

Description A toolbox for working with base types, core R features
like the condition system, and core 'Tidyverse' features like tidy
evaluation.

License GPL-3

LazyData true

ByteCompile true

Biarch true

Depends R (>= 3.2.0)

Suggests cli,
covr,
crayon,
glue,
magrittr,
methods,
pillar,
rmarkdown,
testthat (>= 2.3.0),
vctrs (>= 0.2.3),
withr

Encoding UTF-8

RoxygenNote 7.1.1

Roxygen list(markdown = TRUE)

URL http://rlang.r-lib.org, https://github.com/r-lib/rlang

BugReports https://github.com/r-lib/rlang/issues

R topics documented:
abort . 4
arg_match . 7
as_box . 8
as_data_mask . 8
as_environment . 11
as_function . 12

1

http://rlang.r-lib.org
https://github.com/r-lib/rlang
https://github.com/r-lib/rlang/issues

2 R topics documented:

as_label . 13
as_name . 14
as_quosure . 15
as_string . 16
bare-type-predicates . 17
box . 18
call2 . 19
caller_env . 21
call_args . 22
call_fn . 23
call_inspect . 23
call_modify . 24
call_name . 26
call_standardise . 27
catch_cnd . 27
cnd_message . 28
cnd_signal . 29
done . 30
dyn-dots . 31
empty_env . 32
entrace . 32
env . 33
env_bind . 35
env_clone . 38
env_depth . 39
env_get . 40
env_has . 40
env_inherits . 41
env_name . 42
env_names . 42
env_parent . 43
env_poke . 44
env_print . 45
env_unbind . 46
eval_bare . 46
eval_tidy . 48
exec . 51
exprs_auto_name . 52
expr_interp . 52
expr_label . 53
expr_print . 54
faq-options . 55
fn_body . 56
fn_env . 56
fn_fmls . 57
format_error_bullets . 58
f_rhs . 59
f_text . 60
get_env . 60
has_name . 62
inherits_any . 63
is_call . 64

R topics documented: 3

is_empty . 65
is_environment . 66
is_expression . 66
is_formula . 68
is_function . 69
is_installed . 70
is_integerish . 71
is_interactive . 72
is_named . 73
is_namespace . 74
is_symbol . 74
is_true . 75
is_weakref . 75
last_error . 76
list2 . 76
local_bindings . 78
local_options . 79
missing_arg . 80
names2 . 82
new_formula . 83
new_function . 83
new_quosures . 84
new_weakref . 85
nse-defuse . 86
nse-force . 90
op-get-attr . 94
op-na-default . 95
op-null-default . 96
pairlist2 . 96
parse_expr . 97
quosure . 98
quo_label . 100
quo_squash . 101
raw_deparse_str . 102
rep_along . 103
rlang_backtrace_on_error . 103
scalar-type-predicates . 104
scoped_interactive . 105
seq2 . 106
set_expr . 106
set_names . 107
sym . 108
tidyeval-data . 109
trace_back . 109
type-predicates . 111
vector-construction . 112
with_abort . 113
with_handlers . 114
wref_key . 116
zap . 116

Index 117

4 abort

abort Signal an error, warning, or message

Description

These functions are equivalent to base functions base::stop(), base::warning(), and base::message(),
but make it easy to supply condition metadata:

• Supply class to create a classed condition. Typed conditions can be captured or handled
selectively, allowing for finer-grained error handling.

• Supply metadata with named ... arguments. This data will be stored in the condition object
and can be examined by handlers.

interrupt() allows R code to simulate a user interrupt of the kind that is signalled with Ctrl-C.
It is currently not possible to create custom interrupt condition objects.

Usage

abort(
message = NULL,
class = NULL,
...,
trace = NULL,
parent = NULL,
.subclass

)

warn(
message = NULL,
class = NULL,
...,
.frequency = c("always", "regularly", "once"),
.frequency_id = NULL,
.subclass

)

inform(
message = NULL,
class = NULL,
...,
.file = NULL,
.frequency = c("always", "regularly", "once"),
.frequency_id = NULL,
.subclass

)

signal(message, class, ..., .subclass)

interrupt()

abort 5

Arguments

message The message to display.
If not supplied, it is expected that the message is generated lazily through con-
ditionMessage(). In that case, class must be supplied. Only inform() allows
empty messages as it is occasionally useful to build user output incrementally.

class Subclass of the condition. This allows your users to selectively handle the con-
ditions signalled by your functions.

... Additional data to be stored in the condition object.

trace A trace object created by trace_back().

parent A parent condition object created by abort().

.subclass This argument was renamed to class in rlang 0.4.2. It will be deprecated in the
next major version. This is for consistency with our conventions for class con-
structors documented in https://adv-r.hadley.nz/s3.html#s3-subclassing.

.frequency How frequently should the warning or message be displayed? By default ("always")
it is displayed at each time. If "regularly", it is displayed once every 8 hours.
If "once", it is displayed once per session.

.frequency_id A unique identifier for the warning or message. This is used when .frequency
is supplied to recognise recurring conditions. This argument must be supplied if
.frequency is not set to "always".

.file Where the message is printed. This should be a connection or character string
which will be passed to cat().
By default, inform() prints to standard output in interactive sessions and stan-
dard error otherwise. This way IDEs can treat messages distinctly from warn-
ings and errors, and R scripts can still filter out the messages easily by redirect-
ing stderr.

Backtrace

Unlike stop() and warning(), these functions don’t include call information by default. This saves
you from typing call. = FALSE and produces cleaner error messages.

A backtrace is always saved into error objects. You can print a simplified backtrace of the last error
by calling last_error() and a full backtrace with summary(last_error()).

You can also display a backtrace with the error message by setting the option rlang_backtrace_on_error.
It supports the following values:

• "reminder": Invite users to call rlang::last_error() to see a backtrace.

• "branch": Display a simplified backtrace.

• "collapse": Display a collapsed backtrace tree.

• "full": Display a full backtrace tree.

• "none": Display nothing.

Mufflable conditions

Signalling a condition with inform() or warn() causes a message to be displayed in the console.
These messages can be muffled with base::suppressMessages() or base::suppressWarnings().

On recent R versions (>= R 3.5.0), interrupts are typically signalled with a "resume" restart. This
is however not guaranteed.

https://adv-r.hadley.nz/s3.html#s3-subclassing

6 abort

See Also

with_abort() to convert all errors to rlang errors.

Examples

These examples are guarded to avoid throwing errors
if (FALSE) {

Signal an error with a message just like stop():
abort("Something bad happened")

Give a class to the error:
abort("Something bad happened", "somepkg_bad_error")

This will allow your users to handle the error selectively
tryCatch(

somepkg_function(),
somepkg_bad_error = function(err) {
warn(conditionMessage(err)) # Demote the error to a warning
NA # Return an alternative value

}
)

You can also specify metadata that will be stored in the condition:
abort("Something bad happened", "somepkg_bad_error", data = 1:10)

This data can then be consulted by user handlers:
tryCatch(

somepkg_function(),
somepkg_bad_error = function(err) {

Compute an alternative return value with the data:
recover_error(err$data)

}
)

If you call low-level APIs it is good practice to handle
technical errors and rethrow them with a more meaningful
message. Always prefer doing this from `withCallinghandlers()`
rather than `tryCatch()` because the former preserves the stack
on error and makes it possible for users to use `recover()`.
file <- "http://foo.bar/baz"
try(withCallinghandlers(

download(file),
error = function(err) {
msg <- sprintf("Can't download `%s`", file)
abort(msg, parent = err)

}))
Note how we supplied the parent error to `abort()` as `parent` to
get a decomposition of error messages across error contexts.

Unhandled errors are saved automatically by `abort()` and can be
retrieved with `last_error()`. The error prints with a simplified
backtrace:
abort("Saved error?")
last_error()

arg_match 7

Use `summary()` to print the full backtrace and the condition fields:
summary(last_error())

}

arg_match Match an argument to a character vector

Description

This is equivalent to base::match.arg() with a few differences:

• Partial matches trigger an error.

• Error messages are a bit more informative and obey the tidyverse standards.

arg_match() derives the possible values from the caller frame.

arg_match0() is a bare-bones version if performance is at a premium. It requires a string as arg
and explicit values. For convenience, arg may also be a character vector containing every element
of values, possibly permuted. In this case, the first element of arg is used.

Usage

arg_match(arg, values = NULL)

arg_match0(arg, values, arg_nm = as_label(substitute(arg)))

Arguments

arg A symbol referring to an argument accepting strings.

values The possible values that arg can take.

arg_nm The label to be used for arg in error messages.

Value

The string supplied to arg.

Examples

fn <- function(x = c("foo", "bar")) arg_match(x)
fn("bar")

Throws an informative error for mismatches:
try(fn("b"))
try(fn("baz"))

Use the bare-bones version with explicit values for speed:
arg_match0("bar", c("foo", "bar", "baz"))

For convenience:
fn1 <- function(x = c("bar", "baz", "foo")) fn3(x)
fn2 <- function(x = c("baz", "bar", "foo")) fn3(x)
fn3 <- function(x) arg_match0(x, c("foo", "bar", "baz"))
fn1()

8 as_data_mask

fn2("bar")
try(fn3("zoo"))

as_box Convert object to a box

Description

• as_box() boxes its input only if it is not already a box. The class is also checked if supplied.

• as_box_if() boxes its input only if it not already a box, or if the predicate .p returns TRUE.

Usage

as_box(x, class = NULL)

as_box_if(.x, .p, .class = NULL, ...)

Arguments

x An R object.

class, .class A box class. If the input is already a box of that class, it is returned as is. If the
input needs to be boxed, class is passed to new_box().

.x An R object.

.p A predicate function.

... Arguments passed to .p.

as_data_mask Create a data mask

Description

Stable

A data mask is an environment (or possibly multiple environments forming an ancestry) containing
user-supplied objects. Objects in the mask have precedence over objects in the environment (i.e.
they mask those objects). Many R functions evaluate quoted expressions in a data mask so these
expressions can refer to objects within the user data.

These functions let you construct a tidy eval data mask manually. They are meant for developers of
tidy eval interfaces rather than for end users.

Usage

as_data_mask(data)

as_data_pronoun(data)

new_data_mask(bottom, top = bottom)

as_data_mask 9

Arguments

data A data frame or named vector of masking data.
bottom The environment containing masking objects if the data mask is one environ-

ment deep. The bottom environment if the data mask comprises multiple envi-
ronment.
If you haven’t supplied top, this must be an environment that you own, i.e. that
you have created yourself.

top The last environment of the data mask. If the data mask is only one environment
deep, top should be the same as bottom.
This must be an environment that you own, i.e. that you have created your-
self. The parent of top will be changed by the tidy eval engine and should be
considered undetermined. Never make assumption about the parent of top.

Value

A data mask that you can supply to eval_tidy().

Why build a data mask?

Most of the time you can just call eval_tidy() with a list or a data frame and the data mask will
be constructed automatically. There are three main use cases for manual creation of data masks:

• When eval_tidy() is called with the same data in a tight loop. Because there is some over-
head to creating tidy eval data masks, constructing the mask once and reusing it for subsequent
evaluations may improve performance.

• When several expressions should be evaluated in the exact same environment because a quoted
expression might create new objects that can be referred in other quoted expressions evaluated
at a later time. One example of this is tibble::lst() where new columns can refer to
previous ones.

• When your data mask requires special features. For instance the data frame columns in dplyr
data masks are implemented with active bindings.

Building your own data mask

Unlike base::eval() which takes any kind of environments as data mask, eval_tidy() has spe-
cific requirements in order to support quosures. For this reason you can’t supply bare environments.

There are two ways of constructing an rlang data mask manually:

• as_data_mask() transforms a list or data frame to a data mask. It automatically installs the
data pronoun .data.

• new_data_mask() is a bare bones data mask constructor for environments. You can supply a
bottom and a top environment in case your data mask comprises multiple environments (see
section below).
Unlike as_data_mask() it does not install the .data pronoun so you need to provide one
yourself. You can provide a pronoun constructed with as_data_pronoun() or your own
pronoun class.
as_data_pronoun() will create a pronoun from a list, an environment, or an rlang data mask.
In the latter case, the whole ancestry is looked up from the bottom to the top of the mask.
Functions stored in the mask are bypassed by the pronoun.

Once you have built a data mask, simply pass it to eval_tidy() as the data argument. You can
repeat this as many times as needed. Note that any objects created there (perhaps because of a call
to <-) will persist in subsequent evaluations.

10 as_data_mask

Top and bottom of data mask

In some cases you’ll need several levels in your data mask. One good reason is when you include
functions in the mask. It’s a good idea to keep data objects one level lower than function objects, so
that the former cannot override the definitions of the latter (see examples).

In that case, set up all your environments and keep track of the bottom child and the top parent.
You’ll need to pass both to new_data_mask().

Note that the parent of the top environment is completely undetermined, you shouldn’t expect it to
remain the same at all times. This parent is replaced during evaluation by eval_tidy() to one of
the following environments:

• The default environment passed as the env argument of eval_tidy().

• The environment of the current quosure being evaluated, if applicable.

Consequently, all masking data should be contained between the bottom and top environment of the
data mask.

Examples

Evaluating in a tidy evaluation environment enables all tidy
features:
mask <- as_data_mask(mtcars)
eval_tidy(quo(letters), mask)

You can install new pronouns in the mask:
mask$.pronoun <- as_data_pronoun(list(foo = "bar", baz = "bam"))
eval_tidy(quo(.pronoun$foo), mask)

In some cases the data mask can leak to the user, for example if
a function or formula is created in the data mask environment:
cyl <- "user variable from the context"
fn <- eval_tidy(quote(function() cyl), mask)
fn()

If new objects are created in the mask, they persist in the
subsequent calls:
eval_tidy(quote(new <- cyl + am), mask)
eval_tidy(quote(new * 2), mask)

In some cases your data mask is a whole chain of environments
rather than a single environment. You'll have to use
`new_data_mask()` and let it know about the bottom of the mask
(the last child of the environment chain) and the topmost parent.

A common situation where you'll want a multiple-environment mask
is when you include functions in your mask. In that case you'll
put functions in the top environment and data in the bottom. This
will prevent the data from overwriting the functions.
top <- new_environment(list(`+` = base::paste, c = base::paste))

Let's add a middle environment just for sport:
middle <- env(top)

And finally the bottom environment containing data:
bottom <- env(middle, a = "a", b = "b", c = "c")

as_environment 11

We can now create a mask by supplying the top and bottom
environments:
mask <- new_data_mask(bottom, top = top)

This data mask can be passed to eval_tidy() instead of a list or
data frame:
eval_tidy(quote(a + b + c), data = mask)

Note how the function `c()` and the object `c` are looked up
properly because of the multi-level structure:
eval_tidy(quote(c(a, b, c)), data = mask)

new_data_mask() does not create data pronouns, but
data pronouns can be added manually:
mask$.fns <- as_data_pronoun(top)

The `.data` pronoun should generally be created from the
mask. This will ensure data is looked up throughout the whole
ancestry. Only non-function objects are looked up from this
pronoun:
mask$.data <- as_data_pronoun(mask)
mask$.data$c

Now we can reference the values with the pronouns:
eval_tidy(quote(c(.data$a, .data$b, .data$c)), data = mask)

as_environment Coerce to an environment

Description

as_environment() coerces named vectors (including lists) to an environment. The names must
be unique. If supplied an unnamed string, it returns the corresponding package environment (see
pkg_env()).

Usage

as_environment(x, parent = NULL)

Arguments

x An object to coerce.

parent A parent environment, empty_env() by default. This argument is only used
when x is data actually coerced to an environment (as opposed to data repre-
senting an environment, like NULL representing the empty environment).

Details

If x is an environment and parent is not NULL, the environment is duplicated before being set a new
parent. The return value is therefore a different environment than x.

12 as_function

Life cycle

as_env() was soft-deprecated and renamed to as_environment() in rlang 0.2.0. This is for con-
sistency as type predicates should not be abbreviated.

Examples

Coerce a named vector to an environment:
env <- as_environment(mtcars)

By default it gets the empty environment as parent:
identical(env_parent(env), empty_env())

With strings it is a handy shortcut for pkg_env():
as_environment("base")
as_environment("rlang")

With NULL it returns the empty environment:
as_environment(NULL)

as_function Convert to function or closure

Description

Stable

• as_function() transforms a one-sided formula into a function. This powers the lambda
syntax in packages like purrr.

• as_closure() first passes its argument to as_function(). If the result is a primitive func-
tion, it regularises it to a proper closure (see is_function() about primitive functions). Some
special control flow primitives like if, for, or break can’t be coerced to a closure.

Usage

as_function(x, env = caller_env())

is_lambda(x)

as_closure(x, env = caller_env())

Arguments

x A function or formula.
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function with up to two argu-
ments: .x (single argument) or .x and .y (two arguments). The . placeholder
can be used instead of .x. This allows you to create very compact anonymous
functions (lambdas) with up to two inputs. Functions created from formulas
have a special class. Use is_lambda() to test for it.
Lambdas currently do not support nse-force, due to the way the arguments are
handled internally.

env Environment in which to fetch the function in case x is a string.

as_label 13

Examples

f <- as_function(~ .x + 1)
f(10)

g <- as_function(~ -1 * .)
g(4)

h <- as_function(~ .x - .y)
h(6, 3)

Functions created from a formula have a special class:
is_lambda(f)
is_lambda(as_function(function() "foo"))

Primitive functions are regularised as closures
as_closure(list)
as_closure("list")

Operators have `.x` and `.y` as arguments, just like lambda
functions created with the formula syntax:
as_closure(`+`)
as_closure(`~`)

Use a regular function for tidy evaluation, also when calling functions
that use tidy evaluation:
Bad:
e <- as_function(~ as_label(ensym(.x)))
Good:
e <- as_function(function(x) as_label(ensym(x)))

e(y)

as_label Create a default name for an R object

Description

as_label() transforms R objects into a short, human-readable description. You can use labels to:

• Display an object in a concise way, for example to labellise axes in a graphical plot.

• Give default names to columns in a data frame. In this case, labelling is the first step before
name repair.

See also as_name() for transforming symbols back to a string. Unlike as_label(), as_string()
is a well defined operation that guarantees the roundtrip symbol -> string -> symbol.

In general, if you don’t know for sure what kind of object you’re dealing with (a call, a symbol,
an unquoted constant), use as_label() and make no assumption about the resulting string. If
you know you have a symbol and need the name of the object it refers to, use as_string(). For
instance, use as_label() with objects captured with enquo() and as_string() with symbols
captured with ensym().

Usage

as_label(x)

14 as_name

Arguments

x An object.

Transformation to string

• Quosures are squashed before being labelled.

• Symbols are transformed to string with as_string().

• Calls are abbreviated.

• Numbers are represented as such.

• Other constants are represented by their type, such as <dbl> or <data.frame>.

Note that simple symbols should generally be transformed to strings with as_name(). Labelling is
not a well defined operation and no assumption should be made about how the label is created. On
the other hand, as_name() only works with symbols and is a well defined, deterministic operation.

See Also

as_name() for transforming symbols back to a string deterministically.

Examples

as_label() is useful with quoted expressions:
as_label(expr(foo(bar)))
as_label(expr(foobar))

It works with any R object. This is also useful for quoted
arguments because the user might unquote constant objects:
as_label(1:3)
as_label(base::list)

as_name Extract names from symbols

Description

as_name() converts symbols to character strings. The conversion is deterministic. That is, the
roundtrip symbol -> name -> symbol always gets the same result.

• Use as_name() when you need to transform a symbol to a string to refer to an object by its
name.

• Use as_label() when you need to transform any kind of object to a string to represent that
object with a short description.

Expect as_name() to gain name-repairing features in the future.

Note that rlang::as_name() is the opposite of base::as.name(). If you’re writing base R code,
we recommend using base::as.symbol() which is an alias of as.name() that follows a more
modern terminology (R types instead of S modes).

Usage

as_name(x)

https://principles.tidyverse.org/names-attribute.html#minimal-unique-universal

as_quosure 15

Arguments

x A string or symbol, possibly wrapped in a quosure. If a string, the attributes are
removed, if any.

Value

A character vector of length 1.

See Also

as_label() for converting any object to a single string suitable as a label. as_string() for a
lower-level version that doesn’t unwrap quosures.

Examples

Let's create some symbols:
foo <- quote(foo)
bar <- sym("bar")

as_name() converts symbols to strings:
foo
as_name(foo)

typeof(bar)
typeof(as_name(bar))

as_name() unwraps quosured symbols automatically:
as_name(quo(foo))

as_quosure Coerce object to quosure

Description

While new_quosure() wraps any R object (including expressions, formulas, or other quosures) into
a quosure, as_quosure() converts formulas and quosures and does not double-wrap.

