Package ‘ribiosUltils’

March 6, 2020

Type Package

Title Utilities from and Interface to the Bioinfo-C (BIOS) Library
Version 1.5-6

Date 2020-02-27

Description Provides interface to the Bioinfo-C (internal name: BIOS) library and utilities. 'ribiosU-
tils' is a swiss-knife for computational biology in drug discovery, providing functions and utili-
ties with minimal external dependency and maximal efficiency.

Depends R (>= 3.4.0), methods, grDevices, stats, utils
Suggests testthat
License GPL-3

URL https://github.com/bedapub/ribiosUtils

BugReports https://github.com/bedapub/ribiosUtils/issues
RoxygenNote 7.0.2
NeedsCompilation yes

Author Jitao David Zhang [aut, cre, ctb]
(<https://orcid.org/0000-0002-3085-0909>),
Clemens Broger [aut, ctb],

F.Hoffmann-La Roche AG [cph],
Junio C Hamano [cph],

Jean Thierry-Mieg [cph],
Richard Durbin [cph]

Maintainer Jitao David Zhang <jitao_david.zhang@roche.com>
Repository CRAN
Date/Publication 2020-03-06 09:40:02 UTC

R topics documented:

allldentical e
asNUMMatrix o e e
assertColumnName e

https://github.com/bedapub/ribiosUtils
https://github.com/bedapub/ribiosUtils/issues

R topics documented:

assertCONLIast o i e e e e e e e e e e e e 6
assertDesign L e 7
assertDesignContrast e 7
bedalnfo L e e 8
biomicsPstorePath2URL 9
checkFile e e e 9
chosenFew e e e 10
closeLoggerConnections v it it e e e e e 11
columnOverlapCoefficient o 12
compTwoVecs 12
countToKens e e e e e 13
createDir oL L e e 14
cumJaccardIndex e e e 15
cumOpverlapCoefficient 16
CUMSUIMPIOP « « o v v v v e 17
cutlnterval L. e e e e e 17
dfFactor e e e e 19
dfFactor2Str e e e e e 20
EXINAME .« . v v v v e 20
fixWidthStr 21
getDefaultFontFamily 22
haltifnot e 23
headhead e 24
headtail e e e e e 25
identicalMatrixX e e e e e e e e 26
identicalMatrixValue 26
imatch L e e e e 27
ISDIr . . . e e e 28
ISError L e e e 29
isRocheCompoundID Lo 30
jaccardIndex L 31
keepMaxStatRow L. e 31
libordie e e e e e e e 33
Lst2df e 35
listOverlapCoefficient 35
longdf2matrix e e 36
matchColumn e e e e 37
matchColumnName e 39
matrix2longdf L L e 40
mergelnfreqLevelsByCumsumprop oL oL 41
midentical L e e e e e 42
mmatch e e e e 43
MUNION . . . v v ot e st e et e e e e e e e e e e e e e e e e e 45
nafalse e e e 46
naivePairwiseDist L. L e e 46
ofactor L e e e 47
openFileDevice 48

overlapCoefficient 49

R topics documented: 3

Index

pAbsLoglOScore e e 50
pairwiseJaccardIndex oL 51
pairwiseOverlapDistanceo 52
PEICENtAZE v o e e e e e e e e e e e e e 53
pQnOrmScore e e e e 53
print. BEDAinfo 54
PSCOTE . . . o o ot 55
putColsFirst 56
pwdecode e e e 56
pwencode L e e e 57
QAMSE .+ o o v e e e e e e e e e e e e e e 58
SYSIBIM .« o o o o e e e e e 59
refactorNum e 59
registerLog L e e 60
relevelso 62
relevelsByNamedVec 63
relevelsByNotNamedVec L 64
reload L 65
removeColumns 66
removelnvarCol 67
replaceColumnName L 68
ribiosTempdir e e e 68
ribiosTempfile 69
ribiosUtIlS o 69
TINAL . o o oo e e e e e e e e e e e e e 70
rocheCore e 71
rowscale L e 72
rowscale.matrix L. 72
rsetdiff L L 73
scriptlnit L e e e e e e 74
setDebug L 74
shortenStr L L e 75
SIeNCIiO e 76
sortAndFilterByCumsumprop Lo 77
sortByCol e e 77
sortByDimnames 78
SIIOKEN L e e 79
stubborngce L 80
subsetByColumnName e 81
summarizeRows L 82
M . . . e e 83
uniquelength 84
uniqueNONNA L e e 85
VEIDOSE e e e e e e 85
whoami e 86
writeLog L 87

4 allldentical

allldentical Testing whether several objects are all identical with each other

Description

Given several objects, the function tests whether all of them are identical.

Usage

allldentical(...)

Arguments

Objects to be tested. Can be given as a list, or simplying appending names
separated by commas, see example.

Value

Logical, whether all objects are the same

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

identical

Examples

testl <- test2 <- test3 <- LETTERS[1:3]
allldentical(testl, test2, test3)
allldentical(list(testl, test2, test3))

numl <- num2 <- num3 <- num4 <- sqrt(3)
allldentical(numl, num2, num3, num4)

asNumMatrix

asNumMatrix Convert string-valued data frame or matrix into a numeric matrix

Description

Convert string-valued data frame or matrix into a numeric matrix

Usage

asNumMatrix(x)

Arguments

X A data.frame or matrix, most likely with string values

Value

A numeric matrix with the same dimension

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

testDf <- data.frame(a=c("2.34", "4.55"), b=c("7.33", "9.10"))
asNumMatrix(testDf)

testMatrix <- matrix(c("2.34", "4.55", "9E-3","-2.44", "7.33", "9.10"), nrow=2)
asNumMatrix(testMatrix)

assertColumnName Assert whether the required column names exist

Description

The function calls matchColumnName internally to match the column names.

Usage

assertColumnName(data.frame.cols, reqCols, ignore.case = FALSE)

6 assertContrast

Arguments

data.frame.cols
column names of a data.frame. One can also provide a data.frame, which may
however cause worse performance since the data.frame is copied

reqCols required columns
ignore.case logical, whether the case is considered
Value

If all required column names are present, their indices are returned *invisibly*. Otherwise an error
message is printed.

Examples

myTestDf <- data.frame(HBV=1:3, VFB=0:2, BVB=4:6, FCB=2:4)
myFavTeams <- c("HBV", "BVB")

assertColumnName(myTestDf, myFavTeams)

myFavTeamsCase <- c("hbv", "bVb")

assertColumnName (myTestDf, myFavTeamsCase, ignore.case=TRUE)

assertContrast Check dimensionality of contrast matrix

Description

Check dimensionality of contrast matrix

Usage

assertContrast(design, contrast)

Arguments
design Design matrix
contrast Contrast matrix
Value

Side effect is used: the function stops if the ncol(design) does not equal nrow(contrast)

Examples

design <- matrix(1:20, ncol=5)
contrast <- matrix(c(-1,1,0,0,0, 0,1,0,-1,0), nrow=5)
assertContrast(design, contrast)

assertDesign

assertDesign Check dimensionality of design matrix

Description

Check dimensionality of design matrix

Usage

assertDesign(nsample, design)

Arguments
nsample Integer, number of samples
design Design matrix

Value

Side effect is used: the function stops if sample size does not equal ncol(matrix)

Examples

nsample <- 4
design <- matrix(1:20, ncol=5)
assertDesign(nsample, design)

assertDesignContrast Check dimensionality of both design and contrast matrix

Description

Check dimensionality of both design and contrast matrix

Usage

assertDesignContrast(nsample, design, contrast)

Arguments
nsample Integer, number of samples
design Design matrix

contrast Contrast matrix

8 bedalnfo

Value

Side effect is used: the function stops if there are errors in the dimensionalities

See Also

assertDesign, assertContrast

Examples

nsample <- 4

design <- matrix(1:20, ncol=5)

contrast <- matrix(c(-1,1,90,0,0, 0,1,0,-1,0), nrow=5)
assertDesignContrast(nsample, design, contrast)

bedaInfo Print BEDA project information

Description

Print BEDA project information

Usage

bedaInfo()

Value

A list, including pstore path, URL, git address, and user id The function is used at the end of the
Rmarkdown report to print relevant information to help other colleagues finding relevant resources

Examples

if(interactive()) {bedalInfo()}

biomicsPstorePath2URL

biomicsPstorePath2URL Translate BiOmics-Pathology pstore path to URL

Description

Translate BiOmics-Pathology pstore path to URL

Usage

biomicsPstorePath2URL (path)

Arguments

path Unix path

Value

Character string of biomics pstore path The URL is only visible inside Roche

Examples

biomicsPstorePath2URL("/pstore/data/biomics/")

checkFile Check whether file(s) exist

Description

checkFile checks whether file exists, assertFile stops the program if files do not exist

Usage
checkFile(...)
assertFile(...)

Arguments

Files to be checked

Details

assertFile is often used in scripts where missing a file would cause the script fail.

10 chosenFew

Value

checkFile returns logical vector. assertFile returns an invisible TRUE if files exist, otherwise
halts and prints error messages.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

isDir and assertDir

Examples

myDesc <- system.file("DESCRIPTION", package="ribiosUtils")
myNEWS <- system.file("”"NEWS"”, package="ribiosUtils")
checkFile(myDesc, myNEWS)

assertFile(myDesc, myNEWS)

chosenFew Print the chosen few items of a long vector

Description

Print the chosen few (the first and the last) items of a long vector

Usage
chosenFew(vec, start = 3, end = 1, collapse = ",")
Arguments
vec A vector of characters or other types that can be cast into characters
start Integer, how many elements at the start shall be printed
end Integer, how many elements at the end shall be printed
collapse Character used to separate elements
Value

A character string ready to be printed

Note

In case the vector is shorter than the sum of start and end, the whole vector is printed.

closeLoggerConnections 11

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

lvecl <- 1:100
chosenFew(1lvecl)
chosenFew(lvecl, start=5, end=3)

svec <- 1:8
chosenFew(svec)
chosenFew(svec, start=5, end=4)

closeloggerConnections
Close connections to all loggers This function closes all open con-
nections set up by loggers It is automatically run at the end of the R
session (setup by registerLog)

Description

Close connections to all loggers This function closes all open connections set up by loggers It is
automatically run at the end of the R session (setup by registerLog)

Usage

closelLoggerConnections()

Value

Invisible NULL. Only side effect is used.

See Also

registerlLog

12 compTwoVecs

columnOverlapCoefficient
FPairwise jaccard/overlap coefficient can be calculated efficiently using
matrix Pairwise overlap coefficient of binary matrix by column

Description
Pairwise jaccard/overlap coefficient can be calculated efficiently using matrix Pairwise overlap co-
efficient of binary matrix by column

Usage
columnOverlapCoefficient(x, y = NULL)

Arguments
X An integer matrix, other objects will be coereced into a matrix
y An integer matrix, other objects will be coereced into a matrix. In case of NULL,
pairwise overlap coefficients by column of x is returned.
Value

A matrix of column-wise pairwise overlap coefficients of the binary matrix. NaN is reported when
neither of the columns have any non-zero element.

Examples

set.seed(1887)
testMatrix1 <- matrix(rbinom(120, 1, 0.2), nrow=15)
columnOverlapCoefficient(testMatrix1)

testMatrix2 <- matrix(rbinom(15@, 1, 0.2), nrow=15)
testMatrix12Poe <- columnOverlapCoefficient(testMatrixi,
testMatrix2)

compTwoVecs Compare two vectors by set operations

Description

Basic set operations are used to compare two vectors

Usage

compTwoVecs(vecl, vec2)

countTokens 13

Arguments
vecl A vector of atomic types, e.g. integers, characters, etc.
vec2 A vector of the same type as vec]

Value

A vector of six integer elements

vecl.setdiff Number of unique items only in vec1 but not in vec2
intersect Number of items in both vec1 and vec2

vec2.setdiff Number of unique items only in vec2 but not in vec1

vecl.ulen Number of unique items in vec]

vec2.ulen Number of unique items in vec?2

union Number of unique items in vecl and vec2
Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

year1 <- c("HSV", "FCB", "BVB", "S@4", "FCN")
year2 <- c("HSV", "FCK", "S04")
compTwoVecs(year1, year2)

countTokens Count tokens by splitting strings

Description

Count tokens by splitting strings

Usage

countTokens(str, split = "\t", ...)
Arguments

str A character string vector

split Character used to split the strings

Other parameters passed to the strsplit function

14 createDir

Value

Integer vector: count of tokens in the strings

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

strsplit to split strings, or a convenient wrapper strtoken in this package.

