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condensedIdentity Condensed identity coefficients

Description

Computes the 9 condensed identity coefficients of pairwise relationships in a pedigree. Founders of
the pedigree may be inbred; use pedtools::founderInbreeding() to set this up.

Usage

condensedIdentity(x, ids, sparse = NA, verbose = FALSE, checkAnswer = verbose)

Arguments

x A pedigree in the form of a pedtools::ped object
ids A character (or coercible to character) containing ID labels of two or more pedi-

gree members.
sparse A positive integer, indicating the pedigree size limit for using sparse arrays (as

implemented by the slam package) instead of ordinary arrays.
verbose A logical
checkAnswer A logical. If TRUE, and the identity package is installed, the result is checked

against the output of identity::identity.coefs(). This option is ignored if
any of the founders are inbred, or if ids has length greater than 2.

https://CRAN.R-project.org/package=slam
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Details

The implementation is a modified version of Karigl’s recursive algorithm (1981).

Value

If ids has length 2: A vector of length 9, containing the condensed identity coefficients.

If ids has length > 2: A data frame with one row for each pair of individuals, and 11 columns.
The first two columns contain the ID labels, and columns 3-11 contain the condensed identity
coefficients.

References

G. Karigl (1981). A recursive algorithm for the calculation of identity coefficients Annals of Human
Genetics, vol. 45.

See Also

kappa(), condensedIdentityX(), pedtools::founderInbreeding()

Examples

# One generation of full sib mating.
# (One of the simplest examples with all 9 coefficients nonzero.)
x = fullSibMating(1)
j1 = condensedIdentity(x, ids = 5:6)

stopifnot(all.equal(j1, c(2, 1,4, 1, 4, 1, 7, 10, 2)/32))

# Recalculate the coefficients when the founders are 100% inbred
founderInbreeding(x, 1:2) = 1
condensedIdentity(x, ids = 5:6)

condensedIdentityX Identity coefficients on X

Description

Computes the X chromosomal condensed identity coefficients of a pairwise relationship.

Usage

condensedIdentityX(x, ids, sparse = NA, verbose = FALSE)
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Arguments

x A pedigree in the form of a pedtools::ped object

ids A character (or coercible to character) containing ID labels of two or more pedi-
gree members.

sparse A positive integer, indicating the pedigree size limit for using sparse arrays (as
implemented by the slam package) instead of ordinary arrays.

verbose A logical

Details

The implementation is inspired by Karigl’s recursive algorithm (1981) for the autosomal case, mod-
ified to account for X-linked inheritance.

The X chromosomal pairwise identity states depend on the sexes of the two individuals. If both
are female, the states are the same as in the autosomal case. When males are involved, the two
individuals have less than 4 alleles, hence the states differ from the autosomal ones. However, to
avoid drawing (and learning) new pictures we re-use the autosomal states by using the following
simple rule: Replace any hemizygous male allele with a pair of autozygous alleles. In this way
each X state corresponds to a unique autosomal state.

For simplicity the output always contains 9 coefficients, but with NA’s in the positions of undefined
states (depending on the sex combination). The README file on the GitHub home page of ribd
has a table illustrating this.

Value

If ids has length 2: A vector of length 9, containing the condensed identity coefficients. If any of
the individuals are male, certain states are undefined, and the corresponding coefficients are NA.
(See Details.)

If ids has length > 2: A data frame with one row for each pair of individuals, and 11 columns.
The first two columns contain the ID labels, and columns 3-11 contain the condensed identity
coefficients.

See Also

kinshipX(), condensedIdentity(), pedtools::founderInbreeding()

Examples

x = fullSibMating(1)
x_sisters = swapSex(x, 5)
x_brothers = swapSex(x, 6)

condensedIdentityX(x, ids = 5:6)
condensedIdentityX(x_sisters, ids = 5:6)
condensedIdentityX(x_brothers, ids = 5:6)

https://CRAN.R-project.org/package=slam
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constructPedigree Pedigree construction

Description

Construct a pedigree yielding a prescribed set of IBD coefficients.

Usage

constructPedigree(kappa, describe = TRUE, verbose = FALSE)

Arguments

kappa A probability vector of length 3; (kappa0, kappa1, kappa2).

describe A logical. If TRUE, a textual description of the resulting relationship is printed.

verbose A logical. If TRUE, various details about the calculations are printed.

Details

The construction follows the method and formulae given in Vigeland (2020).

Value

A ped object containing a pair of double half cousins with inbred founders. (In corner cases the
relationship collapses into siblings.)

References

M. D. Vigeland (2020). Relatedness coefficients in pedigrees with inbred founders. Journal of
mathematical biology. doi: 10.1007/s0028502001505x

Examples

# Full siblings
x = constructPedigree(kappa = c(0.25, 0.5, 0.25))
kappaIBD(x, leaves(x))

# A relationship halfway between parent-child and full sibs
kap = c(1/8, 6/8, 1/8)
showInTriangle(kap, label = " (1/8, 1/8)", pos = 4)

y = constructPedigree(kappa = kap)
plot(y)

stopifnot(all.equal(kappaIBD(y, leaves(y)), kap))

# kappa = (0,1,0) does not give a parent-child relationship,

https://doi.org/10.1007/s00285-020-01505-x
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# but half siblings whose shared parent is completely inbred.
z = constructPedigree(kappa = c(0,1,0))
plot(z)

external_coefs Relatedness coefficients by other programs

Description

Wrappers for functions in other packages or external programs, computing various relatedness co-
efficients.

Usage

kinship2_kinship(x, ids = NULL)

kinship2_kinshipX(x, ids = NULL)

kinship2_inbreeding(x)

kinship2_inbreedingX(x)

idcoefs(x, ids)

idcoefs2(x, ids, verbose = FALSE, cleanup = TRUE)

Arguments

x A pedigree, in the form of a pedtools::ped object.
ids A integer vector of length 2.
verbose A logical, indicating if messages from IdCoefs should be printed.
cleanup A logical: If TRUE, the pedfile and sample file created for the IdCoefs run are

deleted automatically.

Details

kinship2_inbreeding() and kinship2_kinship() are wrappers of kinship2::kinship() with
the parameter chrtype = "autosome".