Usage

as_quosure(x, env = NULL)

new_quosure(expr, env = caller_env())

Arguments

x An object to convert. Either an expression or a formula.

env The environment in which the expression should be evaluated. Only used for
symbols and calls. This should typically be the environment in which the ex-
pression was created.

expr The expression wrapped by the quosure.

16 as_string

Life cycle

• as_quosure() now requires an explicit default environment for creating quosures from sym-
bols and calls.

• as_quosureish() is deprecated as of rlang 0.2.0. This function assumes that quosures are
formulas which is currently true but might not be in the future.

See Also

quo(), is_quosure()

Examples

as_quosure() converts expressions or any R object to a validly
scoped quosure:
env <- env(var = "thing")
as_quosure(quote(var), env)

The environment is ignored for formulas:
as_quosure(~foo, env)
as_quosure(~foo)

However you must supply it for symbols and calls:
try(as_quosure(quote(var)))

as_string Cast symbol to string

Description

as_string() converts symbols to character strings.

Usage

as_string(x)

Arguments

x A string or symbol. If a string, the attributes are removed, if any.

Value

A character vector of length 1.

Unicode tags

Unlike base::as.symbol() and base::as.name(), as_string() automatically transforms uni-
code tags such as "<U+5E78>" to the proper UTF-8 character. This is important on Windows be-
cause:

• R on Windows has no UTF-8 support, and uses native encoding instead.

bare-type-predicates 17

• The native encodings do not cover all Unicode characters. For example, Western encodings
do not support CKJ characters.

• When a lossy UTF-8 -> native transformation occurs, uncovered characters are transformed
to an ASCII unicode tag like "<U+5E78>".

• Symbols are always encoded in native. This means that transforming the column names of a
data frame to symbols might be a lossy operation.

• This operation is very common in the tidyverse because of data masking APIs like dplyr where
data frames are transformed to environments. While the names of a data frame are stored as a
character vector, the bindings of environments are stored as symbols.

Because it reencodes the ASCII unicode tags to their UTF-8 representation, the string -> symbol ->
string roundtrip is more stable with as_string().

See Also

as_name() for a higher-level variant of as_string() that automatically unwraps quosures.

Examples

Let's create some symbols:
foo <- quote(foo)
bar <- sym("bar")

as_string() converts symbols to strings:
foo
as_string(foo)

typeof(bar)
typeof(as_string(bar))

bare-type-predicates Bare type predicates

Description

These predicates check for a given type but only return TRUE for bare R objects. Bare objects have
no class attributes. For example, a data frame is a list, but not a bare list.

Usage

is_bare_list(x, n = NULL)

is_bare_atomic(x, n = NULL)

is_bare_vector(x, n = NULL)

is_bare_double(x, n = NULL)

is_bare_integer(x, n = NULL)

is_bare_numeric(x, n = NULL)

18 box

is_bare_character(x, n = NULL)

is_bare_logical(x, n = NULL)

is_bare_raw(x, n = NULL)

is_bare_string(x, n = NULL)

is_bare_bytes(x, n = NULL)

Arguments

x Object to be tested.
n Expected length of a vector.

Details

• The predicates for vectors include the n argument for pattern-matching on the vector length.
• Like is_atomic() and unlike base R is.atomic(), is_bare_atomic() does not return TRUE

for NULL.
• Unlike base R is.numeric(), is_bare_double() only returns TRUE for floating point num-

bers.

See Also

type-predicates, scalar-type-predicates

box Box a value

Description

new_box() is similar to base::I() but it protects a value by wrapping it in a scalar list rather than
by adding an attribute. unbox() retrieves the boxed value. is_box() tests whether an object is
boxed with optional class. as_box() ensures that a value is wrapped in a box. as_box_if() does
the same but only if the value matches a predicate.

Usage

new_box(.x, class = NULL, ...)

is_box(x, class = NULL)

unbox(box)

Arguments

class For new_box(), an additional class for the boxed value (in addition to rlang_box).
For is_box(), a class or vector of classes passed to inherits_all().

... Additional attributes passed to base::structure().
x, .x An R object.
box A boxed value to unbox.

call2 19

Examples

boxed <- new_box(letters, "mybox")
is_box(boxed)
is_box(boxed, "mybox")
is_box(boxed, "otherbox")

unbox(boxed)

as_box() avoids double-boxing:
boxed2 <- as_box(boxed, "mybox")
boxed2
unbox(boxed2)

Compare to:
boxed_boxed <- new_box(boxed, "mybox")
boxed_boxed
unbox(unbox(boxed_boxed))

Use `as_box_if()` with a predicate if you need to ensure a box
only for a subset of values:
as_box_if(NULL, is_null, "null_box")
as_box_if("foo", is_null, "null_box")

call2 Create a call

Description

Quoted function calls are one of the two types of symbolic objects in R. They represent the action
of calling a function, possibly with arguments. There are two ways of creating a quoted call:

• By quoting it. Quoting prevents functions from being called. Instead, you get the description
of the function call as an R object. That is, a quoted function call.

• By constructing it with base::call(), base::as.call(), or call2(). In this case, you pass
the call elements (the function to call and the arguments to call it with) separately.

See section below for the difference between call2() and the base constructors.

Usage

call2(.fn, ..., .ns = NULL)

Arguments

.fn Function to call. Must be a callable object: a string, symbol, call, or a function.

... <dynamic> Arguments for the function call. Empty arguments are preserved.

.ns Namespace with which to prefix .fn. Must be a string or symbol.

20 call2

Difference with base constructors

call2() is more flexible and convenient than base::call():

• The function to call can be a string or a callable object: a symbol, another call (e.g. a $ or
[[call), or a function to inline. base::call() only supports strings and you need to use
base::as.call() to construct a call with a callable object.

call2(list, 1, 2)

as.call(list(list, 1, 2))

• The .ns argument is convenient for creating namespaced calls.

call2("list", 1, 2, .ns = "base")

ns_call <- as.call(list(as.name("::"), as.name("list"), as.name("base")))
as.call(list(ns_call, 1, 2))

• call2() has tidy dots support and you can splice lists of arguments with !!!. With base R,
you need to use as.call() instead of call() if the arguments are in a list.

args <- list(na.rm = TRUE, trim = 0)

call2("mean", 1:10, !!!args)

as.call(c(list(as.name("mean"), 1:10), args))

Caveats of inlining objects in calls

call2() makes it possible to inline objects in calls, both in function and argument positions. Inlin-
ing an object or a function has the advantage that the correct object is used in all environments. If
all components of the code are inlined, you can even evaluate in the empty environment.

However inlining also has drawbacks. It can cause issues with NSE functions that expect symbolic
arguments. The objects may also leak in representations of the call stack, such as traceback().

See Also

call_modify

Examples

fn can either be a string, a symbol or a call
call2("f", a = 1)
call2(quote(f), a = 1)
call2(quote(f()), a = 1)

#' Can supply arguments individually or in a list
call2(quote(f), a = 1, b = 2)
call2(quote(f), !!!list(a = 1, b = 2))

Creating namespaced calls is easy:
call2("fun", arg = quote(baz), .ns = "mypkg")

Empty arguments are preserved:
call2("[", quote(x), , drop =)

caller_env 21

caller_env Get the current or caller environment

Description

• The current environment is the execution environment of the current function (the one cur-
rently being evaluated).

• The caller environment is the execution environment of the function that called the current
function.

Usage

caller_env(n = 1)

current_env()

Arguments

n Number of frames to go back.

See Also

caller_frame() and current_frame()

Examples

if (FALSE) {

Let's create a function that returns its current environment and
its caller environment:
fn <- function() list(current = current_env(), caller = caller_env())

The current environment is an unique execution environment
created when `fn()` was called. The caller environment is the
global env because that's where we called `fn()`.
fn()

Let's call `fn()` again but this time within a function:
g <- function() fn()

Now the caller environment is also a unique execution environment.
This is the exec env created by R for our call to g():
g()

}

22 call_args

call_args Extract arguments from a call

Description

Extract arguments from a call

Usage

call_args(call)

call_args_names(call)

Arguments

call Can be a call or a quosure that wraps a call.

Value

A named list of arguments.

Life cycle

In rlang 0.2.0, lang_args() and lang_args_names() were deprecated and renamed to call_args()
and call_args_names(). See lifecycle section in call2() for more about this change.

See Also

fn_fmls() and fn_fmls_names()

Examples

call <- quote(f(a, b))

Subsetting a call returns the arguments converted to a language
object:
call[-1]

On the other hand, call_args() returns a regular list that is
often easier to work with:
str(call_args(call))

When the arguments are unnamed, a vector of empty strings is
supplied (rather than NULL):
call_args_names(call)

call_fn 23

call_fn Extract function from a call

Description

If a frame or formula, the function will be retrieved from the associated environment. Otherwise, it
is looked up in the calling frame.

Usage

call_fn(call, env = caller_env())

Arguments

call Can be a call or a quosure that wraps a call.

env The environment where to find the definition of the function quoted in call in
case call is not wrapped in a quosure.

Life cycle

In rlang 0.2.0, lang_fn() was deprecated and renamed to call_fn(). See lifecycle section in
call2() for more about this change.

See Also

call_name()

Examples

Extract from a quoted call:
call_fn(quote(matrix()))
call_fn(quo(matrix()))

Extract the calling function
test <- function() call_fn(call_frame())
test()

call_inspect Inspect a call

Description

This function is useful for quick testing and debugging when you manipulate expressions and calls.
It lets you check that a function is called with the right arguments. This can be useful in unit tests
for instance. Note that this is just a simple wrapper around base::match.call().

Usage

call_inspect(...)

24 call_modify

Arguments

... Arguments to display in the returned call.

Examples

call_inspect(foo(bar), "" %>% identity())

call_modify Modify the arguments of a call

Description

If you are working with a user-supplied call, make sure the arguments are standardised with call_standardise()
before modifying the call.

Usage

call_modify(
.call,
...,
.homonyms = c("keep", "first", "last", "error"),
.standardise = NULL,
.env = caller_env()

)

Arguments

.call Can be a call, a formula quoting a call in the right-hand side, or a frame object
from which to extract the call expression.

... <dynamic> Named or unnamed expressions (constants, names or calls) used
to modify the call. Use zap() to remove arguments. Empty arguments are
preserved.

.homonyms How to treat arguments with the same name. The default, "keep", preserves
these arguments. Set .homonyms to "first" to only keep the first occurrences,
to "last" to keep the last occurrences, and to "error" to raise an informative
error and indicate what arguments have duplicated names.

.standardise, .env

Soft-deprecated as of rlang 0.3.0. Please call call_standardise() manually.

Value

A quosure if .call is a quosure, a call otherwise.

Life cycle

• The .standardise argument is deprecated as of rlang 0.3.0.

• In rlang 0.2.0, lang_modify() was deprecated and renamed to call_modify(). See lifecycle
section in call2() for more about this change.

call_modify 25

Examples

call <- quote(mean(x, na.rm = TRUE))

Modify an existing argument
call_modify(call, na.rm = FALSE)
call_modify(call, x = quote(y))

Remove an argument
call_modify(call, na.rm = zap())

Add a new argument
call_modify(call, trim = 0.1)

Add an explicit missing argument:
call_modify(call, na.rm =)

Supply a list of new arguments with `!!!`
newargs <- list(na.rm = NULL, trim = 0.1)
call <- call_modify(call, !!!newargs)
call

Remove multiple arguments by splicing zaps:
newargs <- rep_named(c("na.rm", "trim"), list(zap()))
call <- call_modify(call, !!!newargs)
call

Modify the `...` arguments as if it were a named argument:
call <- call_modify(call, ... =)
call

call <- call_modify(call, ... = zap())
call

When you're working with a user-supplied call, standardise it
beforehand because it might contain unmatched arguments:
user_call <- quote(matrix(x, nc = 3))
call_modify(user_call, ncol = 1)

Standardising applies the usual argument matching rules:
user_call <- call_standardise(user_call)
user_call
call_modify(user_call, ncol = 1)

You can also modify quosures inplace:
f <- quo(matrix(bar))
call_modify(f, quote(foo))

By default, arguments with the same name are kept. This has
subtle implications, for instance you can move an argument to
last position by removing it and remapping it:
call <- quote(foo(bar = , baz))
call_modify(call, bar = NULL, bar = missing_arg())

26 call_name

You can also choose to keep only the first or last homonym
arguments:
args <- list(bar = NULL, bar = missing_arg())
call_modify(call, !!!args, .homonyms = "first")
call_modify(call, !!!args, .homonyms = "last")

call_name Extract function name or namespace of a call

Description

Extract function name or namespace of a call

Usage

call_name(call)

call_ns(call)

Arguments

call Can be a call or a quosure that wraps a call.

Value

A string with the function name, or NULL if the function is anonymous.

Life cycle

In rlang 0.2.0, lang_name() was deprecated and renamed to call_name(). See lifecycle section in
call2() for more about this change.

See Also

call_fn()

Examples

Extract the function name from quoted calls:
call_name(quote(foo(bar)))
call_name(quo(foo(bar)))

Namespaced calls are correctly handled:
call_name(~base::matrix(baz))

Anonymous and subsetted functions return NULL:
call_name(quote(foo$bar()))
call_name(quote(foo[[bar]]()))
call_name(quote(foo()()))

Extract namespace of a call with call_ns():
call_ns(quote(base::bar()))

call_standardise 27

If not namespaced, call_ns() returns NULL:
call_ns(quote(bar()))

call_standardise Standardise a call

Description

This is essentially equivalent to base::match.call(), but with experimental handling of primitive
functions.

Usage

call_standardise(call, env = caller_env())

Arguments

call Can be a call or a quosure that wraps a call.

env The environment where to find the definition of the function quoted in call in
case call is not wrapped in a quosure.

Value

A quosure if call is a quosure, a raw call otherwise.

Life cycle

In rlang 0.2.0, lang_standardise() was deprecated and renamed to call_standardise(). See
lifecycle section in call2() for more about this change.

catch_cnd Catch a condition

Description

This is a small wrapper around tryCatch() that captures any condition signalled while evaluating
its argument. It is useful for situations where you expect a specific condition to be signalled, for
debugging, and for unit testing.

Usage

catch_cnd(expr, classes = "condition")

Arguments

expr Expression to be evaluated with a catching condition handler.

classes A character vector of condition classes to catch. By default, catches all condi-
tions.

28 cnd_message

Value

A condition if any was signalled, NULL otherwise.

Examples

catch_cnd(10)
catch_cnd(abort("an error"))
catch_cnd(signal("my_condition", message = "a condition"))

cnd_message Build an error message from parts

Description

cnd_message() assembles an error message from three generics:

• cnd_header()

• cnd_body()

• cnd_footer()

The default method for the error header returns the message field of the condition object. The
default methods for the body and footer return empty character vectors. In general, methods for
these generics should return a character vector. The elements are combined into a single string with
a newline separator.

cnd_message() is automatically called by the conditionMessage() for rlang errors. Error classes
created with abort() only need to implement header, body or footer methods. This provides a
lot of flexibility for hierarchies of error classes, for instance you could inherit the body of an error
message from a parent class while overriding the header and footer.

Usage

cnd_message(cnd)

cnd_header(cnd, ...)

cnd_body(cnd, ...)

cnd_footer(cnd, ...)

Arguments

cnd A condition object.

... Arguments passed to methods.

cnd_signal 29

Overriding cnd_body()

Experimental

Sometimes the contents of an error message depends on the state of your checking routine. In
that case, it can be tricky to lazily generate error messages with cnd_body(): you have the choice
between overspecifying your error class hierarchies with one class per state, or replicating the type-
checking control flow within the cnd_body() method. None of these options are ideal.

A better option is to define a body field in your error object containing a static string, a lambda-
formula, or a function with the same signature as cnd_body(). This field overrides the cnd_body()
generic and makes it easy to generate an error message tailored to the state in which the error was
constructed.

cnd_signal Signal a condition object

Description

The type of signal depends on the class of the condition:

• A message is signalled if the condition inherits from "message". This is equivalent to sig-
nalling with inform() or base::message().

• A warning is signalled if the condition inherits from "warning". This is equivalent to sig-
nalling with warn() or base::warning().

• An error is signalled if the condition inherits from "error". This is equivalent to signalling
with abort() or base::stop().

• An interrupt is signalled if the condition inherits from "interrupt". This is equivalent to
signalling with interrupt().

Use cnd_type() to determine the type of a condition.

Usage

cnd_signal(cnd, .cnd, .mufflable)

Arguments

cnd A condition object (see cnd()).
.cnd, .mufflable

These arguments are deprecated.

Lifecycle

• .cnd has been renamed to cnd and is deprecated as of rlang 0.3.0.

• The .mufflable argument is deprecated as of rlang 0.3.0 and no longer has any effect. Non-
critical conditions are always signalled with a muffle restart.

• Creating a condition object with cnd_signal() is deprecated as of rlang 0.3.0. Please use
signal() instead.

30 done

See Also

abort(), warn() and inform() for creating and signalling structured R conditions. See with_handlers()
for establishing condition handlers.

Examples

The type of signal depends on the class. If the condition
inherits from "warning", a warning is issued:
cnd <- warning_cnd("my_warning_class", message = "This is a warning")
cnd_signal(cnd)

If it inherits from "error", an error is raised:
cnd <- error_cnd("my_error_class", message = "This is an error")
try(cnd_signal(cnd))

done Box a final value for early termination

Description

A value boxed with done() signals to its caller that it should stop iterating. Use it to shortcircuit a
loop.

Usage

done(x)

is_done_box(x, empty = NULL)

Arguments

x For done(), a value to box. For is_done_box(), a value to test.

empty Whether the box is empty. If NULL, is_done_box() returns TRUE for all done
boxes. If TRUE, it returns TRUE only for empty boxes. Otherwise it returns TRUE
only for non-empty boxes.

Value

A boxed value.

Examples

done(3)

x <- done(3)
is_done_box(x)

dyn-dots 31

dyn-dots Dynamic dots

Description

The ... syntax of base R allows you to:

• Forward arguments from function to function, matching them along the way to function pa-
rameters.

• Collect arguments inside data structures, e.g. with c() or list().

Dynamic dots offer a few additional features:

1. You can splice arguments saved in a list with the big bang operator !!!.

2. You can unquote names by using the bang bang operator !! on the left-hand side of :=.

3. Trailing commas are ignored, making it easier to copy and paste lines of arguments.

Add dynamic dots support in your functions

If your function takes dots, adding support for dynamic features is as easy as collecting the dots
with list2() instead of list().

Other dynamic dots collectors are dots_list(), which is more configurable than list2(), vars()
which doesn’t force its arguments, and call2() for creating calls.

Examples

f <- function(...) {
out <- list2(...)
rev(out)

}

Splice
x <- list(alpha = "first", omega = "last")
f(!!!x)

Unquote a name, showing both the `!!` bang bang and `{}` glue style
nm <- "key"
f(!!nm := "value")
f("{nm}" := "value")
f("prefix_{nm}" := "value")

Tolerate a trailing comma
f(this = "that",)

32 entrace

empty_env Get the empty environment

Description

The empty environment is the only one that does not have a parent. It is always used as the tail of
an environment chain such as the search path (see search_envs()).

Usage

empty_env()

Examples

Create environments with nothing in scope:
child_env(empty_env())

entrace Add backtrace from error handler

Description

entrace() interrupts an error throw to add an rlang backtrace to the error. The error throw is
immediately resumed. cnd_entrace() adds a backtrace to a condition object, without any other
effect. Both functions should be called directly from an error handler.
Set the error global option to quote(rlang::entrace()) to transform base errors to rlang errors.
These enriched errors include a backtrace. The RProfile is a good place to set the handler. See
rlang_backtrace_on_error for details.
entrace() also works as a calling handler, though it is often more practical to use the higher-level
function with_abort().

Usage

entrace(cnd, ..., top = NULL, bottom = NULL)

cnd_entrace(cnd, ..., top = NULL, bottom = NULL)

Arguments

cnd When entrace() is used as a calling handler, cnd is the condition to handle.
... Unused. These dots are for future extensions.
top The first frame environment to be included in the backtrace. This becomes the

top of the backtrace tree and represents the oldest call in the backtrace.
This is needed in particular when you call trace_back() indirectly or from
a larger context, for example in tests or inside an RMarkdown document where
you don’t want all of the knitr evaluation mechanisms to appear in the backtrace.

bottom The last frame environment to be included in the backtrace. This becomes the
rightmost leaf of the backtrace tree and represents the youngest call in the back-
trace.
Set this when you would like to capture a backtrace without the capture context.
Can also be an integer that will be passed to caller_env().

env 33

See Also

with_abort() to promote conditions to rlang errors. cnd_entrace() to manually add a backtrace
to a condition.

Examples

if (FALSE) { # Not run

Set the error handler in your RProfile like this:
if (requireNamespace("rlang", quietly = TRUE)) {

options(error = rlang::entrace)
}

}

env Create a new environment

Description

These functions create new environments.