Examples

myStrings <- c("HSV\t1887\tFavorite”, "FCB\t1900", "FCK\t1948")
countTokens(myStrings)

the function deals with factors as well
countTokens(factor(myStrings))

createDir Create a directory if it does not exist, and then make sure the creation
was successful.

Description

The function is particularly useful for scripting.

Usage

createDir(dir, showWarnings = FALSE, recursive = FALSE, mode = "Q@777")

Arguments

dir Directory name

showWarnings Passed to dir.create

recursive Passed to dir.create
mode Passed to dir.create
Value

Directory name (invisible)

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

cumJaccardIndex 15

Examples

tempdir <- tempdir()
createDir(tempdir)

cumJaccardIndex Cumulative Jaccard Index

Description

Cumulative Jaccard Index

Usage

cumJaccardIndex(list)

cumJaccardDistance(list)

Arguments

list A list of characters or integers

Value

The cumulative Jaccard Index, a vector of values between 0 and 1, of the same length as the input
list

The cumulative Jaccard Index is calculated by calculating the Jaccard Index of element i and the
union of elements between 1 and i-1. The cumulative Jaccard Index of the first element is set as
0.0.

The cumulative Jaccard distance is defined in almost the same way, with the only difference the
distance is returned. The value of the first element is 1.0.

Note

An advantage of using cumulative overlap coefficient over cumulative Jaccard Index is that it is
monotonic: the value is garanteed to decrease from 1 to 0, whereas the cumulative Jaccard Index
may not be monotic.

See Also

cumOverlapCoefficient

16 cumOverlapCoefficient

Examples

myList <- list(first=LETTERS[1:5], second=LETTERS[6:10], third=LETTERS[8:12], fourth=LETTERS[1:12])
cumJaccardIndex(mylList)
cumJaccardDistance(myList)

cumOverlapCoefficient Cumulative overlap coefficient

Description

Cumulative overlap coefficient

Usage

cumOverlapCoefficient(list)

cumOverlapDistance(list)

Arguments

list A list of characters or integers

Value

The cumulative overlap coefficients, a vector of values between 0 and 1, of the same length as the
input list

The cumulative overlap coefficient is calculated by calculating the overlap coefficient of element
i and the union of elements between 1 and i-1. The cumulative overlap coefficient of the first
element is set as 0.0.

The cumulative overlap distance is defined in almost the same way, with the only difference the dis-
tance is returned. The value of the first element is 1.0. Pratically it is calculated by 1-cumOverlapCoefficient.

Since the denominator of the overlap coefficient is the size of the smaller set of the two, which
is bound to be the size of element i, the cumulative overlap distance can be interpreted as the
proportion of new items in each new element that are unseen in previous elements. Similarly, the
cumulative overlap coefficient can be interpreted as the proportion of items in each new element
that have been seen in previous elements. See examples below.

Note

An advantage of using cumulative overlap coefficient over cumulative Jaccard Index is that it is
monotonic: the value is garanteed to decrease from 1 to 0, whereas the cumulative Jaccard Index
may not be monotic.

cumsumprop 17

Examples

myList <- 1ist(first=LETTERS[1:5], second=LETTERS[6:10], third=LETTERS[8:12], fourth=LETTERS[1:12])
cumOverlapCoefficient(myList)
cumOverlapDistance(myList)

cumsumprop Proportion of cumulative sum over sum

Description

Proportion of cumulative sum over sum

Usage

cumsumprop (x)

Arguments

X Numeric vector

Value

the proportion cumulative sum over sum

Examples

x <- 1:4
cumsumprop(x) ## 0.1, 0.3, 0.6, 1

cutInterval Cut a vector of numbers into interval factors.

Description

Three types of labels (levels) are supported: “cut.default” (Interval labels returned by cut as de-
fault), “left” (Left boundary of intervals), and “right” (Right boundary of intervals).

18 cutlnterval

Usage
cutInterval(
X,
step = 1,

labelOption = c("cut.default”, "left", "right"),
include.lowest = FALSE,

right = TRUE,

dig.lab = 3,

ordered_result = FALSE,

)

Arguments
X A vector of numbers
step Step size.

labelOption How is the label displayed.See details section.
include.lowest Logical, passed to cut

right Logial, passed to cut

dig.lab See cut

ordered_result See cut

Other parameters that are passed to cut

Value

A vector of factors

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

cut

Examples

testNum <- rnorm(100)
(testFac <- cutInterval(testNum, step=1, labelOption="cut.default"))

compare the result to
(testFacCut <- cut(testNum, 10))

dfFactor 19

dfFactor Get a factor vector for a data.frame

Description

The function try to assign a factor vector for a data. frame object. See details below.

Usage

dfFactor(df, sample.group)

Arguments

df A data.frame

sample.group A character, number or a vector of factors, from which the factor vector should
be deciphered. See details below.

Details

The function tries to get a factor vector of the same length as the number of rows in the data. frame.
The determination is done in the following order: Step 1: It tries to find a column in the data. frame
with the name as given by sample.group. If found, this column is transformed into a factor if not
and returned. Step 2: It tries to interpret the sample. group as an integer, as the index of the column
in the data.frame giving the factor. Step 3: When sample.group itself is a vector of the same
length as the data.frame, it is cast to factor when it is still not and returned.

Otherwise the program stops with error.

Value

A factor vector with the same length as the data. frame

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

df <- data.frame(gender=c("M", "M", "F", "F", "M"),
age=c(12,12,14,12,14), score=c("A", "B-", "C", "B-", "A"))
dfFactor(df, "gender")

dfFactor(df, "score")

dfFactor(df, 1L)

dfFactor(df, 2L)

dfFactor(df, df$score)

20 extname

dfFactor2Str Convert factor columns in a data.frame into character strings

Description

Convert factor columns in a data.frame into character strings

Usage

dfFactor2Str(df)
Arguments

df A data.frame
Value

A data.frame with factor columns coereced into character strings

Examples

exampleDf <- data.frame(Teams=c("HSV", "FCB", "FCB", "HSV"),
Player=c("Mueller”, "Mueller"”, "Robben", "Holtby"),
scores=c(3.5, 1.5, 1.5, 1.0), stringsAsFactors=TRUE)

strDf <- dfFactor2Str(exampleDf)

stopifnot(identical(strDf[,1]1, c("HSV", "FCB", "FCB", "HSV")))

stopifnot(identical (exampleDf[,1], factor(c("HSV", "FCB", "FCB", "HSV"))))

extname Get the base and extension(s) of file name(s)

Description

Many files have base and extensions in their names, for instance for the file mybook. pdf, the base is
mybook and the extension is pdf. basefilename extname functions extract these information from
one or more file names.

Usage

extname(x, ifnotfound = NA, lower.case = FALSE)

Arguments
X Character vector of file names; other classes will be coereced to characters
ifnotfound If no extension name was found, the value to be returned. Default is NA

lower.case Logical, should the names returned in lower case?

fixWidthStr 21

Value

The base file name or the extension as characters, of the same length as the input file name character.
In case that a file name does not contain a extension, NA will be returned.

Note

In case there are multiple dots in the input file name, the last field will be taken as the extension,
and the rest as the base name. For instance for file test.out. txt, returned base name is test.out
and extension is txt.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

extname ("mybook.pdf")
extname("sequence.in.fasta")

extname (c("/path/mybook.pdf"”, "test.doc"))
extname ("README")

extname ("README", ifnotfound="")
extname("/path/my\ home/Holiday Plan.txt")

basefilename("mybook.pdf")
basefilename("sequence.in.fasta")
basefilename(c("/path/mybook.pdf"”, "test.doc"))
basefilename ("README")

basefilename("”/path/my\ home/Holiday Plan.txt")

basefilename("myBook.pdf"”, lower.case=TRUE)
extname ("myBook.PDF", lower.case=TRUE)

fixWidthStr Shorten strings to strings with a fix width of characters

Description

Shorten strings to strings with a fix width of characters

Usage

fixWidthStr(str, nchar = 8, align = c("left”, "right"))

22 getDefaultFontFamily

Arguments
str A vector of strings
nchar The fixed with
align Character, how to align Strings with more or fewer characters than nchar are
either shortened or filled (with spaces)
Value

A vector of strings with fixed widths

Note

NA will be converted to characters and the same fixed width will be applied. The behavior is different
from shortenStr, where NA is kept as it is.

See Also

shortenStr

Examples

inputStrs <- c(”abc"”, "abcd”, "abcde”, "abcdefg"”, "NA", NA)
outputStrs <- fixWidthStr(inputStrs, nchar=4)
stopifnot(all(nchar(outputStrs)==4))

getDefaultFontFamily Get default font family

Description

Get default font family

Usage

getDefaultFontFamily ()

Value

Character string, the default font family

haltifnot 23

haltifnot Ensure the Truth of R Expressions and Print Defined Error Message if
NOT

Description

If any of the expressions in ‘..." are not all TRUE, stop is called, producing an error message defined
by the msg parameter.

Usage
haltifnot(..., msg = "Error undefined. Please contact the developer”)
Arguments
any number of ‘logical’ R expressions, which should evaluate to TRUE
msg Error message.
Details

The function is adapted from the stopifnot function, with the difference that the error message
can be defined the programmer. With haltifnot error message can be more informative, which is
desired for diagnostic and user-interation purposes.

Value

NULL if all statements in . .. are TRUE

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

stop, warning and stopifnot

Examples

haltifnot(1==1, all.equal(pi, 3.14159265), 1<2) ## all TRUE
m <- matrix(c(1,3,3,1), 2,2)
haltifnot(m == t(m), diag(m) == rep(1,2)) ## all TRUE

op <- options(error = expression(NULL))
"disable stop(.)" << Use with CARE! >>

haltifnot(all.equal(pi, 3.141593), 2 < 2, all(1:1@0 < 12), "a" < "b",
msg="not all conditions are TRUE. Please contact the devleoper”)
options(op)# revert to previous error handler

24 headhead

headhead head/tail function for matrix or data.frame

Description
These two functions reassembles head and tail, showing the first rows and columns of 2D data
structures, e.g. matrix or data.frame.

Usage

headhead(x, m = 6L, n = 6L)

Arguments

X A data.frame or matrix

m Integer, number of rows to show

n Integer, number of columns to show
Details

While head and tail can be applied to data.frame or matrix as well, they show all columns of
the first (last) rows even if the matrix has a large number of columns. These two function, headhead
and tailtail, circumvent this problem by showing only the first rows AND the first columns.