Similarly ,kinship2_inbreedingX() and kinship2_kinshipX() wrap kinship2::kinship()
using chrtype = "x".

idcoefs() wraps identity::identity.coefs(), which is an R interface for the C program
IdCoefs written by Mark Abney (2009). The identity.coefs() function sometimes causes R
to crash, hence I have provided an alternative wrapper, idcoefs2, which executes an external call
to the original C program IdCoefs (version 2.1.1). For this to work, IdCoefs must be installed
on the computer (see link in the References section below) and the executable placed in a folder
included in the PATH variable. The idcoefs2() wrapper works by writing the necessary files to
disk and calling IdCoefs via system().
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Value

For kinship2_inbreeding() and kinship2_inbreedingX(), a named numerical vector with the
inbreeding coefficients and ID labels as names.

For kinship2_kinship() and kinship2_kinshipX(), either a single numeric (if ids is a pair of
pedigree members) or the whole kinship matrix, with the ID labels as dimnames.

For jaquard() and jaquard2(), a numerical vector of length 9 (in the standard order of Jacquard’s
condensed identity coefficients).

Author(s)

Magnus Dehli Vigeland

References

Abney, Mark (2009). A graphical algorithm for fast computation of identity coefficients and gener-
alized kinship coefficients. Bioinformatics, 25, 1561-1563. http://home.uchicago.edu/~abney/
abney_web/Software.html

See Also

kinship2::kinship(), identity::identity.coefs()

Examples

# A random pedigree with 2 founders and 5 matings
p = pedtools::randomPed(g = 5, founders = 2, seed = 111)

# Check that ribd agrees with kinship2 package
kinship_k2 = kinship2_kinship(p)
kinship_ribd = kinship(p)
stopifnot(identical(kinship_k2, kinship_ribd))

# Check on X also
kinshipX_k2 = kinship2_kinshipX(p)
kinshipX_ribd = kinshipX(p)
stopifnot(identical(kinshipX_k2, kinshipX_ribd))

generalisedKinship Generalised kinship coefficients

Description

Compute generalised single-locus kinship coefficients, using the algorithm by Weeks & Lange
(1988).

http://home.uchicago.edu/~abney/abney_web/Software.html
http://home.uchicago.edu/~abney/abney_web/Software.html
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Usage

generalisedKinship(x, pattern, mem = NULL, verbose = FALSE, debug = FALSE)

Arguments

x A ped object.

pattern A kinPattern object.

mem An environment (for internal use).

verbose A logical.

debug A logical.

Value

A single probability.

References

Weeks and Lange. The Affected-Pedigree-Member Method of Linkage Analysis. Am. J. Hum.
Genet. 42:315-326, 1988.

Examples

x = nuclearPed(3)
kp = kinPattern(x, list(c(1,1,1)))
generalisedKinship(x, kp)

##### IBD coefficients via generalised kinship ###
#(Clearly not the simplest way; serves as a check)
IBD_from_gk = function(x, ids) {

fa1 = father(x, ids[1])
fa2 = father(x, ids[2])
mo1 = mother(x, ids[1])
mo2 = mother(x, ids[2])
GK = function(...) generalisedKinship(x, list(...))

k0 = GK(fa1, fa2, mo1, mo2)
k1 = GK(c(fa1, fa2), mo1, mo2) + GK(c(fa1, mo2), fa2, mo1) +

GK(c(mo1, fa2), fa1, mo2) + GK(c(mo1, mo2), fa1, fa2)
k2 = GK(c(fa1, fa2), c(mo1, mo2)) + GK(c(fa1, mo2), c(mo1, fa2))
c(k0, k1, k2)

}

y1 = nuclearPed(2); ids = 3:4
stopifnot(IBD_from_gk(y1, ids) == kappaIBD(y1, ids))

y2 = quadHalfFirstCousins()
ids = 9:10
stopifnot(IBD_from_gk(y2, ids) == kappaIBD(y2, ids))
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#### Triple/quad kinship (compare with karigl)
x = fullSibMating(1)
ids = c(1,5,6)
stopifnot(generalisedKinship(x, list(ids)) == generalisedKinship3(x, ids))
ids = c(1,5,6,5)
stopifnot(generalisedKinship(x, list(ids)) == generalisedKinship4(x, ids))

generalised_karigl Karigl’s generalised kinship coefficients

Description

Compute generalised kinship coefficients, as defined by Karigl (1981), involving up to 4 pedigree
members. The founders may be inbred; see Examples.

Usage

generalisedKinship3(
x,
ids,
sparse = NA,
chromType = "autosomal",
verbose = FALSE

)

generalisedKinship4(
x,
ids,
sparse = NA,
chromType = "autosomal",
verbose = FALSE

)

generalisedKinship22(
x,
ids,
sparse = NA,
chromType = "autosomal",
verbose = FALSE

)

Arguments

x A pedigree, in the form of a pedtools::ped object.

ids A vector of ID labels, of length 3 for generalisedKinship3() and 4 for generalisedKinship4()
and generalisedKinship22().
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sparse A positive integer, indicating the pedigree size limit for using sparse arrays. If
NA, a default limit of 50 is used.

chromType Either "autosomal" or "x".

verbose A logical.

Details

The function generalisedKinship3() computes the generalised kinship coefficient of three (not
necessarily distinct) members a, b and c, defined as the probability that if a random allele is chosen
from each of them, they are all identical by descent.

The function generalisedKinship4() computes the generalised kinship coefficient of four indi-
viduals, defined similarly to the above.

The function generalisedKinship22() computes the generalised kinship coefficient of two pairs
of members, defined as the probability that in both pairs simultaneously, random alleles chosen
from the two individuals are IBD.

Value

A numeric of length 1.