• env() creates a child of the current environment by default and takes a variable number of
named objects to populate it.

• new_environment() creates a child of the empty environment by default and takes a named
list of objects to populate it.

Usage

env(...)

child_env(.parent, ...)

new_environment(data = list(), parent = empty_env())

Arguments

..., data <dynamic> Named values. You can supply one unnamed to specify a custom
parent, otherwise it defaults to the current environment.

.parent, parent

A parent environment. Can be an object supported by as_environment().

Environments as objects

Environments are containers of uniquely named objects. Their most common use is to provide a
scope for the evaluation of R expressions. Not all languages have first class environments, i.e. can
manipulate scope as regular objects. Reification of scope is one of the most powerful features of R
as it allows you to change what objects a function or expression sees when it is evaluated.

Environments also constitute a data structure in their own right. They are a collection of uniquely
named objects, subsettable by name and modifiable by reference. This latter property (see section
on reference semantics) is especially useful for creating mutable OO systems (cf the R6 package
and the ggproto system for extending ggplot2).

https://github.com/wch/R6
http://ggplot2.tidyverse.org/articles/extending-ggplot2.html

34 env

Inheritance

All R environments (except the empty environment) are defined with a parent environment. An
environment and its grandparents thus form a linear hierarchy that is the basis for lexical scoping
in R. When R evaluates an expression, it looks up symbols in a given environment. If it cannot find
these symbols there, it keeps looking them up in parent environments. This way, objects defined in
child environments have precedence over objects defined in parent environments.

The ability of overriding specific definitions is used in the tidyeval framework to create powerful
domain-specific grammars. A common use of masking is to put data frame columns in scope. See
for example as_data_mask().

Reference semantics

Unlike regular objects such as vectors, environments are an uncopyable object type. This means
that if you have multiple references to a given environment (by assigning the environment to another
symbol with <- or passing the environment as argument to a function), modifying the bindings of
one of those references changes all other references as well.

Life cycle

• child_env() is in the questioning stage. It is redundant now that env() accepts parent envi-
ronments.

See Also

env_has(), env_bind().

Examples

env() creates a new environment which has the current environment
as parent
env <- env(a = 1, b = "foo")
env$b
identical(env_parent(env), current_env())

Supply one unnamed argument to override the default:
env <- env(base_env(), a = 1, b = "foo")
identical(env_parent(env), base_env())

child_env() lets you specify a parent:
child <- child_env(env, c = "bar")
identical(env_parent(child), env)

This child environment owns `c` but inherits `a` and `b` from `env`:
env_has(child, c("a", "b", "c", "d"))
env_has(child, c("a", "b", "c", "d"), inherit = TRUE)

`parent` is passed to as_environment() to provide handy
shortcuts. Pass a string to create a child of a package
environment:
child_env("rlang")
env_parent(child_env("rlang"))

Or `NULL` to create a child of the empty environment:
child_env(NULL)

https://en.wikipedia.org/wiki/Scope_(computer_science)

env_bind 35

env_parent(child_env(NULL))

The base package environment is often a good default choice for a
parent environment because it contains all standard base
functions. Also note that it will never inherit from other loaded
package environments since R keeps the base package at the tail
of the search path:
base_child <- child_env("base")
env_has(base_child, c("lapply", "("), inherit = TRUE)

On the other hand, a child of the empty environment doesn't even
see a definition for `(`
empty_child <- child_env(NULL)
env_has(empty_child, c("lapply", "("), inherit = TRUE)

Note that all other package environments inherit from base_env()
as well:
rlang_child <- child_env("rlang")
env_has(rlang_child, "env", inherit = TRUE) # rlang function
env_has(rlang_child, "lapply", inherit = TRUE) # base function

Both env() and child_env() support tidy dots features:
objs <- list(b = "foo", c = "bar")
env <- env(a = 1, !!! objs)
env$c

You can also unquote names with the definition operator `:=`
var <- "a"
env <- env(!!var := "A")
env$a

Use new_environment() to create containers with the empty
environment as parent:
env <- new_environment()
env_parent(env)

Like other new_ constructors, it takes an object rather than dots:
new_environment(list(a = "foo", b = "bar"))

env_bind Bind symbols to objects in an environment

Description

These functions create bindings in an environment. The bindings are supplied through ... as pairs
of names and values or expressions. env_bind() is equivalent to evaluating a <- expression within
the given environment. This function should take care of the majority of use cases but the other
variants can be useful for specific problems.

• env_bind() takes named values which are bound in .env. env_bind() is equivalent to
base::assign().

36 env_bind

• env_bind_active() takes named functions and creates active bindings in .env. This is equiv-
alent to base::makeActiveBinding(). An active binding executes a function each time it is
evaluated. The arguments are passed to as_function() so you can supply formulas instead
of functions.
Remember that functions are scoped in their own environment. These functions can thus refer
to symbols from this enclosure that are not actually in scope in the dynamic environment
where the active bindings are invoked. This allows creative solutions to difficult problems
(see the implementations of dplyr::do() methods for an example).

• env_bind_lazy() takes named expressions. This is equivalent to base::delayedAssign().
The arguments are captured with exprs() (and thus support call-splicing and unquoting) and
assigned to symbols in .env. These expressions are not evaluated immediately but lazily.
Once a symbol is evaluated, the corresponding expression is evaluated in turn and its value is
bound to the symbol (the expressions are thus evaluated only once, if at all).

Usage

env_bind(.env, ...)

env_bind_lazy(.env, ..., .eval_env = caller_env())

env_bind_active(.env, ...)

Arguments

.env An environment.

... <dynamic> Named objects (env_bind()), expressions env_bind_lazy(), or
functions (env_bind_active()). Use zap() to remove bindings.

.eval_env The environment where the expressions will be evaluated when the symbols are
forced.

Value

The input object .env, with its associated environment modified in place, invisibly.

Side effects

Since environments have reference semantics (see relevant section in env() documentation), mod-
ifying the bindings of an environment produces effects in all other references to that environment.
In other words, env_bind() and its variants have side effects.

Like other side-effecty functions like par() and options(), env_bind() and variants return the
old values invisibly.

Life cycle

Passing an environment wrapper like a formula or a function instead of an environment is soft-
deprecated as of rlang 0.3.0. This internal genericity was causing confusion (see issue #427). You
should now extract the environment separately before calling these functions.

See Also

env_poke() for binding a single element.

env_bind 37

Examples

env_bind() is a programmatic way of assigning values to symbols
with `<-`. We can add bindings in the current environment:
env_bind(current_env(), foo = "bar")
foo

Or modify those bindings:
bar <- "bar"
env_bind(current_env(), bar = "BAR")
bar

You can remove bindings by supplying zap sentinels:
env_bind(current_env(), foo = zap())
try(foo)

Unquote-splice a named list of zaps
zaps <- rep_named(c("foo", "bar"), list(zap()))
env_bind(current_env(), !!!zaps)
try(bar)

It is most useful to change other environments:
my_env <- env()
env_bind(my_env, foo = "foo")
my_env$foo

A useful feature is to splice lists of named values:
vals <- list(a = 10, b = 20)
env_bind(my_env, !!!vals, c = 30)
my_env$b
my_env$c

You can also unquote a variable referring to a symbol or a string
as binding name:
var <- "baz"
env_bind(my_env, !!var := "BAZ")
my_env$baz

The old values of the bindings are returned invisibly:
old <- env_bind(my_env, a = 1, b = 2, baz = "baz")
old

You can restore the original environment state by supplying the
old values back:
env_bind(my_env, !!!old)

env_bind_lazy() assigns expressions lazily:
env <- env()
env_bind_lazy(env, name = { cat("forced!\n"); "value" })

Referring to the binding will cause evaluation:
env$name

But only once, subsequent references yield the final value:
env$name

38 env_clone

You can unquote expressions:
expr <- quote(message("forced!"))
env_bind_lazy(env, name = !!expr)
env$name

By default the expressions are evaluated in the current
environment. For instance we can create a local binding and refer
to it, even though the variable is bound in a different
environment:
who <- "mickey"
env_bind_lazy(env, name = paste(who, "mouse"))
env$name

You can specify another evaluation environment with `.eval_env`:
eval_env <- env(who = "minnie")
env_bind_lazy(env, name = paste(who, "mouse"), .eval_env = eval_env)
env$name

Or by unquoting a quosure:
quo <- local({

who <- "fievel"
quo(paste(who, "mouse"))

})
env_bind_lazy(env, name = !!quo)
env$name

You can create active bindings with env_bind_active(). Active
bindings execute a function each time they are evaluated:
fn <- function() {

cat("I have been called\n")
rnorm(1)

}

env <- env()
env_bind_active(env, symbol = fn)

`fn` is executed each time `symbol` is evaluated or retrieved:
env$symbol
env$symbol
eval_bare(quote(symbol), env)
eval_bare(quote(symbol), env)

All arguments are passed to as_function() so you can use the
formula shortcut:
env_bind_active(env, foo = ~ runif(1))
env$foo
env$foo

env_clone Clone an environment

Description

This creates a new environment containing exactly the same objects, optionally with a new parent.

env_depth 39

Usage

env_clone(env, parent = env_parent(env))

Arguments

env An environment.

parent The parent of the cloned environment.

Examples

env <- env(!!! mtcars)
clone <- env_clone(env)
identical(env, clone)
identical(env$cyl, clone$cyl)

env_depth Depth of an environment chain

Description

This function returns the number of environments between env and the empty environment, includ-
ing env. The depth of env is also the number of parents of env (since the empty environment counts
as a parent).

Usage

env_depth(env)

Arguments

env An environment.

Value

An integer.

See Also

The section on inheritance in env() documentation.

Examples

env_depth(empty_env())
env_depth(pkg_env("rlang"))

40 env_has

env_get Get an object in an environment

Description

env_get() extracts an object from an enviroment env. By default, it does not look in the parent
environments. env_get_list() extracts multiple objects from an environment into a named list.

Usage

env_get(env = caller_env(), nm, default, inherit = FALSE)

env_get_list(env = caller_env(), nms, default, inherit = FALSE)

Arguments

env An environment.

nm, nms Names of bindings. nm must be a single string.

default A default value in case there is no binding for nm in env.

inherit Whether to look for bindings in the parent environments.

Value

An object if it exists. Otherwise, throws an error.

Examples

parent <- child_env(NULL, foo = "foo")
env <- child_env(parent, bar = "bar")

This throws an error because `foo` is not directly defined in env:
env_get(env, "foo")

However `foo` can be fetched in the parent environment:
env_get(env, "foo", inherit = TRUE)

You can also avoid an error by supplying a default value:
env_get(env, "foo", default = "FOO")

env_has Does an environment have or see bindings?

Description

env_has() is a vectorised predicate that queries whether an environment owns bindings personally
(with inherit set to FALSE, the default), or sees them in its own environment or in any of its parents
(with inherit = TRUE).

env_inherits 41

Usage

env_has(env = caller_env(), nms, inherit = FALSE)

Arguments

env An environment.

nms A character vector containing the names of the bindings to remove.

inherit Whether to look for bindings in the parent environments.

Value

A named logical vector as long as nms.

Examples

parent <- child_env(NULL, foo = "foo")
env <- child_env(parent, bar = "bar")

env does not own `foo` but sees it in its parent environment:
env_has(env, "foo")
env_has(env, "foo", inherit = TRUE)

env_inherits Does environment inherit from another environment?

Description

This returns TRUE if x has ancestor among its parents.

Usage

env_inherits(env, ancestor)

Arguments

env An environment.

ancestor Another environment from which x might inherit.

42 env_names

env_name Label of an environment

Description

Special environments like the global environment have their own names. env_name() returns:

• "global" for the global environment.

• "empty" for the empty environment.

• "base" for the base package environment (the last environment on the search path).

• "namespace:pkg" if env is the namespace of the package "pkg".

• The name attribute of env if it exists. This is how the package environments and the imports en-
vironments store their names. The name of package environments is typically "package:pkg".

• The empty string "" otherwise.

env_label() is exactly like env_name() but returns the memory address of anonymous environ-
ments as fallback.

Usage

env_name(env)

env_label(env)

Arguments

env An environment.

Examples

Some environments have specific names:
env_name(global_env())
env_name(ns_env("rlang"))

Anonymous environments don't have names but are labelled by their
address in memory:
env_name(env())
env_label(env())

env_names Names and numbers of symbols bound in an environment

Description

env_names() returns object names from an enviroment env as a character vector. All names are
returned, even those starting with a dot. env_length() returns the number of bindings.

env_parent 43

Usage

env_names(env)

env_length(env)

Arguments

env An environment.

Value

A character vector of object names.

Names of symbols and objects

Technically, objects are bound to symbols rather than strings, since the R interpreter evaluates sym-
bols (see is_expression() for a discussion of symbolic objects versus literal objects). However it
is often more convenient to work with strings. In rlang terminology, the string corresponding to a
symbol is called the name of the symbol (or by extension the name of an object bound to a symbol).

Encoding

There are deep encoding issues when you convert a string to symbol and vice versa. Symbols
are always in the native encoding. If that encoding (let’s say latin1) cannot support some charac-
ters, these characters are serialised to ASCII. That’s why you sometimes see strings looking like
<U+1234>, especially if you’re running Windows (as R doesn’t support UTF-8 as native encoding
on that platform).

To alleviate some of the encoding pain, env_names() always returns a UTF-8 character vector
(which is fine even on Windows) with ASCII unicode points translated back to UTF-8.

Examples

env <- env(a = 1, b = 2)
env_names(env)

env_parent Get parent environments

Description

• env_parent() returns the parent environment of env if called with n = 1, the grandparent with
n = 2, etc.

• env_tail() searches through the parents and returns the one which has empty_env() as
parent.

• env_parents() returns the list of all parents, including the empty environment. This list is
named using env_name().

See the section on inheritance in env()’s documentation.

44 env_poke

Usage

env_parent(env = caller_env(), n = 1)

env_tail(env = caller_env(), last = global_env())

env_parents(env = caller_env(), last = global_env())

Arguments

env An environment.

n The number of generations to go up.

last The environment at which to stop. Defaults to the global environment. The
empty environment is always a stopping condition so it is safe to leave the de-
fault even when taking the tail or the parents of an environment on the search
path.
env_tail() returns the environment which has last as parent and env_parents()
returns the list of environments up to last.

Value

An environment for env_parent() and env_tail(), a list of environments for env_parents().

Examples

Get the parent environment with env_parent():
env_parent(global_env())

Or the tail environment with env_tail():
env_tail(global_env())

By default, env_parent() returns the parent environment of the
current evaluation frame. If called at top-level (the global
frame), the following two expressions are equivalent:
env_parent()
env_parent(base_env())

This default is more handy when called within a function. In this
case, the enclosure environment of the function is returned
(since it is the parent of the evaluation frame):
enclos_env <- env()
fn <- set_env(function() env_parent(), enclos_env)
identical(enclos_env, fn())

env_poke Poke an object in an environment

Description

env_poke() will assign or reassign a binding in env if create is TRUE. If create is FALSE and a
binding does not already exists, an error is issued.

env_print 45

Usage

env_poke(env = caller_env(), nm, value, inherit = FALSE, create = !inherit)

Arguments

env An environment.

nm Names of bindings. nm must be a single string.

value The value for a new binding.

inherit Whether to look for bindings in the parent environments.

create Whether to create a binding if it does not already exist in the environment.

Details

If inherit is TRUE, the parents environments are checked for an existing binding to reassign. If
not found and create is TRUE, a new binding is created in env. The default value for create is a
function of inherit: FALSE when inheriting, TRUE otherwise.

This default makes sense because the inheriting case is mostly for overriding an existing binding.
If not found, something probably went wrong and it is safer to issue an error. Note that this is
different to the base R operator <<- which will create a binding in the global environment instead
of the current environment when no existing binding is found in the parents.

Value

The old value of nm or a zap sentinel if the binding did not exist yet.

See Also

env_bind() for binding multiple elements.

env_print Pretty-print an environment

Description

This prints:

• The label and the parent label.

• Whether the environment is locked.

• The bindings in the environment (up to 20 bindings). They are printed succintly using pillar::type_sum()
(if available, otherwise uses an internal version of that generic). In addition fancy bindings
(actives and promises) are indicated as such.

• Locked bindings get a [L] tag

Usage

env_print(env = caller_env())

Arguments

env An environment, or object that can be converted to an environment by get_env().

46 eval_bare

env_unbind Remove bindings from an environment

Description

env_unbind() is the complement of env_bind(). Like env_has(), it ignores the parent environ-
ments of env by default. Set inherit to TRUE to track down bindings in parent environments.

Usage

env_unbind(env = caller_env(), nms, inherit = FALSE)

Arguments

env An environment.

nms A character vector containing the names of the bindings to remove.

inherit Whether to look for bindings in the parent environments.

Value

The input object env with its associated environment modified in place, invisibly.

Examples

env <- env(foo = 1, bar = 2)
env_has(env, c("foo", "bar"))

Remove bindings with `env_unbind()`
env_unbind(env, c("foo", "bar"))
env_has(env, c("foo", "bar"))

With inherit = TRUE, it removes bindings in parent environments
as well:
parent <- env(empty_env(), foo = 1, bar = 2)
env <- env(parent, foo = "b")

env_unbind(env, "foo", inherit = TRUE)
env_has(env, c("foo", "bar"))
env_has(env, c("foo", "bar"), inherit = TRUE)

eval_bare Evaluate an expression in an environment

Description

Stable
eval_bare() is a lower-level version of function base::eval(). Technically, it is a simple wrap-
per around the C function Rf_eval(). You generally don’t need to use eval_bare() instead of
eval(). Its main advantage is that it handles stack-sensitive (calls such as return(), on.exit()
or parent.frame()) more consistently when you pass an enviroment of a frame on the call stack.

eval_bare 47

Usage

eval_bare(expr, env = parent.frame())

Arguments

expr An expression to evaluate.

env The environment in which to evaluate the expression.

Details

These semantics are possible because eval_bare() creates only one frame on the call stack whereas
eval() creates two frames, the second of which has the user-supplied environment as frame envi-
ronment. When you supply an existing frame environment to base::eval() there will be two
frames on the stack with the same frame environment. Stack-sensitive functions only detect the
topmost of these frames. We call these evaluation semantics "stack inconsistent".

Evaluating expressions in the actual frame environment has useful practical implications for eval_bare():

• return() calls are evaluated in frame environments that might be burried deep in the call
stack. This causes a long return that unwinds multiple frames (triggering the on.exit() event
for each frame). By contrast eval() only returns from the eval() call, one level up.

• on.exit(), parent.frame(), sys.call(), and generally all the stack inspection functions
sys.xxx() are evaluated in the correct frame environment. This is similar to how this type
of calls can be evaluated deep in the call stack because of lazy evaluation, when you force an
argument that has been passed around several times.

The flip side of the semantics of eval_bare() is that it can’t evaluate break or next expressions
even if called within a loop.

See Also

eval_tidy() for evaluation with data mask and quosure support.

Examples

eval_bare() works just like base::eval() but you have to create
the evaluation environment yourself:
eval_bare(quote(foo), env(foo = "bar"))

eval() has different evaluation semantics than eval_bare(). It
can return from the supplied environment even if its an
environment that is not on the call stack (i.e. because you've
created it yourself). The following would trigger an error with
eval_bare():
ret <- quote(return("foo"))
eval(ret, env())
eval_bare(ret, env()) # "no function to return from" error

Another feature of eval() is that you can control surround loops:
bail <- quote(break)
while (TRUE) {

eval(bail)
eval_bare(bail) # "no loop for break/next" error

}

48 eval_tidy

To explore the consequences of stack inconsistent semantics, let's
create a function that evaluates `parent.frame()` deep in the call
stack, in an environment corresponding to a frame in the middle of
the stack. For consistency with R's lazy evaluation semantics, we'd
expect to get the caller of that frame as result:
fn <- function(eval_fn) {

list(
returned_env = middle(eval_fn),
actual_env = current_env()

)
}
middle <- function(eval_fn) {

deep(eval_fn, current_env())
}
deep <- function(eval_fn, eval_env) {

expr <- quote(parent.frame())
eval_fn(expr, eval_env)

}

With eval_bare(), we do get the expected environment:
fn(rlang::eval_bare)

But that's not the case with base::eval():
fn(base::eval)

eval_tidy Evaluate an expression with quosures and pronoun support

Description

Stable

eval_tidy() is a variant of base::eval() that powers the tidy evaluation framework. Like eval()
it accepts user data as argument. Whereas eval() simply transforms the data to an environment,
eval_tidy() transforms it to a data mask with as_data_mask(). Evaluating in a data mask
enables the following features:

• Quosures. Quosures are expressions bundled with an environment. If data is supplied, objects
in the data mask always have precedence over the quosure environment, i.e. the data masks
the environment.