Value

The first rows/columns of the input object

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

head, tail

Examples

myMat <- matrix(rnorm(10000), nrow=10L)
head(myMat)

headhead(myMat)

tailtail(myMat)

headtail 25

headtail Print head and tail elements of a vector

Description

This function prints head and tail elements of a vector for visualization purposes. See examples for

its usage.
Usage
headtail(vec, head = 2, tail = 1, collapse = ", ")
Arguments
vec A vector of native types (e.g. character strings)
head Integer, number of head elements to be printed
tail Integer, number of tail elements to be printed
collapse Character string, used to collapse elements
Details

Head and tail elements are concatenated with ellipsis, if there are any elements that are not shown
in the vector.
Value

A character string representing the vector

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

head, tail

Examples

testVecl <- LETTERS[1:10]

headtail(testVecl)

headtail(testVecl, head=3, tail=3)
headtail(testVecl, head=3, tail=3, collapse="|")

testVec2 <- letters[1:3]
headtail(testVec2, head=1, tail=1)
headtail(testVec2, head=2, tail=1)

26 identicalMatrix Value

identicalMatrix Test whether two matrices are identical by values and by dim names

Description

Test whether two matrices are identical by values and by dim names

Usage

identicalMatrix(x, y, epsilon = 1e-12)

Arguments
X a matrix
y another matrix

epsilon accuracy threshold: absolute differences below this threshold is ignored

Value

Logical

Examples

set.seed(1887); x <- matrix(rnorm(1000), nrow=10, dimnames=1ist(LETTERS[1:1@],NULL))
set.seed(1887); y <- matrix(rnorm(1000), nrow=10, dimnames=1ist(LETTERS[1:10]1,NULL))
set.seed(1887); z <- matrix(rnorm(1000), nrow=10, dimnames=list(letters[1:10],NULL))
stopifnot(identicalMatrix(x,y))
stopifnot(!identicalMatrix(x,z))

identicalMatrixValue Test whether two matrices have the same numerica values given cer-
tain accuracy

Description

Test whether two matrices have the same numerica values given certain accuracy

Usage

identicalMatrixValue(x, y, epsilon = 1e-12)

imatch 27

Arguments

X a matrix
y another matrix

epsilon accuracy threshold: absolute differences below this threshold is ignored

Value

Logical
Examples

set.seed(1887); x <- matrix(rnorm(1000), nrow=10)
set.seed(1887); y <- matrix(rnorm(1000), nrow=10)
set.seed(1882); z <- matrix(rnorm(1000), nrow=10)
stopifnot(identicalMatrixValue(x,y))
stopifnot(!identicalMatrixValue(x,y+1E-5))
stopifnot(!identicalMatrixValue(x,y-1E-5))
stopifnot(!identicalMatrixValue(x,z))

imatch Case-insensitive match and pmatch

Description

Case-insensitive match and pmatch functions, especially useful in parsing user inputs, e.g. from
command line.

Usage
imatch(x, table, ...)
Arguments
X String vector
table A vector to be matched
Other parameters passed to match or pmatch
Details

imatch and ipmatch works similar as match and pmatch, except that they are case-insensitive.

matchv, imatchv and ipmatchv are shot-cuts to get the matched value (therefore the ‘v’) if the
match succeeded, or NA if not. match(x,table) is equivalent to table[match(x,table)]. See
examples.

28 isDir

Value

imatch and ipmatch returns matching indices, or NA (by default) if the match failed.

matchv, imatchv and ipmatchv returns the matching element in table, or NA if the match failed.
Note that when cases are different in x and table, the one in table will be returned. This is
especially useful for cases where user’s input has different cases as the internal options.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

match and pmatch

Examples

user.input <- c("hsv"”, "BvB")
user.input2 <- c("HS", "BV")
internal.options <- c("HSV", "FCB", "BVB", "FCN")

match(user.input, internal.options)
imatch(user.input, internal.options)
ipmatch(user.input, internal.options)
ipmatch(user.input2, internal.options)

matchv(user.input, internal.options)
matchv(tolower(user.input), tolower(internal.options))
imatchv(user.input, internal.options)
ipmatchv(user.input, internal.options)
ipmatchv(user.input2, internal.options)

isDir Checks existing directory

Description

Checks whether given character strings point to valid directories

Usage
isDir(...)

checkDir(...)

assertDir(...)

isError 29

Arguments

One or more character strings giving directory names to be tested

Details

isDir tests whether the given string represent a valid, existing directory. assertDir performs a
logical test, and stops the program if the given string does not point to a given directory.

checkDir is synonymous to isDir

Value

isDir returns logical vector.

assertDir returns an invisible TRUE if directories exist, otherwise halts and prints error messages.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

file.info, checkFile and assertFile

Examples

dir1l <- tempdir()
dir2 <- tempdir()

isDir(dir1, dir2)
assertDir(dir1, dir2)

isError Tell whether an object is an error

Description

Determines whether an object is of class try-error

Usage

isError(x)

Arguments

X Any object, potentially produced within a try-error structure.

30 isRocheCompoundID

Value

Logical value, TRUE if x inherits the try-error class.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

if(exists("nonExistObj")) rm(nonExistsObj)
myObj <- try(nonExistObj/5, silent=TRUE)
isError(myObj)

isRocheCompoundID Tell whether a character string is a Roche compound ID

Description

Tell whether a character string is a Roche compound ID

Usage

isRocheCompoundID(str)

Arguments

str Character string(s)

Value

A logical vector of the same length as str, indicating whether each element is a Roche compound
ID or not.

Short versions (RO[1-9]2,7) are supported.

Examples

isRocheCompoundID(c("R01234567", "R0-1234567",
"R0O1234567-000", "R01234567-000-000",
"ROnoise-000-000"))

JjaccardIndex 31

jaccardIndex Calculate the Jaccard Index between two vectors

Description

Calculate the Jaccard Index between two vectors

Usage

jaccardIndex(x, y)

jaccardDistance(x, y)

Arguments
X A vector
y A vector
Value

The Jaccard Index, a number between 0 and 1

JaccardDistance is defined as 1-JaccardIndex.

Examples

myX <- 1:6

myY <- 4:9
jaccardIndex(myX, myY)
jaccardDistance(myX, myY)

myX <- LETTERS[1:5]

myY <- LETTERS[6:10]
jaccardIndex(myX, myY)
jaccardDistance(myX, myY)

keepMaxStatRow KEEP ROWS WITH THE MAXIMUM STATISTIC

Description

A common task in expression analysis is to collapse multiple features that are mapped to the same
gene by some statistic. This function does this job by keeping the matrix row (normally features)
with the higheest statistic specified by the user.

32

Usage

keepMaxStatRow(

matrix,
keys,

keepMaxStatRow

keepNArows = TRUE,
stat = function(x) mean(x, na.rm = TRUE),
levels = c("rownames”, "attribute”, "discard”),

Arguments

matrix

keys

keepNArows

stat

levels

Details

A numeric matrix

A vector of character giving the keys the rows are mapped to. A common sce-
nario is that each row represents one probeset, while the vector keys give the
genes that the probesets are mapped to. Thus keys can be redundant, namely
multiple probesets can map to the same gene.

Logical, whether rows with NA as their keys should be kept (TRUE) or should be
discarded (FALSE)

The function to calculate the univariate statistic. By default the NA-robust mean
is used.

How should the information of the levels of keys, e.g. unique keys, be kept.
dicard will discard this information, rownames will make the unique keys (po-
tentially with NAs) as row names of the output matrix, and attribute will ap-
pend an attribute named levels to the output matrix.

Other parameters passed to the stat function

isMaxStatRow returns a logical vector, with rows with maximal statistics each key as TRUE and oth-

erwise as FALSE. keepMaxStatRowInd returns the integer indices of such rows. Finally keepMaxStatRow

returns the resulting matrices.

For use see examples

Value

A numeric matrix with rows mapped to unique keys, selected by the maximum statistics. See

examples below

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

libordie 33
Examples

myFun1 <- function(x) mean(x, na.rm=TRUE)
myFun2 <- function(x) sd(x, na.rm=TRUE)
matl <- matrix(c(1,3,4,-5,

0,1,2,3,
,9,5,3,
,1,4,3), ncol=4, byrow=TRUE)
keys1 <- c("A", ”B”, "A", "B")

isMaxStatRow(mat1, keys1, stat=myFuni)
isMaxStatRow(mat1, keysl, stat=myFun2)

keepMaxStatRowInd(mat1, keysl, stat=myFunl)
keepMaxStatRowInd(mat1, keysl, stat=myFun2)

keepMaxStatRow(mat1, keysl, stat=myFunl)

keepMaxStatRow(mat1, keysl, stat="myFun2")
keepMaxStatRow(mat1, keysl, stat="myFun2"”, levels="discard")
keepMaxStatRow(mat1, keysl, stat="myFun2"”, levels="attribute")

,0.5,NA,
NA, 4, 3,NA), ncol=4, byrow=TRUE,
dimnames=1ist (LETTERS[1:9], NULL))
keys2 <- c("A", "B", "A", "B", NA, NA, "C", "A", "D")

isMaxStatRow(mat2, keys2, keepNArows=FALSE, stat=myFun1)
keepMaxStatRowInd(mat2, keys2, keepNArows=FALSE, stat=myFunl)

keepMaxStatRow(mat2, keys2, keepNArows=FALSE, stat=myFunl)
keepMaxStatRow(mat2, keys2, keepNArows=TRUE, stat=myFunl)
keepMaxStatRow(mat2, keys2, keepNArows=TRUE, stat=myFunl, levels="discard")
keepMaxStatRow(mat2, keys2, keepNArows=TRUE, stat=myFunl, levels="attribute")

libordie Load a library mutedly and quit (die) in case of failing

Description

The specified library is loaded mutedly by suppressing all messages. If the library is not found, or
its version under the specification of minVer, the R session dies with a message.

34 libordie

Usage

libordie(package, minVer, missing.quit.status = 1, ver.quit.status = 1)

Arguments
package One package name (can be character or non-quoted symbol (see examples)
minVer Optional, character string, the minimum working version

missing.quit.status
Integer, the status of quitting when the package was not found

ver.quit.status
Integer, the status of quitting when the package was found, but older than the
minimum working version

Details

Only one package should be tested once.

Value

NULL if success, otherwise the session will be killed.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

The function calls qgmsg internally to kill the session

Examples

if(interactive()) {
libordie(stats)
libordie("methods")
libordie(base, minVer="2.15-1")

}

list2df 35

list2df Transform a list of character strings into a data.frame

Description

Transform a list of character strings into a data.frame

Usage

list2df(list, names = NULL, col.names = c(”"Name”, "Item"))

Arguments
list A list of character strings
names Values in the "Name’ column of the result, used if the input list has no names
col.names Column names of the data. frame

Value

A data.frame

Examples

myList <- list(HSV=c("Mueller”, "Papadopoulos”, "Wood"), FCB=c("Lewandowski”, "Robben”, "Hummels"),
BVB=c("Reus", "Goetze", "Kagawa"))
list2df(myList, col.names=c("Club”, "Player"))

listOverlapCoefficient
Pairwise overlap coefficient of lists

Description

Pairwise overlap coefficient of lists

Usage

listOverlapCoefficient(x, y = NULL, checkUniqueNonNA = TRUE)

36 longdf2matrix

Arguments
X A list of vectors that are interpreted as sets of elements
y A list of vectors that are interpreted as sets of elements. In case of NULL, pairwise
overlap coefficient of lists in x is returned.
checkUniqueNonNA
Logical, should vectors in the list be first cleaned up so that NA values are
removed and the elements are made unique? Default is set as TRUE; if the user is
confident that the vectors are indeed valid sets, this option can be set as FALSE
to speed up the code
Value

A matrix of column-wise pairwise overlap coefficients.

Examples

set.seed(1887)
testSets1 <- sapply(rbinom(10, size=26, prob=0.3),
function(x) sample(LETTERS, x, replace=FALSE))
names(testSets1) <- sprintf("List%d"”, seq(along=testSets1))
testSets1Poe <- listOverlapCoefficient(testSets1)
testSets1PoeNoCheck <- listOverlapCoefficient(testSets1, checkUniqueNonNA=FALSE)
stopifnot(identical (testSets1Poe, testSets1PoeNoCheck))

testSets2 <- sapply(rbinom(15, size=26, prob=0.3),

function(x) sample(LETTERS, x, replace=FALSE))
names(testSets2) <- sprintf(”"AnotherList%d"”, seq(along=testSets2))
testSets12Poe <- listOverlapCoefficient(testSetsl, testSets2)

longdf2matrix Convert a long-format data frame into matrix

Description

Input data.frame must contain at least three columns: one contains row names (specified by row. col),
one contains column names (column.col), and one contains values in matrix cells (value.col).
The output is a 2D matrix.