See Also

kinship(), kinshipX(), condensedIdentity(), condensedIdentityX()

Examples

# Generalised kinship between three siblings
x = nuclearPed(3)
phi3 = generalisedKinship3(x, ids = 3:5)

# Recalculate if the father is 100% inbred
founderInbreeding(x, 1) = 1
phi3_inbred = generalisedKinship3(x, ids = 3:5)

stopifnot(phi3 == 1/16, phi3_inbred == 1/8 + 1/32)

ibdDraw Colourised IBD plot

Description

This is a pedagogical tools for illustrating the concept of identity-by-descent, by representing the
alleles in a pedigree by coloured points or letters. By default, the alleles are placed below each
pedigree symbols, but any positions are possible, including inside. (See examples.)
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Usage

ibdDraw(
x,
alleles,
symbol = c("point", "text"),
pos = 1,
cols = NULL,
cex = NA,
sep = NULL,
dist = 1,
labs = FALSE,
checkFounders = TRUE,
checkParents = TRUE,
margin = c(1, 1, 1, 1),
...

)

Arguments

x A ped object.

alleles A list of length pedsize(x). Each element should consist of one or two integers,
representing different colours. Zeroes produce "greyed-out" alleles.

symbol Either "point" or "text".

pos A vector recycled to the length of labels(x), indicating allele placement rel-
ative to the pedigree symbols: 0 = inside; 1 = below; 2 = left; 3 = above; 4 =
right. By default, all are placed below.

cols A colour vector corresponding to the integers occurring in alleles.

cex An expansion factor for the allele points/letters. Default: 3 for points and 2 for
text.

sep The separation between haplotypes within a pair, given as a multiple of the width
of a pedigree symbol. Default: 0.5 when pos = 0 and 1 otherwise.

dist The distance between pedigree symbols and the alleles, given as a multiple of
the height of a pedigree symbol. Default: 1. Ignored when pos = 0.

labs A logical indicating if labels should be included.

checkFounders A logical. If TRUE (default), a warning is issued if a founder has two equal
alleles other than 0.

checkParents A logical. If TRUE (default), a warning is issued if someone’s alleles don’t
match those of the parents. This a superficial test and does not catch all Mendelian
errors.

margin Plot margins (bottom, left, top, right).

... Further arguments passed on to plot.ped().

Value

The plot structure is returned invisibly.
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See Also

pedtools::plot.ped(), ibdsim2::haploDraw()

Examples

op = par(no.readonly = TRUE)

###############################
# Example 1: A family quartet #
###############################

x = nuclearPed(2)
als = list(1:2, 3:4, c(1,3), c(2,3))

# Default options
ibdDraw(x, als)

# Nicer colors
cols = c(7, 3, 2, 4)
ibdDraw(x, als, cols = cols)

# Inside the pedigree symbols
ibdDraw(x, als, cols = cols, pos = 0, symbolsize = 2.5)

# Other placements (margins depend on device - may need adjustment)
ibdDraw(x, als, cols = cols, pos = c(2, 4, 1, 1),

margin = c(2, 6, 2, 6))

# Letters instead of points
ibdDraw(x, als, cols = cols, symbol = "text", cex = 2)

# Further arguments (note that `col` is an argument of `ped.plot()`)
ibdDraw(x, als, cols = cols, pos = 0, symbolsize = 2,

labs = TRUE, shaded = 3:4, col = "blue")

# Mutations are warned about (unless `checkParents = FALSE`)
ibdDraw(x, alleles = list(1:2, 3:4, 5, 6))

############################
# Example 2: X inheritance #
############################

x = nuclearPed(2, sex = c(1, 2))
als = list(1, 2:3, 3, c(1, 3))
ibdDraw(x, als, cols = c(3, 7, 2))

#################################
# Example 3: mtDNA inheritance #
#################################

x = linearPed(2, sex = 2)
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als = list(1, 2, 2, 3, 2)
ibdDraw(x, als, cols = 2:4)

# Restore graphics parameters
par(op)

ibdTriangle IBD triangle plot

Description

The IBD triangle is typically used to visualize the pairwise relatedness of non-inbred individuals.
Various annotations are available, including points marking the most common relationships, contour
lines for the kinship coefficients, and shading of the unattainable region.

Usage

ibdTriangle(
relationships = c("UN", "PO", "MZ", "S", "H,U,G", "FC"),
pch = 16,
cexPoint = 1.2,
cexText = 1.2,
kinshipLines = numeric(),
shading = "lightgray",
xlim = c(0, 1),
ylim = c(0, 1),
axes = FALSE,
xlab = expression(kappa[0]),
ylab = expression(kappa[2]),
cexLab = cexText,
mar = c(3.1, 3.1, 1, 1),
xpd = TRUE,
keep.par = TRUE

)

Arguments

relationships A character vector indicating relationships points to be included in the plot. See
Details for a list of valid entries.

pch Symbol used for the relationship points (see par()).

cexPoint A number controlling the symbol size for the relationship points.

cexText A number controlling the font size for the relationship labels.

kinshipLines A numeric vector (see Details).

shading The shading colour for the unattainable region.
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xlim, ylim, mar, xpd

Graphical parameters; see par().

axes A logical: Draw surrounding axis box? Default: FALSE.

xlab, ylab Axis labels.

cexLab A number controlling the font size for the axis labels.

keep.par A logical. If TRUE, the graphical parameters are not reset after plotting, which
may be useful for adding additional annotation.

Details

For any pair of non-inbred individuals A and B, their genetic relationship can be summarized by the
IBD coefficients (κ0, κ1, κ2), where κi = P(A and B share i alleles IBD at random autosomal locus).
Since κ0 +κ1 +κ2 = 1, any relationship corresponds to a point in the triangle in the (κ0, κ2)-plane
defined by κ0 ≥ 0, κ2 ≥ 0, κ0 + κ2 ≤ 1. The choice of κ0 and κ2 as the axis variables is done for
reasons of symmetry and is not significant (other authors have used different views of the triangle).

As shown by Thompson (1976), points in the subset of the triangle defined by 4κ0κ2 > κ21 are
unattainable for pairwise relationships. By default this region in shaded in a ’light grey’ colour, but
this can be modified with the shading argument.

The IBD coefficients are linearly related to the kinship coefficient φ by the formula

φ = 0.25κ1 + 0.5κ2.

By indicating values for φ in the kinshipLines argument, the corresponding contour lines are
shown as dashed lines in the triangle plot.