• Pronouns. If data is supplied, the .env and .data pronouns are installed in the data mask.
.env is a reference to the calling environment and .data refers to the data argument. These
pronouns lets you be explicit about where to find values and throw errors if you try to access
non-existent values.

Usage

eval_tidy(expr, data = NULL, env = caller_env())

Arguments

expr An expression or quosure to evaluate.

eval_tidy 49

data A data frame, or named list or vector. Alternatively, a data mask created with
as_data_mask() or new_data_mask(). Objects in data have priority over
those in env. See the section about data masking.

env The environment in which to evaluate expr. This environment is not applicable
for quosures because they have their own environments.

Data masking

Data masking refers to how columns or objects inside data have priority over objects defined in
env (or in the quosure environment, if applicable). If there is a column var in data and an object
var in env, and expr refers to var, the column has priority:

var <- "this one?"
data <- data.frame(var = rep("Or that one?", 3))

within <- function(data, expr) {
eval_tidy(enquo(expr), data)

}

within(data, toupper(var))
#> [1] "OR THAT ONE?" "OR THAT ONE?" "OR THAT ONE?"

Because the columns or objects in data are always found first, before objects from env, we say that
the data "masks" the environment.

When should eval_tidy() be used instead of eval()?

base::eval() is sufficient for simple evaluation. Use eval_tidy() when you’d like to support
expressions referring to the .data pronoun, or when you need to support quosures.

If you’re evaluating an expression captured with quasiquotation support, it is recommended to use
eval_tidy() because users will likely unquote quosures.

Note that unwrapping a quosure with quo_get_expr() does not guarantee that there is no quosures
inside the expression. Quosures might be unquoted anywhere. For instance, the following does not
work reliably in the presence of nested quosures:

my_quoting_fn <- function(x) {
x <- enquo(x)
expr <- quo_get_expr(x)
env <- quo_get_env(x)
eval(expr, env)

}

Works:
my_quoting_fn(toupper(letters))

Fails because of a nested quosure:
my_quoting_fn(toupper(!!quo(letters)))

Stack semantics of eval_tidy()

eval_tidy() has different stack semantics than base::eval():

50 eval_tidy

• Functions that require the evaluation environment to correspond to a frame on the call stack
do not work. This is why return() called from a quosure does not work.

• The mask environment creates a new branch in the call tree defined by sys.parent() (you
can visualise it in a browser() session with lobstr::cst()).

See also eval_bare() for more information about these differences.

Life cycle

rlang 0.3.0

Passing an environment to data is deprecated. Please construct an rlang data mask with new_data_mask().

See Also

nse-force for the second leg of the tidy evaluation framework.

Examples

With simple quoted expressions eval_tidy() works the same way as
eval():
apple <- "apple"
kiwi <- "kiwi"
expr <- quote(paste(apple, kiwi))
expr

eval(expr)
eval_tidy(expr)

Both accept a data mask as argument:
data <- list(apple = "CARROT", kiwi = "TOMATO")
eval(expr, data)
eval_tidy(expr, data)

In addition eval_tidy() has support for quosures:
with_data <- function(data, expr) {

quo <- enquo(expr)
eval_tidy(quo, data)

}
with_data(NULL, apple)
with_data(data, apple)
with_data(data, list(apple, kiwi))

Secondly eval_tidy() installs handy pronouns that allow users to
be explicit about where to find symbols:
with_data(data, .data$apple)
with_data(data, .env$apple)

Note that instead of using `.env` it is often equivalent and may
be preferred to unquote a value. There are two differences. First
unquoting happens earlier, when the quosure is created. Secondly,
subsetting `.env` with the `$` operator may be brittle because
`$` does not look through the parents of the environment.
#
For instance using `.env$name` in a magrittr pipeline is an

exec 51

instance where this poses problem, because the magrittr pipe
currently (as of v1.5.0) evaluates its operands in a *child* of
the current environment (this child environment is where it
defines the pronoun `.`).
Not run:

data %>% with_data(!!kiwi) # "kiwi"
data %>% with_data(.env$kiwi) # NULL

End(Not run)

exec Execute a function

Description

This function constructs and evaluates a call to .fn. It has two primary uses:

• To call a function with arguments stored in a list (if the function doesn’t support dynamic
dots). Splice the list of arguments with !!!.

• To call every function stored in a list (in conjunction with map()/ lapply())

Usage

exec(.fn, ..., .env = caller_env())

Arguments

.fn A function, or function name as a string.

... <dynamic> Arguments for .fn.

.env Environment in which to evaluate the call. This will be most useful if f is a
string, or the function has side-effects.

Examples

args <- list(x = c(1:10, 100, NA), na.rm = TRUE)
exec("mean", !!!args)
exec("mean", !!!args, trim = 0.2)

fs <- list(a = function() "a", b = function() "b")
lapply(fs, exec)

Compare to do.call it will not automatically inline expressions
into the evaluated call.
x <- 10
args <- exprs(x1 = x + 1, x2 = x * 2)
exec(list, !!!args)
do.call(list, args)

exec() is not designed to generate pretty function calls. This is
most easily seen if you call a function that captures the call:
f <- disp ~ cyl
exec("lm", f, data = mtcars)

52 expr_interp

If you need finer control over the generated call, you'll need to
construct it yourself. This may require creating a new environment
with carefully constructed bindings
data_env <- env(data = mtcars)
eval(expr(lm(!!f, data)), data_env)

exprs_auto_name Ensure that all elements of a list of expressions are named

Description

This gives default names to unnamed elements of a list of expressions (or expression wrappers such
as formulas or quosures). exprs_auto_name() deparses the expressions with expr_name() by
default. quos_auto_name() deparses with quo_name().

Usage

exprs_auto_name(exprs, width = NULL, printer = NULL)

quos_auto_name(quos, width = NULL)

Arguments

exprs A list of expressions.

width Deprecated. Maximum width of names.

printer Deprecated. A function that takes an expression and converts it to a string. This
function must take an expression as the first argument and width as the second
argument.

quos A list of quosures.

expr_interp Process unquote operators in a captured expression

Description

While all capturing functions in the tidy evaluation framework perform unquote on capture (most
notably quo()), expr_interp() manually processes unquoting operators in expressions that are
already captured. expr_interp() should be called in all user-facing functions expecting a formula
as argument to provide the same quasiquotation functionality as NSE functions.

Usage

expr_interp(x, env = NULL)

Arguments

x A function, raw expression, or formula to interpolate.

env The environment in which unquoted expressions should be evaluated. By de-
fault, the formula or closure environment if a formula or a function, or the cur-
rent environment otherwise.

expr_label 53

Examples

All tidy NSE functions like quo() unquote on capture:
quo(list(!!(1 + 2)))

expr_interp() is meant to provide the same functionality when you
have a formula or expression that might contain unquoting
operators:
f <- ~list(!!(1 + 2))
expr_interp(f)

Note that only the outer formula is unquoted (which is a reason
to use expr_interp() as early as possible in all user-facing
functions):
f <- ~list(~!!(1 + 2), !!(1 + 2))
expr_interp(f)

Another purpose for expr_interp() is to interpolate a closure's
body. This is useful to inline a function within another. The
important limitation is that all formal arguments of the inlined
function should be defined in the receiving function:
other_fn <- function(x) toupper(x)

fn <- expr_interp(function(x) {
x <- paste0(x, "_suffix")
!!! body(other_fn)

})
fn
fn("foo")

expr_label Turn an expression to a label

Description

Questioning
expr_text() turns the expression into a single string, which might be multi-line. expr_name() is
suitable for formatting names. It works best with symbols and scalar types, but also accepts calls.
expr_label() formats the expression nicely for use in messages.

Usage

expr_label(expr)

expr_name(expr)

expr_text(expr, width = 60L, nlines = Inf)

Arguments

expr An expression to labellise.

width Width of each line.

nlines Maximum number of lines to extract.

54 expr_print

Life cycle

These functions are in the questioning stage because they are redundant with the quo_ variants and
do not handle quosures.

Examples

To labellise a function argument, first capture it with
substitute():
fn <- function(x) expr_label(substitute(x))
fn(x:y)

Strings are encoded
expr_label("a\nb")

Names and expressions are quoted with ``
expr_label(quote(x))
expr_label(quote(a + b + c))

Long expressions are collapsed
expr_label(quote(foo({

1 + 2
print(x)

})))

expr_print Print an expression

Description

expr_print(), powered by expr_deparse(), is an alternative printer for R expressions with a few
improvements over the base R printer.

• It colourises quosures according to their environment. Quosures from the global environment
are printed normally while quosures from local environments are printed in unique colour (or
in italic when all colours are taken).

• It wraps inlined objects in angular brackets. For instance, an integer vector unquoted in a
function call (e.g. expr(foo(!!(1:3)))) is printed like this: foo(<int: 1L, 2L, 3L>) while by
default R prints the code to create that vector: foo(1:3) which is ambiguous.

• It respects the width boundary (from the global option width) in more cases.

Usage

expr_print(x, width = peek_option("width"))

expr_deparse(x, width = peek_option("width"))

Arguments

x An object or expression to print.

width The width of the deparsed or printed expression. Defaults to the global option
width.

faq-options 55

Examples

It supports any object. Non-symbolic objects are always printed
within angular brackets:
expr_print(1:3)
expr_print(function() NULL)

Contrast this to how the code to create these objects is printed:
expr_print(quote(1:3))
expr_print(quote(function() NULL))

The main cause of non-symbolic objects in expressions is
quasiquotation:
expr_print(expr(foo(!!(1:3))))

Quosures from the global environment are printed normally:
expr_print(quo(foo))
expr_print(quo(foo(!!quo(bar))))

Quosures from local environments are colourised according to
their environments (if you have crayon installed):
local_quo <- local(quo(foo))
expr_print(local_quo)

wrapper_quo <- local(quo(bar(!!local_quo, baz)))
expr_print(wrapper_quo)

faq-options Global options for rlang

Description

rlang has several options which may be set globally to control behavior. A brief description of each
is given here. If any functions are referenced, refer to their documentation for additional details.

• rlang_interactive: A logical value used by is_interactive(). This can be set to TRUE
to test interactive behavior in unit tests, for example.

• rlang_backtrace_on_error: A character string which controls whether backtraces are dis-
played with error messages, and the level of detail they print. See rlang_backtrace_on_error
for the possible option values.

• rlang_trace_format_srcrefs: A logical value used to control whether srcrefs are printed
as part of the backtrace.

• rlang_trace_top_env: An environment which will be treated as the top-level environment
when printing traces. See trace_back() for examples.

56 fn_env

fn_body Get or set function body

Description

fn_body() is a simple wrapper around base::body(). It always returns a \{ expression and throws
an error when the input is a primitive function (whereas body() returns NULL). The setter version
preserves attributes, unlike body<-.

Usage

fn_body(fn = caller_fn())

fn_body(fn) <- value

Arguments

fn A function. It is lookep up in the calling frame if not supplied.

value New formals or formals names for fn.

Examples

fn_body() is like body() but always returns a block:
fn <- function() do()
body(fn)
fn_body(fn)

It also throws an error when used on a primitive function:
try(fn_body(base::list))

fn_env Return the closure environment of a function

Description

Closure environments define the scope of functions (see env()). When a function call is evaluated,
R creates an evaluation frame (see ctxt_stack()) that inherits from the closure environment. This
makes all objects defined in the closure environment and all its parents available to code executed
within the function.

Usage

fn_env(fn)

fn_env(x) <- value

Arguments

fn, x A function.

value A new closure environment for the function.

fn_fmls 57

Details

fn_env() returns the closure environment of fn. There is also an assignment method to set a new
closure environment.

Examples

env <- child_env("base")
fn <- with_env(env, function() NULL)
identical(fn_env(fn), env)

other_env <- child_env("base")
fn_env(fn) <- other_env
identical(fn_env(fn), other_env)

fn_fmls Extract arguments from a function

Description

fn_fmls() returns a named list of formal arguments. fn_fmls_names() returns the names of the
arguments. fn_fmls_syms() returns formals as a named list of symbols. This is especially useful
for forwarding arguments in constructed calls.

Usage

fn_fmls(fn = caller_fn())

fn_fmls_names(fn = caller_fn())

fn_fmls_syms(fn = caller_fn())

fn_fmls(fn) <- value

fn_fmls_names(fn) <- value

Arguments

fn A function. It is lookep up in the calling frame if not supplied.

value New formals or formals names for fn.

Details

Unlike formals(), these helpers throw an error with primitive functions instead of returning NULL.

See Also

call_args() and call_args_names()

58 format_error_bullets

Examples

Extract from current call:
fn <- function(a = 1, b = 2) fn_fmls()
fn()

fn_fmls_syms() makes it easy to forward arguments:
call2("apply", !!! fn_fmls_syms(lapply))

You can also change the formals:
fn_fmls(fn) <- list(A = 10, B = 20)
fn()

fn_fmls_names(fn) <- c("foo", "bar")
fn()

format_error_bullets Format bullets for error messages

Description

Experimental

format_error_bullets() takes a character vector and returns a single string (or an empty vector
if the input is empty). The elements of the input vector are assembled as a list of bullets, depending
on their names:

• Elements named "i" are bulleted with a blue "info" symbol.

• Elements named "x" are bulleted with a red "cross" symbol.

• Unnamed elements are bulleted with a "*" symbol.

This experimental infrastructure is based on the idea that sentences in error messages are best
kept short and simple. From this point of view, the best way to present the information is in the
cnd_body() method of an error conditon, as a bullet list of simple sentences containing a single
clause. The info and cross symbols of the bullets provide hints on how to interpret the bullet rela-
tive to the general error issue, which should be supplied as cnd_header().

Usage

format_error_bullets(x)

Arguments

x A named character vector of messages. Elements named as x or i are prefixed
with the corresponding bullet.

f_rhs 59

f_rhs Get or set formula components

Description

f_rhs extracts the righthand side, f_lhs extracts the lefthand side, and f_env extracts the environ-
ment. All functions throw an error if f is not a formula.

Usage

f_rhs(f)

f_rhs(x) <- value

f_lhs(f)

f_lhs(x) <- value

f_env(f)

f_env(x) <- value

Arguments

f, x A formula

value The value to replace with.

Value

f_rhs and f_lhs return language objects (i.e. atomic vectors of length 1, a name, or a call). f_env
returns an environment.

Examples

f_rhs(~ 1 + 2 + 3)
f_rhs(~ x)
f_rhs(~ "A")
f_rhs(1 ~ 2)

f_lhs(~ y)
f_lhs(x ~ y)

f_env(~ x)

60 get_env

f_text Turn RHS of formula into a string or label

Description

Equivalent of expr_text() and expr_label() for formulas.

Usage

f_text(x, width = 60L, nlines = Inf)

f_name(x)

f_label(x)

Arguments

x A formula.

width Width of each line.

nlines Maximum number of lines to extract.

Examples

f <- ~ a + b + bc
f_text(f)
f_label(f)

Names a quoted with ``
f_label(~ x)
Strings are encoded
f_label(~ "a\nb")
Long expressions are collapsed
f_label(~ foo({

1 + 2
print(x)

}))

get_env Get or set the environment of an object

Description

These functions dispatch internally with methods for functions, formulas and frames. If called
with a missing argument, the environment of the current evaluation frame (see ctxt_stack())
is returned. If you call get_env() with an environment, it acts as the identity function and the
environment is simply returned (this helps simplifying code when writing generic functions for
environments).

get_env 61

Usage

get_env(env, default = NULL)

set_env(env, new_env = caller_env())

env_poke_parent(env, new_env)

Arguments

env An environment.

default The default environment in case env does not wrap an environment. If NULL and
no environment could be extracted, an error is issued.

new_env An environment to replace env with.

Details

While set_env() returns a modified copy and does not have side effects, env_poke_parent()
operates changes the environment by side effect. This is because environments are uncopyable. Be
careful not to change environments that you don’t own, e.g. a parent environment of a function
from a package.

Life cycle

• Using get_env() without supplying env is deprecated as of rlang 0.3.0. Please use current_env()
to retrieve the current environment.

• Passing environment wrappers like formulas or functions instead of bare environments is dep-
recated as of rlang 0.3.0. This internal genericity was causing confusion (see issue #427). You
should now extract the environment separately before calling these functions.

See Also

quo_get_env() and quo_set_env() for versions of get_env() and set_env() that only work on
quosures.

Examples

Environment of closure functions:
fn <- function() "foo"
get_env(fn)

Or of quosures or formulas:
get_env(~foo)
get_env(quo(foo))

Provide a default in case the object doesn't bundle an environment.
Let's create an unevaluated formula:
f <- quote(~foo)

The following line would fail if run because unevaluated formulas
don't bundle an environment (they didn't have the chance to
record one yet):
get_env(f)

62 has_name

It is often useful to provide a default when you're writing
functions accepting formulas as input:
default <- env()
identical(get_env(f, default), default)

set_env() can be used to set the enclosure of functions and
formulas. Let's create a function with a particular environment:
env <- child_env("base")
fn <- set_env(function() NULL, env)

That function now has `env` as enclosure:
identical(get_env(fn), env)
identical(get_env(fn), current_env())

set_env() does not work by side effect. Setting a new environment
for fn has no effect on the original function:
other_env <- child_env(NULL)
set_env(fn, other_env)
identical(get_env(fn), other_env)

Since set_env() returns a new function with a different
environment, you'll need to reassign the result:
fn <- set_env(fn, other_env)
identical(get_env(fn), other_env)

has_name Does an object have an element with this name?

Description

This function returns a logical value that indicates if a data frame or another named object contains
an element with a specific name. Note that has_name() only works with vectors. For instance,
environments need the specialised function env_has().

Usage

has_name(x, name)

Arguments

x A data frame or another named object
name Element name(s) to check

Details

Unnamed objects are treated as if all names are empty strings. NA input gives FALSE as output.

Value

A logical vector of the same length as name

Examples

has_name(iris, "Species")
has_name(mtcars, "gears")

inherits_any 63

inherits_any Does an object inherit from a set of classes?

Description

• inherits_any() is like base::inherits() but is more explicit about its behaviour with
multiple classes. If classes contains several elements and the object inherits from at least
one of them, inherits_any() returns TRUE.

• inherits_all() tests that an object inherits from all of the classes in the supplied order. This
is usually the best way to test for inheritance of multiple classes.

• inherits_only() tests that the class vectors are identical. It is a shortcut for identical(class(x),class).

Usage

inherits_any(x, class)

inherits_all(x, class)

inherits_only(x, class)

Arguments

x An object to test for inheritance.

class A character vector of classes.

Examples

obj <- structure(list(), class = c("foo", "bar", "baz"))

With the _any variant only one class must match:
inherits_any(obj, c("foobar", "bazbaz"))
inherits_any(obj, c("foo", "bazbaz"))

With the _all variant all classes must match:
inherits_all(obj, c("foo", "bazbaz"))
inherits_all(obj, c("foo", "baz"))

The order of classes must match as well:
inherits_all(obj, c("baz", "foo"))

inherits_only() checks that the class vectors are identical:
inherits_only(obj, c("foo", "baz"))
inherits_only(obj, c("foo", "bar", "baz"))

64 is_call

is_call Is object a call?

Description

This function tests if x is a call. This is a pattern-matching predicate that returns FALSE if name and
n are supplied and the call does not match these properties.

Usage

is_call(x, name = NULL, n = NULL, ns = NULL)

Arguments

x An object to test. If a formula, the right-hand side is extracted.

name An optional name that the call should match. It is passed to sym() before match-
ing. This argument is vectorised and you can supply a vector of names to match.
In this case, is_call() returns TRUE if at least one name matches.

n An optional number of arguments that the call should match.

ns The namespace of the call. If NULL, the namespace doesn’t participate in the
pattern-matching. If an empty string "" and x is a namespaced call, is_call()
returns FALSE. If any other string, is_call() checks that x is namespaced
within ns.
Can be a character vector of namespaces, in which case the call has to match at
least one of them, otherwise is_call() returns FALSE.

Life cycle

is_lang() has been soft-deprecated and renamed to is_call() in rlang 0.2.0 and similarly for
is_unary_lang() and is_binary_lang(). This renaming follows the general switch from "lan-
guage" to "call" in the rlang type nomenclature. See lifecycle section in call2().