Usage

longdf2matrix(
df,
row.col = 1L,
column.col = 2L,
value.col = 3L,
missingValue = NULL

matchColumn 37

Arguments
df Long-format data frame
row.col Character or integer, which column of the input data.frame contains row names?
column.col Character or integer, which column contains column names?
value.col Character or integer, which column contains matrix values?

missingValue Values assigned in case of missing data

Value

A 2D matrix equivalent to the long-format data frame

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

matrix2longdf
Examples

test.df <- data.frame(H=c("HSV", "BVB", "HSV", "BVB"),
A=c("FCB", "SQ4", "SQ4", "FCB"),

score=c(3, 1, 1, 0))

longdf2matrix(test.df, row.col=1L, column.col=2L, value.col=3L)

data(Indometh)
longdf2matrix(Indometh, row.col="time", column.col="Subject”,value.col="conc")
longdf2matrix(Indometh, row.col="Subject”, column.col="time", value.col="conc")

matchColumn Match a column in data.frame to a master vector

Description

Given a vector known as master vcector, a data.frame and one column of the data.frame, the function
matchColumnIndex matches the values in the column to the master vector, and returns the indices
of each value in the column with respect to the vector. The function matchColumn returns whole or
subset of the data.frame, with the matching column in the exact order of the vector.

Usage

matchColumn(vector, data.frame, column, multi = FALSE)

38 matchColumn

Arguments
vector A vector, probably of character strings.
data.frame A data.frame object
column The column name (character) or index (integer between 1 and the column num-
ber), indicating the column to be matched. Exceptionally 0 is as well accepted,
which will match the row names of the data. frame to the given vector.
multi Logical, deciding what to do if a value in the vector is matched to several values
in the data.frame column. If set to TRUE, all rows containing the matched value
in the specified column are returned; otherwise, when the value is set to FALSE,
one arbitrary row is returned. See details and examples below.
Details

See more details below.

The function is used to address the following question: how can one order a data.frame by val-
ues of one of its columns, the order for which is given in a vector (known as “master vector”).
matchColumnIndex and matchColumn provide thoroughly-tested implementation to address this
question.

For one-to-one cases, where both the column and the vector have no duplicates and can be matched
one-to-one, the question is straightforward to solve with the match function in R. In one-to-many
or many-to-many matching cases, the parameter multi determines whether multiple rows matching
the same value should be shown. If mutli=FALSE, then the sorted data.frame that are returned has
exactly the same row number as the input vector; otherwise, the returned data.frame has more rows.
See the examples below.

In either case, in the returned data. frame object by matchColumn, values in the column used for
matching are overwritten by the master vector.If multi=TRUE, the order of values in the column is
also obeying the order of the master vector, with exceptions of repeating values casued by mutliple
matching.

The column parameter can be either character string or non-negative integers. In the exceptional
case, where column=0L (“L” indicates integer), the row names of the data. frame is used for match-
ing instead of any of the columns.

Both functions are NA-friendly, since NAs in neither vector nor column should break the code.

Value

For matchColumnIndex, if multi is set to FALSE, an integer vector of the same length as the master
vector, indicating the order of the data.frame rows by which the column can be re-organized
into the master vector. When multi is TRUE, the returning object is a list of the same length as
the master vector, each item containing the index (indices) of data.frame rows which match to the
master vector.

For matchColumn, a data.frame is always returned. In case multi=FALSE, the returning data frame
has the same number of rows as the length of the input master vector, and the column which was
specified to match contains the master vector in its order. If multi=TRUE, returned data frame can
contain equal or more numbers of rows than the master vector, and multiple-matched items are
repeated.

matchColumnName 39

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

See match for basic matching operations.

Examples

df <- data.frame(Team=c("HSV", "BVB", "HSC", "FCB", "HSV"),
Pkt=c(25,23,12,18,21),
row.names=c("C", "B", "A", "F", "E"))
teams <- c("HSV", "BVB", "BRE", NA)
ind <- c¢("C", "A", "G", "F", "C", "B", "B", NA)

matchColumnIndex(teams, df, 1L, multi=FALSE)
matchColumnIndex(teams, df, 1L, multi=TRUE)
matchColumnIndex(teams, df, "Team”, multi=FALSE)
matchColumnIndex(teams, df, "Team”, multi=TRUE)
matchColumnIndex(teams, df, @, multi=FALSE)
matchColumnIndex(ind, df, @, multi=FALSE)
matchColumnIndex(ind, df, @, multi=TRUE)

matchColumn(teams, df, 1L, multi=FALSE)
matchColumn(teams, df, 1L, multi=TRUE)
matchColumn(teams, df, "Team”, multi=FALSE)
matchColumn(teams, df, "Team”, multi=TRUE)
matchColumn(ind, df, @, multi=FALSE)
matchColumn(ind, df, @, multi=TRUE)

matchColumnName Match a given vector to column names of a data.frame or matrix

Description

Match a given vector to column names of a data.frame or matrix

Usage

matchColumnName (data.frame.cols, reqCols, ignore.case = FALSE)

Arguments

data.frame.cols
column names of a data.frame. One can also provide a data.frame, which may
however cause worse performance since the data.frame is copied

reqCols required columns

ignore.case logical, whether the case is considered

40 matrix2longdf

Value

A vector of integers as indices

Examples

myTestDf <- data.frame(HBV=1:3, VFB=0:2, BVB=4:6, FCB=2:4)
myFavTeams <- c("HBV", "BVB")

matchColumnName (myTestDf, myFavTeams)

myFavTeamsCase <- c("hbv", "bVb")

matchColumnName (myTestDf, myFavTeamsCase, ignore.case=TRUE)

NA will be returned in this case if ignore.case is set to FALSE
matchColumnName (myTestDf, myFavTeamsCase, ignore.case=FALSE)

matrix2longdf Transform a matrix into a long-format data.frame

Description

The function converts a matrix into a long-format, three-column data.frame, containing row, columna
nd value. Such ‘long’ data.frames can be useful in data visualization and modelling.

Usage
matrix2longdf(
mat,
row.names,
col.names,
longdf.colnames = c("row”, "column”, "value")
)
Arguments
mat A matrix
row.names Character, row names to appear in the data.frame. If missing, the rownames
of the matrix will be used. If set to NULL, or if the matrix rownames are NULL, a
integer index vector starting from 1 will be used.
col.names Charater, column names to appear in the data.frame. The rule of handling

missing or NULL parameters is the same as row.names described above.
longdf.colnames
Character, column names of the output long data frame

Details

The function converts a matrix into a three-column, ‘long’ format data.frame containing row names,
column names, and values of the matrix.

mergelnfreqLevelsByCumsumprop 41

Value

A data. frame object with three columns: row, column and value. If the input matrix is of dimesion
MxN, the returning data. frame is of the dimension MNx3.

Note

The length of row. names and col . names should be as the same as the matrix dimension. Otherwise
the function raises warnings.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

test.mat <- matrix(1:12, ncol=4, nrow=3, dimnames=1ist(LETTERS[1:3],
LETTERS[1:41))

print(test.mat)

print(matrix2longdf(test.mat))

print(matrix2longdf(test.mat, longdf.colnames=c("From”, "To", "Time")))

mergeInfreglLevelsByCumsumprop

Merge infrequent levels by setting the threshold of the proportion of
cumulative sum over sum a.k.a. cumsumprop

Description

Merge infrequent levels by setting the threshold of the proportion of cumulative sum over sum a.k.a.

cumsumprop
Usage
mergeInfreqlLevelsByCumsumprop(
classes,
thr = 0.9,
mergedLevel = "others”,
returnFactor = TRUE
)
Arguments
classes Character strings or factor.
thr Numeric, between 0 and 1, how to define frequent levels. Default: 0.9, namely
levels which make up over 90% of all instances.
mergedLevel Character, how the merged level should be named.

returnFactor Logical, whether the value returned should be coereced into a factor.

42 midentical

Value

A character string vector or a factor, of the same length as the input classes, but with potentially
fewer levels.

Note

In case only one class is deemed as infrequent, its label is unchanged.

Examples

set.seed(1887)

myVals <- sample(c(rep("A", 4), rep("B", 3), rep(”"C", 2), "D"))

in the example below, since A, B, C make up of 90% of the total,

D is infrequent. Since it is alone, it is not merged
mergeInfreglLevelsByCumsumprop(myVals, 0.9)

mergeInfreqlLevelsByCumsumprop(myVals, 0.9, returnFactor=FALSE) ## return characters
in the example below, since A and B make up 70% of the total,

and A, B, C 90%, they are all frequent and D is infrequent.

Following the logic above, no merging happens
mergelnfreglLevelsByCumsumprop(myVals, 0.8)

mergelnfreglLevelsByCumsumprop(myVals, @.7) ## A and B are left, C and D are merged
mergelnfreglLevelsByCumsumprop(myVals, @0.5) ## A and B are left, C and D are merged
mergeInfregLevelsByCumsumprop(myVals, 0.4) ## A is left
mergelnfreglLevelsByCumsumprop(myVals, 0.3) ## A is left

midentical Multiple identical

Description

Testing whether multiple objects are identical

Usage

midentical(
num.eq = TRUE,
single.NA = TRUE,
attrib.as.set = TRUE,
ignore.bytecode = TRUE,
ignore.environment = FALSE,
ignore.srcref = TRUE

mmatch 43

Arguments

Objects to be tested, or a list of them
num.eq, single.NA, attrib.as.set, ignore.bytecode,
See identical
ignore.environment, ignore.srcref
See identical

Details

midentical extends identical to test multiple objects instead of only two.

Value

A logical value, TRUE if all objects are identical

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also
identical
Examples
setl <- "HSV”

set2 <- set3 <- set4 <- c("HSV", "FCB")

midentical(setl, set2)
midentical(list(setl, set2))

midentical(set2, set3, set4)
midentical(list(set2, set3, set4))

other options passed to identical
midentical(@, -0, +0@, num.eq=FALSE)
midentical(@, -0, +@, num.eq=TRUE)

mmatch Multiple matching

Description

Multiple matching between two vectors. Different from R-native match function, where only one
match is returned even if there are multiple matches, mmatch returns all of them.

44 mmatch

Usage

mmatch(x, table, nomatch = NA_integer_)

Arguments
X vector or NULL: the values to be matched.
table vector or NULL: the values to be matched against.
nomatch the value to be returned in case when no match is found.
Details

Multiple matches can be useful in many cases, and there is no native R function for this purpose.
User can write their own functions combining lapplying with match or %in%, our experience
however shows that such non-vectorized function can be extremely slow, especially when the x or
table vector gets longer.

mmatch delegates the multiple-matching task to a C-level function, which is optimized for speed.
Internal benchmarking shows improvement of hundred fold, namely using mmatching costs about
1/100 of the time used by R-implementation.

Value

A list of the same length as the input x vector. Each list item contains the matching indices (similar
to match).

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>, C-code was adapted from the program written
by Roland Schmucki.

See Also

match

Examples

vecl <- c("HSV", "BVB", "FCB", "HSV", "BRE", "HSV", NA, "BVB")
vec2 <- c("FCB", "FCN", "FCB", "HSV", "BVB", "HSV", "FCK", NA, "BRE", "BRE")

mmatch(vecl, vec2)

compare to match
match(vecl, vec2)

munion 45

munion Operations for multiple sets

Description

Set operation functions in the base package, union, intersect and setdiff, can only be applied to
binary manipulations involving two sets. Following functions, munion, mintersect and msetdiff,
extend their basic versions to deal with multiple sets.

Usage

munion(...)

