Package 'retistruct'

April 4, 2020

License CC BY-NC-SA 4.0

Title Retinal Reconstruction Program
Description Reconstructs retinae by morphing a flat surface with cuts (a dissected flat-mount retina) onto a curvilinear surface (the standard retinal shape). It can estimate the position of a point on the intact adult retina to within 8 degrees of arc (3.6% of nasotemporal axis). The coordinates in reconstructed retinae can be transformed to visuotopic coordinates.
Version 0.6.3
<pre>URL http://davidcsterratt.github.io/retistruct/</pre>
<pre>BugReports https://github.com/davidcsterratt/retistruct/issues Date 2020-04-03</pre>
Depends R (>= $3.5.0$)
Imports foreign, RImageJROI, png, ttutils, sp, geometry (>= 0.4.3), RTriangle (>= 1.6-0.9), rgl, R.matlab, R6
Suggests spelling, testthat, gWidgets2RGtk2 (>= 1.0.6), gWidgets2 (>= 1.0.6), cairoDevice, RGtk2
Language en-GB
RoxygenNote 7.1.0
NeedsCompilation yes
Author David C. Sterratt [aut, cre, cph], Daniel Lyngholm [aut, cph]
Maintainer David C. Sterratt <david.c.sterratt@ed.ac.uk></david.c.sterratt@ed.ac.uk>
Repository CRAN
Date/Publication 2020-04-04 10:10:02 UTC
R topics documented:
AnnotatedOutline

list_to_R6
lvsLplot
name.list
normalise.angle
orthographic
Outline
OutlineCommon
panlabel
parabola.arclength
parabola.invarclength
parse.dependencies
PathOutline
PointSet
polar.cart.to.sphere.spherical
polartext
projection
projection.ReconstructedOutline
projection.RetinalReconstructedOutline
R6_to_list
Rcart
read.datacounts
read.datapoints
ReconstructedCountSet
ReconstructedFeatureSet
ReconstructedLandmarkSet
ReconstructedOutline
ReconstructedPointSet
remove.identical.consecutive.rows
remove.intersections
report
RetinalOutline
RetinalReconstructedOutline
retistruct
retistruct.batch
retistruct.batch.analyse.summaries
retistruct.batch.analyse.summary
retistruct.batch.export.matlab
retistruct.batch.figures
retistruct.batch.get.titrations
retistruct.batch.plot.titrations
retistruct.batch.summary
retistruct.check.markup
retistruct.cli
retistruct.cli.figure
retistruct.cli.process
retistruct.export.matlab
retistruct.read.dataset
retistruct.read.markup

4 AnnotatedOutline

	retistruct.read.recdata	90
	retistruct.reconstruct	91
	retistruct.save.markup	92
	retistruct.save.recdata	92
	rotate.axis	93
	simplifyFragment	93
	simplifyOutline	94
	sinusoidal	95
	sphere.cart.to.sphere.dualwedge	96
	sphere.cart.to.sphere.spherical	96
	sphere.cart.to.sphere.wedge	97
	sphere.spherical.to.polar.cart	98
	sphere.spherical.to.sphere.cart	
	sphere.tri.area	99
	sphere.wedge.to.sphere.cart	100
	spherical.to.polar.area	
	sphericalplot	102
	sphericalplot.ReconstructedOutline	102
	StitchedOutline	
	strain.colours	104
	stretchMesh	104
	tri.area	105
	tri.area.signed	
	TriangulatedFragment	
	TriangulatedOutline	
	vecnorm	108
Index		110
Anno	tatedOutline Class containing functions and data relating to annotating outlines	

Description

An AnnotatedOutline contains a function to annotate tears on the outline.

Value

AnnotatedOutline object, with extra fields for tears latitude of rim phi0 and index of fixed point i0.

Super classes

retistruct::OutlineCommon->retistruct::Outline->retistruct::PathOutline->AnnotatedOutline

AnnotatedOutline 5

Public fields

tears Matrix in which each row represents a tear by the indices into the outline points of the apex (V0) and backward (VB) and forward (VF) points

phi0 rim angle in radians lambda0 longitude of fixed point i0 index of fixed point

Methods

Public methods:

- AnnotatedOutline\$new()
- AnnotatedOutline\$labelTearPoints()
- AnnotatedOutline\$whichTear()
- AnnotatedOutline\$getTear()
- AnnotatedOutline\$getTears()
- AnnotatedOutline\$computeTearRelationships()
- AnnotatedOutline\$addTear()
- AnnotatedOutline\$removeTear()
- AnnotatedOutline\$checkTears()
- AnnotatedOutline\$setFixedPoint()
- AnnotatedOutline\$getFixedPoint()
- AnnotatedOutline\$getRimSet()
- AnnotatedOutline\$ensureFixedPointInRim()
- AnnotatedOutline\$getRimLengths()
- AnnotatedOutline\$clone()

```
Method new(): Constructor
  Usage:
  AnnotatedOutline$new(...)
  Arguments:
  ... Parameters to PathOutline
```

Method labelTearPoints(): Label a set of three unlabelled points supposed to refer to the apex and vertices of a cut and tear with the V0 (Apex), VF (forward vertex) and VB (backward vertex) labels.

```
Usage:
AnnotatedOutline$labelTearPoints(pids)
Arguments:
pids the vector of three indices
Returns: Vector of indices labelled with V0, VF and VB
```

Method whichTear(): Return index of tear in an AnnotatedOutline in which a point appears *Usage*:

6 AnnotatedOutline

```
AnnotatedOutline$whichTear(pid)
 Arguments:
 pid ID of point
 Returns: ID of tear
Method getTear(): Return indices of tear in AnnotatedOutline
 Usage:
 AnnotatedOutline$getTear(tid)
 Arguments:
 tid Tear ID, which can be returned from whichTear()
 Returns: Vector of three point IDs, labelled with V0, VF and VB
Method getTears(): Get tears
 Usage:
 AnnotatedOutline$getTears()
 Returns: Matrix of tears
Method computeTearRelationships(): Compute the parent relationships for a potential set
of tears. The function throws an error if tears overlap.
 Usage:
 AnnotatedOutline$computeTearRelationships(tears = NULL)
 Arguments:
 tears Matrix containing columns V0 (Apices of tears) VB (Backward vertices of tears) and VF
     (Forward vertices of tears)
 Returns: List containing
   • Rsetthe set of points on the rim
   • TFsetlist containing indices of points in each forward tear
   · TBsetlist containing indices of points in each backward tear

    hcorrespondence mapping

   • hfcorrespondence mapping in forward direction for points on boundary
   · hbcorrespondence mapping in backward direction for points on boundary
Method addTear(): Add tear to an AnnotatedOutline
 AnnotatedOutline$addTear(pids)
 Arguments:
 pids Vector of three point IDs to be added
Method removeTear(): Remove tear from an AnnotatedOutline
 AnnotatedOutline$removeTear(tid)
 Arguments:
```

```
tid Tear ID, which can be returned from whichTear()
     Method checkTears(): Check that all tears are correct.
       Usage:
       AnnotatedOutline$checkTears()
       Returns: If all is OK, returns empty vector. If not, returns indices of problematic tears.
     Method setFixedPoint(): Set fixed point
       AnnotatedOutline$setFixedPoint(i0, name)
       Arguments:
       i0 Index of fixed point
       name Name of fixed point
     Method getFixedPoint(): Get point ID of fixed point
       Usage:
       AnnotatedOutline$getFixedPoint()
       Returns: Point ID of fixed point
     Method getRimSet(): Get point IDs of points on rim
       Usage:
       AnnotatedOutline$getRimSet()
       Returns: Point IDs of points on rim
     Method ensureFixedPointInRim(): Ensure that the fixed point i0 is in the rim, not a tear.
     Alters object in which i0 may have been changed.
       Usage:
       AnnotatedOutline$ensureFixedPointInRim()
     Method getRimLengths(): Get lengths of edges on rim
       Usage:
       AnnotatedOutline$getRimLengths()
       Returns: Vector of rim lengths
     Method clone(): The objects of this class are cloneable with this method.
       AnnotatedOutline$clone(deep = FALSE)
       Arguments:
       deep Whether to make a deep clone.
Author(s)
```

Examples

```
\begin{array}{lll} P <& rbind(c(1,1), & c(2,1), & c(2,-1), \\ & c(1,-1), & c(1,-2), & c(-1,-2), \\ & c(-1,-1), & c(-2,-1), & c(-2,1), \\ & c(-1,1), & c(-1,2), & c(1,2)) \\ o <& TriangulatedOutline$new(P) \\ o$addTear(c(3, 4, 5)) \\ o$addTear(c(6, 7, 8)) \\ o$addTear(c(9, 10, 11)) \\ o$addTear(c(12, 1, 2)) \\ flatplot(o) \end{array}
```

azel.to.sphere.colatitude

Convert azimuth-elevation coordinates to spherical coordinates

Description

Convert azimuth-elevation coordinates to spherical coordinates

Usage

```
azel.to.sphere.colatitude(r, r0)
```

Arguments

r0

r Coordinates of points in azimuth-elevation coordinates represented as 2 column

 $matrix\ with\ column\ names\ alpha\ (elevation)\ and\ theta\ (azimuth).$

Direction of the axis of the sphere on which to project represented as a 2 column matrix of with column names alpha (elevation) and theta (azimuth).

Value

2-column matrix of spherical coordinates of points with column names psi (colatitude) and lambda (longitude).

Author(s)

David Sterratt

Examples

```
r0 <- cbind(alpha=0, theta=0)
r <- rbind(r0, r0+c(1,0), r0-c(1,0), r0+c(0,1), r0-c(0,1))
azel.to.sphere.colatitude(r, r0)</pre>
```

azimuthal.conformal 9

azimuthal.conformal

Azimuthal conformal or stereographic or Wulff projection

Description

Azimuthal conformal or stereographic or Wulff projection

Usage

```
azimuthal.conformal(r, ...)
```

Arguments

r 2-column Matrix of spherical coordinates of points on sphere. Column names

are phi and lambda.

. . . Arguments not used by this projection.

Value

2-column Matrix of Cartesian coordinates of points on polar projection. Column names should be x and y.

Note

This is a special case with the point centred on the projection being the South Pole. The MathWorld equations are for the more general case.

Author(s)

David Sterratt

References

http://en.wikipedia.org/wiki/Map_projection, http://mathworld.wolfram.com/StereographicProjection.html Fisher, N. I., Lewis, T., and Embleton, B. J. J. (1987). Statistical analysis of spherical data. Cambridge University Press, Cambridge, UK.

10 azimuthal.equalarea

azimuthal.equalarea

Lambert azimuthal equal area projection

Description

Lambert azimuthal equal area projection

Usage

```
azimuthal.equalarea(r, ...)
```

Arguments

r 2-column Matrix of spherical coordinates of points on sphere. Column names are phi and lambda.

.. Arguments not used by this projection.

Value

2-column Matrix of Cartesian coordinates of points on polar projection. Column names should be x and y.

Note

This is a special case with the point centred on the projection being the South Pole. The MathWorld equations are for the more general case.

Author(s)

David Sterratt

References

http://en.wikipedia.org/wiki/Map_projection, http://mathworld.wolfram.com/LambertAzimuthalEqual-Area html Fisher, N. I., Lewis, T., and Embleton, B. J. J. (1987). Statistical analysis of spherical data. Cambridge University Press, Cambridge, UK.

azimuthal.equidistant 11

azimuthal.equidistant Azimuthal equidistant projection

Description

Azimuthal equidistant projection

Usage

```
azimuthal.equidistant(r, ...)
```

Arguments

r 2-column Matrix of spherical coordinates of points on sphere. Column names are phi and lambda.

... Arguments not used by this projection.

Value

2-column Matrix of Cartesian coordinates of points on polar projection. Column names should be x and y.

Note

This is a special case with the point centred on the projection being the South Pole. The MathWorld equations are for the more general case.