See Also

is_expression()

Examples

is_call(quote(foo(bar)))

You can pattern-match the call with additional arguments:
is_call(quote(foo(bar)), "foo")
is_call(quote(foo(bar)), "bar")
is_call(quote(foo(bar)), quote(foo))

Match the number of arguments with is_call():
is_call(quote(foo(bar)), "foo", 1)
is_call(quote(foo(bar)), "foo", 2)

By default, namespaced calls are tested unqualified:
ns_expr <- quote(base::list())

is_empty 65

is_call(ns_expr, "list")

You can also specify whether the call shouldn't be namespaced by
supplying an empty string:
is_call(ns_expr, "list", ns = "")

Or if it should have a namespace:
is_call(ns_expr, "list", ns = "utils")
is_call(ns_expr, "list", ns = "base")

You can supply multiple namespaces:
is_call(ns_expr, "list", ns = c("utils", "base"))
is_call(ns_expr, "list", ns = c("utils", "stats"))

If one of them is "", unnamespaced calls will match as well:
is_call(quote(list()), "list", ns = "base")
is_call(quote(list()), "list", ns = c("base", ""))
is_call(quote(base::list()), "list", ns = c("base", ""))

The name argument is vectorised so you can supply a list of names
to match with:
is_call(quote(foo(bar)), c("bar", "baz"))
is_call(quote(foo(bar)), c("bar", "foo"))
is_call(quote(base::list), c("::", ":::", "$", "@"))

is_empty Is object an empty vector or NULL?

Description

Is object an empty vector or NULL?

Usage

is_empty(x)

Arguments

x object to test

Examples

is_empty(NULL)
is_empty(list())
is_empty(list(NULL))

66 is_expression

is_environment Is object an environment?

Description

is_bare_environment() tests whether x is an environment without a s3 or s4 class.

Usage

is_environment(x)

is_bare_environment(x)

Arguments

x object to test

is_expression Is an object an expression?

Description

is_expression() tests for expressions, the set of objects that can be obtained from parsing R
code. An expression can be one of two things: either a symbolic object (for which is_symbolic()
returns TRUE), or a syntactic literal (testable with is_syntactic_literal()). Technically, calls
can contain any R object, not necessarily symbolic objects or syntactic literals. However, this only
happens in artificial situations. Expressions as we define them only contain numbers, strings, NULL,
symbols, and calls: this is the complete set of R objects that can be created when R parses source
code (e.g. from using parse_expr()).

Note that we are using the term expression in its colloquial sense and not to refer to expression()
vectors, a data type that wraps expressions in a vector and which isn’t used much in modern R code.

Usage

is_expression(x)

is_syntactic_literal(x)

is_symbolic(x)

Arguments

x An object to test.

is_expression 67

Details

is_symbolic() returns TRUE for symbols and calls (objects with type language). Symbolic objects
are replaced by their value during evaluation. Literals are the complement of symbolic objects. They
are their own value and return themselves during evaluation.

is_syntactic_literal() is a predicate that returns TRUE for the subset of literals that are created
by R when parsing text (see parse_expr()): numbers, strings and NULL. Along with symbols, these
literals are the terminating nodes in an AST.

Note that in the most general sense, a literal is any R object that evaluates to itself and that can
be evaluated in the empty environment. For instance, quote(c(1,2)) is not a literal, it is a call.
However, the result of evaluating it in base_env() is a literal(in this case an atomic vector).

Pairlists are also a kind of language objects. However, since they are mostly an internal data struc-
ture, is_expression() returns FALSE for pairlists. You can use is_pairlist() to explicitly check
for them. Pairlists are the data structure for function arguments. They usually do not arise from R
code because subsetting a call is a type-preserving operation. However, you can obtain the pairlist
of arguments by taking the CDR of the call object from C code. The rlang function node_cdr()
will do it from R. Another way in which pairlist of arguments arise is by extracting the argument
list of a closure with base::formals() or fn_fmls().

See Also

is_call() for a call predicate.

Examples

q1 <- quote(1)
is_expression(q1)
is_syntactic_literal(q1)

q2 <- quote(x)
is_expression(q2)
is_symbol(q2)

q3 <- quote(x + 1)
is_expression(q3)
is_call(q3)

Atomic expressions are the terminating nodes of a call tree:
NULL or a scalar atomic vector:
is_syntactic_literal("string")
is_syntactic_literal(NULL)

is_syntactic_literal(letters)
is_syntactic_literal(quote(call()))

Parsable literals have the property of being self-quoting:
identical("foo", quote("foo"))
identical(1L, quote(1L))
identical(NULL, quote(NULL))

Like any literals, they can be evaluated within the empty
environment:
eval_bare(quote(1L), empty_env())

68 is_formula

Whereas it would fail for symbolic expressions:
eval_bare(quote(c(1L, 2L)), empty_env())

Pairlists are also language objects representing argument lists.
You will usually encounter them with extracted formals:
fmls <- formals(is_expression)
typeof(fmls)

Since they are mostly an internal data structure, is_expression()
returns FALSE for pairlists, so you will have to check explicitly
for them:
is_expression(fmls)
is_pairlist(fmls)

is_formula Is object a formula?

Description

is_formula() tests if x is a call to ~. is_bare_formula() tests in addition that x does not inherit
from anything else than "formula".

Usage

is_formula(x, scoped = NULL, lhs = NULL)

is_bare_formula(x, scoped = NULL, lhs = NULL)

Arguments

x An object to test.

scoped A boolean indicating whether the quosure is scoped, that is, has a valid environ-
ment attribute. If NULL, the scope is not inspected.

lhs A boolean indicating whether the formula or definition has a left-hand side. If
NULL, the LHS is not inspected.

Details

The scoped argument patterns-match on whether the scoped bundled with the quosure is valid or
not. Invalid scopes may happen in nested quotations like ~~expr, where the outer quosure is validly
scoped but not the inner one. This is because ~ saves the environment when it is evaluated, and
quoted formulas are by definition not evaluated.

Examples

x <- disp ~ am
is_formula(x)

is_formula(~10)
is_formula(10)

is_formula(quo(foo))

is_function 69

is_bare_formula(quo(foo))

Note that unevaluated formulas are treated as bare formulas even
though they don't inherit from "formula":
f <- quote(~foo)
is_bare_formula(f)

However you can specify `scoped` if you need the predicate to
return FALSE for these unevaluated formulas:
is_bare_formula(f, scoped = TRUE)
is_bare_formula(eval(f), scoped = TRUE)

is_function Is object a function?

Description

The R language defines two different types of functions: primitive functions, which are low-level,
and closures, which are the regular kind of functions.

Usage

is_function(x)

is_closure(x)

is_primitive(x)

is_primitive_eager(x)

is_primitive_lazy(x)

Arguments

x Object to be tested.

Details

Closures are functions written in R, named after the way their arguments are scoped within nested
environments (see https://en.wikipedia.org/wiki/Closure_(computer_programming)). The
root environment of the closure is called the closure environment. When closures are evaluated, a
new environment called the evaluation frame is created with the closure environment as parent. This
is where the body of the closure is evaluated. These closure frames appear on the evaluation stack
(see ctxt_stack()), as opposed to primitive functions which do not necessarily have their own
evaluation frame and never appear on the stack.

Primitive functions are more efficient than closures for two reasons. First, they are written entirely
in fast low-level code. Second, the mechanism by which they are passed arguments is more efficient
because they often do not need the full procedure of argument matching (dealing with positional
versus named arguments, partial matching, etc). One practical consequence of the special way in
which primitives are passed arguments is that they technically do not have formal arguments, and
formals() will return NULL if called on a primitive function. Finally, primitive functions can either
take arguments lazily, like R closures do, or evaluate them eagerly before being passed on to the C

https://en.wikipedia.org/wiki/Closure_(computer_programming)

70 is_installed

code. The former kind of primitives are called "special" in R terminology, while the latter is referred
to as "builtin". is_primitive_eager() and is_primitive_lazy() allow you to check whether a
primitive function evaluates arguments eagerly or lazily.

You will also encounter the distinction between primitive and internal functions in technical docu-
mentation. Like primitive functions, internal functions are defined at a low level and written in C.
However, internal functions have no representation in the R language. Instead, they are called via
a call to base::.Internal() within a regular closure. This ensures that they appear as normal R
function objects: they obey all the usual rules of argument passing, and they appear on the evalu-
ation stack as any other closures. As a result, fn_fmls() does not need to look in the .ArgsEnv
environment to obtain a representation of their arguments, and there is no way of querying from R
whether they are lazy (’special’ in R terminology) or eager (’builtin’).

You can call primitive functions with .Primitive() and internal functions with .Internal().
However, calling internal functions in a package is forbidden by CRAN’s policy because they are
considered part of the private API. They often assume that they have been called with correctly
formed arguments, and may cause R to crash if you call them with unexpected objects.

Examples

Primitive functions are not closures:
is_closure(base::c)
is_primitive(base::c)

On the other hand, internal functions are wrapped in a closure
and appear as such from the R side:
is_closure(base::eval)

Both closures and primitives are functions:
is_function(base::c)
is_function(base::eval)

Primitive functions never appear in evaluation stacks:
is_primitive(base::`[[`)
is_primitive(base::list)
list(ctxt_stack())[[1]]

While closures do:
identity(identity(ctxt_stack()))

Many primitive functions evaluate arguments eagerly:
is_primitive_eager(base::c)
is_primitive_eager(base::list)
is_primitive_eager(base::`+`)

However, primitives that operate on expressions, like quote() or
substitute(), are lazy:
is_primitive_lazy(base::quote)
is_primitive_lazy(base::substitute)

is_installed Are packages installed in any of the libraries?

is_integerish 71

Description

This checks that packages are installed with minimal side effects. If installed, the packages will be
loaded but not attached.

Usage

is_installed(pkg)

Arguments

pkg The package names.

Value

TRUE if all package names provided in pkg are installed, FALSE otherwise.

Examples

is_installed("utils")
is_installed(c("base", "ggplot5"))

is_integerish Is a vector integer-like?

Description

These predicates check whether R considers a number vector to be integer-like, according to its own
tolerance check (which is in fact delegated to the C library). This function is not adapted to data
analysis, see the help for base::is.integer() for examples of how to check for whole numbers.

Things to consider when checking for integer-like doubles:

• This check can be expensive because the whole double vector has to be traversed and checked.

• Large double values may be integerish but may still not be coercible to integer. This is because
integers in R only support values up to 2^31 -1 while numbers stored as double can be much
larger.

Usage

is_integerish(x, n = NULL, finite = NULL)

is_bare_integerish(x, n = NULL, finite = NULL)

is_scalar_integerish(x, finite = NULL)

Arguments

x Object to be tested.

n Expected length of a vector.

finite Whether all values of the vector are finite. The non-finite values are NA, Inf,
-Inf and NaN. Setting this to something other than NULL can be expensive be-
cause the whole vector needs to be traversed and checked.

72 is_interactive

See Also

is_bare_numeric() for testing whether an object is a base numeric type (a bare double or integer
vector).

Examples

is_integerish(10L)
is_integerish(10.0)
is_integerish(10.0, n = 2)
is_integerish(10.000001)
is_integerish(TRUE)

is_interactive Is R running interactively?

Description

Like base::interactive(), is_interactive() returns TRUE when the function runs interactively
and FALSE when it runs in batch mode. It also checks, in this order:

• The rlang_interactive global option. If set to a single TRUE or FALSE, is_interactive()
returns that value immediately. This escape hatch is useful in unit tests or to manually turn on
interactive features in RMarkdown outputs.

• Whether knitr, an RStudio notebook, or testthat is in progress (in which case is_interactive()
returns FALSE).

with_interactive() and local_interactive() set the global option conveniently.

Usage

is_interactive()

local_interactive(value = TRUE, frame = caller_env())

with_interactive(expr, value = TRUE)

Arguments

value A single TRUE or FALSE. This overrides the return value of is_interactive().

frame The environment of a running function which defines the scope of the temporary
options. When the function returns, the options are reset to their original values.

expr An expression to evaluate with interactivity set to value.

is_named 73

is_named Is object named?

Description

is_named() checks that x has names attributes, and that none of the names are missing or empty
(NA or ""). is_dictionaryish() checks that an object is a dictionary: that it has actual names and
in addition that there are no duplicated names. have_name() is a vectorised version of is_named().

Usage

is_named(x)

is_dictionaryish(x)

have_name(x)

Arguments

x An object to test.

Value

is_named() and is_dictionaryish() are scalar predicates and return TRUE or FALSE. have_name()
is vectorised and returns a logical vector as long as the input.

Examples

A data frame usually has valid, unique names
is_named(mtcars)
have_name(mtcars)
is_dictionaryish(mtcars)

But data frames can also have duplicated columns:
dups <- cbind(mtcars, cyl = seq_len(nrow(mtcars)))
is_dictionaryish(dups)

The names are still valid:
is_named(dups)
have_name(dups)

For empty objects the semantics are slightly different.
is_dictionaryish() returns TRUE for empty objects:
is_dictionaryish(list())

But is_named() will only return TRUE if there is a names
attribute (a zero-length character vector in this case):
x <- set_names(list(), character(0))
is_named(x)

Empty and missing names are invalid:

74 is_symbol

invalid <- dups
names(invalid)[2] <- ""
names(invalid)[5] <- NA

is_named() performs a global check while have_name() can show you
where the problem is:
is_named(invalid)
have_name(invalid)

have_name() will work even with vectors that don't have a names
attribute:
have_name(letters)

is_namespace Is an object a namespace environment?

Description

Is an object a namespace environment?

Usage

is_namespace(x)

Arguments

x An object to test.

is_symbol Is object a symbol?

Description

Is object a symbol?

Usage

is_symbol(x, name = NULL)

Arguments

x An object to test.

name An optional name or vector of names that the symbol should match.

is_true 75

is_true Is object identical to TRUE or FALSE?

Description

These functions bypass R’s automatic conversion rules and check that x is literally TRUE or FALSE.

Usage

is_true(x)

is_false(x)

Arguments

x object to test

Examples

is_true(TRUE)
is_true(1)

is_false(FALSE)
is_false(0)

is_weakref Is object a weak reference?

Description

Is object a weak reference?

Usage

is_weakref(x)

Arguments

x An object to test.

76 list2

last_error Last abort() error

Description

• last_error() returns the last error thrown with abort(). The error is printed with a back-
trace in simplified form.

• last_trace() is a shortcut to return the backtrace stored in the last error. This backtrace is
printed in full form.

Usage

last_error()

last_trace()

list2 Collect dots in a list

Description

list2(...) is equivalent to list(...) with a few additional features, collectively called dynamic
dots. While list2() hard-code these features, dots_list() is a lower-level version that offers
more control.

Usage

list2(...)

dots_list(
...,
.named = FALSE,
.ignore_empty = c("trailing", "none", "all"),
.preserve_empty = FALSE,
.homonyms = c("keep", "first", "last", "error"),
.check_assign = FALSE

)

Arguments

... Arguments to collect in a list. These dots are dynamic.

.named Whether to ensure all dots are named. Unnamed elements are processed with
as_label() to build a default name.

.ignore_empty Whether to ignore empty arguments. Can be one of "trailing", "none",
"all". If "trailing", only the last argument is ignored if it is empty.

.preserve_empty

Whether to preserve the empty arguments that were not ignored. If TRUE, empty
arguments are stored with missing_arg() values. If FALSE (the default) an
error is thrown when an empty argument is detected.

list2 77

.homonyms How to treat arguments with the same name. The default, "keep", preserves
these arguments. Set .homonyms to "first" to only keep the first occurrences,
to "last" to keep the last occurrences, and to "error" to raise an informative
error and indicate what arguments have duplicated names.

.check_assign Whether to check for <- calls passed in dots. When TRUE and a <- call is de-
tected, a warning is issued to advise users to use = if they meant to match a
function parameter, or wrap the <- call in braces otherwise. This ensures assign-
ments are explicit.

Value

A list containing the ... inputs.

Examples

Let's create a function that takes a variable number of arguments:
numeric <- function(...) {

dots <- list2(...)
num <- as.numeric(dots)
set_names(num, names(dots))

}
numeric(1, 2, 3)

The main difference with list(...) is that list2(...) enables
the `!!!` syntax to splice lists:
x <- list(2, 3)
numeric(1, !!! x, 4)

As well as unquoting of names:
nm <- "yup!"
numeric(!!nm := 1)

One useful application of splicing is to work around exact and
partial matching of arguments. Let's create a function taking
named arguments and dots:
fn <- function(data, ...) {

list2(...)
}

You normally cannot pass an argument named `data` through the dots
as it will match `fn`'s `data` argument. The splicing syntax
provides a workaround:
fn("wrong!", data = letters) # exact matching of `data`
fn("wrong!", dat = letters) # partial matching of `data`
fn(some_data, !!!list(data = letters)) # no matching

Empty arguments trigger an error by default:
try(fn(,))

You can choose to preserve empty arguments instead:
list3 <- function(...) dots_list(..., .preserve_empty = TRUE)

Note how the last empty argument is still ignored because
`.ignore_empty` defaults to "trailing":

78 local_bindings

list3(,)

The list with preserved empty arguments is equivalent to:
list(missing_arg())

Arguments with duplicated names are kept by default:
list2(a = 1, a = 2, b = 3, b = 4, 5, 6)

Use the `.homonyms` argument to keep only the first of these:
dots_list(a = 1, a = 2, b = 3, b = 4, 5, 6, .homonyms = "first")

Or the last:
dots_list(a = 1, a = 2, b = 3, b = 4, 5, 6, .homonyms = "last")

Or raise an informative error:
try(dots_list(a = 1, a = 2, b = 3, b = 4, 5, 6, .homonyms = "error"))

dots_list() can be configured to warn when a `<-` call is
detected:
my_list <- function(...) dots_list(..., .check_assign = TRUE)
my_list(a <- 1)

There is no warning if the assignment is wrapped in braces.
This requires users to be explicit about their intent:
my_list({ a <- 1 })

local_bindings Temporarily change bindings of an environment

Description

• local_bindings() temporarily changes bindings in .env (which is by default the caller en-
vironment). The bindings are reset to their original values when the current frame (or an
arbitrary one if you specify .frame) goes out of scope.

• with_bindings() evaluates expr with temporary bindings. When with_bindings() returns,
bindings are reset to their original values. It is a simple wrapper around local_bindings().

Usage

local_bindings(..., .env = .frame, .frame = caller_env())

with_bindings(.expr, ..., .env = caller_env())

Arguments

... Pairs of names and values. These dots support splicing (with value semantics)
and name unquoting.

.env An environment.

.frame The frame environment that determines the scope of the temporary bindings.
When that frame is popped from the call stack, bindings are switched back to
their original values.

.expr An expression to evaluate with temporary bindings.

local_options 79

Value

local_bindings() returns the values of old bindings invisibly; with_bindings() returns the
value of expr.

Examples

foo <- "foo"
bar <- "bar"

`foo` will be temporarily rebinded while executing `expr`
with_bindings(paste(foo, bar), foo = "rebinded")
paste(foo, bar)

local_options Change global options

Description

• local_options() changes options for the duration of a stack frame (by default the current
one). Options are set back to their old values when the frame returns.

• with_options() changes options while an expression is evaluated. Options are restored when
the expression returns.

• push_options() adds or changes options permanently.
• peek_option() and peek_options() return option values. The former returns the option

directly while the latter returns a list.

Usage

local_options(..., .frame = caller_env())

with_options(.expr, ...)

push_options(...)

peek_options(...)

peek_option(name)

Arguments

... For local_options() and push_options(), named values defining new option
values. For peek_options(), strings or character vectors of option names.

.frame The environment of a stack frame which defines the scope of the temporary
options. When the frame returns, the options are set back to their original values.

.expr An expression to evaluate with temporary options.
name An option name as string.

Value

For local_options() and push_options(), the old option values. peek_option() returns the
current value of an option while the plural peek_options() returns a list of current option values.

80 missing_arg

Life cycle

These functions are experimental.

Examples

Store and retrieve a global option:
push_options(my_option = 10)
peek_option("my_option")

Change the option temporarily:
with_options(my_option = 100, peek_option("my_option"))
peek_option("my_option")

The scoped variant is useful within functions:
fn <- function() {

local_options(my_option = 100)
peek_option("my_option")

}
fn()
peek_option("my_option")

The plural peek returns a named list:
peek_options("my_option")
peek_options("my_option", "digits")

missing_arg Generate or handle a missing argument

Description

These functions help using the missing argument as a regular R object.

• missing_arg() generates a missing argument.

• is_missing() is like base::missing() but also supports testing for missing arguments con-
tained in other objects like lists.

• maybe_missing() is useful to pass down an input that might be missing to another function,
potentially substituting by a default value. It avoids triggering an "argument is missing" error.

Usage

missing_arg()

is_missing(x)

maybe_missing(x, default = missing_arg())

Arguments

x An object that might be the missing argument.

default The object to return if the input is missing, defaults to missing_arg().

missing_arg 81

Other ways to reify the missing argument

• base::quote(expr =) is the canonical way to create a missing argument object.

• expr() called without argument creates a missing argument.

• quo() called without argument creates an empty quosure, i.e. a quosure containing the missing
argument object.

Fragility of the missing argument object

The missing argument is an object that triggers an error if and only if it is the result of evaluating a
symbol. No error is produced when a function call evaluates to the missing argument object. This
means that expressions like x[[1]] <-missing_arg() are perfectly safe. Likewise, x[[1]] is safe
even if the result is the missing object.