Arguments

Vectors of items, or a list of them. See examples below.

Details
These functions apply set manipulations (union, intersect, or difference) in a sequential manner: the
first two sets are considered first, then the third, the fourth and so on, till all sets have been visited.
Value

A vector of set operation results. Can be an empty vector if no results were returned.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

union, intersect and setdiff.

Examples

setl <- c("HSV", "FCB", "BVB", "FCN", "HAN")
set2 <- c("HSV", "FCB", "BVB", "HAN")
set3 <- c("HSV", "BVB", "FSV")

munion(setl, set2, set3)
mintersect(setl, set2, set3)
msetdiff(setl, set2, set3)

sets can be given in a list as well
munion(list(setl, set2, set3))
mintersect(list(setl, set2, set3))
msetdiff(list(setl, set2, set3))

46 naivePairwiseDist

na.false Replace NA with FALSE

Description

Replace NA in a vector with FALSE

Usage

na.false(x)

Arguments

X A logical vector or matrix

Value

Logical vector or matrix with NAs replaced by FALSE

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also
myX <- ¢("HSV", "FCK", "FCN", NA, "BVB") res <- myX == "HSV" na.false(res)

naivePairwiseDist Calculate pairwise distances between each pair of items in a list

Description

Calculate pairwise distances between each pair of items in a list

Usage

naivePairwiseDist(list, fun = jaccardIndex)

Arguments
list A list
fun A function that receives two vectors (such as jaccardIndex) and returns a number

(scale)

ofactor 47

Value

A symmetric matrix of dimension mxm, where m is the length of the list

This function is inefficient compared with matrix-based methods. It is exported just for education
and for verifying results of matrix-based methods.

Examples

myList <- list(first=LETTERS[3:5], second=LETTERS[1:3], third=LETTERS[1:5], fourth=LETTERS[6:10])
naivePairwiseDist(myList, fun=jaccardIndex)

despite of the name, any function that returns a number can work

naivePairwiseDist(myList, fun=jaccardDistance)

ofactor Ordered factor

Description

Build a factor using the order of input character strings

Usage
ofactor(x, ...)
Arguments
X A vector of character strings
Other parameters passed to factor
Value

Factor with levels in the same order of the input strings.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

factor

48 openFileDevice
Examples

testStrings <- c("A”, "C", "B", "B", "C")
(testFac <- factor(testStrings))
(testOfac <- ofactor(testStrings))

stopifnot(identical(levels(testOfac), c("A", "C", "B")))

openFileDevice Open a device as a file preparing for plotting in the file

Description

The function openFileDevice opens a device of the type specified by the file extension name. It
such prepares the file for visualizing data. User must call dev.off once the writing (plotting) to the
device is finished.

Usage

openFileDevice(filename, width = 7, height = 7, dpi = 300L, family)

Arguments
filename Character, file name to be written to. The type of file is determined by the
extension. See details below.
width Number, figure width of the file in inch.
height Number, figure height of the file in inch.
dpi Number, resolution as “dots per inch”. For publication 300dpi is usually enough.
family Font family name. Only applicable to PDF files
Details

closeFileDevice quietly closes the current device: it does not print the information of the next
device.

The function openFileDevice calls extname to determine the file type to be drawn in. Currently
supported types include PDF, tiff (tif), bmp, jpeg (jpeg). When the file type is not recognized,
the PDF format is used as a fallback.

As an example, myplot. pdf will triggers openning a PDF device, newplot.png a PNG device, and
oldplot.tiff a TIFF device, whereas myfile. abc will be openned as a PDF device.

For bitmap files like BMP, JPEG,PNG and TIFF, we use inch as the size unit in order to be compatible
with PDF. And the resolution is always set to 300dpi.Furthermore, JPEG quality is set to 90 instead
of the default value 75, and TIFF do not use any compression. These settings follow our practices
for scientific publication while allowing generic post-precessing of figures.

overlapCoefficient 49

Value

Both functions are used for its side effect.

Note

After plotting, user should call dev. of f to close the device in the file, otherwise the file can probably
not be read.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

extname for getting extension name of file. See pdf, png, jpeg, tiff and bmp for file formats.

Examples

if(interactive()) {
tempfilel <- paste(tempfile(), ".pdf", sep="")
openFileDevice(tempfilel)
plot(rnorm(100), rnorm(100))
closeFileDevice()

tempfile2 <- paste(tempfile(), ".png", sep="")
openFileDevice(tempfile2, width=5, height=5)
plot(rnorm(100), rnorm(100))
closeFileDevice()

overlapCoefficient Overlap coefficient, also known as Szymkiewicz-Simpson coefficient

Description

Overlap coefficient, also known as Szymkiewicz-Simpson coefficient

Usage

overlapCoefficient(x, y, checkUniqueNonNA = FALSE)

overlapDistance(x, y, checkUniqueNonNA = FALSE)

50 pAbsLog10Score

Arguments
X A vector
y A vector
checkUniqueNonNA
Logical, if TRUE, x and y are made unique and non-NA
Value

The overlap coefficient

See Also

jaccardIndex

overlapCofficient calculates the overlap coefficient, and overlapDistance is defined by 1-
overlapCoefficient.

Examples

myX <- 1:6
myY <- 4:9
overlapCoefficient(myX, myY)

myY2 <- 4:10

overlapCoefficient(myX, myY2)

compare the result with Jaccard Index
jaccardIndex(myX, myY2)

overlapDistance
overlapDistance(myX, myY2)

pAbsLog1@Score Transform p-values to continuous scores with the absolute-logl0
transformation

Description
The function maps p values between 0 and 1 to continuous scores ranging on R by the following
equation: abs(logl0(p)) * sign

Usage

pAbsLog1@Score(p, sign = 1)

pairwiseJaccardIndex 51

Arguments
p p-value(s) between (0,1]
sign Sign of the score, either positive (in case of positive numbers), negative (in case
of negative numbers), or zero. In case a logical vector, TRUE is interpreted as
positive and FALSE is interpreted as negative.
See Also

pQnormScore, pScore

Examples

testPvals <- c¢(0.001, 0.01, 0.05, 0.1, 0.5, 1)
pAbsLog10Score(testPvals)

testPvalSign <- rep(c(-1,1), 3)
pAbsLog1@Score(testPvals, sign=testPvalSign)
testLog <- rep(c(TRUE, FALSE),3)
pAbsLog10Score(testPvals, testlLog)

pairwiseJaccardIndex Calculate pairwise Jaccard Indices between each pair of items in a list

Description

Calculate pairwise Jaccard Indices between each pair of items in a list

Usage

pairwiseJaccardIndex(list)

pairwiseJaccardDistance(list)

Arguments

list A list

Value

A symmetric matrix of dimension mxm, where m is the length of the list

pairwiseJaccardDistance is defined as 1-pairwiseJaccardIndex.

52 pairwiseOverlapDistance

Examples

myList <- 1ist(first=LETTERS[3:5], second=LETTERS[1:3], third=LETTERS[1:5], fourth=LETTERS[6:10])
pairwiseJaccardIndex(myList)

poormanPJI <- function(list) {

sapply(list, function(x) sapply(list, function(y) jaccardIndex(x,y)))
3
stopifnot(identical(pairwiseJaccardIndex(myList), poormanPJI(myList)))

pairwiseOverlapDistance

Calculate pairwise overlap coefficients between each pair of items in
a list

Description

Calculate pairwise overlap coefficients between each pair of items in a list

Usage

pairwiseOverlapDistance(list)

pairwiseOverlapCoefficient(list)

Arguments

list A list

Value

A symmetric matrix of dimension mxm, where m is the length of the list

pairwiseOverlapDistance is defined the pairwise overlap distance.

Examples

myList <- list(first=LETTERS[3:5], second=LETTERS[1:3], third=LETTERS[1:5], fourth=LETTERS[6:10])
pairwiseOverlapCoefficient(myList)
pairwiseOverlapDistance(myList)

poormanPOC <- function(list) {

sapply(list, function(x) sapply(list, function(y) overlapCoefficient(x,y)))
3
stopifnot(identical(pairwiseOverlapCoefficient(myList), poormanPOC(myList)))

percentage 53

percentage Print a decimal number in procent format

Description

Print a decimal number in procent format

Usage

percentage(x, fmt = "1.1")

Arguments
X a decimal number, usually between -1 and 1
fmt format string, *1.1° means a digit before and after the decimal point will be
printed
Value

Character string

Examples

percentage(c(0,0.1,0.25,1))
percentage(c(0,0.1,0.25,1), fmt="1.4")
percentage(c(0,-0.1,0.25,-1), fmt="+1.1")

pQnormScore Transform p-values to continuous scores with the quantile function of
the normal distribution

Description

Quantile function, also known as the inverse of cumulative distribution function of the normal dis-
tribution, is used to map p-values to continuous scores raging on R. The signs of the resulting
scores are positive by default and are determined by the parameter sign.

Usage

pQnormScore(p, sign = 1)

54 print. BEDAinfo

Arguments
P p-value(s) between (0, 1]
sign Signs of the scores, either positive (in case of positive numbers), negative (in
case of negative numbers), or zero. In case of a logical vector, TRUE is interpreted
as positive and FALSE is interpreted as negative.
See Also

pAbsLog1@Score, pScore

Examples

testPvals <- c(0.001, 0.01, 0.05, 0.1, 0.5, 1)
pQnormScore(testPvals)

testPvalSign <- rep(c(-1,1), 3)
pQnormScore(testPvals, sign=testPvalSign)
testLog <- rep(c(TRUE, FALSE),3)
pQnormScore(testPvals, testlLog)

print.BEDAinfo Print BEDAinfo object

Description

Print BEDAinfo object

Usage
S3 method for class 'BEDAinfo'
print(x, ...)

Arguments

X A BEDA info object, returned by bedaInfo
Ignored

Value

Invisible NULL, only side effect is used

Examples

if(interactive()) {print(bedaInfo())}

pScore 55

pScore Transform p-values to continuous scores

Description

The function wraps other functions to map p values ranging on (0, 1] to continuous scores ranging
on R in a number of ways.

Usage

pScore(p, sign = 1, method = c("gnorm”, "absLogl10"))

Arguments
p p-value between (0,1]
sign Sign of the score, either positive (in case of positive numbers), negative (in case
of negative numbers), or zero. In case a logical vector, TRUE is interpreted as
positive and FALSE is interpreted as negative.
method Currently available methods include gnorm and absLog1@.
See Also

pAbsLog1@Score, pQnormScore

Examples

testPvals <- c(0.001, 0.01, 0.05, 0.1, 0.5, 1)
pScore(testPvals, method="abslLog10")

pScore(testPvals, method="gnorm")

testPvalSign <- rep(c(-1,1), 3)

pScore(testPvals, sign=testPvalSign, method="abslLogl10")
pScore(testPvals, sign=testPvalSign, method="gnorm")
testLog <- rep(c(TRUE, FALSE),3)

pScore(testPvals, testLog, method="abslLogl10")
pScore(testPvals, testLog, method="gnorm")

testPvals <- 10*seq(-5, 0, 0.05)
plot(pScore(testPvals, method="gnorm"),
pScore(testPvals, method="absLogl10"),
xlab="pQnormScore"”, ylab="pAbsLogl1@Score"); abline(0,1, col="red”, lty=2)

56 pwdecode

putColsFirst Rearrange columns to put some columns to far left

Description
This function is helpful to export tables where certain columns are desired to be placed to the most
left of the data.frame

Usage

putColsFirst(data.frame, columns)

Arguments

data.frame Data.frame

columns Character vector, names of columns which are to be put to the left
Value

data.frame with re-arranged columns

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

clubs <- data.frame(Points=c(21,23,28,24), Name=c("BVB", "FCB", "HSV",
"FCK"), games=c(12,11,11,12))

putColsFirst(clubs, c("”Name"))

putColsFirst(clubs, c(”Name", "games"))

pwdecode Decode password with function implemented with pwencode

Description

Decode password encypted with pwencode.