Author(s)

David Sterratt

References

http://en.wikipedia.org/wiki/Map_projection, http://mathworld.wolfram.com/AzimuthalEquidistantProjechtml

12 central.angle

bary.to.sphere.cart Convert barycentric coordinates of points in mesh on sphere to a sian coordinates

Description

Given a triangular mesh on a sphere described by mesh locations (phi, lambda), a radius R and a triangulation Tt, determine the Cartesian coordinates of points cb given in barycentric coordinates with respect to the mesh.

Usage

```
bary.to.sphere.cart(phi, lambda, R, Tt, cb)
```

Arguments

phi	Latitudes of mesh points
lambda	Longitudes of mesh points
R	Radius of sphere
Tt	Triangulation
ch	Object returned by tsearch containing information on the triangle in which a

Object returned by tsearch containing information on the triangle in which a point occurs and the barycentric coordinates within that triangle

Value

An N-by-3 matrix of the Cartesian coordinates of the points

Author(s)

David Sterratt

central.angle	Central angle between two points on a sphere

Description

On a sphere the central angle between two points is defined as the angle whose vertex is the centre of the sphere and that subtends the arc formed by the great circle between the points. This function computes the central angle for two points (ϕ_1, λ_1) and (ϕ_2, λ_2) .

Usage

```
central.angle(phi1, lambda1, phi2, lambda2)
```

checkDatadir 13

Arguments

phi1 Latitude of first point

lambda1 Longitude of first point

phi2 Latitude of second point

lambda2 Longitude of second point

Value

Central angle

Author(s)

David Sterratt

Source

Wikipedia http://en.wikipedia.org/wiki/Central_angle

checkDatadir

Check the whether directory contains valid data

Description

Check the whether directory contains valid data

Usage

```
checkDatadir(dir = NULL)
```

Arguments

dir

Directory to check.

Value

TRUE if dir contains valid data; FALSE otherwise.

Author(s)

circle

Return points on the unit circle

Description

Return points on the unit circle in an anti-clockwise direction. If L is not specified n points are returned. If L is specified, the same number of points are returned as there are elements in L, the interval between successive points being proportional to L.

Usage

```
circle(n = 12, L = NULL)
```

Arguments

n Number of pointsL Intervals between points

Value

The cartesian coordinates of the points

Author(s)

David Sterratt

```
compute.intersections.sphere
```

Find the intersection of a plane with edges of triangles on a sphere

Description

Find the intersections of the plane defined by the normal n and the distance d expressed as a fractional distance along the side of each triangle.

Usage

```
compute.intersections.sphere(phi, lambda, T, n, d)
```

Arguments

phi	Latitude of grid points on sphere centred on origin.
lambda	Longitude of grid points on sphere centred on origin.

T Triangulation

n Normal of plane

d Distance of plane along normal from origin.

Value

Matrix with same dimensions as T. Each row gives the intersection of the plane with the corresponding triangle in T. Column 1 gives the fractional distance from vertex 2 to vertex 3. Column 2 gives the fractional distance from vertex 3 to vertex 1. Column 2 gives the fractional distance from vertex 1 to vertex 2. A value of NaN indicates that the corresponding edge lies in the plane. A value of Inf indicates that the edge lies parallel to the plane but outside it.

Author(s)

David Sterratt

compute.kernel.estimate

Kernel estimate over grid

Description

Compute a kernel estimate over a grid and do a contour analysis of this estimate. The contour heights the determined by finding heights that exclude a certain fraction of the probability. For example, the 95 and it should enclose about 5 are specified by the contour.levels option; by default they are c(5, 25, 50, 75, 95).

Usage

compute.kernel.estimate(Dss, phi0, fhat, compute.conc)

Arguments

Dss List of datasets. The first two columns of each datasets are coordinates of points

on the sphere in spherical polar (latitude, phi, and longitude, lambda) coordinates. In the case kernel smoothing, there is a third column of values of depen-

dent variables at those points.

phi0 Rim angle in radians

fhat Function such as kde. fhat or kr. yhat to compute the density given data and a

value of the concentration parameter kappa of the Fisher density.

compute.conc Function to return the optimal value of the concentration parameter kappa given

the data.

Value

A list containing

kappa The concentration parameter

h A pseudo-bandwidth parameter, the inverse of the square root of kappa. Units

of degrees.

flevels Contour levels.

16 CountSet

labels Labels of the contours.

g Raw density estimate drawn on non-area-preserving projection. Comprises lo-

cations of gridlines in Cartesian coordinates (xs and ys), density estimates at

these points, f and location of maximum in Cartesian coordinates (max).

gpa Raw density estimate drawn on area-preserving projection. Comprises same

elements as above.

contour. areas Area of each individual contour. One level may have more than one contour;

this shows the areas of all such contours.

tot.contour.areas

Data frame containing the total area within the contours at each level.

Author(s)

David Sterratt

CountSet

Subclass of FeatureSet to represent counts centred on points

Description

A CountSet contains information about points located on Outlines. Each CountSet contains a list of matrices, each of which has columns labelled X and Y describing the cartesian coordinates (in the unscaled coordinate frame) of the centres of boxes in the Outline, and a column C representing the counts in those boxes.

Super classes

```
retistruct::FeatureSetCommon -> retistruct::FeatureSet -> CountSet
```

Methods

Public methods:

- CountSet\$new()
- CountSet\$reconstruct()
- CountSet\$clone()

Method new(): Constructor

Usage:

CountSet\$new(data = NULL, cols = NULL)

Arguments:

data List of matrices describing data. Each matrix should have columns named X, Y and C cols Named vector of colours for each data set. The name is used as the ID (label) for the data set. The colours should be names present in the output of the colors function

Method reconstruct(): Map the CountSet to a ReconstructedOutline

create.polar.cart.grid 17

```
Usage:
```

CountSet\$reconstruct(ro)

Arguments:

ro The ReconstructedOutline

Method clone(): The objects of this class are cloneable with this method.

Usage:

CountSet\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

```
create.polar.cart.grid
```

Create grid on projection of hemisphere onto plane

Description

Create grid on projection of hemisphere onto plane

Usage

```
create.polar.cart.grid(pa, res, phi0)
```

Arguments

pa If TRUE, make this an area-preserving projection

res Resolution of grid

phi0 Value of phi0 at edge of grid

Value

List containing:

s Grid locations in spherical coordinates

c Grid locations in Cartesian coordinates on plane

xs X grid line locations in Cartesian coordinates on plane ys Y grid line locations in Cartesian coordinates on plane

Author(s)

18 dE

csv.read.dataset

Read a retinal dataset in CSV format

Description

Read a retinal dataset in CSV format. Each dataset is a folder containing a file called outline.csv that specifies the outline in X-Y coordinates. It may also contain a file datapoints.csv, containing the locations of data points and a file datacounts.csv, containing the locations of data counts; see read.datapoints and read.datacounts for the formats of these files. The folder may also contain a file od.csv specifying the coordinates of the optic disc.

Usage

```
csv.read.dataset(dataset, report = message)
```

Arguments

dataset Path to directory containing outline.csv

report Function to report progress

Value

A RetinalOutline object

Author(s)

David Sterratt

dΕ

The deformation energy gradient function

Description

The function that computes the gradient of the energy (or error) of the deformation of the mesh from the flat outline to the sphere. This depends on the locations of the points given in spherical coordinates. The function is designed to take these as a vector that is received from the optim function.

dE 19

Usage

```
dE(
 p,
  Cu,
  С,
  L,
  В,
  Τ,
  Α,
 R,
 Rset,
  i0,
 phi0,
  lambda0,
 Nphi,
  Ν,
 alpha = 1,
  x0,
  nu = 1,
  verbose = FALSE
)
```

Arguments

р	Parameter vector of phi and lambda
Cu	The upper part of the connectivity matrix
С	The connectivity matrix
L	Length of each edge in the flattened outline
В	Connectivity matrix
T	Triangulation in the flattened outline
A	Area of each triangle in the flattened outline
R	Radius of the sphere
Rset	Indices of points on the rim
i0	Index of fixed point on rim
phi0	Latitude at which sphere curtailed
lambda0	Longitude of fixed points
Nphi	Number of free values of phi
N	Number of points in sphere
alpha	Area penalty scaling coefficient
x0	Area penalty cut-off coefficient
nu	Power to which to raise area
verbose	How much information to report

E

Value

A vector representing the derivative of the energy of this particular configuration with respect to the parameter vector

Author(s)

David Sterratt

depthplot3D

Draw the "flat" outline in 3D with depth information

Description

Draw the "flat" outline in 3D with depth information

Usage

```
depthplot3D(r, ...)
```

Arguments

r TriangulatedOutline object

... Parameters depending on class of r

Author(s)

David Sterratt

Ε

The deformation energy function

Description

The function that computes the energy (or error) of the deformation of the mesh from the flat outline to the sphere. This depends on the locations of the points given in spherical coordinates. The function is designed to take these as a vector that is received from the optim function.

E 21

Usage

```
E(
 p,
  Cu,
 С,
  L,
  В,
  Τ,
 Α,
 R,
 Rset,
  i0,
 phi0,
  lambda0,
 Nphi,
  N,
 alpha = 1,
  x0,
 nu = 1,
  verbose = FALSE
)
```

Arguments

p	Parameter vector of phi and lambda
Cu	The upper part of the connectivity matrix
С	The connectivity matrix
L	Length of each edge in the flattened outline
В	Connectivity matrix
Т	Triangulation in the flattened outline
A	Area of each triangle in the flattened outline
R	Radius of the sphere
Rset	Indices of points on the rim
i0	Index of fixed point on rim
phi0	Latitude at which sphere curtailed
lambda0	Longitude of fixed points
Nphi	Number of free values of phi
N	Number of points in sphere
alpha	Area scaling coefficient
x0	Area cut-off coefficient
nu	Power to which to raise area
verbose	How much information to report

22 Ecart

Value

A single value, representing the energy of this particular configuration

Author(s)

David Sterratt

Ecart The	e deformation energy function
-----------	-------------------------------

Description

The function that computes the energy (or error) of the deformation of the mesh from the flat outline to the sphere. This depends on the locations of the points given in spherical coordinates. The function is designed to take these as a vector that is received from the optim function.

Usage

```
Ecart(P, Cu, L, T, A, R, alpha = 1, x0, nu = 1, verbose = FALSE)
```

Arguments

Р	N-by-3 matrix of point coordinates
Cu	The upper part of the connectivity matrix
L	Length of each edge in the flattened outline
T	Triangulation in the flattened outline
Α	Area of each triangle in the flattened outline
R	Radius of sphere
alpha	Area penalty scaling coefficient
x0	Area penalty cut-off coefficient
nu	Power to which to raise area
verbose	How much information to report

Value

A single value, representing the energy of this particular configuration

Author(s)

f

Piecewise smooth function used in area penalty

Description

f

Piecewise, smooth function that increases linearly with negative arguments.

$$f(x) = \begin{cases} -(x - x_0/2) & x < 0\\ \frac{1}{2x_0}(x - x_0)^2 & 0 < x < x_0\\ 0 & x \ge x_0 \end{cases}$$

Usage

f(x, x0)

Arguments

x Main argument

x0 The cut-off parameter. Above this value the function is zero.

Value

The value of the function.

Author(s)

David Sterratt

Fcart

The deformation energy gradient function

Description

The function that computes the gradient of the energy (or error) of the deformation of the mesh from the flat outline to the sphere. This depends on the locations of the points given in spherical coordinates. The function is designed to take these as a vector that is received from the optim function.

Usage

```
Fcart(P, C, L, T, A, R, alpha = 1, x0, nu = 1, verbose = FALSE)
```

24 FeatureSet

Arguments

Р	N-by-3 matrix of point coordinates
С	The connectivity matrix
L	Length of each edge in the flattened outline
Т	Triangulation in the flattened outline
A	Area of each triangle in the flattened outline
R	Radius of sphere
alpha	Area penalty scaling coefficient
x0	Area penalty cut-off coefficient
nu	Power to which to raise area
verbose	How much information to report

Value

A vector representing the derivative of the energy of this particular configuration with respect to the parameter vector

Author(s)

David Sterratt

FeatureSet	Superclass containing functions and data relating to sets of features in
	flat Outlines

Description

A FeatureSet contains information about features located on Outlines. Each FeatureSet contains a list of matrices, each of which has columns labelled X and Y describing the cartesian coordinates of points on the Outline, in the unscaled coordinate frame. Derived classes, e.g. a CountSet, may have extra columns. Each matrix in the list has an associated label and colour, which is used by plotting functions.