The following abbreviations are valid entries in the relationships argument:

• UN = unrelated

• PO = parent/offspring

• MZ = monozygotic twins

• S = full siblings

• H,U,G = half sibling/avuncular (uncle)/grandparent

• FC = first cousins

• SC = second cousins

• DFC = double first cousins

• Q = quadruple first half cousins

Value

None

Author(s)

Magnus Dehli Vigeland
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References

• E. A. Thompson (1975). The estimation of pairwise relationships. Annals of Human Genetics
39.

• E. A. Thompson (1976). A restriction on the space of genetic relationships. Annals of Human
Genetics 40.

Examples

opar = par(no.readonly = TRUE) # store graphical parameters

ibdTriangle()
ibdTriangle(kinshipLines = c(0.25, 0.125), shading = NULL, cexText = 0.8)

par(opar) # reset graphical parameters

inbreeding Inbreeding coefficients

Description

Compute the inbreeding coefficients of all members of a pedigree. These are simple wrappers of
kinship() and kinshipX(). The founders may be inbred; see pedtools::founderInbreeding()
for how to set this up.

Usage

inbreeding(x, id = NULL)

inbreedingX(x, id = NULL)

Arguments

x A pedigree, in the form of a pedtools::ped object.

id Either a single ID label, or NULL (default).

Details

The autosomal inbreeding coefficient of a pedigree member is defined as the probability that, at a
random autosomal locus, the two alleles carried by the member are identical by descent relative to
the pedigree. It follows from the definition that the inbreeding coefficient of a member equals the
kinship coefficient of the parents.

The X chromosomal inbreeding coefficient of an female member is defined similarly to the autoso-
mal case above. For males is it always 1.

The inbreeding coefficients are computed from the diagonal of the kinship matrix, by the formula

fa = 2 ∗ φaa − 1.
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Value

If id is NULL, the output is a named numeric vector of length pedsize(x), containing the inbreed-
ing coefficients of each pedigree member. is returned.

If id is the label of a pedigree member, the inbreeding coefficient of this individual is returned
unnamed.

See Also

kinship()

Examples

# Child of half siblings: f = 1/8
x = halfCousinPed(0, child = TRUE)
inbreeding(x)

# If the father is 100% inbred, the inbreeding coeff of the child doubles
fa = commonAncestors(x, 4:5) # robust to label change
founderInbreeding(x, fa) = 1

inbreeding(x)

# Simpler output using the `id` argument:
inbreeding(x, id = 6)

### X-chromosomal inbreeding coefficients ###
# These depend on the genders in the pedigree.
# To exemplify, we consider a child of half siblings.

xPat = halfSibPed(sex2 = 2) # paternal half sibs
xPat = addChildren(xPat, father = 4, mother = 5, nch = 1, sex = 2)
stopifnot(inbreedingX(xPat, id = 6) == 0)

# Change to maternal half sibs => coeff becomes 1/4.
xMat = swapSex(xPat, 1)
stopifnot(inbreedingX(xMat, id = 6) == 0.25)

# Example with selfing and complete inbreeding
s = selfingPed(1)
founderInbreeding(s, 1) = 1
inbreeding(s, id = 2)

jicaque Jicaque pedigree

Description

A data frame describing a pedigree from the Jicaque tribe, studied by Chapman and Jacquard (1971).
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Usage

jicaque

Format

A data frame with 22 rows and four columns:

• id : individual ID

• fid : father’s ID (or 0 if not included)

• mid : mother’s ID (or 0 if not included)

• sex : Gender codes, where 1 = male and 2 = female

References

Chapman, A.M and Jacquard, A. (1971). Un isolat d’Amerique Centrale: les Indiens Jicaques de
Honduras. In Genetique et Population. Paris: Presses Universitaires de France.

kappaIBD IBD (kappa) coefficients

Description

Computes the three IBD coefficients summarising the relationship between two non-inbred individ-
uals. Both autosomal and X chromosomal versions are implemented.

Usage

kappaIBD(x, ids = labels(x), inbredAction = 1)

kappaIbdX(x, ids, sparse = NA, verbose = FALSE)

Arguments

x A pedigree in the form of a pedtools::ped object.

ids A character (or coercible to character) containing ID labels of two or more pedi-
gree members.

inbredAction An integer telling the program what to do if either of the ids individuals are in-
bred. Possible values are: 0 = do nothing; 1 = print a warning message (default);
2 = raise an error. In the first two cases the coefficients are reported as NA.

sparse A positive integer, indicating the pedigree size limit for using sparse arrays (as
implemented by the slam package) instead of ordinary arrays.

verbose A logical.

https://CRAN.R-project.org/package=slam
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Details

For non-inbred individuals a and b, their autosomal IBD coefficients (κ0, κ1, κ2) are defined as
follows:

κi = P (aandbshareiallelesIBDatarandomautosomallocus)

The autosomal kappa coefficients are computed from the kinship coefficients. When a and b are
both nonfounders, the following formulas are well-known:

• κ2 = φMM ∗ φFF + φMF ∗ φFM
• κ1 = 4 ∗ φab− 2 ∗ κ2

• κ0 = 1 − κ1 − κ2

Here φMM denotes the kinship coefficient between the mothers of a and b, and so on. If either a or
b is a founder, then κ2 = 0, while the other two formulas remain as above.

The X chromosomal IBD coefficients are defined as in the autosomal case, with the exception that
κ2 is undefined when at least one of the two individuals is male. Hence the computation is greatly
simplified when males are involved. Denoting the standard kinship coefficient by φ, the formulas
are:

• Both male: (κ0, κ1, κ2) = (1 − φ, φ,NA)

• One male, one female: (κ0, κ1, κ2) = (1 − 2 ∗ φ, 2 ∗ φ,NA)

• Two females: As in the autosomal case.

Value

If ids has length 2: A numeric vector of length 3: (κ0, κ1, κ2).

If ids has length > 2: A data frame with one row for each pair of individuals, and 5 columns. The
first two columns contain the ID labels, and columns 3-5 contain the IBD coefficients.

Unless inbredAction = 2, the coefficients of pairs involving inbred individuals (inbred females in
the X version) are reported as NA. Furthermore, the X chromosomal κ2 is NA whenever at least
one of the two individuals is male.