Usage

pwdecode (password)

pwencode 57

Arguments
password Character string to be decoded. If starting with a empty character, the string is
sent for decoding; otherwise, it is deemed as clear text password and returned.
Details

See pwdecode function documentation in BIOS for implemetnation details.

Note that since R does not support strings embedding null values (\000), the password to be decoded
has to be given with two slashes, e.g. “ \001\000\129\235°.

Value

Decoded character string, or empty string if decoding fails

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>. The C library code was written by Detlef
Wolf.

Examples

mycode <- " \\001\\000\\141\\314\\033\\033\\033\\033\\033\\142\\303\\056\\166\\311\\037\\042"
pwdecode (mycode)

pwencode Encode a password

Description

Encode a password

Usage
pwencode(label = "VAR", key)

Arguments
label label used to encode the password
key password key

Value

Character string, encoded password

58 qqmsg

qgmsg Quitely Quit with Messages

Description

Quitely quit R with messages in non-interactive sessions

Usage

qgmsg(..., status = @, save = FALSE, runLast = TRUE)
Arguments

Messages to be passed to message

status Quit stats

save Logical, should current working environment be saved?

runLast Logical, should .Last() be executed?
Details

The function prints messages in any case, and quits R if the current session is non-interactive, e.g.
in the command-line running Rscript mode

Value

Invisible NULL, only side effect is used.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

quit
Examples

the example should not run because it will lead the R session to quit
Not run:

qamsg ()

qgmsg("die”, status=0)

qgmsg("Avada kedavra”, status=-1)

qgmsg("Crucio!”, "\n", "Avada kedavra”, status=-100)

End(Not run)

gsystem 59

gsystem Quietly runs a system command

Description

Quietly runs a system command: the output is internalized and returned as an invisible variable, and
the standard error output is ignored.

Usage

gsystem(command)
Arguments

command A system command
Details

The function runs the system command in a quiet mode. The function can be useful in CGI scripts,
for instance

Value

(Invisibly) the internalized output of the command

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

dateIntern <- system("date")

refactorNum Sort numeric factor levels by values

Description

Factor variables with numbers as levels are alphabetically ordered by default, which requires rear-
rangements for various purposes, e.g. modelling or visualizations. This function re-orders levels of
numeric factor variables numerically.

Usage

refactorNum(x, decreasing = FALSE)

60 registerLog

Arguments
X A factor variable with numeric values as levels
decreasing Logical, should the levels sorted descendingly?
Value

A factor variable, with sorted numeric values as levels

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

(nums <- factor(c("Z","4","24","1","2","125","1","2","125")))
(nums.new <- refactorNum(nums))

registerLog The functions registerLog and doLog provide a simple mechanism
to handle loggings (printing text messages to files or other types of
connections) in R.

Description

Users can register arbitrary numbers of loggers with registerlLog, and the functions take care of
low-level details such as openning and closing the connections.

Usage
registerLog(..., append = FALSE)
Arguments
Arbitrary numbers of file names (character strings) or connection objects (see
example).
append Logical, log will be appended to the existing file but not overwriting. Only valid

for files but not for connections such as standard output.

registerLog 61

Details

Input parameters can be either character strings or connections (such as the objects returned by
stdout() or pipe().

If a character string is registered as a logger, it is assumed as a file name (user must make sure that it
is writable/appendable). In case the file exists, new logging messages will be appended; otherwise
if the file does not exists, it will be created and the logging messages will be written to the file.

n_n,

A special case is the parameter value : it will be interpreted as standard output.
if a connection is registered as a logger, it must be writable in order to write the logging messages.

Each parameter will be converted to a connection object, which will be closed (when applicable)
automatically before R quits.

If the parameter is missing (or set to NA or NULL), no logging will take place.

Value

No value returned: its side effect is used.

Note

Currently, the loggers are stored in a variable in the namespace of ribiosUtils named RIBIOS_LOGGERS.
This is only for internal use of the package and may change any time, therefore users are not advised
to manipulate this variable directly.

To clear the registered loggers, use clearLog.To flush the registered loggers, use flushLog. Usu-
ally it is not necessary to use flushLog in R scripts, since by program exit the active R session
will automatically flush and close the connections (in addition, frequent flushing may decrease the
program’s efficiency). However, if used in interactive sessions, sometimes flushLog is needed to
force R write all log files to all connections that are registered.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

doLog writes messages iteratively to each connection registered by registerLog.

Examples

logfilel <- tempfile()
logfile2 <- tempfile()
logcon3 <- stdout()
if(.Platform$0S. type == "unix") {
registerLog("/dev/null")
} else {
registerLog(tempfile())
}
registerLog(logfilel)
registerLog(logfile2)

62

registerLog(logcon3)

doLog("Start logging")

doLog("Do something...")

doLog("End logging")

flushLog() ## usually not needed, see notes

txt1 <- readLines(logfilel)
txt2 <- readLines(logfile2)

cat(txt1)
cat(txt2)

clearLog()

registerLog(logfilel, logfile2, logcon3)
doLog("Start logging - round 2")
doLog("Do something again ...")
doLog("End logging - for good")

flushLog() ## usually not needed, see notes

txt1 <- readLines(logfilel)
txt2 <- readLines(logfile2)

cat(txt1)
cat(txt2)

clean up files and objects to close unused connections

closelLoggerConnections()

relevels

relevels Relevel a factor by a named or unnamed vector.

Description

Usage
relevels(
X’
refs,
missinglevels = c("pass"”, "warning”, "error"),
unrecognisedLevels = c("warning”, "pass”, "error")

This function wraps relevelsByNamedVec for named vector and relevelsByNotNamedVec for not

named vectors

relevelsByNamedVec 63

Arguments
X A factor
refs A named vector or unnamed vector.

missinglevels Actions taken in case existing levels are missing: ’pass’, warning’, or “error’.
unrecognisedLevels

Actions taken in case unrecognised levels are found: ’pass’, warning’, or ’er-
ror’.

Value

A vector of factor

See Also

relevelsByNamedVec and relevelsByNotNamedVec

Examples

oldFactor <- factor(c("A", "B", "A", "C", "B"), levels=LETTERS[1:3])

refLevels <- c("B", "C", "A")

refDict <- c("A"="a", "B"="b", "C"="c")

newFactor <- relevels(oldFactor, reflLevels)

stopifnot(identical (newFactor, factor(c("A", "B", "A", "C", "B"), levels=c("B", "C", "A"))))
newFactor2 <- relevels(oldFactor, refDict)

stopifnot(identical (newFactor2, factor(c(”a", "b", "a", "c", "b"), levels=c("a", "b", "c"))))

relevelsByNamedVec Relevel a factor by a named vector.

Description

If names contain character strings other than the levels in the old factor and warning is set to TRUE,
a warning will be raised.

Usage
relevelsByNamedVec(
X)
refs,
missinglevels = c("pass"”, "warning”, "error"),
unrecognisedlLevels = c("warning”, "pass”, "error")

64 relevelsByNotNamedVec

Arguments
X A factor
refs A named vector. The names of the vector are all or a subset of levels in the old

factor. And the values are new levels

missinglevels Actions taken in case existing levels are missing: ’pass’, warning’, or “error’.

unrecognisedlLevels
Actions taken in case unrecognised levels are found: ’pass’, warning’, or ’er-
ror’.
Details

The levels of the factor are the names of the ref vector, and the order of the ref vector matters: it
is the levels of the new factor.

Value

A vector of factor

Examples

oldFactor <- factor(c("A", "B", "A", "C", "B"), levels=LETTERS[1:3])

factorDict <- c("A"="a", "B"="b", "C"="c")

newFactor <- relevelsByNamedVec(oldFactor, factorDict)

stopifnot(identical (newFactor, factor(c("a”, "b", "a", "c", "b"), levels=c("a", "b", "c"))))
TODO: test warning and error

relevelsByNotNamedVec Relevel a factor by a unnamed vector.

Description

If names contain character strings other than the levels in the old factor and warning is set to TRUE,
a warning will be raised

Usage
relevelsByNotNamedVec(
X)
refs,
missinglevels = c("pass"”, "warning”, "error"),
unrecognisedLevels = c("warning”, "pass”, "error")

reload 65

Arguments
X A factor
refs A unnamed vector. The values of the vector are levels of x.

missinglevels Actions taken in case existing levels are missing: ’pass’, warning’, or “error’.

unrecognisedlLevels
Actions taken in case unrecognised levels are found: ’pass’, warning’, or “er-
ror’.
Value

A vector of factor

Examples

oldFactor <- factor(c("A", "B", "A", "C", "B"), levels=LETTERS[1:3])

refLevels <- c("B", "C", "A")

newFactor <- relevelsByNotNamedVec(oldFactor, reflLevels)

stopifnot(identical (newFactor, factor(c("A", "B", "A", "C", "B"), levels=c("B", "C", "A"))))
TODO: test warning and error

reload Reload a package

Description

Reload a package by first detaching and loading the library.

Usage
reload(pkg)

Arguments

pkg Character string, name of the package

Value

Side effect is used.

Note

So far only character is accepted

66 removeColumns

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

detach and library

Examples

the example should not run because it will reload the package
Not run:
reload(ribiosUtils)

End(Not run)

removeColumns Remove columns

Description

Remove columns from a data.frame object

Usage

removeColumns(data.frame, columns, drop = FALSE)

Arguments
data.frame data.frame
columns names of columns to be removed
drop Logical, whether the matrix should be dropped to vector if only one column is
left
Details

The function is equivalent to the subsetting operation with brackets. It provides a tidy programming
interface to manupulate data.frames.

Value

data.frame with specified columns removed

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

removelnvarCol 67

Examples

clubs <- data.frame(Points=c(21,23,28,24), Name=c("BVB", "FCB", "HSV",
"FCK"), games=c(12,11,11,12))
removeColumns(clubs,c(”Name"))

removeInvarCol Remove invariable columns from a data frame or matrix

Description

Columns with one unique value are invariable. The functions help to remove such columns from a
data frame (or matrix) in order to highlight the variables.

Usage

removeInvarCol (df)
Arguments

df A data frame or matrix
Details

removeInvarCol the data frame removing invariable column(s).

isVarCol and isInvarCol are helper functions, returning a logical vector indicating the variable
and invariable columns respectively.
Value

isVarCol and isInvarCol return a logical vector indicating the variable and invariable columns
respectively.

removeInvarCol removes invariable columns.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

testDf <- data.frame(a=1:4, b=7, c=LETTERS[1:4])
isVarCol (testDf)

isInvarCol(testDf)

removelnvarCol (testDf)

68

ribios Tempdir

replaceColumnName Replace column names in data.frame

Description

Replace column names in data.frame

Usage

replaceColumnName(data.frame, old.names, new.names)

Arguments

data.frame A data.frame
old.names Old column names to be replaced

new.names New column names

Value

Data.frame with column names updated

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

clubs <- data.frame(Points=c(21,23,28,24), Name=c("BVB", "FCB", "HSV",

"FCK"), games=c(12,11,11,12))

replaceColumnName(clubs, c("Points”, "games"), c("Punkte", "Spiele"))

ribiosTempdir A temporary directory which (1) every machine in the cluster has ac-

cess to and (2) has sufficient space

Description

A temporary directory which (1) every machine in the cluster has access to and (2) has sufficient

space

Usage

ribiosTempdir ()

ribiosTempfile 69

Value

a character string of the directory name

See Also
ribiosTempfile
ribiosTempfile A temporary file which (1) every machine in the cluster has access to
and (2) there is sufficient space
Description

A temporary file which (1) every machine in the cluster has access to and (2) there is sufficient

space
Usage

ribiosTempfile(pattern = "file"”, tmpdir = ribiosTempdir(), fileext = "")
Arguments

pattern Character string, file pattern

tmpdir Character string, temp directory

fileext CHaracter string, file name extension (suffix)
Value

a character string of the file name

See Also

ribiosTempdir

ribiosUtils ribiosUtils

Description

ribiosUltils is a swiss-knife package providing misc utilities

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>, with inputs from Clemens Broger, Martin
Ebeling, Laura Badi and Roland Schmucki

70 rmat

rmat Remove temporary files at a specified time interval from now

Description

Send a at job to remove (probably temporary) files in the future with a specified time interval from

now
Usage
rmat(..., days = NULL, hours = NULL, minutes = NULL, dry = TRUE)
Arguments
Files to be removed
days Numeric, interval in days
hours Numeric, interval in hours
minutes Numeric, interval in minutes
dry Logical, if set to TRUE, only the command will be returned and files are not really
removed.
Details

The command will delete files, and there is usually no way to get deleted files back. So make sure
you know what you are doing!