Super class

```
retistruct::FeatureSetCommon -> FeatureSet
```

Methods

Public methods:

- FeatureSet\$new()
- FeatureSet\$clone()

Method new(): Constructor

FeatureSetCommon 25

```
Usage:
```

FeatureSet\$new(data = NULL, cols = NULL, type = NULL)

Arguments:

data List of matrices describing data. Each matrix should have columns named X and Y cols Named vector of colours for each data set. The name is used as the ID (label) for the data set. The colours should be names present in the output of the colors function type String

Method clone(): The objects of this class are cloneable with this method.

Usage:

FeatureSet\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

Description

An FeatureSetCommon has functionality for retrieving sets of features (e.g. points or landmarks associated with an outline)

Public fields

data List of matrices describing data

cols Vector of colours for each data set

type String giving type of feature set

Methods

Public methods:

- FeatureSetCommon\$getIndex()
- FeatureSetCommon\$getIDs()
- FeatureSetCommon\$setID()
- FeatureSetCommon\$getFeature()
- FeatureSetCommon\$getFeatures()
- FeatureSetCommon\$getCol()
- FeatureSetCommon\$clone()

26 FeatureSetCommon

```
Method getIndex(): Get numeric index of features
 Usage:
 FeatureSetCommon$getIndex(fid)
 Arguments:
 fid Feature ID (string)
Method getIDs(): Get IDs of features
 Usage:
 FeatureSetCommon$getIDs()
 Returns: Vector of IDs of features
Method setID(): Set name
 Usage:
 FeatureSetCommon$setID(i, fid)
 Arguments:
 i Numeric index of feature
 fid Feature ID (string)
Method getFeature(): Get feature by feature ID
 Usage:
 FeatureSetCommon$getFeature(fid)
 Arguments:
 fid Feature ID string
 Returns: Matrix describing feature
Method getFeatures(): Get all features
 Usage:
 FeatureSetCommon$getFeatures()
Method getCol(): Get colour in which to plot feature ID
 Usage:
 FeatureSetCommon$getCol(fid)
 Arguments:
 fid Feature ID string
Method clone(): The objects of this class are cloneable with this method.
 Usage:
 FeatureSetCommon$clone(deep = FALSE)
 Arguments:
 deep Whether to make a deep clone.
```

Author(s)

fire 27

fire

The FIRE algorithm

Description

This is an implementation of the FIRE algorithm for structural relaxation put forward by Bitzek et al. (2006)

Usage

```
fire(
  r,
 force,
 restraint,
 m = 1,
 dt = 0.1,
 maxmove = 100,
  dtmax = 1,
 Nmin = 5,
  finc = 1.1,
  fdec = 0.5,
  astart = 0.1,
  fa = 0.99,
  a = 0.1,
  nstep = 100,
  tol = 1e-05,
  verbose = FALSE,
  report = message
)
```

Arguments

r	Initial locations of particles
force	Force function
restraint	Restraint function
m	Masses of points
dt	Initial time step
maxmove	Maximum distance to move in any time step
dtmax	Maximum time step
Nmin	Number of steps after which to start increasing dt
finc	Fractional increase in dt per time step
fdec	Fractional decrease in dt after a stop
astart	Starting value of a after a stop
fa	Fraction of a to retain after each step

28 flatplot

2	Initial	value	of a
a	IIIIIIai	varue	or a

nstep Maximum number of steps

tol Tolerance - if RMS force is below this value, stop and report convergence

verbose If TRUE report progress verbosely

report Function to report progress when verbose is TRUE

Value

List containing x, the positions of the points, conv, which is 0 if convergence as occurred and 1 otherwise, and frms, the root mean square of the forces on the particles.

Author(s)

David Sterratt

References

Bitzek, E., Koskinen, P., G\"ahler, F., Moseler, M., and Gumbsch, P. (2006). Structural relaxation made simple. Phys. Rev. Lett., 97:170201.

flatplot

Plot "flat" (unreconstructed) representation of outline

Description

Plot "flat" (unreconstructed) representation of outline

Usage

```
flatplot(x, axt = "n", xlim = NULL, ylim = NULL, ...)
```

Arguments

		10 .7 .		0 1 .
X	Outline. Annotai	tedOutline.S	StitchedOutline	&c object

axt whether to plot axes

xlim x limits ylim y limits

... Other plotting parameters

Author(s)

```
{\tt flatplot.AnnotatedOutline}
```

Flat plot of AnnotatedOutline

Description

Plot flat AnnotatedOutline. The user markup is displayed by default.

Usage

```
## S3 method for class 'AnnotatedOutline'
flatplot(x, axt = "n", xlim = NULL, ylim = NULL, markup = TRUE, ...)
```

Arguments

```
x AnnotatedOutline object
axt whether to plot axes
xlim x-limits
ylim y-limits
markup If TRUE, plot markup
... Other plotting parameters
```

Author(s)

David Sterratt

flatplot.Outline

Flat plot of outline

Description

Plot flat Outline.

Usage

```
## S3 method for class 'Outline'
flatplot(
    x,
    axt = "n",
    xlim = NULL,
    ylim = NULL,
    add = FALSE,
    image = TRUE,
    scalebar = 1,
```

```
rimset = FALSE,
pids = FALSE,
pid.joggle = 0,
lwd.outline = 1,
...
)
```

Arguments

X	Outline object
axt	whether to plot axes
xlim	x limits
ylim	y limits
add	If TRUE, don't draw axes; add to existing plot.
image	If TRUE the image (if it is present) is displayed behind the outline
scalebar	If numeric and if the Outline has a scale field, a scale bar of length scalebar mm is plotted. If scalebar is FALSE or there is no scale information in the Outline x the scale bar is suppressed.
rimset	If TRUE, plot the points computed to be in the rim in the colour specified by the option $\verb rimset.col $
pids	If TRUE, plot point IDs
pid.joggle	Amount to joggle point IDs by randomly
lwd.outline	Line width of outline
	Other plotting parameters

Author(s)

David Sterratt

```
flatplot.ReconstructedOutline
```

Flat plot of reconstructed outline

Description

Plot ReconstructedOutline object. This adds a mesh of gridlines from the spherical retina (described by points phi, lambda and triangulation Tt and cut-off point phi0) onto a flattened retina (described by points P and triangulation T).

Usage

```
## S3 method for class 'ReconstructedOutline'
flatplot(
    x,
    axt = "n",
    xlim = NULL,
    ylim = NULL,
    grid = TRUE,
    strain = FALSE,
    ...
)
```

Arguments

X	ReconstructedOutline object
axt	whether to plot axes
xlim	x-limits
ylim	y-limits
grid	Whether or not to show the grid lines of latitude and longitude
strain	Whether or not to show the strain
	Other plotting parameters

Author(s)

David Sterratt

```
flatplot.StitchedOutline
```

Flat plot of AnnotatedOutline

Description

Plot flat StitchedOutline. If the optional argument stitch is TRUE the user markup is displayed.

Usage

```
## S3 method for class 'StitchedOutline'
flatplot(x, axt = "n", xlim = NULL, ylim = NULL, stitch = TRUE, lwd = 1, ...)
```

Arguments

x	AnnotatedOutline object
axt	whether to plot axes
xlim	x-limits
ylim	y-limits
stitch	If TRUE, plot stitch
lwd	Line width
	Other parameters

Author(s)

David Sterratt

```
{\it flat plot.} {\it Triangulated Outline} \\ {\it Plot flat Triangulated Outline}.
```

Description

Plot flat TriangulatedOutline.

Usage

```
## S3 method for class 'TriangulatedOutline'
flatplot(x, axt = "n", xlim = NULL, ylim = NULL, mesh = TRUE, ...)
```

Arguments

```
x TriangulatedOutline object
axt whether to plot axes
xlim x-limits
ylim y-limits
mesh If TRUE, plot mesh
... Other plotting parameters
```

Author(s)

flipped.triangles 33

flipped.triangles Determine indices of triangles that are flipped

Description

In the projection of points onto the sphere, some triangles maybe flipped, i.e. in the wrong orientation. This functions determines which triangles are flipped by computing the vector pointing to the centre of each triangle and comparing this direction to vector product of two sides of the triangle.

Usage

```
flipped.triangles(Ps, Tt, R = 1)
```

Arguments

Ps N-by-2 matrix with columns containing latitudes (phi) and longitudes (lambda)

of N points

Tt Triangulation of points

R Radius of sphere

Value

List containing:

flipped Indices of in rows of Tt of flipped triangles.

cents Vectors of centres. areas Areas of triangles.

Author(s)

David Sterratt

```
flipped.triangles.cart
```

Determine indices of triangles that are flipped

Description

In the projection of points onto the sphere, some triangles maybe flipped, i.e. in the wrong orientation. This function determines which triangles are flipped by computing the vector pointing to the centre of each triangle and comparing this direction to vector product of two sides of the triangle.

Usage

```
flipped.triangles.cart(P, Tt, R)
```

34 fp

Arguments

P Points in Cartesian coordinates

Tt Triangulation of points

R Radius of sphere

Value

List containing:

flipped Indices of in rows of Tt of flipped triangles.

cents Vectors of centres.
areas Areas of triangles.

Author(s)

David Sterratt

fp

Piecewise smooth function used in area penalty

Description

Derivative of f

Usage

fp(x, x0)

Arguments

x Main argument

x0 The cut-off parameter. Above this value the function is zero.

Value

The value of the function.

Author(s)

Fragment 35

Fragment	Construct an outline object. This sanitises the input points P, as described below.

Description

Construct an outline object. This sanitises the input points P, as described below.

Construct an outline object. This sanitises the input points P, as described below.

Public fields

- P A N-by-2 matrix of points of the Outline arranged in anticlockwise order
- gf For each row of P, the index of P that is next in the outline travelling anticlockwise (forwards)
- gb For each row of P, the index of P that is next in the outline travelling clockwise (backwards)
- h For each row of P, the correspondence of that point (which will be to itself initially)
- A. tot Total area of the Fragment

Methods

Public methods:

- Fragment\$initializeFromPoints()
- Fragment\$clone()

Method initializeFromPoints(): Initialise a Fragment from a set of points

Usage:

Fragment\$initializeFromPoints(P)

Arguments:

P An N-by-2 matrix of points of the Outline

Method clone(): The objects of this class are cloneable with this method.

Usage:

Fragment\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

36 idt.read.dataset

identity.transform

The identity transformation

Description

The identity transformation

Usage

```
identity.transform(r, ...)
```

Arguments

r Coordinates of points in spherical coordinates represented as 2 column matrix

with column names phi (latitude) and lambda (longitude).

.. Other arguments

Value

Identical matrix

Author(s)

David Sterratt

idt.read.dataset

Read one of the Thompson lab's retinal datasets

Description

Read one of the Thompson lab's retinal datasets. Each dataset is a folder containing a SYS file in SYSTAT format and a MAP file in text format. The SYS file specifies the locations of the data points and the MAP file specifies the outline.

Usage

```
idt.read.dataset(dataset, report = message, d.close = 0.25)
```

Arguments

dataset Path to directory containing as SYS and MAP file

report Function to report progress

d. close Maximum distance between points for them to count as the same point. This is

expressed as a fraction of the width of the outline.

ijroi.read.dataset 37

Details

The function returns the outline of the retina. In order to do so, it has to join up the segments of the MAP file. The tracings are not always precise; sometimes there are gaps between points that are actually the same point. The parameter d.close specifies how close points must be to count as the same point.

Value

dataset	The path to the directory given as an argument
raw	List containing
	map The raw MAP data
	sys The raw SYS data
Р	The points of the outline
gf	Forward pointers along the outline
gb	Backward pointers along the outline
Ds	List of datapoints
Ss	List of landmark lines

Author(s)

David Sterratt

ijroi.read.dataset Read a retinal dataset in IJROI format

Description

Read a retinal dataset in IJROI format. Each dataset is a folder containing a file called outline.roi that specifies the outline in X-Y coordinates. It may also contain a file datapoints.csv, containing the locations of data points; see read.datapoints for the format of this file. The folder may also contain a file od.roi specifying the coordinates of the optic disc.