See Also

kinship(), condensedIdentity()

Examples

### Siblings
x = nuclearPed(2)
k = kappaIBD(x, 3:4)
stopifnot(identical(k, c(.25, .5, .25)))

### Quad half first cousins
x = quadHalfFirstCousins()
k = kappaIBD(x, leaves(x))
stopifnot(identical(k, c(17/32, 14/32, 1/32)))

### Paternal half brothers with 100% inbred father
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# Genetically indistinguishable from an (outbred) father-son relationship
x = halfSibPed()
ids = 4:5

# Set founder inbreeding
fou = commonAncestors(x, ids) # robust to label change
founderInbreeding(x, fou) = 1

k = kappaIBD(x, ids)
stopifnot(identical(k, c(0, 1, 0)))

kinPattern Generalised kinship pattern

Description

Generalised kinship pattern

Usage

kinPattern(x, pattern, internal = FALSE)

Arguments

x A ped object

pattern A list of vectors of ID labels.

internal A logical

Value

An object of class kinPattern.

Examples

kinPattern(nuclearPed(2), list(1, 3:4))
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kinship Kinship coefficients

Description

Compute the matrix of kinship coefficients (autosomal or X) of all members of a pedigree. The
founders may be inbred; see pedtools::founderInbreeding() for how to set this up.

Usage

kinship(x, ids = NULL)

kinshipX(x, ids = NULL)

Arguments

x A pedigree, in the form of a pedtools::ped object.

ids Either a character of length 2, or NULL. In the former case, it must contain
the ID labels of two members of x, and the function will return their kinship
coefficient as a single number. If ids is NULL (this is the default), the output is
the complete kinship matrix.

Details

For two (not necessarily distinct) members A, B of a pedigree, their autosomal (resp. X) kinship
coefficient is defined as the probability that random alleles sampled from A and B at the same
autosomal (resp. X) locus, are identical by descent relative to the pedigree.

Value

If ids = NULL, a symmetric matrix containing all pairwise kinship coefficients in x. If ids has length
2, the function returns a single number.

See Also

inbreeding(), kappa()

Examples

# Kinship coefficients in a nuclear family with two children
x = nuclearPed(2)
kinship(x)

# X chromosomal kinship coefficients in the same family
kinshipX(x)

# Recalculate the autosomal kinships if the father is 100% inbred
founderInbreeding(x, 1) = 1
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kinship(x)

minimalPattern Minimal IBD pattern

Description

Compute the minimal form of given multiperson IBD pattern.

Usage

minimalPattern(x)

Arguments

x An integer vector of even length.

Value

An integer vector of the same length as x.

Examples

v = c(1,2,2,3)
stopifnot(identical(minimalPattern(v), c(1,2,1,3)))

multiPersonIBD Multi-person IBD coefficients

Description

Computes the probabilities (coefficients) of all possible patterns of identity by descent (IBD) sharing
at a single locus, among N>1 non-inbred members of a pedigree. The reported coefficients are
"condensed" in the sense that allele ordering within each individual is ignored. For N = 2, the result
should agree with the traditional "kappa" coefficients, as computed by kappaIBD(). This function
is under development, and should be regarded as experimental. For now, the only cases handled are
those with: N = 2 or 3, autosomal locus.

Usage

multiPersonIBD(x, ids, complete = FALSE, verbose = FALSE)
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Arguments

x A ped object.

ids A vector of ID labels.

complete A logical. If FALSE, only IBD patterns with nonzero probability are included
in the output.

verbose A logical. If TRUE, some computational details are printed.

Details

Consider N members of a pedigree, i1, i2, ... iN. A pattern of IBD sharing between these individuals
is a sequence of N ordered pairs of labels, (a1_1, a1_2), (a2_1, a2_2), ... (aN_1, aN_2), where ai_1
and ai_2 represent the paternal and maternal allele of individual i, respectively. Equality of labels
means that the corresponding alleles are IBD, and vice versa.

We say that two IBD patterns are equivalent if one can be transformed into the other by some
combination of

• renaming the labels (without changing the structure)

• swapping the paternal/maternal labels of some individuals

Each equivalence class has a "minimal" element, using integer labels, and being minimal with
respect to standard sorting. For example, the minimal element equivalent to (a,c),(d,c),(b,b) is
(1,2),(2,3),(4,4).

Value

A data frame in which each row corresponds to an equivalence class of multi-person IBD patterns.
The first column gives the calculated probability, followed by one column for each ids individual,
describing the minimal element of the equivalence class. (See Details.) If complete = FALSE (the
default) rows with probability 0 are removed.

Examples

### Trivial example: Trio ###
x = nuclearPed(1)
ids = 1:3
multiPersonIBD(x, ids, complete = TRUE)

### Example due to Peter Green ###
# Three (pariwise) cousins arranged in two different ways,
# with different 3-way IBD coefficients.

threeCousins1 = ped(
id = c('gf','gm','gf1','gf2','gf3','gm1','gm2','gm3',

'f1','f2','f3','m1','m2','m3','c1','c2','c3'),
fid = c(0,0,0,0,0,0,0,0,'gf1','gf2','gf3','gf','gf','gf',

'f1','f2','f3'),
mid = c(0,0,0,0,0,0,0,0,'gm1','gm2','gm3','gm','gm','gm',

'm1','m2','m3'),
sex = c(1,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1))
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threeCousins2 = ped(
id = c('gf1','gf2','gf3','gm1','gm2','gm3','f1','f2','f3',

'm1','m2','m3','c1','c2','c3'),
fid = c(0,0,0,0,0,0,'gf2','gf3','gf1','gf3','gf1','gf2',

'f1','f2','f3'),
mid = c(0,0,0,0,0,0,'gm2','gm3','gm1','gm3','gm1','gm2',

'm1','m2','m3'),
sex = c(1,1,1,2,2,2,1,1,1,2,2,2,1,1,1))

ids = c('c1','c2','c3')
multiPersonIBD(threeCousins1, ids)
multiPersonIBD(threeCousins2, ids)

ribd ribd: Computation of pedigree-based relatedness coefficients

Description

Recursive algorithms for computing various relatedness coefficients, including Jacquard’s con-
densed identity coefficients. The standard algorithms are extended to allow inbred founders. Both
autosomal and X-linked coefficients are computed.

showInTriangle Add points to the IBD triangle

Description

Utility function for plotting points in the IBD triangle.