However, as soon as the missing argument is passed down between functions through an argument,
you’re at risk of triggering a missing error. This is because arguments are passed through symbols.
To work around this, is_missing() and maybe_missing(x) use a bit of magic to determine if the
input is the missing argument without triggering a missing error.

maybe_missing() is particularly useful for prototyping meta-programming algorithms in R. The
missing argument is a likely input when computing on the language because it is a standard object
in formals lists. While C functions are always allowed to return the missing argument and pass it to
other C functions, this is not the case on the R side. If you’re implementing your meta-programming
algorithm in R, use maybe_missing() when an input might be the missing argument object.

Life cycle

• missing_arg() and is_missing() are stable.

• Like the rest of rlang, maybe_missing() is maturing.

Examples

The missing argument usually arises inside a function when the
user omits an argument that does not have a default:
fn <- function(x) is_missing(x)
fn()

Creating a missing argument can also be useful to generate calls
args <- list(1, missing_arg(), 3, missing_arg())
quo(fn(!!! args))

Other ways to create that object include:
quote(expr =)
expr()

It is perfectly valid to generate and assign the missing
argument in a list.
x <- missing_arg()
l <- list(missing_arg())

Just don't evaluate a symbol that contains the empty argument.
Evaluating the object `x` that we created above would trigger an
error.
x # Not run

On the other hand accessing a missing argument contained in a

82 names2

list does not trigger an error because subsetting is a function
call:
l[[1]]
is.null(l[[1]])

In case you really need to access a symbol that might contain the
empty argument object, use maybe_missing():
maybe_missing(x)
is.null(maybe_missing(x))
is_missing(maybe_missing(x))

Note that base::missing() only works on symbols and does not
support complex expressions. For this reason the following lines
would throw an error:

#> missing(missing_arg())
#> missing(l[[1]])

while is_missing() will work as expected:
is_missing(missing_arg())
is_missing(l[[1]])

names2 Get names of a vector

Description

Stable
This names getter always returns a character vector, even when an object does not have a names
attribute. In this case, it returns a vector of empty names "". It also standardises missing names to
"".

Usage

names2(x)

Arguments

x A vector.

Life cycle

names2() is stable.

Examples

names2(letters)

It also takes care of standardising missing names:
x <- set_names(1:3, c("a", NA, "b"))
names2(x)

new_formula 83

new_formula Create a formula

Description

Create a formula

Usage

new_formula(lhs, rhs, env = caller_env())

Arguments

lhs, rhs A call, name, or atomic vector.
env An environment.

Value

A formula object.

See Also

new_quosure()

Examples

new_formula(quote(a), quote(b))
new_formula(NULL, quote(b))

new_function Create a function

Description

Stable
This constructs a new function given its three components: list of arguments, body code and parent
environment.

Usage

new_function(args, body, env = caller_env())

Arguments

args A named list or pairlist of default arguments. Note that if you want arguments
that don’t have defaults, you’ll need to use the special function pairlist2(). If
you need quoted defaults, use exprs().

body A language object representing the code inside the function. Usually this will
be most easily generated with base::quote()

env The parent environment of the function, defaults to the calling environment of
new_function()

84 new_quosures

Examples

f <- function() letters
g <- new_function(NULL, quote(letters))
identical(f, g)

Pass a list or pairlist of named arguments to create a function
with parameters. The name becomes the parameter name and the
argument the default value for this parameter:
new_function(list(x = 10), quote(x))
new_function(pairlist2(x = 10), quote(x))

Use `exprs()` to create quoted defaults. Compare:
new_function(pairlist2(x = 5 + 5), quote(x))
new_function(exprs(x = 5 + 5), quote(x))

Pass empty arguments to omit defaults. `list()` doesn't allow
empty arguments but `pairlist2()` does:
new_function(pairlist2(x = , y = 5 + 5), quote(x + y))
new_function(exprs(x = , y = 5 + 5), quote(x + y))

new_quosures Create a list of quosures

Description

This small S3 class provides methods for [and c() and ensures the following invariants:

• The list only contains quosures.

• It is always named, possibly with a vector of empty strings.

new_quosures() takes a list of quosures and adds the quosures class and a vector of empty names
if needed. as_quosures() calls as_quosure() on all elements before creating the quosures ob-
ject.

Usage

new_quosures(x)

as_quosures(x, env, named = FALSE)

is_quosures(x)

Arguments

x A list of quosures or objects to coerce to quosures.

env The default environment for the new quosures.

named Whether to name the list with quos_auto_name().

new_weakref 85

new_weakref Create a weak reference

Description

A weak reference is a special R object which makes it possible to keep a reference to an object
without preventing garbage collection of that object. It can also be used to keep data about an
object without preventing GC of the object, similar to WeakMaps in JavaScript.

Objects in R are considered reachable if they can be accessed by following a chain of references,
starting from a root node; root nodes are specially-designated R objects, and include the global
environment and base environment. As long as the key is reachable, the value will not be garbage
collected. This is true even if the weak reference object becomes unreachable. The key effectively
prevents the weak reference and its value from being collected, according to the following chain of
ownership: weakref <-key -> value.

When the key becomes unreachable, the key and value in the weak reference object are replaced by
NULL, and the finalizer is scheduled to execute.

Usage

new_weakref(key, value = NULL, finalizer = NULL, on_quit = FALSE)

Arguments

key The key for the weak reference. Must be a reference object – that is, an environ-
ment or external pointer.

value The value for the weak reference. This can be NULL, if you want to use the weak
reference like a weak pointer.

finalizer A function that is run after the key becomes unreachable.

on_quit Should the finalizer be run when R exits?

See Also

is_weakref(), wref_key() and wref_value().

Examples

e <- env()

Create a weak reference to e
w <- new_weakref(e, finalizer = function(e) message("finalized"))

Get the key object from the weak reference
identical(wref_key(w), e)

When the regular reference (the `e` binding) is removed and a GC occurs,
the weak reference will not keep the object alive.
rm(e)
gc()
identical(wref_key(w), NULL)

86 nse-defuse

A weak reference with a key and value. The value contains data about the
key.
k <- env()
v <- list(1, 2, 3)
w <- new_weakref(k, v)

identical(wref_key(w), k)
identical(wref_value(w), v)

When v is removed, the weak ref keeps it alive because k is still reachable.
rm(v)
gc()
identical(wref_value(w), list(1, 2, 3))

When k is removed, the weak ref does not keep k or v alive.
rm(k)
gc()
identical(wref_key(w), NULL)
identical(wref_value(w), NULL)

nse-defuse Defuse R expressions

Description

Stable
The defusing operators expr() and enquo() prevent the evaluation of R code. Defusing is also
known as quoting, and is done in base R by quote() and substitute(). When a function argument
is defused, R doesn’t return its value like it normally would but it returns the R expression describing
how to make the value. These defused expressions are like blueprints for computing values.

There are two main ways to defuse expressions, to which correspond the two functions expr() and
enquo(). Whereas expr() defuses your own expression, enquo() defuses expressions supplied as
argument by the user of a function. See section on function arguments for more on this distinction.

The main purpose of defusing evaluation of an expression is to enable data-masking, where an
expression is evaluated in the context of a data frame so that you can write var instead of data$var.
The expression is defused so it can be resumed later on, in a context where the data-variables have
been defined.

Defusing prevents the evaluation of R code, but you can still force evaluation inside a defused
expression with the forcing operators !! and !!!.

Usage

expr(expr)

enexpr(arg)

exprs(
...,
.named = FALSE,
.ignore_empty = c("trailing", "none", "all"),
.unquote_names = TRUE

nse-defuse 87

)

enexprs(
...,
.named = FALSE,
.ignore_empty = c("trailing", "none", "all"),
.unquote_names = TRUE,
.homonyms = c("keep", "first", "last", "error"),
.check_assign = FALSE

)

ensym(arg)

ensyms(
...,
.named = FALSE,
.ignore_empty = c("trailing", "none", "all"),
.unquote_names = TRUE,
.homonyms = c("keep", "first", "last", "error"),
.check_assign = FALSE

)

quo(expr)

enquo(arg)

quos(
...,
.named = FALSE,
.ignore_empty = c("trailing", "none", "all"),
.unquote_names = TRUE

)

enquos(
...,
.named = FALSE,
.ignore_empty = c("trailing", "none", "all"),
.unquote_names = TRUE,
.homonyms = c("keep", "first", "last", "error"),
.check_assign = FALSE

)

Arguments

expr An expression.

arg A symbol representing an argument. The expression supplied to that argument
will be captured instead of being evaluated.

... For enexprs(), ensyms() and enquos(), names of arguments to capture with-
out evaluation (including ...). For exprs() and quos(), the expressions to
capture unevaluated (including expressions contained in ...).

.named Whether to ensure all dots are named. Unnamed elements are processed with
as_label() to build a default name.

88 nse-defuse

.ignore_empty Whether to ignore empty arguments. Can be one of "trailing", "none",
"all". If "trailing", only the last argument is ignored if it is empty. Note
that "trailing" applies only to arguments passed in ..., not to named argu-
ments. On the other hand, "all" also applies to named arguments.

.unquote_names Whether to treat := as =. Unlike =, the := syntax supports !! unquoting on the
LHS.

.homonyms How to treat arguments with the same name. The default, "keep", preserves
these arguments. Set .homonyms to "first" to only keep the first occurrences,
to "last" to keep the last occurrences, and to "error" to raise an informative
error and indicate what arguments have duplicated names.

.check_assign Whether to check for <- calls passed in dots. When TRUE and a <- call is de-
tected, a warning is issued to advise users to use = if they meant to match a
function parameter, or wrap the <- call in braces otherwise. This ensures assign-
ments are explicit.

Types of defused expressions

• Calls, like f(1,2,3) or 1 + 1 represent the action of calling a function to compute a new
value, such as a vector.

• Symbols, like x or df, represent named objects. When the object pointed to by the symbol
was defined in a function or in the global environment, we call it an environment-variable.
When the object is a column in a data frame, we call it a data-variable.

You can create new call or symbol objects by using the defusing function expr():

Create a symbol representing objects called `foo`
expr(foo)

Create a call representing the computation of the mean of `foo`
expr(mean(foo, na.rm = TRUE))

Defusing is not the only way to create defused expressions. You can also assemble them from data:

Assemble a symbol from a string
var <- "foo"
sym(var)

Assemble a call from strings, symbols, and other objects
call("mean", sym(var), na.rm = TRUE)

Defusing function arguments

There are two points of view when it comes to defusing an expression:

• You can defuse expressions that you supply with expr(). This is one way of creating symbols
and calls (see previous section).

• You can defuse the expressions supplied by the user of your function with the operators start-
ing with en like ensym(), enquo() and their plural variants. They defuse function arguments
.

nse-defuse 89

Defused arguments and quosures

If you inspect the return values of expr() and enquo(), you’ll notice that the latter doesn’t return
a raw expression like the former. Instead it returns a quosure, a wrapper containing an expression
and an environment. R needs information about the environment to properly evaluate the argument
expression because it comes from a different context than the current function.

See the quosure help topic about tools to work with quosures.

Comparison to base R

• The defusing operator expr() is similar to quote(). Like bquote(), it allows forcing evalu-
ation of parts of an expression.

• The plural variant exprs() is similar to alist().

• The argument-defusing operator enquo() is similar to substitute().

Examples

expr() and exprs() capture expressions that you supply:
expr(symbol)
exprs(several, such, symbols)

enexpr() and enexprs() capture expressions that your user supplied:
expr_inputs <- function(arg, ...) {

user_exprs <- enexprs(arg, ...)
user_exprs

}
expr_inputs(hello)
expr_inputs(hello, bonjour, ciao)

ensym() and ensyms() provide additional type checking to ensure
the user calling your function has supplied bare object names:
sym_inputs <- function(...) {

user_symbols <- ensyms(...)
user_symbols

}
sym_inputs(hello, "bonjour")
sym_inputs(say(hello)) # Error: Must supply symbols or strings
expr_inputs(say(hello))

All these quoting functions have quasiquotation support. This
means that you can unquote (evaluate and inline) part of the
captured expression:
what <- sym("bonjour")
expr(say(what))
expr(say(!!what))

This also applies to expressions supplied by the user. This is
like an escape hatch that allows control over the captured
expression:
expr_inputs(say(!!what), !!what)

Finally, you can capture expressions as quosures. A quosure is an
object that contains both the expression and its environment:
quo <- quo(letters)

90 nse-force

quo

get_expr(quo)
get_env(quo)

Quosures can be evaluated with eval_tidy():
eval_tidy(quo)

They have the nice property that you can pass them around from
context to context (that is, from function to function) and they
still evaluate in their original environment:
multiply_expr_by_10 <- function(expr) {

We capture the user expression and its environment:
expr <- enquo(expr)

Then create an object that only exists in this function:
local_ten <- 10

Now let's create a multiplication expression that (a) inlines
the user expression as LHS (still wrapped in its quosure) and
(b) refers to the local object in the RHS:
quo(!!expr * local_ten)

}
quo <- multiply_expr_by_10(2 + 3)

The local parts of the quosure are printed in colour if your
terminal is capable of displaying colours:
quo

All the quosures in the expression evaluate in their original
context. The local objects are looked up properly and we get the
expected result:
eval_tidy(quo)

nse-force Force parts of an expression

Description

It is sometimes useful to force early evaluation of part of an expression before it gets fully evaluated.
The tidy eval framework provides several forcing operators for different use cases.

• The bang-bang operator !! forces a single object. One common case for !! is to substitute an
environment-variable (created with <-) with a data-variable (inside a data frame).

library(dplyr)

The environment variable `var` refers to the data-variable
`height`
var <- sym("height")

We force `var`, which substitutes it with `height`
starwars %>%
summarise(avg = mean(!!var, na.rm = TRUE))

nse-force 91

• The big-bang operator !!! forces-splice a list of objects. The elements of the list are spliced in
place, meaning that they each become one single argument.

vars <- syms(c("height", "mass"))

Force-splicing is equivalent to supplying the elements separately
starwars %>% select(!!!vars)
starwars %>% select(height, mass)

• The curly-curly operator {{ }} for function arguments is a bit special because it forces the
function argument and immediately defuses it. The defused expression is substituted in place,
ready to be evaluated in another context, such as the data frame.
In practice, this is useful when you have a data-variable in an env-variable (such as a function
argument).

Force-defuse all function arguments that might contain
data-variables by embracing them with {{ }}
mean_by <- function(data, by, var) {
data %>%
group_by({{ by }}) %>%
summarise(avg = mean({{ var }}, na.rm = TRUE))

}

The env-variables `by` and `var` are forced but defused.
The data-variables they contain are evaluated by dplyr later on
in data context.
iris %>% mean_by(by = Species, var = Sepal.Width)

Use qq_show() to experiment with forcing operators. qq_show() defuses its input, processes all
forcing operators, and prints the result with expr_print() to reveal objects inlined in the expres-
sion by the forcing operators.

Usage

qq_show(expr)

Arguments

expr An expression to be quasiquoted.

Forcing names

When a function takes multiple named arguments (e.g. dplyr::mutate()), it is difficult to supply
a variable as name. Since the LHS of = is defused, giving the name of a variable results in the
argument having the name of the variable rather than the name stored in that variable. This problem
of forcing evaluation of names is exactly what the !! operator is for.

Unfortunately R is very strict about the kind of expressions supported on the LHS of =. This is why
rlang interprets the walrus operator := as an alias of =. You can use it to supply names, e.g. a := b
is equivalent to a = b. Since its syntax is more flexible you can also force names on its LHS:

name <- "Jane"

list2(!!name := 1 + 2)
exprs(!!name := 1 + 2)

92 nse-force

Like =, the := operator expects strings or symbols on its LHS.

Since unquoting names is related to interpolating within a string with the glue package, we have
made the glue syntax available on the LHS of :=:

list2("{name}" := 1)
tibble("{name}" := 1)

You can also interpolate defused function arguments with double braces {{, similar to the curly-
curly syntax:

wrapper <- function(data, var) {
data %>% mutate("{{ var }}_foo" := {{ var }} * 2)

}

Currently, forcing names with := only works in top level expressions. These are all valid:

exprs("{name}" := x)
tibble("{name}" := x)

But deep-forcing names isn’t supported:

exprs(this(is(deep("{name}" := x))))

Theory

Formally, quo() and expr() are quasiquotation functions, !! is the unquote operator, and !!! is the
unquote-splice operator. These terms have a rich history in Lisp languages, and live on in modern
languages like Julia and Racket.

Life cycle

• Calling UQ() and UQS() with the rlang namespace qualifier is deprecated as of rlang 0.3.0.
Just use the unqualified forms instead:

Bad
rlang::expr(mean(rlang::UQ(var) * 100))

Ok
rlang::expr(mean(UQ(var) * 100))

Good
rlang::expr(mean(!!var * 100))

Supporting namespace qualifiers complicates the implementation of unquotation and is mis-
leading as to the nature of unquoting operators (which are syntactic operators that operate at
quotation-time rather than function calls at evaluation-time).

• UQ() and UQS() were soft-deprecated in rlang 0.2.0 in order to make the syntax of quasiquo-
tation more consistent. The prefix forms are now `!!`() and `!!!`() which is consistent
with other R operators (e.g. `+`(a,b) is the prefix form of a + b).
Note that the prefix forms are not as relevant as before because !! now has the right operator
precedence, i.e. the same as unary - or +. It is thus safe to mingle it with other operators,
e.g. !!a + !!b does the right thing. In addition the parser now strips one level of parenthe-
ses around unquoted expressions. This way (!!"foo")(...) expands to foo(...). These
changes make the prefix forms less useful.

https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.racket-lang.org/reference/quasiquote.html

nse-force 93

Finally, the named functional forms UQ() and UQS() were misleading because they suggested
that existing knowledge about functions is applicable to quasiquotation. This was reinforced
by the visible definitions of these functions exported by rlang and by the tidy eval parser
interpreting rlang::UQ() as !!. In reality unquoting is not a function call, it is a syntactic
operation. The operator form makes it clearer that unquoting is special.

Examples

Interpolation with {{ }} is the easiest way to forward
arguments to tidy eval functions:
if (is_attached("package:dplyr")) {

Forward all arguments involving data frame columns by
interpolating them within other data masked arguments.
Here we interpolate `arg` in a `summarise()` call:
my_function <- function(data, arg) {

summarise(data, avg = mean({{ arg }}, na.rm = TRUE))
}

my_function(mtcars, cyl)
my_function(mtcars, cyl * 10)

The operator is just a shortcut for `!!enquo()`:
my_function <- function(data, arg) {

summarise(data, avg = mean(!!enquo(arg), na.rm = TRUE))
}

my_function(mtcars, cyl)

}

Quasiquotation functions quote expressions like base::quote()
quote(how_many(this))
expr(how_many(this))
quo(how_many(this))

In addition, they support unquoting. Let's store symbols
(i.e. object names) in variables:
this <- sym("apples")
that <- sym("oranges")

With unquotation you can insert the contents of these variables
inside the quoted expression:
expr(how_many(!!this))
expr(how_many(!!that))

You can also insert values:
expr(how_many(!!(1 + 2)))
quo(how_many(!!(1 + 2)))

Note that when you unquote complex objects into an expression,
the base R printer may be a bit misleading. For instance compare
the output of `expr()` and `quo()` (which uses a custom printer)
when we unquote an integer vector:
expr(how_many(!!(1:10)))
quo(how_many(!!(1:10)))

94 op-get-attr

This is why it's often useful to use qq_show() to examine the
result of unquotation operators. It uses the same printer as
quosures but does not return anything:
qq_show(how_many(!!(1:10)))

Use `!!!` to add multiple arguments to a function. Its argument
should evaluate to a list or vector:
args <- list(1:3, na.rm = TRUE)
quo(mean(!!!args))

You can combine the two
var <- quote(xyz)
extra_args <- list(trim = 0.9, na.rm = TRUE)
quo(mean(!!var , !!!extra_args))

The plural versions have support for the `:=` operator.
Like `=`, `:=` creates named arguments:
quos(mouse1 := bernard, mouse2 = bianca)

The `:=` is mainly useful to unquote names. Unlike `=` it
supports `!!` on its LHS:
var <- "unquote me!"
quos(!!var := bernard, mouse2 = bianca)

All these features apply to dots captured by enquos():
fn <- function(...) enquos(...)
fn(!!!args, !!var := penny)

Unquoting is especially useful for building an expression by
expanding around a variable part (the unquoted part):
quo1 <- quo(toupper(foo))
quo1

quo2 <- quo(paste(!!quo1, bar))
quo2

quo3 <- quo(list(!!quo2, !!!syms(letters[1:5])))
quo3

op-get-attr Infix attribute accessor and setter

Description

This operator extracts or sets attributes for regular objects and S4 fields for S4 objects.