Usage

```
ijroi.read.dataset(dataset, report = report)
```

Arguments

dataset Path to directory containing outline.roi

report Function to report progress

Value

A RetinalOutline object

38 invert.sphere

Author(s)

David Sterratt

interpolate.image

Interpolate values in image

Description

Interpolate values in image

Usage

```
interpolate.image(im, P, invert.y = FALSE)
```

Arguments

im image to interpolate

P N by 2 matrix of x, y values at which to interpolate. x is in range [0, ncol(im)]

and y is in range [0, nrow(im)]

invert.y If FALSE (the default), the y coordinate is zero at the top of the image. TRUE the

zero y coordinate is at the bottom.

Value

Vector of N interpolated values

Author(s)

David Sterratt

invert.sphere

Invert sphere about its centre

Description

Invert sphere about its centre

Usage

```
invert.sphere(r, ...)
```

Arguments

r Coordinates of points in spherical coordinates represented as 2 column matrix

with column names phi (latitude) and lambda (longitude).

.. Other arguments

Value

Matrix in same format, but with pi added to lambda and phi negated.

Author(s)

David Sterratt

invert.sphere.to.hemisphere

Invert sphere to hemisphere

Description

Invert image of a partial sphere and scale the longitude so that points at latitude phi0 is projected onto a longitude of 0 degrees (the equator).

Usage

```
invert.sphere.to.hemisphere(r, phi0, ...)
```

Arguments

Coordinates of points in spherical coordinates represented as 2 column matrix

with column names phi (latitude) and lambda (longitude).

phi0 The latitude to map onto the equator

Other arguments

Value

Matrix in same format, but with pi added to lambda and phi negated and scaled so that the longitude phi0 is projected to 0 degrees (the equator)

Author(s)

40 karcher.mean.sphere

karcher.mean.sphere Karcher mean on the sphere

Description

The Karcher mean of a set of points on a manifold is defined as the point whose sum of squared Riemann distances to the points is minimal. On a sphere using spherical coordinates this distance can be computed using the formula for central angle.

Usage

```
karcher.mean.sphere(x, na.rm = FALSE, var = FALSE)
```

Arguments

X	Matrix of points on sphere as N-by-2 matrix with labelled columns $\colon $ (latitude) and lambda (longitude)
na.rm	logical value indicating whether NA values should be stripped before the computation proceeds.
var	logical value indicating whether variance should be returned too.

Value

Vector of means with components named phi and lambda. If var is TRUE, a list containing mean and variance in elements mean and var.

Author(s)

David Sterratt

References

Heo, G. and Small, C. G. (2006). Form representations and means for landmarks: A survey and comparative study. *Computer Vision and Image Understanding*, 102:188-203.

See Also

central.angle

kde.compute.concentration

Find the optimal concentration for a set of data

Description

Find the optimal concentration for a set of data

Usage

```
kde.compute.concentration(mu)
```

Arguments

mu

Data in spherical coordinates

Value

The optimal concentration

Author(s)

David Sterratt

kde.fhat

Kernel density estimate on sphere using Fisherian density with polar coordinates

Description

Kernel density estimate on sphere using Fisherian density with polar coordinates

Usage

```
kde.fhat(r, mu, kappa)
```

Arguments

r Locations at which to estimate density in polar coordinates

mu Locations of data points in polar coordinates

kappa Concentration parameter

Value

Vector of density estimates

42 kde.L

Author(s)

David Sterratt

kde.fhat.cart

Kernel density estimate on sphere using Fisherian density with Cartesian coordinates

Description

Kernel density estimate on sphere using Fisherian density with Cartesian coordinates

Usage

```
kde.fhat.cart(r, mu, kappa)
```

Arguments

r Locations at which to estimate density in Cartesian coordinates on unit sphere

mu Locations of data points in Cartesian coordinates on unit sphere

kappa Concentration parameter

Value

Vector of density estimates

Author(s)

David Sterratt

kde.L

Estimate of the log likelihood of the points mu given a particular value of the concentration kappa

Description

Estimate of the log likelihood of the points mu given a particular value of the concentration kappa

Usage

```
kde.L(mu, kappa)
```

Arguments

mu Locations of data points in Cartesian coordinates on unit sphere

kappa Concentration parameter

kr.compute.concentration 43

Value

Log likelihood of data

Author(s)

David Sterratt

kr.compute.concentration

Find the optimal concentration for a set of data

Description

Find the optimal concentration for a set of data

Usage

```
kr.compute.concentration(mu, y)
```

Arguments

mu Locations in Cartesian coordinates (independent variables)

y Values at locations (dependent variables)

Value

The optimal concentration

Author(s)

David Sterratt

kr.sscv Cross validation estimate of the least squares error of the points mu given a particular value of the concentration kappa

Description

Cross validation estimate of the least squares error of the points mu given a particular value of the concentration kappa

Usage

```
kr.sscv(mu, y, kappa)
```

kr.yhat

Arguments

mu Locations in Cartesian coordinates (independent variables)

y Values at locations (dependent variables)

kappa Concentration parameter

Value

Least squares error

Author(s)

David Sterratt

kr.yhat Kernel regression on sphere using Fisherian density with polar coor-

dinates

Description

Kernel regression on sphere using Fisherian density with polar coordinates

Usage

```
kr.yhat(r, mu, y, kappa)
```

Arguments

r Locations at which to estimate dependent variables in polar coordinates

mu Locations in polar coordinates (independent variables)

y Values at data points (dependent variables)

kappa Concentration parameter

Value

Estimates of dependent variables at locations r

Author(s)

kr.yhat.cart 45

kr.yhat.cart	Kernel regression on sphere using Fisherian density with Cartesian coordinates

Description

Kernel regression on sphere using Fisherian density with Cartesian coordinates

Usage

```
kr.yhat.cart(r, mu, y, kappa)
```

Arguments

r	Locations at which to	o estimate dependent	variables in Cartesia	in coordinates
---	-----------------------	----------------------	-----------------------	----------------

mu Locations in Cartesian coordinates (independent variables)

y Values at locations (dependent variables)

kappa Concentration parameter

Value

Estimates of dependent variables at locations r

Author(s)

David Sterratt

Description

A LandmarkSet contains information about points located on Outlines. Each LandmarkSet contains a list of matrices, each of which has columns labelled X and Y describing the cartesian coordinates (in the unscaled coordinate frame) of points in landmarks on the Outline.

Super classes

46 line.line.intersection

Methods

Public methods:

- LandmarkSet\$new()
- LandmarkSet\$reconstruct()
- LandmarkSet\$clone()

```
Method new(): Constructor
```

Usage:

LandmarkSet\$new(data = NULL, cols = NULL)

Arguments:

data List of matrices describing data. Each matrix should have columns named X and Y cols Named vector of colours for each data set. The name is used as the ID (label) for the data set. The colours should be names present in the output of the colors function

Method reconstruct(): Map the LandmarkSet to a ReconstructedOutline

Usage:

LandmarkSet\$reconstruct(ro)

Arguments:

ro The ReconstructedOutline

Method clone(): The objects of this class are cloneable with this method.

Usage:

LandmarkSet\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

line.line.intersection

Determine intersection between two lines

Description

Determine the intersection of two lines L1 and L2 in two dimensions, using the formula described by Weisstein.

Usage

```
line.line.intersection(P1, P2, P3, P4, interior.only = FALSE)
```

list.datasets 47

Arguments

P1	vector containing x,y coordinates of one end of L1
P2	vector containing x,y coordinates of other end of L1
P3	vector containing x,y coordinates of one end of L2
P4	vector containing x,y coordinates of other end of L2
interior.only	boolean flag indicating whether only intersections inside L1 and L2 should be returned.

Value

Vector containing x,y coordinates of intersection of L1 and L2. If L1 and L2 are parallel, this is infinite-valued. If interior.only is TRUE, then when the intersection does not occur between P1 and P2 and P3 and P4, a vector containing NAs is returned.

Author(s)

David Sterratt

Source

Weisstein, Eric W. "Line-Line Intersection." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html

Examples

```
## Intersection of two intersecting lines line.line.intersection(c(0, 0), c(1, 1), c(0, 1), c(1, 0))
## Two lines that don't intersect line.line.intersection(c(0, 0), c(0, 1), c(1, 0), c(1, 1))
```

list.datasets

List datasets underneath a directory

Description

List valid datasets underneath a directory. This reports all directories that appear to be valid.

Usage

```
list.datasets(path = ".", verbose = FALSE)
```

Arguments

path Directory path to start searching from

verbose If TRUE report on progress

48 lvsLplot

Value

A vector of directories containing datasets

Author(s)

David Sterratt

list_to_R6

Convert an list created by R6_to_list() into an R6 object.

Description

Convert an list created by R6_to_list() into an R6 object.

Usage

```
list_to_R6(1)
```

Arguments

1

list created by R6_to_list()

Value

R6 object or list list

Author(s)

David Sterratt

 ${\tt lvsLplot}$

Plot the fractional change in length of mesh edges

Description

Plot the fractional change in length of mesh edges. The length of each edge in the mesh in the reconstructed object is plotted against each edge in the spherical object. The points are colour-coded according to the amount of log strain each edge is under.

Usage

```
lvsLplot(r, ...)
```

Arguments

ReconstructedOutline object

... Other plotting parameters

name.list 49

Author(s)

David Sterratt

name.list

Return a new version of the list in which any unnamed elements have been given standardised names

Description

Return a new version of the list in which any unnamed elements have been given standardised names

Usage

```
name.list(1)
```

Arguments

1 the list with unnamed elements

Value

The list with standardised names

Author(s)

David Sterratt

normalise.angle

Bring angle into range

Description

Bring angle into range

Usage

```
normalise.angle(theta)
```

Arguments

theta

Angle to bring into range [-pi,pi]

Value

Normalised angle

50 orthographic

Author(s)

David Sterratt

orthographic

Orthographic projection

Description

Orthographic projection

Usage

```
orthographic(r, proj.centre = cbind(phi = 0, lambda = 0), ...)
```

Arguments

r Latitude-longitude coordinates in a matrix with columns labelled phi (latitude)

and lambda (longitude)

proj.centre Location of centre of projection as matrix with column names phi (elevation)

and lambda (longitude).

... Arguments not used by this projection.n

Value

Two-column matrix with columns labelled x and y of locations of projection of coordinates on plane

Author(s)

David Sterratt

References

 $\verb|http://en.wikipedia.org/wiki/Map_projection, | http://mathworld.wolfram.com/OrthographicProjection. | html| | html$

Outline 51

Outline

Class containing basic information about flat outlines

Description

An Outline has contains the polygon describing the outline and an image associated with the outline.