Days, hours, and minutes can be given in a mixed way: they will be summed up to give the interval.

Value

(Invisibly) the output of the at job.

Note

Since the command uses at internally, it is unlikely the command will work in the Windows system
“out of box”.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

gsystem for running system commands quietly.

rocheCore 71

Examples

tmp1 <- tempfile()
tmp2 <- tempfile()
rmat(tmp1, tmp2, minutes=1)

rocheCore Extract core identifiers from Roche compound IDs

Description

Extract core identifiers from Roche compound IDs

Usage

rocheCore(str, short = FALSE)

Arguments
str Character strings
short Logical, if TRUE, the short version of Roche identifiers (ROL0-91{4}) is returned.
Default: FALSE
Value

Core identifiers if the element is a Roche compound ID, the original element otherwise Non-
character input will be converted to character strings first.

See Also

isRocheCompoundID

Examples

rocheCore(c(”R01234567-001", "R01234567-001-000", "R01234567",
"ROnoise-001", "anyOther-not-affected”))

rocheCore(c(”R01234567-001", "R01234567-001-000", "R01234567",
"ROnoise-001","anyOther-not-affected”), short=TRUE)

72 rowscale.matrix
rowscale S3 method for row-scaling
Description
S3 method for row-scaling
Usage
rowscale(x, center = TRUE, scale = TRUE)
Arguments
X Any object
center Logical, whether centering should be done before scaling
scale Logical, whether scaling should be done
Value
The input object with rows scaled
rowscale.matrix Scale a matrix by row
Description
Scaling a matrix by row can be slightly slower due to a transposing step.
Usage
S3 method for class 'matrix’
rowscale(x, center = TRUE, scale = TRUE)
Arguments
X An matrix
center Logical, passed to scale. to TRUE
scale Logical, passed to scale. TRUE
Value
A matrix with each row scaled.
Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

rsetdiff

See Also

scale

Examples

mat <- matrix(rnorm(20), nrow=4)
rs.mat <- rowscale(mat)

print(mat)
print(rs.mat)
rowMeans(rs.mat)
apply(rs.mat, 1L, sd)

rowscale(mat, center=FALSE, scale=FALSE) ## equal to mat
rowscale(mat, center=TRUE, scale=FALSE)
rowscale(mat, center=FALSE, scale=TRUE)

73

rsetdiff Reverse setdiff

Description

reverse setdiff, i.e. rsetdiff(x,y) equals setdiff(y,x)

Usage
rsetdiff(x, y)

Arguments
a vector
y another vector
Value

Similar to setdiff, but with elements in y but not in x

Author(s)
Jitao David Zhang

Examples

testVecl <- LETTERS[3:6]
testVec2 <- LETTERS[5:7]
rsetdiff(testVecl, testVec2)

74 setDebug

scriptlnit Prepare R for an interactive script

Description

The function prepares R for an interactive session (e.g. in a script). Currently it defines behaviour
in case of errors: a file named “ribios.dump” is written.

Usage

scriptInit()

Value

Side effect is used.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

options

Examples

do not run unless the script mode is needed
Not run:
scriptInit()

End(Not run)

setDebug Functions for command-line Rscript debugging

Description

These functions are used to debug command-line executable Rscripts in R sessions

Usage
setDebug()

shortenStr 75

Details

setDebug sets the environmental variable RIBIOS_SCRIPT_DEBUG as TRUE. unsetDebug unsets the
variable. isDebugging checks whether the variable is set or not. isIntDebugging tests whether the
scripts runs interactively or runs in the debugging mode. The last one can be useful when debugging
Rscript in a R session.

A programmer wishing to debug a Rscript can explicitly set (or unset) the RIBIOS_SCRIPT_DEBUG
variable in order to activate (inactivate) certain trunks of codes. This can be automated via isDebugging,
or probably more conveniently, by isIntDebugging: if the script runs in an interactive mode, or

the debugging flag is set, the function returns TRUE.

Value

setDebug and unsetDebug returns an invisible value indicating whether the variable setting (unset-
ting) was successful.

isDebugging and isIntDebugging returns logical values.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

unsetDebug()
print(isDebugging())
setDebug()
print(isDebugging())
unsetDebug()
print(isDebugging())
print(isIntDebugging())

shortenStr Shorten strings to a given number of characters

Description

Shorten strings to a given number of characters

Usage

shortenStr(str, nchar = 8)

Arguments

str A vector of strings

nchar The maximal number of characters to keep

76 silencio

Value

A vector of strings of the same length as the input, with each string shortened to the desired length

Strings with more characters than nchar will be shortened.

Note

NA will be kept as they are

Examples

inputStrs <- c("abc"”, "abcd”, "abcde”, NA)
shortenStr(inputStrs, nchar=4)

expected outcome: abc, abcd, abcd..., NA
silencio Keep silent by suppressing warnings and messages
Description

The function is used to keep the command silent by suppressing warnings and messages

Usage

silencio(...)

Arguments

Any function call

Value

The same as the function call

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

suppressWarnings, suppressMessages

Examples

wsgrt <- function(x) {warning("Beep");message(”Calculating square"”);return(x*2)}
silencio(wsqrt(3))

sortAndFilterByCumsumprop 77

sortAndFilterByCumsumprop
Sort a numeric vector and filter by a threshold of cumsumprop

Description

Sort a numeric vector and filter by a threshold of cumsumprop

Usage
sortAndFilterByCumsumprop(x, thr = 0.9)

Arguments
X Numeric vector, usually named
thr Threshold, default 0.9, meaning that items whose proportion of cumulative sum
just above 0.9 are kept.
Value

Another numeric vector, likely shorter than x, items whose cumsumprop is equal or lower than thr.
The rest items are summed into one new item, with the name rest

This function can be useful to extract from a long numeric vector the largest items that dominate
the sum of the vector

Examples

X <_ C(HAH:1 ’HBIIZZ’IICH:3’ IIDH:4’ IIEII:4®®, IIFH:500)
sortAndFilterByCumsumprop(x, thr=0.99) ## F and E should be returned

sortByCol Sort data.frame rows by values in specified columns

Description

Sort rows of an data. frame by values in specified columns.

Usage

sortByCol(
data.frame,
columns,
na.last = TRUE,
decreasing = TRUE,
orderAsAttr = FALSE

78 sortByDimnames

Arguments
data.frame A data. frame object
columns Column name(s) which sould be ordered
na.last Logical, whether NA should be sorted as last
decreasing Logical, whether the sorting should be in the decreasing order
orderAsAttr Logical, whether the order index vectors should be returned in the attribute “or-
der” of the sorted data. frame
Details

Columns can be specified by integer indices, logical vectors or character names.

Value

Sorted data. frame

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

sample.df <- data.frame(teams=c("HSV", "BVB", "FCB", "FCN"),pts=c(18,17,17,9), number=c(7,7,6,6))
sortByCol (sample.df, 1L)
sortByCol(sample.df, 1L, decreasing=FALSE)

sortByCol (sample.df, c(3L, 1L))
sortByCol(sample.df, c(3L, 1L), decreasing=FALSE)
sortByCol (sample.df, c(3L, 2L))

sortByCol(sample.df, c(TRUE, FALSE, TRUE))
sortByCol (sample.df, c("teams”, "pts"))

sortByCol(sample.df, c("pts”, "number”, "teams"))
sortByCol (sample.df, c("pts"”, "teams”, "number"))

sortByDimnames Sort matrix by dim names

Description

Rearrange rows and columns of a matrix by dim names

Usage

sortByDimnames(x, row.decreasing = FALSE, col.decreasing = FALSE)

strtoken 79

Arguments

X A matrix or data.frame
row.decreasing Logical, whether rows should be sorted decreasingly

col.decreasing Logical, whether columns should be sorted decreasingly

Value

Resorted matrix or data frame

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>
Examples

testMat <- matrix(1:16, nrow=4, dimnames=1list(c("B", "D", "A", "C"), c("t", "f", "a", "g")))
sortByDimnames(testMat)
sortByDimnames(testMat, row.decreasing=TRUE, col.decreasing=FALSE)

strtoken Tokenize strings by character

Description

Tokenize strings by character in a similar way as the strsplit function in the base package. The
function can return a matrix of tokenized items when index is missing. If index is given, tokenized
items in the selected position(s) are returned. See examples.

Usage
strtoken(x, split, index, ...)
Arguments
X A vector of character strings; non-character vectors are cast into characters.
split A character to split the strings.
index Numeric vector indicating which fields should be returned; if missing or set to
NULL, a matrix containing all fields are returned.
Other parameters passed to strsplit
Value

A matrix if index is missing, NULL, or contains more than one integer indices; otherwise a character
vector.

80 stubborngc

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

References

The main body of the function is modified from the strsplit2 function in the 1imma package.

See Also

strsplit

Examples

myStr <- c("HSV\t1887", "FCB\t1900", "FCK\t1948")
strsplit(myStr, "\t")

strtoken(myStr, "\t")
strtoken(myStr, "\t", index=1L)
strtoken(myStr, "\t", index=2L)

myFac <- factor(myStr)
strtoken(myFac, "\t")
strtoken(myFac, "\t", index=1L)

stubborngc Repeat garbage-collecting until all resource is freed

Description

stubborngc repeats collecting garbage untill no more resource can be freed

Usage

stubborngc(verbose = FALSE, reset = TRUE)

Arguments
verbose Logical, verbose or not
reset Logical, reset or not.
Value

Side effect is used.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

subsetByColumnName 81

See Also

gc

Examples

stubborngc()

subsetByColumnName Subset a data.frame by column name, allowing differences in cases

Description

The function calls assertColumnName internally to match the column names.

Usage

subsetByColumnName(data.frame, reqCols, ignore.case = FALSE)

Arguments

data.frame A data.frame object

reqCols required columns

ignore.case logical, whether the case is considered
Value

If all required column names are present, the data.frame object will be subset to include only these
columns and the result data.frame is returned. Otherwise an error message is printed.

Examples

myTestDf <- data.frame(HBV=1:3, VFB=0:2, BVB=4:6, FCB=2:4)
myFavTeams <- c("HBV", "BVB")

subsetByColumnName (myTestDf, myFavTeams)

myFavTeamsCase <- c("hbv"”, "bVb")

subsetByColumnName (myTestDf, myFavTeamsCase, ignore.case=TRUE)

82 summarizeRows

summarizeRows Summarizing rows/columns by a factor

Description

Apply a function to summarize rows/columns that assigned to the same level by a factor vector.