Usage

showInTriangle(
kappa,
new = TRUE,
col = "blue",
cex = 1,
pch = 4,
lwd = 2,
labels = FALSE,
colLab = col,
cexLab = 0.8,
pos = 1,
adj = NULL,
keep.par = TRUE,
...

)
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Arguments

kappa Coordinates of points to be plotted in the IBD triangle. Valid input types are:

• A numerical vector of length 2 or 3. In the latter case kappa[c(1,3)] is
used.

• A matrix of data frame, whose column names must include either k0 and
k2, kappa0 and kappa2, or ibd0 and ibd2.

• A list (and not a data frame), in which case an attempt is made to bind the
elements row-wise.

new A logical indicating if a new triangle should be drawn.

col, cex, pch, lwd

Parameters passed onto points().

labels A character of same length as the number of points, or a single logical TRUE or
FALSE. If TRUE, an attempt is made to create labels by pasting columns ID1 and
ID2 in kappa, if these exist. By default, no labels are plotted.

colLab, cexLab, pos, adj

Parameters passed onto text() (if labels is non-NULL).

keep.par A logical. If TRUE, the graphical parameters are not reset after plotting, which
may be useful for adding additional annotation.

... Plot arguments passed on to ibdTriangle().

Value

None

Author(s)

Magnus Dehli Vigeland

Examples

showInTriangle(c(3/8, 1/8), label = "3/4 siblings", pos = 1)

twoLocusIBD Two-locus IBD coefficients

Description

Computes the 3*3 matrix of two-locus IBD coefficients of a pair of non-inbred pedigree members,
for a given recombination rate.
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Usage

twoLocusIBD(
x,
ids,
rho,
coefs = NULL,
detailed = FALSE,
uniMethod = 1,
verbose = FALSE

)

Arguments

x A pedigree in the form of a pedtools::ped object.

ids A character (or coercible to character) containing ID labels of two pedigree
members.

rho A number in the interval [0, 0.5]; the recombination rate between the two loci.

coefs A character indicating which coefficient(s) to compute. A subset of c('k00','k01','k02','k10','k11','k12','k20','k21','k22').
By default, all coefficients are computed.

detailed A logical, indicating whether the condensed (default) or detailed coefficients
should be returned.

uniMethod Either 1 or 2 (for testing purposes)

verbose A logical.

Details

Let A, B be two pedigree members, and L1, L2 two loci with a given recombination rate ρ. The
two-locus IBD coefficients κi,j(ρ), for 0 ≤ i, j ≤ 2 are defined as the probability that A and B have
i alleles IBD at L1 and j alleles IBD at L2 simultaneously. Note that IBD alleles at the two loci are
not required to be in cis (or in trans for that matter).

The method of computation depends on the (single-locus) IBD coefficient κ2. If this is zero (e.g.
if A is a direct ancestor of B, or vice versa) the two-locus IBD coefficients are easily computable
from the two-locus kinship coefficients, as implemented in twoLocusKinship(). In the general
case, the computation is more involved, requiring generalised two-locus kinship coefficients. This
is implemented in the function twoLocusGeneralisedKinship(), which is not exported yet.

Value

By default, a symmetric 3*3 matrix containing the two-locus IBD coefficients κi,j .

If either coefs is explicitly given (i.e., not NULL), or detailed = TRUE, the computed coefficients
are returned as a named vector.

See Also

twoLocusKinship()
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Examples

# Some variables used in several examples below
rseq = seq(0, 0.5, length = 11) # recombination values

xlab = "Recombination rate"
main = expression(paste("Two-locus IBD: ", kappa[`1,1`]))

###################################################################
# Example 1: A classic example of three relationships with the same
# one-locus IBD coefficients, but different two-locus coefficients.
# As a consequence, these relationships cannot be separated using
# unlinked markers, but are (theoretically) separable with linked
# markers.
###################################################################
peds = list(

GrandParent = list(ped = linearPed(2), ids = c(1, 5)),
HalfSib = list(ped = halfSibPed(), ids = c(4, 5)),
Uncle = list(ped = cousinPed(0, 1), ids = c(3, 6)))

# Compute `k11` for each rho
kvals = sapply(peds, function(x)

sapply(rseq, function(r) twoLocusIBD(x$ped, x$ids, r, coefs = "k11")))

# Plot
matplot(rseq, kvals, type = "l", xlab = xlab, ylab = "", main = main)
legend("topright", names(peds), col = 1:3, lty = 1:3)

############################################################
# Example 2: Inspired by Fig. 3 in Thompson (1988),
# and its erratum: https://doi.org/10.1093/imammb/6.1.1.
#
# These relationships are also analysed in ?twoLocusKinship,
# where we show that they have identical two-locus kinship
# coefficients. Here we demonstrate that they have different
# two-locus IBD coefficients.
############################################################

# List of pedigrees and ID pairs
GG = linearPed(3)
HU = halfCousinPed(0, removal = 1)
peds = list(

GreatGrand = list(ped = GG, ids = c(1, 7)),
HalfUncle = list(ped = HU, ids = leaves(HU))

)

# Compute `k11` for each rho
kvals = sapply(peds, function(x)

sapply(rseq, function(r) twoLocusIBD(x$ped, x$ids, r, coefs = "k11")))

# Plot
matplot(rseq, kvals, type = "l", xlab = xlab, ylab = "", main = main)
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legend("topright", names(peds), col = 1:2, lty = 1:2)

######################################################################
# Example 3: Two-locus IBD of two half sisters whose mother have
# inbreeding coefficient 1/4. We compare two different realisations
# of this:
# PO: the mother is the child of parent-offspring
# SIB: the mother is the child of full siblings
#
# We show below that these relationships have different two-locus
# coefficients. This exemplifies that a single-locus inbreeding
# coefficient cannot replace the genealogy in analyses of linked loci.
######################################################################

po = addChildren(nuclearPed(1, sex = 2), 1, 3, nch = 1, sex = 2)
po = addDaughter(addDaughter(po, 4), 4)

sib = addChildren(nuclearPed(2, sex = 1:2), 3, 4, nch = 1)
sib = addDaughter(addDaughter(sib, 5), 5)

plotPedList(list(po, sib), new = TRUE, title = c("PO", "SIB"))