Super class

```
retistruct::OutlineCommon -> Outline
```

Public fields

```
P A N-by-2 matrix of points of the Outline arranged in anticlockwise order scale. The length of one unit of P in arbitrary units units. String giving units of scaled P, e.g. "um" gf. For each row of P, the index of P that is next in the outline travelling anticlockwise (forwards) gb. For each row of P, the index of P that is next in the outline travelling clockwise (backwards). h For each row of P, the correspondence of that point (which will be to itself initially) im An image as a raster object.
```

Methods

Public methods:

- Outline\$new()
- Outline\$getImage()
- Outline\$replaceImage()
- Outline\$mapFragment()
- Outline\$mapPids()
- Outline\$addPoints()
- Outline\$getPoints()
- Outline\$getPointsScaled()
- Outline\$getRimSet()
- Outline\$getOutlineSet()
- Outline\$getOutlineLengths()
- Outline\$addFeatureSet()
- Outline\$clone()

Method new(): Construct an outline object. This sanitises the input points P.

```
Usage:
Outline$new(P = NULL, scale = NA, im = NULL, units = NA)
Arguments:
```

```
P An N-by-2 matrix of points of the Outline
 scale The length of one unit of P in arbitrary units
 im The image as a raster object
 units String giving units of scaled P, e.g. "um"
Method getImage(): Image accessor
 Usage:
 Outline$getImage()
 Returns: An image as a raster object
Method replaceImage(): Image setter
 Usage:
 Outline$replaceImage(im)
 Arguments:
 im An image as a raster object
Method mapFragment(): Map the point IDs of a Fragment on the point IDs of this Outline
 Usage:
 Outline$mapFragment(fragment, pids)
 Arguments:
 fragment Fragment to map
 pids Point IDs in Outline of points in Fragment
Method mapPids(): Map references to points
 Usage:
 Outline$mapPids(x, y, pids)
 Arguments:
 x References to point indices in source
 y References to existing point indices in target
 pids IDs of points in point register
 Returns: New references to point indices in target
Method addPoints(): Add points to the outline register of points
 Usage:
 Outline$addPoints(P)
 Arguments:
 P 2 column matrix of points to add
 Returns: The ID of each added point in the register. If points already exist a point will not be
 created in the register, but an ID will be returned
Method getPoints(): Get unscaled mesh points
 Usage:
```

David Sterratt

Outline\$getPoints() Returns: Matrix with columns X and Y Method getPointsScaled(): Get scaled mesh points Usage: Outline\$getPointsScaled() Returns: Matrix with columns X and Y which is exactly scale times the matrix returned by getPoints Method getRimSet(): Get set of points on rim Outline\$getRimSet() Returns: Vector of point IDs, i.e. indices of the rows in the matrices returned by getPoints and getPointsScaled Method getOutlineSet(): Get points on the edge of the outline Usage: Outline\$getOutlineSet() Returns: Vector of points IDs on outline Method getOutlineLengths(): Get lengths of edges of the outline Usage: Outline\$getOutlineLengths() Returns: Vector of lengths of edges connecting neighbouring points Method addFeatureSet(): Add a FeatureSet, e.g. a PointSet or LandmarkSet Usage: Outline\$addFeatureSet(fs) Arguments: fs FeatureSet to add **Method** clone(): The objects of this class are cloneable with this method. Usage: Outline\$clone(deep = FALSE) Arguments: deep Whether to make a deep clone. Author(s)

54 OutlineCommon

OutlineCommon	Class containing functionality common to flat and reconstructed out- lines

Description

An OutlineCommon has functionality for retrieving sets of features (e.g. points or landmarks associated with an outline)

Public fields

version Version of reconstruction file data format

featureSets List of feature sets associated with the outline, which may be of various types, e.g. a PointSet or LandmarkSet

Methods

Public methods:

- OutlineCommon\$getFeatureSets()
- OutlineCommon\$getFeatureSet()
- OutlineCommon\$clearFeatureSets()
- OutlineCommon\$getIDs()
- OutlineCommon\$getFeatureSetTypes()
- OutlineCommon\$clone()

Method getFeatureSets(): Get all the feature sets

Usage:

OutlineCommon\$getFeatureSets()

Returns: List of FeatureSets associated with the outline

Method getFeatureSet(): Get all feature sets of a particular type, e.g. PointSet or Landmark-Set

Usage:

OutlineCommon\$getFeatureSet(type)

Arguments:

type The type of the feature set as a string

Returns: All FeatureSets of that type

Method clearFeatureSets(): Clear all feature sets from the outline

Usage:

OutlineCommon\$clearFeatureSets()

Method getIDs(): Get all the distinct IDs contained in the FeatureSets

panlabel 55

Usage:

OutlineCommon\$getIDs()

Returns: Vector of IDs

Method getFeatureSetTypes(): Get all the distinct types of FeatureSets

Usage:

OutlineCommon\$getFeatureSetTypes()

Returns: Vector of types as strings, e.g. PointSet, LandmarkSet

Method clone(): The objects of this class are cloneable with this method.

Usage:

OutlineCommon\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

panlabel

Ancillary function to place labels

Description

Ancillary function to place labels

Usage

```
panlabel(panlabel, line = -0.7)
```

Arguments

panlabel Label text

line Line on which to appear

Author(s)

56 parabola.invarclength

 $\verb|parabola.arclength|$

Arc length of a parabola $y=x^2/4f$

Description

Arc length of a parabola $y=x^2/4f$

Usage

```
parabola.arclength(x1, x2, f)
```

Arguments

x1 x co-ordinate of start of arc
 x2 x co-ordinate of end of arc
 f focal length of parabola

Value

length of parabola arc

Author(s)

David Sterratt

parabola.invarclength Inverse arc length of a parabola $y=x^2/4f$

Description

Inverse arc length of a parabola y=x^2/4f

Usage

```
parabola.invarclength(x1, s, f)
```

Arguments

x1 co-ordinate of start of arc

s length of parabola arc to follow

f focal length of parabola

Value

x co-ordinate of end of arc

parse.dependencies 57

Author(s)

David Sterratt

parse.dependencies

Parse dependencies

Description

Parse dependencies

Usage

parse.dependencies(deps)

Arguments

deps

Text produced by, e.g., installed.packages()["packagename", "Suggests"]

Value

Table with package column, relationship column and version number

Author(s)

David Sterratt

PathOutline

Add point correspondences to the outline

Description

Add point correspondences to the outline Add point correspondences to the outline

Details

The member function stitchSubpaths() stitches together two subpaths of the outline. One subpath is stitched in the forward direction from the point indexed by VF0 to the point indexed by VF1. The other is stitched in the backward direction from VB0 to VB1. Each point in the subpath is linked to points in the opposing pathway at an equal or near-equal fraction along. If a point exists in the opposing pathway within a distance epsilon of the projection, this point is connected. If no point exists within this tolerance, a new point is created.

58 PathOutline

Value

To the Outline object this adds

hf point correspondence mapping in forward direction for points on boundary
hb point correspondence mapping in backward direction for points on boundary

Super classes

```
retistruct::OutlineCommon -> retistruct::Outline -> PathOutline
```

Public fields

hf Forward correspondences

hb Backward correspondences

Methods

Public methods:

- PathOutline\$addPoints()
- PathOutline\$nextPoint()
- PathOutline\$insertPoint()
- PathOutline\$stitchSubpaths()
- PathOutline\$clone()

Method addPoints(): Add points to the outline register of points

Usage:

PathOutline\$addPoints(P)

Arguments:

P 2 column matrix of points to add

Returns: The ID of each added point in the register. If points already exist a point will not be created in the register, but an ID will be returned

Method nextPoint(): Get next point in path for

Usage:

PathOutline\$nextPoint(pids)

Arguments:

pids Point IDs of points to get next position

Method insertPoint(): Insert point at a fractional distance between points

Usage:

PathOutline\$insertPoint(i0, i1, f)

Arguments:

- io Point ID of first point
- i1 Point ID of second point

PointSet 59

f Fraction of distance between points i0 and i1 at which to insert point

```
Method stitchSubpaths(): Stitch subpaths
```

Usage:

PathOutline\$stitchSubpaths(VF0, VF1, VB0, VB1, epsilon)

Arguments:

VF0 First vertex of "forward" subpath

VF1 Second vertex of "forward" subpath

VB0 First vertex of "backward" subpath

VB1 Second vertex of "backward" subpath

epsilon Minimum distance between points

Method clone(): The objects of this class are cloneable with this method.

Usage:

PathOutline\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

PointSet

Subclass of FeatureSet to represent points

Description

A PointSet contains information about points located on Outlines. Each PointSet contains a list of matrices, each of which has columns labelled X and Y describing the cartesian coordinates (in the unscaled coordinate frame) of points on the Outline.

Super classes

```
retistruct::FeatureSetCommon -> retistruct::FeatureSet -> PointSet
```

Methods

Public methods:

- PointSet\$new()
- PointSet\$reconstruct()
- PointSet\$clone()

Method new(): Constructor

Usage:

PointSet\$new(data = NULL, cols = NULL)

Arguments:

data List of matrices describing data. Each matrix should have columns named X and Y

cols Named vector of colours for each data set. The name is used as the ID (label) for the data set. The colours should be names present in the output of the colors function

Method reconstruct(): Map the PointSet to a ReconstructedOutline

Usage:

PointSet\$reconstruct(ro)

Arguments:

ro The ReconstructedOutline

Method clone(): The objects of this class are cloneable with this method.

Usage:

PointSet\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

```
polar.cart.to.sphere.spherical
```

Convert polar projection in Cartesian coordinates to spherical coordinates on sphere

Description

This is the inverse of sphere.spherical.to.polar.cart

Usage

```
polar.cart.to.sphere.spherical(r, pa = FALSE, preserve = "latitude")
```

Arguments

r 2-column Matrix of Cartesian coordinates of points on polar projection. Column

names should be x and y

pa If TRUE, make this an area-preserving projection

preserve Quantity to preserve locally in the projection. Options are latitude, area or

angle

Value

2-column Matrix of spherical coordinates of points on sphere. Column names are phi and lambda.

Author(s)

polartext 61

polartext

Put text on the polar plot

Description

Place text at bottom right of projection

Usage

```
polartext(text)
```

Arguments

text

Test to place

Author(s)

David Sterratt

projection

Plot projection of a reconstructed outline

Description

Plot projection of a reconstructed outline

Usage

```
projection(r, ...)
```

Arguments

r Object such as a ReconstructedOutline

... Other plotting parameters

Author(s)

```
projection.ReconstructedOutline
```

Projection of a reconstructed outline

Description

Draw a projection of a ReconstructedOutline. This method sets up the grid lines and the angular labels and draws the image.

Usage

```
## S3 method for class 'ReconstructedOutline'
projection(
  r,
  transform = identity.transform,
  axisdir = cbind(phi = 90, lambda = 0),
  projection = azimuthal.equalarea,
  proj.centre = cbind(phi = 0, lambda = 0),
  lambdalim = c(-180, 180),
  philim = c(-90, 90),
  labels = c(0, 90, 180, 270),
  mesh = FALSE,
  grid = TRUE,
  grid.bg = "transparent",
  grid.int.minor = 15,
  grid.int.major = 45,
  colatitude = TRUE,
  pole = FALSE,
  image = TRUE,
 markup = TRUE,
  add = FALSE,
 max.proj.dim = getOption("max.proj.dim"),
)
```

Arguments

r	ReconstructedOutline object
transform	Transform function to apply to spherical coordinates before rotation
axisdir	Direction of axis (North pole) of sphere in external space as matrix with column names phi (elevation) and lambda (longitude).
projection	Projection in which to display object, e.g. azimuthal.equalarea or sinusoidal
proj.centre	Location of centre of projection as matrix with column names phi (elevation) and lambda (longitude).
lambdalim	Limits of longitude (in degrees) to display

philim	Limits of latitude (in degrees) to display
labels	Vector of 4 labels to plot at 0, 90, 180 and 270 degrees
mesh	If TRUE, plot mesh
grid	Whether or not to show the grid lines of latitude and longitude
grid.bg	Background colour of the grid
<pre>grid.int.minor</pre>	Interval between minor grid lines in degrees
<pre>grid.int.major</pre>	Interval between major grid lines in degrees
colatitude	If TRUE have radial labels plotted with respect to colatitude rather than latitude
pole	If TRUE indicate the pole with a "*"
image	If TRUE, show the image
markup	If TRUE, plot markup, i.e. reconstructed tears
add	If TRUE, don't draw axes; add to existing plot.
max.proj.dim	Maximum width of the image created in pixels
	Graphical parameters to pass to plotting functions

 $\verb"projection.Retinal Reconstructed Outline"$

Plot projection of reconstructed dataset

Description

Plot projection of reconstructed dataset

Usage

```
## S3 method for class 'RetinalReconstructedOutline'
projection(
  r,
  transform = identity.transform,
 projection = azimuthal.equalarea,
  axisdir = cbind(phi = 90, lambda = 0),
  proj.centre = cbind(phi = 0, lambda = 0),
  lambdalim = c(-180, 180),
  datapoints = TRUE,
  datapoint.means = TRUE,
  datapoint.contours = FALSE,
  grouped = FALSE,
  grouped.contours = FALSE,
  landmarks = TRUE,
 mesh = FALSE,
  grid = TRUE,
  image = TRUE,
  ids = r$getIDs(),
)
```

64 *R6_to_list*

Arguments

r RetinalReconstructedOutline object

transform Transform function to apply to spherical coordinates before rotation

projection Projection in which to display object, e.g. azimuthal.equalarea or sinusoidal

axisdir Direction of axis (North pole) of sphere in external space

proj.centre Location of centre of projection as matrix with column names phi (elevation)

and lambda (longitude).

lambdalim Limits of longitude (in degrees) to display

datapoints If TRUE, display data points

datapoint.means

If TRUE, display Karcher mean of data points.

datapoint.contours

If TRUE, display contours around the data points generated using Kernel Density

Estimation.

grouped If TRUE, display grouped data.

grouped.contours

If TRUE, display contours around the grouped data generated using Kernel Re-

gression.

landmarks If TRUE, display landmarks.

mesh If TRUE, display the triangular mesh used in reconstruction

grid If TRUE, show grid lines

image If TRUE, show the reconstructed image

ids IDs of groups of data within a dataset, returned using getIDs.