Usage
summarizeRows(matrix, factor, fun = mean, ...)
Arguments
matrix A numeric matrix
factor A vector of factors, either of the length of nrow(matrix) (for summarizeRows),
or the length of ncol(matrix) (for summarizeColumns).
fun A function or a name for a function, the summarizing function applied to rows/columns
sharing the same level
Further parameters passed to the function
Details

NA levels are neglected, and corresponding rows/columns will not contribute to the summarized
matrix.

summarizeCols is synonymous to summarizeColumns

Value

A matrix, the dimension will be determined by the number of levels of the factor vector.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

my.matrix <- matrix(1:25, nrow=5)
print(my.matrix)

my.factor <- factor(c("A", "B", "A", "C", "B"))
summarizeRows(matrix=my.matrix, factor=my.factor, fun=mean)
summarizeRows(matrix=my.matrix, factor=my.factor, fun=prod)
summarizeColumns(matrix=my.matrix, factor=my.factor, fun=mean)
summarizeColumns(matrix=my.matrix, factor=my.factor, fun=prod)

NA values in factor

trim 83

my.na.factor <- factor(c("A", "B", "A", "C", NA))
summarizeRows(matrix=my.matrix, factor=my.na.factor, fun=mean)
summarizeRows(matrix=my.matrix, factor=my.na.factor, fun=prod)
summarizeColumns(matrix=my.matrix, factor=my.na.factor, fun=mean)
summarizeColumns(matrix=my.matrix, factor=my.na.factor, fun=prod)

trim Trim leading and tailing spaces from string

Description

The function trims leading and/or tailing spaces from string(s), using C function implemented in
the BIOS library.

Usage

trim(x, left = " \n\r\t"”, right = " \n\r\t")
Arguments

X A character string, or a vector of strings

left Characters that are trimmed from the left side.

right Characters that are trimmed from the right side
Details

left and right can be set to NULL. In such cases no trimming will be performed.

Value

Trimmed string(s)

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>
Examples

myStrings <- c("This is a fine day\n",
" Hallo Professor!"”,
" NUR DER HSV ")
trim(myStrings)

84

uniqueLength

uniquelLength Length of unique elements in a vector

Description

Length of unique elements in a vector

Usage

uniqueLength(x, incomparables = FALSE)

Arguments

X A vector

incomparables See unique

Value

An integer indicating the number of unique elements in the input vector

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

unique

Examples
test.vecl <- c("HSV", "FCB", "BVB", "HSV", "BVB")
uniquelLength(test.vecl)

test.vec2 <- c¢(1L, 2L, 3L, 5L, 3L, 4L, 2L, 1L, 5L)
ulen(test.vec?2)

uniqueNonNA 85

uniqueNonNA Make a vector free of NA and unique

Description

Make a vector free of NA and unique

Usage

uniqueNonNA(x)

Arguments

X A vector

Value

A unique vector without NA

Examples

testVec <- c(3,4,5,NA,3,5)
uniqueNonNA(testVec)

verbose Print messages conditional on the verbose level

Description

The verbose level can be represented by non-negative integers. The larger the number is, the more
verbose is the program: it prints then more messages for users’ information.

Usage
verbose(..., global = 1L, this = 1L)
Arguments
Messages to be printed, will be passed to the message function
global Integer, the global verbose level

this Integer, the verbose level of this message

86 whoami

Details

This function decides whether or not to print a message, dependent on the global verbose level and
the specific level of the message. If the specific level is larger than the global level, the message is
suppresed; otherwise it is printed. see the details section for an example.

Suppose the global verbose level is set to 5, and two messages have levels of 1 and 7 repsectively.
Since 1 suggests a low-threshold of being verbose, the first message is printed; whereas the message
of level 7 is only printed when the program should run in a more verbose way (7,8,9,...{}),itis
suppressed in the current global verbose level.

Value

The function is used for its side effect by printing messages.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

Examples

Gv <- 5L

verbose("Slightly verbosing”, global=Gv, this=1L)
verbose("Moderately verbosing”, global=Gv, this=5L)
verbose("Heavily verbosing”, global=Gv, this=9L)

whoami System user name

Description

System user name

Usage

whoami ()

Value

System user name

Examples

whoami ()

writeLog 87

writelLog Write text as log to a connection

Description

The function writelLog can be used to log outputs and/or running status of scripts to one connection.
To use it one does not need to run registerlLog first.

Usage
writeLog(fmt, ..., con = stdout(), level = @)
Arguments
fmt Format string to passed on to sprintf
Parameters passed on to sprintf
con A connection, for instance a file (or its name) or stdout ()
level Logging level: each higher level will add one extra space before the message.
See examples
Details

In contrast, doLog can be used to log on multiple connections that are registered by registerLog.
Therefore, to register logger(s) with registerLog is a prerequisite of calling doLog. Internally
doLog calls writelLog sequentially to make multiple-connection logging.

Value

Side effect is used.

Author(s)

Jitao David Zhang <jitao_david.zhang @roche.com>

See Also

registerLog to register more than one loggers so that doLog can write to them sequentially.

Examples

writeLog("This is the start of a log")
writeLog("Message 1", level=1)
writeLog("Message 1.1", level=2)
writeLog("Message 1.2", level=2)
writeLog("Message 2", level=1)
writeLog("Message 3", level=1)
writeLog("Message 3 (special)”, level=4)

88

writeLog("End of the log");

log with format
writeLog("This is Message %d", 1)
writeLog("Square of 2 is %2.2f", sqrt(2))

NA is handled automatically
writeLog("This is a not available value: %s", NA, level=1)
writeLog("This is a NULL value: %s", NULL, level=1)

writeLog

Index

allldentical, 4

apply1 (summarizeRows), 82
apply?2 (summarizeRows), 82
asNumMatrix, 5
assertColumnName, 5, 81
assertContrast, 6, 8
assertDesign, 7,8
assertDesignContrast, 7
assertDir, 10

assertDir (isDir), 28
assertFile, 29
assertFile (checkFile), 9
atofMatrix (asNumMatrix), 5

basefilename (extname), 20
bedaInfo, 8, 54
biomicsPstorePath2URL, 9
bmp, 49

checkDir (isDir), 28

checkFile, 9, 29

chosenFew, 10

clearlLog (registerLog), 60

closeFileDevice (openFileDevice), 48

closelLoggerConnections, 11

columnOverlapCoefficient, 12

compTwoVecs, 12

countTokens, 13

createDir, 14

cumJaccardDistance (cumJaccardIndex), 15

cumJaccardIndex, 15

cumOverlapCoefficient, 15, 16

cumOverlapDistance
(cumOverlapCoefficient), 16

cumsumprop, 17

cut, 18

cutInterval, 17

detach, 66
dfFactor, 19

89

dfFactor2Str, 20
dir.create, 14
doLog (writelog), 87

extname, 20, 49

file.info, 29
fixWidthStr, 21
flushLog (registerlLog), 60

gc, 81
getDefaultFontFamily, 22

haltifnot, 23
head, 24, 25

headhead, 24
headtail, 25

identical, 4,43
identicalMatrix, 26
identicalMatrixValue, 26
imatch, 27

imatchv (imatch), 27
intersect, 45

ipmatch (imatch), 27

ipmatchv (imatch), 27
isDebugging (setDebug), 74
isDir, 10, 28

isError, 29

isIntDebugging (setDebug), 74
isInvarCol (removelnvarcCol), 67
isMaxStatRow (keepMaxStatRow), 31
isRocheCompoundID, 30, 71
isVarCol (removelnvarCol), 67

jaccardDistance (jaccardIndex), 31
jaccardIndex, 31, 50
jpeg, 49

keepMaxStatRow, 31
keepMaxStatRowInd (keepMaxStatRow), 31

90

libordie, 33

library, 66

list2df, 35
listOverlapCoefficient, 35
longdf2matrix, 36

match, 28, 39

matchColumn, 37

matchColumnIndex (matchColumn), 37
matchColumnName, 5, 39

matchv (imatch), 27
matrix2longdf, 40
mergeInfreqlLevelsByCumsumprop, 41
midentical, 42

mintersect (munion), 45

mmatch, 43

mset (munion), 45

msetdiff (munion), 45

munion, 45

na.false, 46
naivePairwiseDist, 46
nField (countTokens), 13

ofactor, 47
openFileDevice, 48
options, 74
overlapCoefficient, 49

overlapDistance (overlapCoefficient), 49

pAbsLog1@Score, 50, 54, 55
pairwiseJaccardDistance

(pairwiseJaccardIndex), 51

pairwiseJaccardIndex, 51
pairwiseOverlapCoefficient

(pairwiseOverlapDistance), 52

pairwiseOverlapDistance, 52
pdf, 49

percentage, 53
pmatch, 28

png, 49
pQnormScore, 51, 53, 55
print.BEDAinfo, 54
pScore, 55
putColsFirst, 56
pwdecode, 56
pwencode, 57

qqmsg, 34, 58

gsystem, 59, 70
quit, 58

refactorNum, 59
registerLog, 11, 60
relevels, 62
relevelsByNamedVec, 62, 63, 63
relevelsByNotNamedVec, 62, 63, 64
reload, 65

removeColumns, 66
removelnvarCol, 67
replaceColumnName, 68
ribiosTempdir, 68, 69
ribiosTempfile, 69, 69
ribiosUtils, 69

rmat, 70

rocheCore, 71

rowscale, 72
rowscale.matrix, 72
rsetdiff, 73

scale, 73

scriptInit, 74

setDebug, 74

setdiff, 45

shortenStr, 22,75

silencio, 76

sortAndFilterByCumsumprop, 77

sortByCol, 77

sortByDimnames, 78

stop, 23

stopifnot, 23

stringDataFrame2numericMatrix
(asNumMatrix), 5

strsplit, 14, 79, 80

strtoken, 14,79

stubborngc, 80

subsetByColumnName, 81

summarizeCols (summarizeRows), 82

summarizeColumns (summarizeRows),

summarizeRows, 82
suppressMessages, 76
suppressWarnings, 76

tail, 24, 25

tailtail (headhead), 24
tiff, 49

trim, 83

ulen (uniquelLength), 84

INDEX

82

INDEX

union, 45

unique, 84
uniquelength, 84
uniqueNonNA, 85
unsetDebug (setDebug), 74

verbose, 85

warning, 23
whoami, 86
writelLog, 87

91

	allIdentical
	asNumMatrix
	assertColumnName
	assertContrast
	assertDesign
	assertDesignContrast
	bedaInfo
	biomicsPstorePath2URL
	checkFile
	chosenFew
	closeLoggerConnections
	columnOverlapCoefficient
	compTwoVecs
	countTokens
	createDir
	cumJaccardIndex
	cumOverlapCoefficient
	cumsumprop
	cutInterval
	dfFactor
	dfFactor2Str
	extname
	fixWidthStr
	getDefaultFontFamily
	haltifnot
	headhead
	headtail
	identicalMatrix
	identicalMatrixValue
	imatch
	isDir
	isError
	isRocheCompoundID
	jaccardIndex
	keepMaxStatRow
	libordie
	list2df
	listOverlapCoefficient
	longdf2matrix
	matchColumn
	matchColumnName
	matrix2longdf
	mergeInfreqLevelsByCumsumprop
	midentical
	mmatch
	munion
	na.false
	naivePairwiseDist
	ofactor
	openFileDevice
	overlapCoefficient
	pAbsLog10Score
	pairwiseJaccardIndex
	pairwiseOverlapDistance
	percentage
	pQnormScore
	print.BEDAinfo
	pScore
	putColsFirst
	pwdecode
	pwencode
	qqmsg
	qsystem
	refactorNum
	registerLog
	relevels
	relevelsByNamedVec
	relevelsByNotNamedVec
	reload
	removeColumns
	removeInvarCol
	replaceColumnName
	ribiosTempdir
	ribiosTempfile
	ribiosUtils
	rmat
	rocheCore
	rowscale
	rowscale.matrix
	rsetdiff
	scriptInit
	setDebug
	shortenStr
	silencio
	sortAndFilterByCumsumprop
	sortByCol
	sortByDimnames
	strtoken
	stubborngc
	subsetByColumnName
	summarizeRows
	trim
	uniqueLength
	uniqueNonNA
	verbose
	whoami
	writeLog
	Index