# List of pedigrees and ID pairs
peds = list(PO = list(ped = po, ids = leaves(po)),

SIB = list(ped = sib, ids = leaves(sib)))

# Compute `k11` for each rho
kvals = sapply(peds, function(x)

sapply(rseq, function(r) twoLocusIBD(x$ped, x$ids, r, coefs = "k11")))

# Plot
dev.off()
matplot(rseq, kvals, type = "l", xlab = xlab, ylab = "", main = main)
legend("topright", names(peds), col = 1:2, lty = 1:2)

# Check against exact formula
r = rseq
k11_PO = 1/8*(-4*r^5 + 12*r^4 - 16*r^3 + 16*r^2 - 9*r + 5)
stopifnot(all.equal(kvals[, "PO"], k11_PO, check.names = FALSE))

k11_S = 1/16*(8*r^6 - 32*r^5 + 58*r^4 - 58*r^3 + 43*r^2 - 20*r + 10)
stopifnot(all.equal(kvals[, "SIB"], k11_S, check.names = FALSE))

################################################
# Example 4:
# The complete two-locus IBD matrix of full sibs
################################################

x = nuclearPed(2)
k2_mat = twoLocusIBD(x, ids = 3:4, rho = 0.25)
k2_mat
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# Compare with explicit formulas
IBDSibs = function(rho) {

R = rho^2 + (1-rho)^2
nms = c("ibd0", "ibd1", "ibd2")
m = matrix(0, nrow = 3, ncol = 3, dimnames = list(nms, nms))
m[1,1] = m[3,3] = 0.25 *R^2
m[2,1] = m[1,2] = 0.5 * R * (1-R)
m[3,1] = m[1,3] = 0.25 * (1-R)^2
m[2,2] = 0.5 * (1 - 2 * R * (1-R))
m[3,2] = m[2,3] = 0.5 * R * (1-R)
m

}

stopifnot(all.equal(k2_mat, IBDSibs(0.25)))

#####################################################
# Example 5: Two-locus IBD of quad half first cousins
#
# We use this to exemplify two simple properties of
# the two-locus IBD matrix.
#####################################################

x = quadHalfFirstCousins()
ids = leaves(x)

# First compute the one-locus IBD coefficients (= c(17, 14, 1)/32)
k1 = kappaIBD(x, ids)

### Case 1: Complete linkage (`rho = 0`).
# In this case the two-locus IBD matrix has `k1` on the diagonal,
# and 0's everywhere else.
k2_mat_0 = twoLocusIBD(x, ids = ids, rho = 0)

stopifnot(all.equal(k2_mat_0, diag(k1), check.attributes = FALSE))

#' ### Case 2: Unlinked loci (`rho = 0.5`).
# In this case the two-locus IBD matrix is the outer product of
# `k1` with itself.
k2_mat_0.5 = twoLocusIBD(x, ids = ids, rho = 0.5)
stopifnot(all.equal(k2_mat_0.5, k1 %o% k1, check.attributes = FALSE))

########################################################
# Example 6: By Donnelly (1983) these relationships are
# genetically indistinguishable
########################################################

x1 = halfCousinPed(1)
x2 = halfCousinPed(0, removal = 2)
stopifnot(identical(

twoLocusIBD(x1, ids = leaves(x1), rho = 0.25),
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twoLocusIBD(x2, ids = leaves(x2), rho = 0.25)))

twoLocusIdentity Two-locus identity coefficients

Description

Computes the 9*9 matrix of two-locus condensed identity coefficients of a pair of pedigree mem-
bers, for a given recombination rate.

Usage

twoLocusIdentity(x, ids, rho, coefs = NULL, detailed = FALSE, verbose = FALSE)

Arguments

x A pedigree in the form of a pedtools::ped object.

ids A character (or coercible to character) containing ID labels of two pedigree
members.

rho A number in the interval [0, 0.5]; the recombination rate between the two loci.

coefs A character indicating which coefficient(s) to compute. A subset of c('d00','d01',...,'d99').
By default, all coefficients are computed.

detailed A logical, indicating whether the condensed (default) or detailed coefficients
should be returned.

verbose A logical.

Details

Let A, B be two pedigree members, and L1, L2 two loci with a given recombination rate ρ. The
two-locus identity coefficients ∆i,j(ρ), for 1 ≤ i, j ≤ 9 are defined as the probability that the
identity state of the alleles of A and B are Σi at L1 and Σj at L2 simultaneously. (The ordering of
the 9 states follows Jacquard (1974).)

For details about the algorithm, see Vigeland (2019).

Value

By default, a symmetric 9*9 matrix containing the two-locus condensed identity coefficients ∆i,j .

If either coefs is explicitly given (i.e., not NULL), or detailed = TRUE, the computed coefficients
are returned as a named vector.

References

M. D. Vigeland (2019) A recursive algorithm for two-locus identity coefficients (In progress)
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See Also

twoLocusIBD()

Examples

### Full sibs ###
x = nuclearPed(2)
kapp = twoLocusIBD(x, ids = 3:4, rho = 0.25)
jacq = twoLocusIdentity(x, ids = 3:4, rho = 0.25)
stopifnot(all.equal(jacq[9:7,9:7], kapp, check.attributes = FALSE))

#' ### Parent-child ###
x = nuclearPed(1)
jacq = twoLocusIdentity(x, ids = c(1,3), rho = 0.25)
stopifnot(jacq[8,8] == 1)

### Full sib mating ###
x = fullSibMating(1)
j = condensedIdentity(x, ids = 5:6)
j2 = twoLocusIdentity(x, ids = 5:6, rho = 0.25)
stopifnot(identical(unname(rowSums(j2)), j))

twoLocusKinship Two-locus kinship coefficients

Description

Computes the two-locus kinship coefficient of a pair of pedigree members, at a given recombination
rate.