... Graphical parameters to pass to plotting functions

R6_to_list Convert an R6 object into a list, ignoring functions and environments

Description

Convert an R6 object into a list, ignoring functions and environments

Usage

```
R6_to_list(r, path = "", envs = list())
```

Arguments

r R6 object or list

path root of the path to the list - no need to supply. Not used but could be developed

for pretty-printing

envs list of environments already encountered - do not set

Rcart 65

Value

List with structure mirroring the R6 object.

Author(s)

David Sterratt

Rcart

Restore points to spherical manifold

Description

Restore points to spherical manifold after an update of the Lagrange integration rule

Usage

```
Rcart(P, R, Rset, i0, phi0, lambda0)
```

Arguments

P Point positions as N-by-3 matrix

R Radius of sphere

Rset Indices of points on rim

i0 Index of fixed point

phi0 Cut-off of curtailed sphere in radians

lambda0 Longitude of fixed point on rim

Value

Points projected back onto sphere

Author(s)

read.datapoints

read.datacounts

Read data counts in CSV format

Description

Read data counts from a file 'datacounts.csv' in the directory dataset. The CSV file should contain two columns for every dataset. Each pair of columns must contain a unique name in the first cell of the first row and a valid colour in the second cell of the first row. In the remaining rows, the X coordinates of data counts should be in the first column and the Y coordinates should be in the second column.

Usage

read.datacounts(dataset)

Arguments

dataset Path to directory containing dataponts.csv

Value

List containing

Ds List of sets of data counts. Each set comprises a 2-column matrix and each set

is named.

cols List of colours for each dataset. There is one element that corresponds to each

element of Ds and which bears the same name.

Author(s)

David Sterratt

read.datapoints

Read data points in CSV format

Description

Read data points from a file dataponts.csv in the directory dataset. The CSV should contain two columns for every dataset. Each pair of columns must contain a unique name in the first cell of the first row and a valid colour in the second cell of the first row. In the remaining rows, the X coordinates of data points should be in the first column and the Y coordinates should be in the second column.

Usage

read.datapoints(dataset)

ReconstructedCountSet 67

Arguments

dataset Path to directory containing dataponts.csv

Value

List containing

Ds List of sets of datapoints. Each set comprises a 2-column matrix and each set is

named.

cols List of colours for each dataset. There is one element that corresponds to each

element of Ds and which bears the same name.

Author(s)

David Sterratt

ReconstructedCountSet Class containing functions and data to map CountSets to Recon-

structedOutlines

Description

A ReconstructedCountSet contains information about features located on ReconstructedOutlines. Each ReconstructedCountSet contains a list of matrices, each of which has columns labelled phi (latitude) and lambda (longitude) describing the spherical coordinates of points on the ReconstructedOutline, and a column C representing the counts at these points.

Super classes

retistruct::FeatureSetCommon->retistruct::ReconstructedFeatureSet->ReconstructedCountSet

Public fields

KR Kernel regression

Methods

Public methods:

- ReconstructedCountSet\$new()
- ReconstructedCountSet\$getKR()
- ReconstructedCountSet\$clone()

Method new(): Constructor

Usage:

ReconstructedCountSet\$new(fs = NULL, ro = NULL)

Arguments:

68 ReconstructedFeatureSet

```
fs FeatureSet to reconstruct
ro ReconstructedOutline to which feature set should be mapped

Method getKR(): Get kernel regression estimate of grouped data points

Usage:
ReconstructedCountSet$getKR()

Returns: Kernel regression computed using compute.kernel.estimate

Method clone(): The objects of this class are cloneable with this method.

Usage:
```

ReconstructedCountSet\$clone(deep = FALSE)

deep Whether to make a deep clone.

Author(s)

David Sterratt

Arguments:

ReconstructedFeatureSet

Class containing functions and data to map FeatureSets to ReconstructedOutlines

Description

A ReconstructedFeatureSet contains information about features located on ReconstructedOutlines. Each ReconstructedFeatureSet contains a list of matrices, each of which has columns labelled phi (latitude) and lambda (longitude) describing the spherical coordinates of points on the ReconstructedOutline. Derived classes, e.g. a ReconstructedCountSet, may have extra columns. Each matrix in the list has an associated label and colour, which is used by plotting functions.

Super class

```
retistruct::FeatureSetCommon -> ReconstructedFeatureSet
```

Methods

Public methods:

- ReconstructedFeatureSet\$new()
- ReconstructedFeatureSet\$clone()

```
Method new(): Constructor
  Usage:
  ReconstructedFeatureSet$new(fs = NULL, ro = NULL)
  Arguments:
```

```
fs FeatureSet to reconstruct
```

ro ReconstructedOutline to which feature set should be mapped

Method clone(): The objects of this class are cloneable with this method.

Usage:

ReconstructedFeatureSet\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

ReconstructedLandmarkSet

Class containing functions and data to map LandmarkSets to ReconstructedOutlines

Description

A ReconstructedLandmarkSet contains information about features located on ReconstructedOutlines. Each ReconstructedLandmarkSet contains a list of matrices, each of which has columns labelled phi (latitude) and lambda (longitude) describing the spherical coordinates of points on the ReconstructedOutline.

Super classes

retistruct:: Feature Set Common -> retistruct:: Reconstructed Feature Set -> Reconstructed Landmark Set -> Reconstructed Lan

Methods

Public methods:

• ReconstructedLandmarkSet\$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:

ReconstructedLandmarkSet\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

70 ReconstructedOutline

ReconstructedOutline Class containing functions to reconstruct StitchedOutlines and store the associated data

Description

The function reconstruct reconstructs outline into spherical surface Reconstruct outline into spherical surface.

Super class

retistruct::OutlineCommon -> ReconstructedOutline

Public fields

- ol Annotated outline
- ol0 Original Annotated outline
- Pt Transformed cartesian mesh points
- Tt Transformed triangulation
- Ct Transformed links
- Cut Transformed links
- Bt Transformed binary vector representation of edge indices onto a binary vector representation of the indices of the points linked by the edge
- Lt Transformed lengths
- ht Transformed correspondences
- u Indices of unique points in untransformed space
- U Transformed indices of unique points in untransformed space

Rsett Transformed rim set

- i0t Transformed marker
- H mapping from edges onto corresponding edges
- Ht Transformed mapping from edges onto corresponding edges

phi0 Rim angle

R Radius of spherical template

lambda0 Longitude of pole on rim

lambda Longitudes of transformed mesh points

phi Latitudes of transformed mesh points

- Ps Location of mesh point on sphere in spherical coordinates
- n Number of mesh points
- alpha Weighting of areas in energy function
- x0 Area cut-off coefficient

ReconstructedOutline 71

```
nflip@ Initial number flipped triangles
nflip Final number flipped triangles
opt Optimisation object
E.tot Energy function including area
E.l Energy function based on lengths alone
mean.strain Mean strain
mean.logstrain Mean log strain
debug Debug function
```

Methods

Public methods:

- ReconstructedOutline\$loadOutline()
- ReconstructedOutline\$reconstruct()
- ReconstructedOutline\$mergePointsEdges()
- ReconstructedOutline\$projectToSphere()
- ReconstructedOutline\$getStrains()
- ReconstructedOutline\$optimiseMapping()
- ReconstructedOutline\$optimiseMappingCart()
- ReconstructedOutline\$transformImage()
- ReconstructedOutline\$getIms()
- ReconstructedOutline\$getTearCoords()
- ReconstructedOutline\$getFeatureSet()
- ReconstructedOutline\$reconstructFeatureSets()
- ReconstructedOutline\$getPoints()
- ReconstructedOutline\$mapFlatToSpherical()
- ReconstructedOutline\$clone()

Method loadOutline(): Load AnnotatedOutline into ReconstructedOutline object

```
Usage:
```

```
ReconstructedOutline$loadOutline(
   ol,
   n = 500,
   alpha = 8,
   x0 = 0.5,
   plot.3d = FALSE,
   dev.flat = NA,
   dev.polar = NA,
   report = retistruct::report,
   debug = FALSE
)

Arguments:
```

ol AnnotatedOutline object, containing the following information

72 ReconstructedOutline

```
n Number of points in triangulation.

alpha Area scaling coefficient

x0 Area cut-off coefficient

plot.3d Whether to show 3D picture during optimisation.

dev.flat Device to plot grid onto. Value of NA (default) means no plotting.

dev.polar Device display projection. Value of NA (default) means no plotting.

report Function to report progress.

debug If TRUE print extra debugging output
```

Method reconstruct(): Reconstruct Reconstruction proceeds in a number of stages:

- 1. The flat object is triangulated with at least n triangles. This can introduce new vertices in the rim.
- 2. The triangulated object is stitched.
- 3. The stitched object is triangulated again, but this time it is not permitted to add extra vertices to the rim.
- 4. The corresponding points determined by the stitching process are merged to form a new set of merged points and a new triangulation.
- 5. The merged points are projected roughly to a sphere.
- 6. The locations of the points on the sphere are moved so as to minimise the energy function.

Usage:

```
ReconstructedOutline$reconstruct(
    plot.3d = FALSE,
    dev.flat = NA,
    dev.polar = NA,
    report = getOption("retistruct.report")
)

Arguments:
plot.3d If TRUE make a 3D plot in an RGL window
dev.flat Device handle for plotting flatplot updates to. If NA don't make any flat plots
dev.polar Device handle for plotting polar plot updates to. If NA don't make any polar plots.
report Function to report progress.
Control argument to pass to optim
```

Method mergePointsEdges(): Merge stitched points and edges. Create merged and transformed versions (all suffixed with t) of a number of existing variables, as well as a matrix Bt, which maps a binary vector representation of edge indices onto a binary vector representation of the indices of the points linked by the edge. Sets following fields

- PtTransformed point locations
- TtTransformed triangulation
- CtTransformed connection set
- CutTransformed symmetric connection set
- BtTransformed binary vector representation of edge indices onto a binary vector representation of the indices of the points linked by the edge
- LtTransformed edge lengths

ReconstructedOutline 73

- htTransformed correspondences
- uIndices of unique points in untransformed space
- UTransformed indices of unique points in untransformed space
- RsetThe set of points on the rim (which has been reordered)
- RsettTransformed set of points on rim
- i0tTransformed index of the landmark
- Hmapping from edges onto corresponding edges
- HtTransformed mapping from edges onto corresponding edges

Usage:

ReconstructedOutline\$mergePointsEdges()

Method projectToSphere(): Project mesh points in the flat outline onto a sphere This takes the mesh points from the flat outline and maps them to the curtailed sphere. It uses the area of the flat outline and phi0 to determine the radius R of the sphere. It tries to get a good first approximation by using the function stretchMesh. The following fields are set:

- phiLatitude of mesh points.
- lmabdaLongitude of mesh points.
- RRadius of sphere.

Usage:

ReconstructedOutline\$projectToSphere()

Method getStrains(): Return strains edges are under in spherical retina Set information about how edges on the sphere have been deformed from their flat state.