Usage

x %@% name

x %@% name <- value

op-na-default 95

Arguments

x Object

name Attribute name

value New value for attribute name.

Examples

Unlike `@`, this operator extracts attributes for any kind of
objects:
factor(1:3) %@% "levels"
mtcars %@% class

mtcars %@% class <- NULL
mtcars

It also works on S4 objects:
.Person <- setClass("Person", slots = c(name = "character", species = "character"))
fievel <- .Person(name = "Fievel", species = "mouse")
fievel %@% name

op-na-default Replace missing values

Description

This infix function is similar to %||% but is vectorised and provides a default value for missing
elements. It is faster than using base::ifelse() and does not perform type conversions.

Usage

x %|% y

Arguments

x The original values.

y The replacement values. Must be of length 1 or the same length as x.

See Also

op-null-default

Examples

c("a", "b", NA, "c") %|% "default"
c(1L, NA, 3L, NA, NA) %|% (6L:10L)

96 pairlist2

op-null-default Default value for NULL

Description

This infix function makes it easy to replace NULLs with a default value. It’s inspired by the way that
Ruby’s or operation (||) works.

Usage

x %||% y

Arguments

x, y If x is NULL, will return y; otherwise returns x.

Examples

1 %||% 2
NULL %||% 2

pairlist2 Create pairlists with splicing support

Description

This pairlist constructor uses dynamic dots. Use it to manually create argument lists for calls or
parameter lists for functions.

Usage

pairlist2(...)

Arguments

... <dynamic> Arguments stored in the pairlist. Empty arguments are preserved.

Examples

Unlike `exprs()`, `pairlist2()` evaluates its arguments.
new_function(pairlist2(x = 1, y = 3 * 6), quote(x * y))
new_function(exprs(x = 1, y = 3 * 6), quote(x * y))

It preserves missing arguments, which is useful for creating
parameters without defaults:
new_function(pairlist2(x = , y = 3 * 6), quote(x * y))

parse_expr 97

parse_expr Parse R code

Description

These functions parse and transform text into R expressions. This is the first step to interpret or
evaluate a piece of R code written by a programmer.

Usage

parse_expr(x)

parse_exprs(x)

Arguments

x Text containing expressions to parse_expr for parse_expr() and parse_exprs().
Can also be an R connection, for instance to a file. If the supplied connection is
not open, it will be automatically closed and destroyed.

Details

parse_expr() returns one expression. If the text contains more than one expression (separated by
semicolons or new lines), an error is issued. On the other hand parse_exprs() can handle multiple
expressions. It always returns a list of expressions (compare to base::parse() which returns a
base::expression vector). All functions also support R connections.

Value

parse_expr() returns an expression, parse_exprs() returns a list of expressions. Note that for
the plural variants the length of the output may be greater than the length of the input. This would
happen is one of the strings contain several expressions (such as "foo; bar"). The names of x are
preserved (and recycled in case of multiple expressions).

See Also

base::parse()

Examples

parse_expr() can parse any R expression:
parse_expr("mtcars %>% dplyr::mutate(cyl_prime = cyl / sd(cyl))")

A string can contain several expressions separated by ; or \n
parse_exprs("NULL; list()\n foo(bar)")

Use names to figure out which input produced an expression:
parse_exprs(c(foo = "1; 2", bar = "3"))

You can also parse source files by passing a R connection. Let's
create a file containing R code:
path <- tempfile("my-file.R")
cat("1; 2; mtcars", file = path)

98 quosure

We can now parse it by supplying a connection:
parse_exprs(file(path))

quosure Quosure getters, setters and testers

Description

A quosure is a type of quoted expression that includes a reference to the context where it was
created. A quosure is thus guaranteed to evaluate in its original environment and can refer to local
objects.

You can access the quosure components (its expression and its environment) with:

• get_expr() and get_env(). These getters also support other kinds of objects such as formu-
las.

• quo_get_expr() and quo_get_env(). These getters only work with quosures and throw an
error with other types of input.

Test if an object is a quosure with is_quosure(). If you know an object is a quosure, use the quo_
prefixed predicates to check its contents, quo_is_missing(), quo_is_symbol(), etc.

Usage

is_quosure(x)

quo_is_missing(quo)

quo_is_symbol(quo, name = NULL)

quo_is_call(quo, name = NULL, n = NULL, ns = NULL)

quo_is_symbolic(quo)

quo_is_null(quo)

quo_get_expr(quo)

quo_get_env(quo)

quo_set_expr(quo, expr)

quo_set_env(quo, env)

Arguments

x An object to test.

quo A quosure to test.

name The name of the symbol or function call. If NULL the name is not tested.

n An optional number of arguments that the call should match.

quosure 99

ns The namespace of the call. If NULL, the namespace doesn’t participate in the
pattern-matching. If an empty string "" and x is a namespaced call, is_call()
returns FALSE. If any other string, is_call() checks that x is namespaced
within ns.
Can be a character vector of namespaces, in which case the call has to match at
least one of them, otherwise is_call() returns FALSE.

expr A new expression for the quosure.

env A new environment for the quosure.

Quosured constants

A quosure usually does not carry environments for constant objects like strings or numbers. quo()
and enquo() only capture an environment for symbolic expressions. For instance, all of these return
the empty environment:

quo_get_env(quo("constant"))
quo_get_env(quo(100))
quo_get_env(quo(NA))

On the other hand, quosures capture the environment of symbolic expressions, i.e. expressions
whose meaning depends on the environment in which they are evaluated and what objects are de-
fined there:

quo_get_env(quo(some_object))
quo_get_env(quo(some_function()))

Empty quosures

When missing arguments are captured as quosures, either through enquo() or quos(), they are
returned as an empty quosure. These quosures contain the missing argument and typically have the
empty environment as enclosure.

Life cycle

• is_quosure() is stable.

• quo_get_expr() and quo_get_env() are stable.

See Also

quo() for creating quosures by quotation; as_quosure() and new_quosure() for constructing
quosures manually.

Examples

quo <- quo(my_quosure)
quo

Access and set the components of a quosure:
quo_get_expr(quo)
quo_get_env(quo)

quo <- quo_set_expr(quo, quote(baz))

100 quo_label

quo <- quo_set_env(quo, empty_env())
quo

Test wether an object is a quosure:
is_quosure(quo)

If it is a quosure, you can use the specialised type predicates
to check what is inside it:
quo_is_symbol(quo)
quo_is_call(quo)
quo_is_null(quo)

quo_is_missing() checks for a special kind of quosure, the one
that contains the missing argument:
quo()
quo_is_missing(quo())

fn <- function(arg) enquo(arg)
fn()
quo_is_missing(fn())

quo_label Format quosures for printing or labelling

Description

Questioning
Note: You should now use as_label() or as_name() instead of quo_name(). See life cycle section
below.

These functions take an arbitrary R object, typically an expression, and represent it as a string.

• quo_name() returns an abbreviated representation of the object as a single line string. It is
suitable for default names.

• quo_text() returns a multiline string. For instance block expressions like { foo; bar } are
represented on 4 lines (one for each symbol, and the curly braces on their own lines).

These deparsers are only suitable for creating default names or printing output at the console. The
behaviour of your functions should not depend on deparsed objects. If you are looking for a way of
transforming symbols to strings, use as_string() instead of quo_name(). Unlike deparsing, the
transformation between symbols and strings is non-lossy and well defined.

Usage

quo_label(quo)

quo_text(quo, width = 60L, nlines = Inf)

quo_name(quo)

Arguments

quo A quosure or expression.
width Width of each line.
nlines Maximum number of lines to extract.

quo_squash 101

Life cycle

These functions are in the questioning life cycle stage.

• as_label() and as_name() should be used instead of quo_name(). as_label() transforms
any R object to a string but should only be used to create a default name. Labelisation is not
a well defined operation and no assumption should be made about the label. On the other
hand, as_name() only works with (possibly quosured) symbols, but is a well defined and
deterministic operation.

• We don’t have a good replacement for quo_text() yet. See https://github.com/r-lib/
rlang/issues/636 to follow discussions about a new deparsing API.

See Also

expr_label(), f_label()

Examples

Quosures can contain nested quosures:
quo <- quo(foo(!! quo(bar)))
quo

quo_squash() unwraps all quosures and returns a raw expression:
quo_squash(quo)

This is used by quo_text() and quo_label():
quo_text(quo)

Compare to the unwrapped expression:
expr_text(quo)

quo_name() is helpful when you need really short labels:
quo_name(quo(sym))
quo_name(quo(!! sym))

quo_squash Squash a quosure

Description

quo_squash() flattens all nested quosures within an expression. For example it transforms ^foo(^bar(), ^baz)
to the bare expression foo(bar(),baz).

This operation is safe if the squashed quosure is used for labelling or printing (see quo_label()
or quo_name()). However if the squashed quosure is evaluated, all expressions of the flattened
quosures are resolved in a single environment. This is a source of bugs so it is good practice to set
warn to TRUE to let the user know about the lossy squashing.

Usage

quo_squash(quo, warn = FALSE)

https://github.com/r-lib/rlang/issues/636
https://github.com/r-lib/rlang/issues/636

102 raw_deparse_str

Arguments

quo A quosure or expression.

warn Whether to warn if the quosure contains other quosures (those will be collapsed).
This is useful when you use quo_squash() in order to make a non-tidyeval API
compatible with quosures. In that case, getting rid of the nested quosures is
likely to cause subtle bugs and it is good practice to warn the user about it.

Life cycle

This function replaces quo_expr() which was deprecated in rlang 0.2.0. quo_expr() was a mis-
nomer because it implied that it was a mere expression acccessor for quosures whereas it was really
a lossy operation that squashed all nested quosures.

Examples

Quosures can contain nested quosures:
quo <- quo(wrapper(!!quo(wrappee)))
quo

quo_squash() flattens all the quosures and returns a simple expression:
quo_squash(quo)

raw_deparse_str Serialize a raw vector to a string

Description

Experimental
This function converts a raw vector to a hexadecimal string, optionally adding a prefix and a suf-
fix. It is roughly equivalent to paste0(prefix,paste(format(x),collapse = ""),suffix) and
much faster.

Usage

raw_deparse_str(x, prefix = NULL, suffix = NULL)

Arguments

x A raw vector.

prefix, suffix Prefix and suffix strings, or ‘NULL.

Value

A string.

Examples

raw_deparse_str(raw())
raw_deparse_str(charToRaw("string"))
raw_deparse_str(raw(10), prefix = "'0x", suffix = "'")

rep_along 103

rep_along Create vectors matching the length of a given vector

Description

These functions take the idea of seq_along() and apply it to repeating values.

Usage

rep_along(along, x)

rep_named(names, x)

Arguments

along Vector whose length determine how many times x is repeated.
x Values to repeat.
names Names for the new vector. The length of names determines how many times x

is repeated.

See Also

new-vector

Examples

x <- 0:5
rep_along(x, 1:2)
rep_along(x, 1)

Create fresh vectors by repeating missing values:
rep_along(x, na_int)
rep_along(x, na_chr)

rep_named() repeats a value along a names vectors
rep_named(c("foo", "bar"), list(letters))

rlang_backtrace_on_error

Display backtrace on error

Description

Errors thrown with abort() automatically save a backtrace that can be inspected by calling last_error().
Optionally, you can also display the backtrace alongside the error message by setting the option
rlang_backtrace_on_error to one of the following values:

• "reminder": Display a reminder that the backtrace can be inspected by calling last_error().
• "branch": Display a simplified backtrace.
• "collapse": Display a collapsed backtrace tree.
• "full": Display the full backtrace tree.

104 scalar-type-predicates

Promote base errors to rlang errors

Call options(error = rlang::entrace) to instrument base errors with rlang features. This han-
dler does two things:

• It saves the base error as an rlang object. This allows you to call last_error() to print the
backtrace or inspect its data.

• It prints the backtrace for the current error according to the rlang_backtrace_on_error
option.

Examples

Display a simplified backtrace on error for both base and rlang
errors:

options(
rlang_backtrace_on_error = "branch",
error = rlang::entrace
)
stop("foo")

scalar-type-predicates

Scalar type predicates

Description

These predicates check for a given type and whether the vector is "scalar", that is, of length 1.

In addition to the length check, is_string() and is_bool() return FALSE if their input is missing.
This is useful for type-checking arguments, when your function expects a single string or a single
TRUE or FALSE.

Usage

is_scalar_list(x)

is_scalar_atomic(x)

is_scalar_vector(x)

is_scalar_integer(x)

is_scalar_double(x)

is_scalar_character(x)

is_scalar_logical(x)

is_scalar_raw(x)

is_string(x, string = NULL)

scoped_interactive 105

is_scalar_bytes(x)

is_bool(x)

Arguments

x object to be tested.

string A string to compare to x. If a character vector, returns TRUE if at least one
element is equal to x.

See Also

type-predicates, bare-type-predicates

scoped_interactive Questioning scoped_ functions

Description

Questioning

These functions have been renamed to use the conventional local_ prefix. They will be deprecated
in the next minor version of rlang.

Usage

scoped_interactive(value = TRUE, frame = caller_env())

scoped_options(..., .frame = caller_env())

scoped_bindings(..., .env = .frame, .frame = caller_env())

Arguments

value A single TRUE or FALSE. This overrides the return value of is_interactive().

frame The environment of a running function which defines the scope of the temporary
options. When the function returns, the options are reset to their original values.

... For local_options() and push_options(), named values defining new option
values. For peek_options(), strings or character vectors of option names.

.frame The environment of a running function which defines the scope of the temporary
options. When the function returns, the options are reset to their original values.

.env An environment.

106 set_expr

seq2 Increasing sequence of integers in an interval

Description

These helpers take two endpoints and return the sequence of all integers within that interval. For
seq2_along(), the upper endpoint is taken from the length of a vector. Unlike base::seq(), they
return an empty vector if the starting point is a larger integer than the end point.

Usage

seq2(from, to)

seq2_along(from, x)

Arguments

from The starting point of the sequence.

to The end point.

x A vector whose length is the end point.

Value

An integer vector containing a strictly increasing sequence.

Examples

seq2(2, 10)
seq2(10, 2)
seq(10, 2)

seq2_along(10, letters)

set_expr Set and get an expression

Description

These helpers are useful to make your function work generically with quosures and raw expres-
sions. First call get_expr() to extract an expression. Once you’re done processing the expres-
sion, call set_expr() on the original object to update the expression. You can return the result of
set_expr(), either a formula or an expression depending on the input type. Note that set_expr()
does not change its input, it creates a new object.

Usage

set_expr(x, value)

get_expr(x, default = x)

set_names 107

Arguments

x An expression, closure, or one-sided formula. In addition, set_expr() accept
frames.

value An updated expression.

default A default expression to return when x is not an expression wrapper. Defaults to
x itself.

Value

The updated original input for set_expr(). A raw expression for get_expr().

See Also

quo_get_expr() and quo_set_expr() for versions of get_expr() and set_expr() that only
work on quosures.

Examples

f <- ~foo(bar)
e <- quote(foo(bar))
frame <- identity(identity(ctxt_frame()))

get_expr(f)
get_expr(e)
get_expr(frame)

set_expr(f, quote(baz))
set_expr(e, quote(baz))

set_names Set names of a vector

Description

Stable
This is equivalent to stats::setNames(), with more features and stricter argument checking.

Usage

set_names(x, nm = x, ...)

Arguments

x Vector to name.

nm, ... Vector of names, the same length as x.
You can specify names in the following ways:

• If you do nothing, x will be named with itself.
• If x already has names, you can provide a function or formula to transform

the existing names. In that case, ... is passed to the function.
• If nm is NULL, the names are removed (if present).
• In all other cases, nm and ... are coerced to character.

108 sym

Life cycle

set_names() is stable and exported in purrr.

Examples

set_names(1:4, c("a", "b", "c", "d"))
set_names(1:4, letters[1:4])
set_names(1:4, "a", "b", "c", "d")

If the second argument is ommitted a vector is named with itself
set_names(letters[1:5])

Alternatively you can supply a function
set_names(1:10, ~ letters[seq_along(.)])
set_names(head(mtcars), toupper)

If the input vector is unnamed, it is first named after itself
before the function is applied:
set_names(letters, toupper)

`...` is passed to the function:
set_names(head(mtcars), paste0, "_foo")

sym Create a symbol or list of symbols

Description

These functions take strings as input and turn them into symbols.

Usage

sym(x)

syms(x)

Arguments

x A string or list of strings.

Value

A symbol for sym() and a list of symbols for syms().

Examples

The empty string returns the missing argument:
sym("")

This way sym() and as_string() are inverse of each other:
as_string(missing_arg())
sym(as_string(missing_arg()))

tidyeval-data 109

tidyeval-data Data pronouns for tidy evaluation

Description

These pronouns allow you to be explicit about where to find objects when programming with data
masked functions.

m <- 10
mtcars %>% mutate(disp = .data$disp * .env$m)

• .data retrieves data-variables from the data frame.

• .env retrieves env-variables from the environment.

Because the lookup is explicit, there is no ambiguity between both kinds of variables. Compare:

disp <- 10
mtcars %>% mutate(disp = .data$disp * .env$disp)
mtcars %>% mutate(disp = disp * disp)

The .data object exported from rlang is also useful to import in your package namespace to avoid
a R CMD check note when referring to objects from the data mask.

Note that .data is only a pronoun, it is not a real data frame. This means that you can’t take its
names or map a function over the contents of .data. Similarly, .env is not an actual R environment.
For instance, it doesn’t have a parent and the subsetting operators behave differently.

Usage

.data

.env

Format

An object of class rlang_fake_data_pronoun of length .

trace_back Capture a backtrace

Description

A backtrace captures the sequence of calls that lead to the current function, sometimes called the
call stack. Because of lazy evaluation, the call stack in R is actually a tree, which the summary()
method of this object will reveal.

Usage

trace_back(top = NULL, bottom = NULL)

trace_length(trace)

110 trace_back

Arguments

top The first frame environment to be included in the backtrace. This becomes the
top of the backtrace tree and represents the oldest call in the backtrace.
This is needed in particular when you call trace_back() indirectly or from
a larger context, for example in tests or inside an RMarkdown document where
you don’t want all of the knitr evaluation mechanisms to appear in the backtrace.

bottom The last frame environment to be included in the backtrace. This becomes the
rightmost leaf of the backtrace tree and represents the youngest call in the back-
trace.
Set this when you would like to capture a backtrace without the capture context.
Can also be an integer that will be passed to caller_env().

trace A backtrace created by trace_back().

Details

trace_length() returns the number of frames in a backtrace.

Examples

Trim backtraces automatically (this improves the generated
documentation for the rlang website and the same trick can be
useful within knitr documents):
options(rlang_trace_top_env = current_env())

f <- function() g()
g <- function() h()
h <- function() trace_back()

When no lazy evaluation is involved the backtrace is linear
(i.e. every call has only one child)
f()

Lazy evaluation introduces a tree like structure
identity(identity(f()))
identity(try(f()))
try(identity(f()))

When printing, you can request to simplify this tree to only show
the direct sequence of calls that lead to `trace_back()`
x <- try(identity(f()))
x
print(x, simplify = "branch")

With a little cunning you can also use it to capture the
tree from within a base NSE function
x <- NULL
with(mtcars, {x <<- f(); 10})
x

Restore default top env for next example
options(rlang_trace_top_env = NULL)

When code is executed indirectly, i.e. via source or within an

type-predicates 111

RMarkdown document, you'll tend to get a lot of guff at the beginning
related to the execution environment:
conn <- textConnection("summary(f())")
source(conn, echo = TRUE, local = TRUE)
close(conn)

To automatically strip this off, specify which frame should be
the top of the backtrace. This will automatically trim off calls
prior to that frame:
top <- current_env()
h <- function() trace_back(top)

conn <- textConnection("summary(f())")
source(conn, echo = TRUE, local = TRUE)
close(conn)

type-predicates Type predicates

Description

These type predicates aim to make type testing in R more consistent. They are wrappers around
base::typeof(), so operate at a level beneath S3/S4 etc.

Usage

is_list(x, n = NULL)

is_atomic(x, n = NULL)

is_vector(x, n = NULL)

is_integer(x, n = NULL)

is_double(x, n = NULL, finite = NULL)

is_character(x, n = NULL)

is_logical(x, n = NULL)

is_raw(x, n = NULL)

is_bytes(x, n = NULL)

is_null(x)

Arguments

x Object to be tested.
n Expected length of a vector.
finite Whether all values of the vector are finite. The non-finite values are NA, Inf,

-Inf and NaN. Setting this to something other than NULL can be expensive be-
cause the whole vector needs to be traversed and checked.

112 vector-construction

Details

Compared to base R functions:

• The predicates for vectors include the n argument for pattern-matching on the vector length.

• Unlike is.atomic(), is_atomic() does not return TRUE for NULL.

