Package ‘rgw’

October 10, 2016
Type Package
Title Goodman-Weare Affine-Invariant Sampling
Version 0.1.0
Date 2016-10-10
Author Adam Mantz
Maintainer Adam Mantz <amantz@slac.stanford.edu>

Description Implementation of the affine-invariant method of Good-
man & Weare (2010) <DOI:10.2140/camcos.2010.5.65>, a method of producing Monte-
Carlo samples from a target distribution.

License MIT + file LICENSE
LazyLoad yes

Imports parallel

URL https://github.com/abmantz/rgw
NeedsCompilation no

Repository CRAN

Date/Publication 2016-10-10 19:31:59

R topics documented:

rgw-package L
GoodmanWeare e e e
GoodmanWeare.rem e e e e e e

Index

https://github.com/abmantz/rgw

2 GoodmanWeare

rgw-package Goodman-Weare Affine-Invariant Sampling

Description

This package implements the affine-invariant method of Goodman & Weare (2010) <DOI:10.2140/camcos.2010.5.65>,
a method of producing Monte-Carlo samples from a target distribution. The implementation is

based on the description of the ‘emcee’ python package (implementing the same method) written

by Forman-Mackey et al. (2012) <DOI:10.1086/670067>. See ‘References’ in the documentation

of the GoodmanWeare function for full citation details.

Details
Package: gw
Type: Package
Version: 0.1.0
Date: 2016-10-10
License: MIT
LazyLoad: yes
Author(s)

Adam Mantz <amantz @slac.stanford.edu>

GoodmanWeare Goodman-Weare Affine-Invariant Sampling

Description

Produces a Monte-Carlo Markov ensemble using the affine-invariant method of Goodman & Weare.

Usage
GoodmanWeare(ensemble, lnpost, Nsteps, current.lnP=NULL,
mc.cores=getOption("mc.cores”, 1L), ...)
Arguments
ensemble an Nparam*Nwalkers array holding the initial state of the sampler. Nparam

is the dimensionality of the parameter space and Nwalkers is the number of
positions in the parameter space comprising the ensemble. Nwalkers must be
even, and in practice should be *at minimum* twice Nparam.

GoodmanWeare 3

lnpost function taking a vector of parameter values as input, and returning the log-
posterior density.

Nsteps number of iterations to run the sampler.

current.1lnP vector holding the log-posterior value corresponding to the initial position of

each walker. If not provided, this will be calculated internally.
mc.cores number of cores to use for parallelism.

additional arguments to pass to Inpost.

Value

A list containing $ensemble: an array of the same dimensionality as ensemble, containing the
position of the walkers after Nsteps iterations of the sampler; and $current.InP: the log-posterior
density for each walker.

Note

By default, the code will attempt to run in parallel (see the ‘parallel’ package). To prevent this, pass
mc.cores=1.

Author(s)
Adam Mantz

References

Goodman, J. & Weare, J. (2010, Comm. App. Math. Comp. Sci., 5:6) <DOI:10.2140/camcos.2010.5.65>.
This implementation is based on the description given by Foreman-Mackey et al. (2012, arXiv:1202.3665)
<DOI:10.1086/670067>.

Examples

In this example, we'll sample from a simple 2D Gaussian

Define the log-posterior function
1nP = function(x) sum(dnorm(x, c(@,1), c(pi, exp(@.5)), log=TRUE))

Initialize an ensemble of 100 walkers
nwalk = 100

ensemble = array(dim=c(2, nwalk))
ensemble[1,] = rnorm(nwalk, @, 0.1)
ensemble[2,] = rnorm(nwalk, 1, 0.1)

Run for a bit
ens2 = GoodmanWeare(ensemble, 1lnP, 100, mc.cores=1)

Plot the resulting ensemble

plot(t(ens2$ensemble))

Compare to a direct draw from the posterior distribution
points(rnorm(nwalk, @, pi), rnorm(nwalk, 1, exp(@.5)), col=2, pch=3)

GoodmanWeare.rem

GoodmanWeare. rem

Goodman-Weare Affine-Invariant Sampling

Description

Produces a Monte-Carlo Markov ensemble using the affine-invariant method of Goodman & Weare,
saving progress periodically.

Usage

GoodmanWeare.rem(post, lnpost, thin=1, mention.every=NA,

save.every=NA,

Arguments

post

lnpost

thin
mention.every

save.every

save.file

Value

save.file=NA, ...)

an Nparam*Nwalkers*Nsteps array. post[,,1] should hold the initial state of the
sampler (see help for GoodmanWeare). Checkpoints and the return value will
have the same shape, with subsequent layers post[,,i] holding the ensemble state
at later iterations.

function taking a vector of parameter values as input, and returning the log-
posterior density.

thinning factor for saving the results.
print a message to the console every time this many iterations are completed.

save the accumulated Markov ensemble to disk every time this many iterations
are completed.

filename for saving progress.

additional arguments to pass to GoodmanWeare or Inpost.

An array of the same dimensionality as post, storing the position of the walkers in post[,,i] every

thin iterations.

Note

By default, the code will attempt to run in parallel (see the ‘parallel’ package). To prevent this, pass

mc.cores=1.

Author(s)
Adam Mantz

References

See help for GoodmanWeare.

GoodmanWeare.rem 5

Examples

In this example, we'll sample from a simple 2D Gaussian.
(This is the same example as used in GoodmanWeare.)

Define the log-posterior function
1nP = function(x) sum(dnorm(x, c(@,1), c(pi, exp(@.5)), log=TRUE))

Initialize an ensemble of 100 walkers. We'll take 100 steps, saving the ensemble after each.
nwalk = 100

post = array(NA, dim=c(2, nwalk, 101))

post[1,,1] = rnorm(nwalk, @, 0.1)

post[2,,1] = rnorm(nwalk, 1, 0.1)

Run
post = GoodmanWeare.rem(post, 1lnP, mc.cores=1)

Plot the final ensemble

plot(post[1,,101], post[2,,101])

Look at the trace of each parameter for one of the walkers.
plot(post[1,1,1)

plot(post[2,1,1)

Index

*Topic htest
GoodmanWeare, 2
GoodmanWeare.rem, 4

+Topic package
rgw-package, 2

GoodmanWeare, 2
GoodmanWeare.rem, 4

rgw (rgw-package), 2
rgw-package, 2

	rgw-package
	GoodmanWeare
	GoodmanWeare.rem
	Index