Usage:

ReconstructedOutline\$getStrains()

Returns: A list containing two data frames flat and spherical. Each data frame contains for each edge in the flat or spherical meshes:

- LLength of the edge in the flat outline
- 1Length of the corresponding edge on the sphere
- strainThe strain of each connection
- logstrainThe logarithmic strain of each connection

Method optimiseMapping(): Optimise the mapping from the flat outline to the sphere

Usage:

```
ReconstructedOutline$optimiseMapping(
   alpha = 4,
   x0 = 0.5,
   nu = 1,
   optim.method = "BFGS",
   plot.3d = FALSE,
   dev.flat = NA,
   dev.polar = NA,
   control = list()
)
```

74 ReconstructedOutline

```
Arguments:

alpha Area penalty scaling coefficient

x0 Area penalty cut-off coefficient

nu Power to which to raise area

optim.method Method to pass to optim

plot.3d If TRUE make a 3D plot in an RGL window

dev.flat Device handle for plotting flatplot updates to. If NA don't make any flat plots

dev.polar Device handle for plotting polar plot updates to. If NA don't make any polar plots.

control Control argument to pass to optim
```

Method optimiseMappingCart(): Optimise the mapping from the flat outline to the sphere

```
Usage:
```

```
ReconstructedOutline$optimiseMappingCart(
  alpha = 4,
  x0 = 0.5,
  nu = 1,
  method = "BFGS",
  plot.3d = FALSE,
  dev.flat = NA,
  dev.polar = NA,
)
Arguments:
alpha Area penalty scaling coefficient
x0 Area penalty cut-off coefficient
nu Power to which to raise area
method Method to pass to optim
plot.3d If TRUE make a 3D plot in an RGL window
dev. flat Device handle for plotting grid to
dev.polar Device handle for plotting polar plot to
... Extra arguments to pass to fire
```

Method transformImage(): Transform an image into the reconstructed space Transform an image into the reconstructed space. The four corner coordinates of each pixel are transformed into spherical coordinates and a mask matrix with the same dimensions as im is created. This has TRUE for pixels that should be displayed and FALSE for ones that should not. Sets the field

• imsCoordinates of corners of pixels in spherical coordinates

Usage:

ReconstructedOutline\$transformImage()

Method getIms(): Get coordinates of corners of pixels of image in spherical coordinates

Usage.

```
ReconstructedOutline$getIms()
```

Returns: Coordinates of corners of pixels in spherical coordinates

```
Method getTearCoords(): Get location of tear coordinates in spherical coordinates
 ReconstructedOutline$getTearCoords()
 Returns: Location of tear coordinates in spherical coordinates
Method getFeatureSet(): Get ReconstructedFeatureSet
 Usage:
 ReconstructedOutline$getFeatureSet(type)
 Arguments:
 type Base type of FeatureSet as string. E.g. PointSet returns a ReconstructedPointSet
Method reconstructFeatureSets(): Reconstruct any attached feature sets.
 Usage:
 ReconstructedOutline$reconstructFeatureSets()
Method getPoints(): Get mesh points in spherical coordinates
 Usage:
 ReconstructedOutline$getPoints()
 Returns: Matrix with columns phi (latitude) and lambda (longitude)
Method mapFlatToSpherical(): Return location of point on sphere corresponding to point on
the flat outline
 Usage:
 ReconstructedOutline$mapFlatToSpherical(P)
 Arguments:
 P Cartesian coordinates on flat outline as a matrix with X and Y columns
Method clone(): The objects of this class are cloneable with this method.
 Usage:
 ReconstructedOutline$clone(deep = FALSE)
 Arguments:
 deep Whether to make a deep clone.
```

Author(s)

76 ReconstructedPointSet

ReconstructedPointSet Class containing functions and data to map PointSets to ReconstructedOutlines

Description

A ReconstructedPointSet contains information about features located on ReconstructedOutlines. Each ReconstructedPointSet contains a list of matrices, each of which has columns labelled phi (latitude) and lambda (longitude) describing the spherical coordinates of points on the Reconstructed-Outline.

Super classes

retistruct::FeatureSetCommon->retistruct::ReconstructedFeatureSet->ReconstructedPointSet

Public fields

KDE Kernel density estimate, computed using compute.kernel.estimate in getKDE

Methods

Public methods:

- ReconstructedPointSet\$getMean()
- ReconstructedPointSet\$getHullarea()
- ReconstructedPointSet\$getKDE()
- ReconstructedPointSet\$clone()

Method getMean(): Get Karcher mean of datapoints in spherical coordinates

Usage:

ReconstructedPointSet\$getMean()

Returns: Karcher mean of datapoints in spherical coordinates

Method getHullarea(): Get area of convex hull around data points on sphere

Usage:

ReconstructedPointSet\$getHullarea()

Returns: Area in degrees squared

Method getKDE(): Get kernel density estimate of data points

Usage:

ReconstructedPointSet\$getKDE()

Returns: See compute.kernel.estimate

Method clone(): The objects of this class are cloneable with this method.

Usage:

ReconstructedPointSet\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

remove.identical.consecutive.rows

Remove identical consecutive rows from a matrix

Description

This is similar to unique(), but spares rows which are duplicated, but at different points in the matrix

Usage

```
remove.identical.consecutive.rows(P)
```

Arguments

P Source matrix

Value

Matrix with identical consecutive rows removed.

Author(s)

David Sterratt

remove.intersections Remove intersections between adjacent segments in a closed path

Description

Suppose segments AB and CD intersect. Point B is replaced by the intersection point, defined B'. Point C is replaced by a point C' on the line B'D. The maximum distance of B'C' is given by the parameter d. If the distance 1 B'D is less than 2d, the distance B'C' is 1/2.

Usage

```
remove.intersections(P, d = 50)
```

Arguments

- P The points, as a 2-column matrix
- d Criterion for maximum distance when points are inserted

78 RetinalOutline

Value

A new closed path without intersections

Author(s)

David Sterratt

report

Reporting utility function

Description

Calls function specified by option retistruct.report

Usage

```
report(...)
```

Arguments

... Arguments to reporting function

Author(s)

David Sterratt

RetinalOutline

Class containing functions and data relating to retinal outlines

Description

In addition to fields inherited from StitchedOutline, a RetinalOutline contains a dataset field, describing the system path to dataset directory and metadata specific to retinae and some formats of retinae

An retinalOutline object. This contains the following fields:

Super classes

```
retistruct::OutlineCommon -> retistruct::Outline -> retistruct::PathOutline -> retistruct::AnnotatedOutline -> retistruct::StitchedOutline -> RetinalOutline
```

Public fields

```
DVflip TRUE if the raw data is flipped in the dorsoventral direction side The side of the eye ("Left" or "Right") dataset File system path to dataset directory
```

Methods

Public methods:

- RetinalOutline\$new()
- RetinalOutline\$clone()

Method new(): Constructor

```
Usage:
```

```
RetinalOutline$new(..., dataset = NULL)
```

Arguments:

... Parameters to superclass constructors

dataset File system path to dataset directory

Method clone(): The objects of this class are cloneable with this method.

Usage:

RetinalOutline\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

RetinalReconstructedOutline

A version of ReconstructedOutline that is specific to retinal datasets

Description

A RetinalReconstructedOutline overrides methods of ReconstructedOutline so that they return data point and landmark coordinates that have been transformed according to the values of DVflip and side. When reconstructing, it also computes the "Optic disc displacement", i.e. the number of degrees subtended between the optic disc and the pole.

Super classes

retistruct::OutlineCommon->retistruct::ReconstructedOutline->RetinalReconstructedOutline

Public fields

EOD Optic disc displacement in degrees

Methods

Public methods:

- RetinalReconstructedOutline\$getIms()
- RetinalReconstructedOutline\$getTearCoords()
- RetinalReconstructedOutline\$reconstruct()
- RetinalReconstructedOutline\$getFeatureSet()
- RetinalReconstructedOutline\$clone()

Method getIms(): Get coordinates of corners of pixels of image in spherical coordinates, transformed according to the value of DVflip

Usage:

RetinalReconstructedOutline\$getIms()

Returns: Coordinates of corners of pixels in spherical coordinates

Method getTearCoords(): Get location of tear coordinates in spherical coordinates, transformed according to the value of DVflip

Usage:

RetinalReconstructedOutline\$getTearCoords()

Returns: Location of tear coordinates in spherical coordinates

Method reconstruct():

Usage:

RetinalReconstructedOutline\$reconstruct(...)

Arguments:

... Parameters to ReconstructedOutline

Method getFeatureSet(): Get ReconstructedFeatureSet, transformed according to the value of DVflip

Usage:

RetinalReconstructedOutline\$getFeatureSet(type)

Arguments

type Base type of FeatureSet as string. E.g. PointSet returns a ReconstructedPointSet

Method clone(): The objects of this class are cloneable with this method.

Usage:

RetinalReconstructedOutline\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

retistruct 81

retistruct

Start the Retistruct GUI

Description

Start the Retistruct GUI

Usage

```
retistruct()
```

Value

Object with getData() method to return reconstructed retina data and environment this which contains variables in object.

See Also

gWidgets2

retistruct.batch

Batch operation using the parallel package

Description

This function reconstructs a number of datasets, using the R parallel package to distribute the reconstruction of multiple datasets across CPUs. If datasets is not specified the function recurses through a directory tree starting at tldir, determining whether the directory contains valid raw data and markup, and performing the reconstruction if it does.

Usage

```
retistruct.batch(
  tldir = ".",
  outputdir = tldir,
  datasets = NULL,
  device = "pdf",
  titrate = FALSE,
  cpu.time.limit = 3600,
  mc.cores = getOption("mc.cores", 2L)
)
```

Arguments

tldir If datasets is not specified, the top level of the directory tree through which to

recurse in order to find datasets.

outputdir directory in which to dump a log file and images

datasets Vector of dataset directories to reconstruct

device string indicating what type of graphics output required. Options are "pdf" and

"png".

titrate Whether to "titrate" the reconstruction for different values of phi0. See titrate.reconstructedOutline

cpu.time.limit amount of CPU after which to terminate the process

mc.cores The number of cores to use. Defaults to the value given by the option mc.cores

Author(s)

David Sterratt

retistruct.batch.analyse.summaries

Extract statistics from a directory containing reconstruction directo-

ries.

Description

Extract statistics from a directory containing reconstruction directories.

Usage

```
retistruct.batch.analyse.summaries(path)
```

Arguments

path Directory containing reconstruction directories

Value

Data frame containing various statistics

Author(s)

retistruct.batch.analyse.summary

Extract statistics from the retistruct-batch.csv summary file

Description

Extract statistics from the retistruct-batch.csv summary file

Usage

```
retistruct.batch.analyse.summary(path)
```

Arguments

path

The path to the retistruct-batch.csv

Value

list of various statistics

Author(s)

David Sterratt

retistruct.batch.export.matlab

Export data from reconstruction data files to MATLAB

Description

Recurse through a directory tree, determining whether the directory contains valid derived data and converting 'r.rData' files to files in MATLAB format named 'r.mat'

Usage

```
retistruct.batch.export.matlab(tldir = ".")
```

Arguments

tldir

The top level of the directory tree through which to recurse

Author(s)

retistruct.batch.figures

Plot figures for a batch of reconstructions

Description

Recurse through a directory tree, determining whether the directory contains valid derived data and plotting graphs if it does.

Usage

```
retistruct.batch.figures(tldir = ".", outputdir = tldir, ...)
```

Arguments

tldir The top level directory of the tree through which to recurse.

outputdir Directory in which to dump a log file and images

... Parameters passed to plotting functions

Author(s)

David Sterratt

retistruct.batch.get.titrations

Get titrations from a directory of reconstructions

Description

Get titrations from a directory of reconstructions

Usage

```
retistruct.batch.get.titrations(tldir = ".")
```

Arguments

tldir

The top level directory of the tree through which to recurse. The files have to have been reconstructed with the titrate option to retistruct.batch

 $retistruct.batch.plot.titrations\\ \textit{Plot titrations}$

Description

Plot titrations

Usage

```
retistruct.batch.plot.titrations(tdat)
```

Arguments

tdat

Output of retistruct.batch.get.titrations

retistruct.batch.summary

Extract summary data for a batch of reconstructions

Description

Recurse through a directory tree, determining whether the directory contains valid derived data and extracting summary data if it does.