• Unlike is.vector(), is_vector() tests if an object is an atomic vector or a list. is.vector
checks for the presence of attributes (other than name).

See Also

bare-type-predicates scalar-type-predicates

vector-construction Create vectors

Description

Questioning

The atomic vector constructors are equivalent to c() but:

• They allow you to be more explicit about the output type. Implicit coercions (e.g. from integer
to logical) follow the rules described in vector-coercion.

• They use dynamic dots.

Usage

lgl(...)

int(...)

dbl(...)

cpl(...)

chr(...)

bytes(...)

Arguments

... Components of the new vector. Bare lists and explicitly spliced lists are spliced.

Life cycle

• All the abbreviated constructors such as lgl() will probably be moved to the vctrs package
at some point. This is why they are marked as questioning.

• Automatic splicing is soft-deprecated and will trigger a warning in a future version. Please
splice explicitly with !!!.

with_abort 113

Examples

These constructors are like a typed version of c():
c(TRUE, FALSE)
lgl(TRUE, FALSE)

They follow a restricted set of coercion rules:
int(TRUE, FALSE, 20)

Lists can be spliced:
dbl(10, !!! list(1, 2L), TRUE)

They splice names a bit differently than c(). The latter
automatically composes inner and outer names:
c(a = c(A = 10), b = c(B = 20, C = 30))

On the other hand, rlang's ctors use the inner names and issue a
warning to inform the user that the outer names are ignored:
dbl(a = c(A = 10), b = c(B = 20, C = 30))
dbl(a = c(1, 2))

As an exception, it is allowed to provide an outer name when the
inner vector is an unnamed scalar atomic:
dbl(a = 1)

Spliced lists behave the same way:
dbl(!!! list(a = 1))
dbl(!!! list(a = c(A = 1)))

bytes() accepts integerish inputs
bytes(1:10)
bytes(0x01, 0xff, c(0x03, 0x05), list(10, 20, 30L))

with_abort Promote all errors to rlang errors

Description

with_abort() promotes conditions as if they were thrown with abort(). These errors embed
a backtrace. They are particularly suitable to be set as parent errors (see parent argument of
abort()).

Usage

with_abort(expr, classes = "error")

Arguments

expr An expression run in a context where errors are promoted to rlang errors.

classes Character vector of condition classes that should be promoted to rlang errors.

114 with_handlers

Details

with_abort() installs a calling handler for errors and rethrows non-rlang errors with abort().
However, error handlers installed within with_abort() have priority. For this reason, you should
use tryCatch() and exiting handlers outside with_abort() rather than inside.

Examples

with_abort() automatically casts simple errors thrown by stop()
to rlang errors. It is is handy for rethrowing low level
errors. The backtraces are then segmented between the low level
and high level contexts.
f <- function() g()
g <- function() stop("Low level error")

high_level <- function() {
with_handlers(
with_abort(f()),
error = ~ abort("High level error", parent = .)

)
}

with_handlers Establish handlers on the stack

Description

Condition handlers are functions established on the evaluation stack (see ctxt_stack()) that are
called by R when a condition is signalled (see cnd_signal() and abort() for two common signal
functions). They come in two types:

• Exiting handlers aborts all code currently run between with_handlers() and the point where
the condition has been raised. with_handlers() passes the return value of the handler to its
caller.

• Calling handlers, which are executed from inside the signalling functions. Their return values
are ignored, only their side effects matters. Valid side effects are writing a log message, or
jumping out of the signalling context by invoking a restart or using return_from(). If the
raised condition was an error, this interrupts the aborting process.

If a calling handler returns normally, it effectively declines to handle the condition and other
handlers on the stack (calling or exiting) are given a chance to handle the condition.

Handlers are exiting by default, use calling() to create a calling handler.

Usage

with_handlers(.expr, ...)

calling(handler)

with_handlers 115

Arguments

.expr An expression to execute in a context where new handlers are established. The
underscored version takes a quoted expression or a quoted formula.

... <dynamic> Named handlers. These should be functions of one argument, or for-
mula functions. The handlers are considered exiting by default, use calling()
to specify a calling handler.

handler A handler function that takes a condition as argument. This is passed to as_function()
and can thus be a formula describing a lambda function.

Life cycle

exiting() is soft-deprecated as of rlang 0.4.0 because with_handlers() now treats handlers as
exiting by default.

Examples

Signal a condition with signal():
fn <- function() {

g()
cat("called?\n")
"fn() return value"

}
g <- function() {

h()
cat("called?\n")

}
h <- function() {

signal("A foobar condition occurred", "foo")
cat("called?\n")

}

Exiting handlers jump to with_handlers() before being
executed. Their return value is handed over:
handler <- function(c) "handler return value"
with_handlers(fn(), foo = handler)

Calling handlers are called in turn and their return value is
ignored. Returning just means they are declining to take charge of
the condition. However, they can produce side-effects such as
displaying a message:
some_handler <- function(c) cat("some handler!\n")
other_handler <- function(c) cat("other handler!\n")
with_handlers(fn(), foo = calling(some_handler), foo = calling(other_handler))

If a calling handler jumps to an earlier context, it takes
charge of the condition and no other handler gets a chance to
deal with it. The canonical way of transferring control is by
jumping to a restart. See with_restarts() and restarting()
documentation for more on this:
exiting_handler <- function(c) rst_jump("rst_foo")
fn2 <- function() {

with_restarts(g(), rst_foo = function() "restart value")
}
with_handlers(fn2(), foo = calling(exiting_handler), foo = calling(other_handler))

116 zap

wref_key Get key/value from a weak reference object

Description

Get key/value from a weak reference object

Usage

wref_key(x)

wref_value(x)

Arguments

x A weak reference object.

See Also

is_weakref() and new_weakref().

zap Create zap objects

Description

zap() creates a sentinel object that indicates that an object should be removed. For instance, named
zaps instruct env_bind() and call_modify() to remove those objects from the environment or the
call.

The advantage of zap objects is that they unambiguously signal the intent of removing an object.
Sentinels like NULL or missing_arg() are ambiguous because they represent valid R objects.

Usage

zap()

is_zap(x)

Arguments

x An object to test.

Examples

Create one zap object:
zap()

Create a list of zaps:
rep(list(zap()), 3)
rep_named(c("foo", "bar"), list(zap()))

Index

!! (nse-force), 90
!!! (nse-force), 90
∗Topic datasets

tidyeval-data, 109
∗Topic experimental

local_options, 79
new_weakref, 85

.Internal(), 70

.Primitive(), 70

.data, 9

.data (tidyeval-data), 109

.env (tidyeval-data), 109
:= (nse-force), 90

abort, 4
abort(), 5, 28–30, 76, 103, 113, 114
active bindings, 9
add_backtrace

(rlang_backtrace_on_error), 103
alist(), 89
arg_match, 7
arg_match0 (arg_match), 7
as_box, 8
as_box_if (as_box), 8
as_closure (as_function), 12
as_data_mask, 8
as_data_mask(), 34, 48, 49
as_data_pronoun (as_data_mask), 8
as_environment, 11
as_environment(), 33
as_function, 12
as_function(), 36, 115
as_label, 13
as_label(), 14, 15, 76, 87, 100, 101
as_name, 14
as_name(), 13, 14, 17, 100, 101
as_quosure, 15
as_quosure(), 84, 99
as_quosures (new_quosures), 84
as_string, 16
as_string(), 13, 15, 100

backtrace, 113
bang bang, 31

bare-type-predicates, 17, 105, 112
base::.Internal(), 70
base::as.call(), 19
base::as.name(), 14, 16
base::as.symbol(), 14, 16
base::assign(), 35
base::body(), 56
base::call(), 19
base::delayedAssign(), 36
base::eval(), 9, 46, 48, 49
base::formals(), 67
base::I(), 18
base::ifelse(), 95
base::inherits(), 63
base::interactive(), 72
base::is.integer(), 71
base::makeActiveBinding(), 36
base::match.arg(), 7
base::match.call(), 23, 27
base::message(), 4, 29
base::missing(), 80
base::parse(), 97
base::quote(), 83
base::stop(), 4, 29
base::structure(), 18
base::suppressMessages(), 5
base::suppressWarnings(), 5
base::typeof(), 111
base::warning(), 4, 29
base_env(), 67
big bang, 31
box, 18
boxed, 30
bquote(), 89
browser(), 50
bytes (vector-construction), 112

c(), 31, 112
call, 64
call2, 19
call2(), 22–24, 26, 27, 31, 64
call_args, 22
call_args(), 57
call_args_names (call_args), 22

117

118 INDEX

call_args_names(), 57
call_fn, 23
call_fn(), 26
call_inspect, 23
call_modify, 24
call_modify(), 116
call_name, 26
call_name(), 23
call_ns (call_name), 26
call_standardise, 27
call_standardise(), 24
callable, 20
caller frame, 7
caller_env, 21
caller_env(), 32, 110
caller_frame(), 21
calling, 32
calling (with_handlers), 114
calling handler, 114
calling(), 114, 115
cat(), 5
catch_cnd, 27
child_env (env), 33
chr (vector-construction), 112
closure, 12
cnd(), 29
cnd_body (cnd_message), 28
cnd_body(), 58
cnd_entrace (entrace), 32
cnd_entrace(), 33
cnd_footer (cnd_message), 28
cnd_header (cnd_message), 28
cnd_header(), 58
cnd_message, 28
cnd_signal, 29
cnd_signal(), 29, 114
cnd_type(), 29
conditionMessage(), 5
constant objects, 99
constructed calls, 57
cpl (vector-construction), 112
ctxt_stack(), 56, 60, 69, 114
current_env (caller_env), 21
current_env(), 61
current_frame(), 21

dbl (vector-construction), 112
definition, 68
defused, 91
done, 30
dots_list (list2), 76
dots_list(), 31
dyn-dots, 31

dynamic, 19, 24, 33, 36, 51, 76, 96, 115
dynamic dots, 51, 76, 96, 112

empty environment, 20, 34, 39, 99
empty_env, 32
empty_env(), 11, 43
enexpr (nse-defuse), 86
enexprs (nse-defuse), 86
enquo (nse-defuse), 86
enquo(), 99
enquos (nse-defuse), 86
ensym (nse-defuse), 86
ensyms (nse-defuse), 86
entrace, 32
env, 33
env(), 36, 39, 43, 56
env_bind, 35
env_bind(), 34, 45, 46, 116
env_bind_active (env_bind), 35
env_bind_lazy (env_bind), 35
env_clone, 38
env_depth, 39
env_get, 40
env_get_list (env_get), 40
env_has, 40
env_has(), 34, 62
env_inherits, 41
env_label (env_name), 42
env_length (env_names), 42
env_name, 42
env_name(), 43
env_names, 42
env_parent, 43
env_parents (env_parent), 43
env_poke, 44
env_poke(), 36
env_poke_parent (get_env), 60
env_print, 45
env_tail (env_parent), 43
env_unbind, 46
eval_bare, 46
eval_bare(), 50
eval_tidy, 48
eval_tidy(), 9, 10, 47
exec, 51
exiting, 114
expr (nse-defuse), 86
expr_deparse (expr_print), 54
expr_interp, 52
expr_label, 53
expr_label(), 60, 101
expr_name (expr_label), 53
expr_name(), 52

INDEX 119

expr_print, 54
expr_print(), 91
expr_text (expr_label), 53
expr_text(), 60
expression, 15, 97, 100
expression(), 66
exprs (nse-defuse), 86
exprs(), 36, 83
exprs_auto_name, 52

f_env (f_rhs), 59
f_env<- (f_rhs), 59
f_label (f_text), 60
f_label(), 101
f_lhs (f_rhs), 59
f_lhs<- (f_rhs), 59
f_name (f_text), 60
f_rhs, 59
f_rhs<- (f_rhs), 59
f_text, 60
fancy bindings, 45
faq-options, 55
fn_body, 56
fn_body<- (fn_body), 56
fn_env, 56
fn_env<- (fn_env), 56
fn_fmls, 57
fn_fmls(), 22, 67, 70
fn_fmls<- (fn_fmls), 57
fn_fmls_names (fn_fmls), 57
fn_fmls_names(), 22
fn_fmls_names<- (fn_fmls), 57
fn_fmls_syms (fn_fmls), 57
forcing, 89
forcing operators, 86
formals(), 69
format_error_bullets, 58
formula, 68
formula functions, 115

get_env, 60
get_env(), 45, 61, 98
get_expr (set_expr), 106
get_expr(), 98, 107

has_name, 62
have_name (is_named), 73

imports environments, 42
inform (abort), 4
inform(), 29, 30
inherits_all (inherits_any), 63
inherits_all(), 18

inherits_any, 63
inherits_only (inherits_any), 63
int (vector-construction), 112
interrupt (abort), 4
interrupt(), 29
invoking a restart, 114
is_atomic (type-predicates), 111
is_atomic(), 18
is_bare_atomic (bare-type-predicates),

17
is_bare_bytes (bare-type-predicates), 17
is_bare_character

(bare-type-predicates), 17
is_bare_double (bare-type-predicates),

17
is_bare_environment (is_environment), 66
is_bare_formula (is_formula), 68
is_bare_integer (bare-type-predicates),

17
is_bare_integerish (is_integerish), 71
is_bare_list (bare-type-predicates), 17
is_bare_logical (bare-type-predicates),

17
is_bare_numeric (bare-type-predicates),

17
is_bare_numeric(), 72
is_bare_raw (bare-type-predicates), 17
is_bare_string (bare-type-predicates),

17
is_bare_vector (bare-type-predicates),

17
is_bool (scalar-type-predicates), 104
is_box (box), 18
is_bytes (type-predicates), 111
is_call, 64
is_call(), 67
is_character (type-predicates), 111
is_closure (is_function), 69
is_dictionaryish (is_named), 73
is_done_box (done), 30
is_double (type-predicates), 111
is_empty, 65
is_environment, 66
is_expression, 66
is_expression(), 43, 64
is_false (is_true), 75
is_formula, 68
is_function, 69
is_function(), 12
is_installed, 70
is_integer (type-predicates), 111
is_integerish, 71

120 INDEX

is_interactive, 72
is_interactive(), 55
is_lambda (as_function), 12
is_list (type-predicates), 111
is_logical (type-predicates), 111
is_missing (missing_arg), 80
is_named, 73
is_namespace, 74
is_null (type-predicates), 111
is_primitive (is_function), 69
is_primitive_eager (is_function), 69
is_primitive_lazy (is_function), 69
is_quosure (quosure), 98
is_quosure(), 16
is_quosures (new_quosures), 84
is_raw (type-predicates), 111
is_scalar_atomic

(scalar-type-predicates), 104
is_scalar_bytes

(scalar-type-predicates), 104
is_scalar_character

(scalar-type-predicates), 104
is_scalar_double

(scalar-type-predicates), 104
is_scalar_integer

(scalar-type-predicates), 104
is_scalar_integerish (is_integerish), 71
is_scalar_list

(scalar-type-predicates), 104
is_scalar_logical

(scalar-type-predicates), 104
is_scalar_raw (scalar-type-predicates),

104
is_scalar_vector

(scalar-type-predicates), 104
is_string (scalar-type-predicates), 104
is_symbol, 74
is_symbolic (is_expression), 66
is_syntactic_literal (is_expression), 66
is_true, 75
is_vector (type-predicates), 111
is_weakref, 75
is_weakref(), 85, 116
is_zap (zap), 116

label, 45
lambda-formula, 29
lapply(), 51
last_error, 76
last_error(), 5, 103, 104
last_trace (last_error), 76
lgl (vector-construction), 112
list(), 31

list2, 76
list2(), 31
ll (list2), 76
local_bindings, 78
local_interactive (is_interactive), 72
local_options, 79
locked, 45

maybe_missing (missing_arg), 80
missing argument, 99
missing_arg, 80
missing_arg(), 76, 116

names2, 82
new_box (box), 18
new_box(), 8
new_data_mask (as_data_mask), 8
new_data_mask(), 49, 50
new_environment (env), 33
new_formula, 83
new_function, 83
new_quosure (as_quosure), 15
new_quosure(), 83, 99
new_quosures, 84
new_weakref, 85
new_weakref(), 116
node_cdr(), 67
nse-defuse, 86
nse-force, 12, 50, 90

op-get-attr, 94
op-na-default, 95
op-null-default, 95, 96

package environments, 42
pairlist2, 96
pairlist2(), 83
parse_expr, 97
parse_expr(), 66, 67
parse_exprs (parse_expr), 97
peek_option (local_options), 79
peek_options (local_options), 79
pkg_env(), 11
Pronouns, 48
push_options (local_options), 79

qq_show (nse-force), 90
quasiquotation (nse-force), 90
quo (nse-defuse), 86
quo(), 16, 52, 99
quo_get_env (quosure), 98
quo_get_env(), 61
quo_get_expr (quosure), 98

INDEX 121

quo_get_expr(), 49, 107
quo_is_call (quosure), 98
quo_is_missing (quosure), 98
quo_is_null (quosure), 98
quo_is_symbol (quosure), 98
quo_is_symbolic (quosure), 98
quo_label, 100
quo_label(), 101
quo_name (quo_label), 100
quo_name(), 52, 101
quo_set_env (quosure), 98
quo_set_env(), 61
quo_set_expr (quosure), 98
quo_set_expr(), 107
quo_squash, 101
quo_text (quo_label), 100
quos (nse-defuse), 86
quos(), 99
quos_auto_name (exprs_auto_name), 52
quos_auto_name(), 84
quosure, 15, 89, 98
Quosures, 48
quosures, 9, 54
quotation (nse-defuse), 86
quote(), 86, 89
quoted expression, 98
quoting, 19

raw_deparse_str, 102
rep_along, 103
rep_named (rep_along), 103
return_from(), 114
rlang backtrace, 32
rlang_backtrace_on_error, 5, 32, 55, 103

scalar-type-predicates, 18, 104, 112
scoped_bindings (scoped_interactive),

105
scoped_interactive, 105
scoped_options (scoped_interactive), 105
search_envs(), 32
seq2, 106
seq2_along (seq2), 106
seq_along(), 103
set_env (get_env), 60
set_env(), 61
set_expr, 106
set_expr(), 107
set_names, 107
signal (abort), 4
signal(), 29
squashed, 14
stats::setNames(), 107

substitute(), 86, 89
sym, 108
sym(), 64
symbolic, 19
symbolic expressions, 99
symbols, 14, 16
syms (sym), 108

tidy dots, 20
tidy-dots (dyn-dots), 31
tidyeval-data, 109
trace_back, 109
trace_back(), 5, 55
trace_length (trace_back), 109
traceback(), 20
tryCatch(), 114
type-predicates, 18, 105, 111

unbox (box), 18
uncopyable, 34, 61
UQ (nse-force), 90
UQS (nse-force), 90

vector-coercion, 112
vector-construction, 112

warn (abort), 4
warn(), 29, 30
with_abort, 113
with_abort(), 6, 32, 33
with_bindings (local_bindings), 78
with_handlers, 114
with_handlers(), 30, 115
with_interactive (is_interactive), 72
with_options (local_options), 79
wref_key, 116
wref_key(), 85
wref_value (wref_key), 116
wref_value(), 85

zap, 116
zap sentinel, 45
zap(), 24, 36

	abort
	arg_match
	as_box
	as_data_mask
	as_environment
	as_function
	as_label
	as_name
	as_quosure
	as_string
	bare-type-predicates
	box
	call2
	caller_env
	call_args
	call_fn
	call_inspect
	call_modify
	call_name
	call_standardise
	catch_cnd
	cnd_message
	cnd_signal
	done
	dyn-dots
	empty_env
	entrace
	env
	env_bind
	env_clone
	env_depth
	env_get
	env_has
	env_inherits
	env_name
	env_names
	env_parent
	env_poke
	env_print
	env_unbind
	eval_bare
	eval_tidy
	exec
	exprs_auto_name
	expr_interp
	expr_label
	expr_print
	faq-options
	fn_body
	fn_env
	fn_fmls
	format_error_bullets
	f_rhs
	f_text
	get_env
	has_name
	inherits_any
	is_call
	is_empty
	is_environment
	is_expression
	is_formula
	is_function
	is_installed
	is_integerish
	is_interactive
	is_named
	is_namespace
	is_symbol
	is_true
	is_weakref
	last_error
	list2
	local_bindings
	local_options
	missing_arg
	names2
	new_formula
	new_function
	new_quosures
	new_weakref
	nse-defuse
	nse-force
	op-get-attr
	op-na-default
	op-null-default
	pairlist2
	parse_expr
	quosure
	quo_label
	quo_squash
	raw_deparse_str
	rep_along
	rlang_backtrace_on_error
	scalar-type-predicates
	scoped_interactive
	seq2
	set_expr
	set_names
	sym
	tidyeval-data
	trace_back
	type-predicates
	vector-construction
	with_abort
	with_handlers
	wref_key
	zap
	Index