Usage

twoLocusKinship(
x,
ids,
rho,
recombinants = NULL,
verbose = FALSE,
debug = FALSE

)

Arguments

x A pedigree in the form of a pedtools::ped object.

ids A character (or coercible to character) containing ID labels of two or more pedi-
gree members.
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rho A numeric vector of recombination rates; all entries must be in the interval
[0, 0.5].

recombinants A logical of length 2, applicable only when ids has length 2. When given, it
indicates whether each of the two gametes is a recombinant or non-recombinant.
This parameter is mainly used by twoLocusIBD().

verbose A logical.

debug A logical. If TRUE, detailed messages are printed during the recursion process.

Details

Let A, B be two pedigree members, and L1, L2 two loci with a given recombination rate rho. The
two-locus kinship coefficient φAB(rho) is defined as the probability that random gametes segregat-
ing from A and B has IBD alleles at both L1 and L2 simultaneously.

The implementation is based on the recursive algorithm described by Thompson (1988).

References

E. A. Thompson (1988). Two-locus and Three-locus Gene Identity by Descent in Pedigrees. IMA
Journal of Mathematics Applied in Medicine & Biology, vol. 5.

Examples

######################
# Example 1: Full sibs
######################
x = nuclearPed(2)

k_0 = twoLocusKinship(x, ids = 3:4, rho = 0)
k_0.5 = twoLocusKinship(x, ids = 3:4, rho = 0.5)

stopifnot(k_0 == 1/4, k_0.5 == 1/16)

##################################################
# Example 2: Reproducing Fig. 3 in Thompson (1988)
# Note that in the article, curve (a) is wrong.
# See Erratum: https://doi.org/10.1093/imammb/6.1.1
##################################################

# Pedigrees (a) - (d)
ped.a = linearPed(3)
ped.b = halfCousinPed(0, removal = 1)
ped.c = cousinPed(1)
ped.d = doubleCousins(1, 1, half1 = TRUE, half2 = TRUE)

peds = list(
a = list(ped = ped.a, ids = c(1,7)),
b = list(ped = ped.b, ids = leaves(ped.b)),
c = list(ped = ped.c, ids = leaves(ped.c)),
d = list(ped = ped.d, ids = leaves(ped.d))
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)

# Recombination values
rseq = seq(0, 0.5, length = 20)

# Compute two-locus kinship coefficients
kvals = sapply(peds, function(x) twoLocusKinship(x$ped, x$ids, rseq))

# Plot
matplot(rseq, kvals, type = "l", lwd = 2)
legend("topright", names(peds), col = 1:4, lty = 1:4, lwd = 2)

twoLocusPlot Two-locus coefficient plot

Description

Plot two-locus kinship or IBD coefficients as function of the recombination rate.

Usage

twoLocusPlot(
peds,
coeff = "k11",
xlab = "Recombination rate",
ylab = NA,
col = seq_along(peds),
lty = 1,
...

)

Arguments

peds A list of lists. See details.

coeff A string identifying which coefficient to compute. See Details for legal values.
xlab, ylab, col, lty

Plotting parameters

... Further parameters passed on to matplot()

Details

Each entry of peds must be a list with the following (named) entries:

• ped: A ped object

• ids: A pair of labels identifying two members of ped
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The coeff parameter must be either a character naming the coefficient to compute, or a function. If
a character, it must be one of the following names: "kinship", "phi", "phi11", "k00", "k01", "k02",
"k10", "k11", "k12", "k20", "k21" or "k22".

If coeff is a function, it must take three arguments named ped, ids and rho, and produce a single
number for each set of input data. See Examples.

The first three are synonymous and indicate the two-locus kinship coefficient. The remaining
choices are two-locus IBD coefficients. (See twoLocusIBD().)

Examples

###############################
# Classic example of three relationships with equal one-locus coeffs
peds = list(

GrandParent = list(ped = linearPed(2), ids = c(1, 5)),
HalfSib = list(ped = halfSibPed(), ids = c(4, 5)),
Uncle = list(ped = cousinPed(0, 1), ids = c(3, 6)))

twoLocusPlot(peds, coeff = "kinship")
twoLocusPlot(peds, coeff = "k11")

###############################

peds = list(
PO = list(ped = nuclearPed(1), ids = c(1,3)),
S = list(ped = nuclearPed(2), ids = c(3,4)))

twoLocusPlot(peds, coeff = "kinship")
twoLocusPlot(peds, coeff = "k11")

###############################

ped1 = addChildren(halfSibPed(sex2 = 2), 4, 5, nch = 2)
ped2 = addChildren(addDaughter(nuclearPed(1), 3), 1, 5, nch = 2)
ped3 = addChildren(addDaughter(nuclearPed(2), 4), 3, 6, nch = 2)

peds = list(
`H-sibs` = list(ped = ped1, ids = leaves(ped1)),
`G-sibs` = list(ped = ped2, ids = leaves(ped2)),
`U-sibs` = list(ped = ped3, ids = leaves(ped3))

)
# plotPedList(peds)
twoLocusPlot(peds, coeff = "kinship")

################################

### Reproducing Fig 2 of Bishop & Williamson (1990)
### This example illustrates `coeff` as a function.

# The coefficient d11(rho) is the conditional probability of IBD = 1
# in the first locus, given IBD = 1 in the second.
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G = linearPed(2)
H = halfSibPed()
U = cousinPed(0, removal = 1)
FC = cousinPed(1)
FC1R = cousinPed(1, removal = 1)
SC = cousinPed(2)

peds = list(
GrandParent = list(ped = G, ids = c(1, 5)),
HalfSib = list(ped = H, ids = leaves(H)),
Uncle = list(ped = U, ids = leaves(U)),
FirstCous = list(ped = FC, ids = leaves(FC)),
FirstCous1R = list(ped = FC1R, ids = leaves(FC1R)),
SecondCous = list(ped = SC, ids = leaves(SC)))

d11 = function(ped, ids, rho) {
twoLocusIBD(ped, ids, rho, coefs = "k11")/kappaIBD(ped, ids)[2]

}

twoLocusPlot(peds, coeff = d11)
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