Usage

```
retistruct.batch.summary(tldir = ".", cache = TRUE)
```

Arguments

tldir The top level directory of the tree through which to recurse.

cache If TRUE use the cached statistics rather than generate on the fly (which is slower).

Value

Data frame containing summary data

Author(s)

86 retistruct.cli

```
retistruct.check.markup
```

Retistruct check markup

Description

Check that markup such as tears and the nasal or dorsal points are present.

Usage

```
retistruct.check.markup(o)
```

Arguments

^

Outline object

Value

If all markup is present, return TRUE. Otherwise return FALSE.

Author(s)

David Sterratt

retistruct.cli

Process a dataset with a time limit

Description

This calls retistruct.cli.process with a time limit specified by cpu.time.limit.

Usage

```
retistruct.cli(
  dataset,
  cpu.time.limit = Inf,
  outputdir = NA,
  device = "pdf",
  ...
)
```

retistruct.cli.figure 87

Arguments

dataset Path to dataset to process cpu.time.limit Time limit in seconds

outputdir Directory in which to save any figures device String representing device to print figures to

... Other arguments to pass to retistruct.cli.process

Value

A list comprising

status 0 for success, 1 for reaching cpu. time.limit and 2 for an unknown error

time The time take in seconds mess Any error message

Author(s)

David Sterratt

retistruct.cli.figure Print a figure to file

Description

Print a figure to file

Usage

```
retistruct.cli.figure(
  dataset,
  outputdir,
  device = "pdf",
  width = 6,
  height = 6,
  res = 100
)
```

Arguments

dataset Path to dataset to process

outputdir Directory in which to save any figures
device String representing device to print figures to

width Width of figures in inches height Height of figures in inches

res Resolution of figures in dpi (only applies to bitmap devices)

Author(s)

David Sterratt

```
retistruct.cli.process
```

Process a dataset, saving results to disk

Description

This function processes a dataset, saving the reconstruction data and MATLAB export data to the dataset directory and printing figures to outputdir.

Usage

```
retistruct.cli.process(dataset, outputdir = NA, device = "pdf")
```

Arguments

dataset Path to dataset to process

outputdir Directory in which to save any figures device String representing device to print figures to

Author(s)

David Sterratt

```
retistruct.export.matlab
```

Save reconstruction data in MATLAB format

Description

Save as a MATLAB object certain fields of an object r of classRetinalReconstructedOutline to a file called r.mat in the directory r\$dataset.

Usage

```
retistruct.export.matlab(r, filename = NULL)
```

Arguments

r RetinalReconstructedOutline object

filename Filename of output file. If not specified, is r.mat in the same directory as the

input files

Author(s)

retistruct.read.dataset 89

```
retistruct.read.dataset
```

Read a retinal dataset

Description

Read a retinal dataset in one of three formats; for information on formats see idt.read.dataset, csv.read.dataset and ijroi.read.dataset. The format is autodetected from the files in the directory.

Usage

```
retistruct.read.dataset(dataset, report = message, ...)
```

Arguments

dataset Path to directory containing the files corresponding to each format.

report Function to report progress. Set to FALSE for no reporting.

... Parameters passed to the format-specific functions.

Value

A RetinalOutline object

Author(s)

David Sterratt

```
retistruct.read.markup
```

Read the markup data

Description

Read the markup data contained in the files 'markup.csv', 'P.csv' and 'T.csv' in the directory 'dataset', which is specified in the reconstruction object r.

Usage

```
retistruct.read.markup(a, error = stop)
```

Arguments

а	Dataset object, containing dataset path
error	Function to run on error, by default stop()

90 retistruct.read.recdata

Details

The tear information is contained in the files 'P.csv' and 'T.csv'. The first file contains the locations of outline points that the tears were marked up on. The second file contains the indices of the apex and backward and forward vertices of each tear. It is necessary to have the file of points just in case the algorithm that determines P in retistruct.read.dataset has changed since the markup of the tears.

The remaining information is contained in the file 'markup.csv'.

If DVflip is specified, the locations of points P flipped in the y-direction. This operation also requires the swapping of gf and gb and VF and VB.

Value

o RetinalDataset object

V0	Indices in P of apices of tears
VB	Indices in P of backward vertices of tears
VF	Indices in P of backward vertices of tears
iN	Index in P of nasal point, or NA if not marked
iD	Index in P of dorsal point, or NA if not marked
iOD	Index in Ss of optic disc
phi0	Angle of rim in degrees
DVflip	Boolean variable indicating if dorsoventral (DV) axis has been flipped

Author(s)

David Sterratt

```
retistruct.read.recdata
```

Read the reconstruction data from file

Description

Given an outline object with a dataset field, read the reconstruction data from the file 'dataset/r.Rdata'.

Usage

```
retistruct.read.recdata(o, check = TRUE)
```

Arguments

	0	Outline object	containing	dataset field
--	---	----------------	------------	---------------

check If TRUE check that the base information in the reconstruction object is the same

as the base data in source files.

retistruct.reconstruct 91

Value

If the reconstruction data exists, return a reconstruction object, else return the outline object o.

Author(s)

David Sterratt

```
retistruct.reconstruct
```

Reconstruct a retina

Description

Reconstruct a retina

Usage

```
retistruct.reconstruct(
   a,
   report = NULL,
   plot.3d = FALSE,
   dev.flat = NA,
   dev.polar = NA,
   debug = FALSE,
   ...
)
```

Arguments

a	RetinalOutline object with tear and correspondence annotations
report	Function to report progress. Set to FALSE for no reporting or to NULL to inherit from the argument given to $retistruct.read.dataset$
plot.3d	If TRUE show progress in a 3D plot
dev.flat	The ID of the device to which to plot the flat representation
dev.polar	The ID of the device to which to plot the polar representation
debug	If TRUE print extra debugging output
	Parameters to be passed to RetinalReconstructedOutline constructor

Value

A RetinalReconstructedOutline object

Author(s)

92 retistruct.save.recdata

```
retistruct.save.markup
```

Save markup

Description

Save the markup in the RetinalOutline a to a file called markup.csv in the directory a\$dataset.

Usage

```
retistruct.save.markup(a)
```

Arguments

а

RetinalOutline object

Author(s)

David Sterratt

```
retistruct.save.recdata
```

Save reconstruction data

Description

Save the reconstruction data in an object r of class RetinalReconstructedOutline to a file called r.Rdata in the directory r\$dataset.

Usage

```
retistruct.save.recdata(r)
```

Arguments

r

RetinalReconstructedOutline object

Author(s)

rotate.axis 93

rotate.axis

Rotate axis of sphere

Description

This rotates points on sphere by specifying the direction its polar axis, i.e. the axis going through (90, 0), should point after (a) a rotation about an axis through the points (0, 0) and (0, 180) and (b) rotation about the original polar axis.

Usage

```
rotate.axis(r, r0)
```

Arguments

r0

r Coordinates of points in spherical coordinates represented as 2 column matrix with column names phi (latitude) and lambda (longitude).

Direction of the polar axis of the sphere on which to project represented as a 2 column matrix of with column names phi (latitude) and lambda (longitude).

Value

2-column matrix of spherical coordinates of points with column names phi (latitude) and lambda (longitude).

Author(s)

David Sterratt

Examples

```
r0 <- cbind(phi=0, lambda=-pi/2)
r <- rbind(r0, r0+c(1,0), r0-c(1,0), r0+c(0,1), r0-c(0,1))
r <- cbind(phi=pi/2, lambda=0)
rotate.axis(r, r0)</pre>
```

simplifyFragment

Simplify an outline object by removing short edges

Description

Simplify a fragment object by removing vertices bordering short edges while not encroaching on any of the outline. At present, this is done by finding concave vertices. It is safe to remove these, at the expense of increasing the area a bit.

94 simplifyOutline

Usage

```
simplifyFragment(P, min.frac.length = 0.001, plot = FALSE)
```

Arguments

P points to simplify

min.frac.length

the minimum length as a fraction of the total length of the outline.

plot whether to display plotting or not during simplification

Value

Simplified outline object

Author(s)

David Sterratt

simplifyOutline

Simplify an outline object by removing short edges

Description

Simplify a outline object by removing vertices bordering short edges while not encroaching on any of the outline. At present, this is done by finding concave vertices. It is safe to remove these, at the expense of increasing the area a bit.

Usage

```
simplifyOutline(P, min.frac.length = 0.001, plot = FALSE)
```

Arguments

P points to simplify

min.frac.length

the minimum length as a fraction of the total length of the outline.

plot whether to display plotting or not during simplification

Value

Simplified outline object

Author(s)

sinusoidal 95

sinusoidal

Sinusoidal projection

Description

Sinusoidal projection

Usage

```
sinusoidal(
   r,
   proj.centre = cbind(phi = 0, lambda = 0),
   lambdalim = NULL,
   lines = FALSE,
   ...
)
```

Arguments

r	Latitude-longitude coordinates in a matrix with columns labelled phi (latitude) and lambda (longitude). Alternatively string "boundary", indicating that boundary of projection should be drawn.
proj.centre	Location of centre of projection as matrix with column names phi (elevation) and lambda (longitude). Currently only longitude is used by this function.
lambdalim	Limits of longitude to plot
lines	If this is TRUE create breaks of NAs when lines cross the limits of longitude. This prevents lines crossing the centre of the projection.
	Arguments not used by this projection.

Value

Two-column matrix with columns labelled x and y of locations of projection of coordinates on plane

Author(s)

David Sterratt

References

```
http://en.wikipedia.org/wiki/Map\_projection, http://mathworld.wolfram.com/SinusoidalProjection.html\\
```

```
sphere.cart.to.sphere.dualwedge
```

Convert from Cartesian to 'dual-wedge' coordinates

Description

Convert points in 3D cartesian space to locations of points on sphere in 'dual-wedge' coordinates (fx, fy). Wedges are defined by planes inclined at angle running through a line between poles on the rim above the x axis or the y-axis. fx and fy are the fractional distances along the circle defined by the intersection of this plane and the curtailed sphere.

Usage

```
sphere.cart.to.sphere.dualwedge(P, phi0, R = 1)
```

Arguments

P locations of points on sphere as N-by-3 matrix with labelled columns X, Y and Z

phi0 rim angle as colatitude

R radius of sphere

Value

2-column Matrix of 'wedge' coordinates of points on sphere. Column names are phi and lambda.

Author(s)

David Sterratt

```
sphere.cart.to.sphere.spherical
```

Convert from Cartesian to spherical coordinates

Description

Convert locations on the surface of a sphere in cartesian (X, Y, Z) coordinates to spherical (phi, lambda) coordinates.

Usage

```
sphere.cart.to.sphere.spherical(P, R = 1)
```

Arguments

P locations of points on sphere as N-by-3 matrix with labelled columns "X", "Y"

and "Z"

R radius of sphere

Details

It is assumed that all points are lying on the surface of a sphere of radius R.

Value

N-by-2 Matrix with columns ("phi" and "lambda") of locations of points in spherical coordinates

Author(s)

David Sterratt

```
sphere.cart.to.sphere.wedge
```

Convert from Cartesian to 'wedge' coordinates

Description

Convert points in 3D cartesian space to locations of points on sphere in 'wedge' coordinates (psi, f). Wedges are defined by planes inclined at an angle psi running through a line between poles on the rim above the x axis. f is the fractional distance along the circle defined by the intersection of this plane and the curtailed sphere.

Usage

```
sphere.cart.to.sphere.wedge(P, phi0, R = 1)
```

Arguments

P locations of points on sphere as N-by-3 matrix with labelled columns "X", "Y"

and "Z"

phi0 rim angle as colatitude

R radius of sphere

Value

2-column Matrix of 'wedge' coordinates of points on sphere. Column names are phi and lambda.

Author(s)

```
sphere.spherical.to.polar.cart
```

Convert spherical coordinates on sphere to polar projection in Cartesian coordinates

Description

This is the inverse of polar.cart.to.sphere.spherical

Usage

```
sphere.spherical.to.polar.cart(r, pa = FALSE, preserve = "latitude")
```

Arguments

r 2-column Matrix of spherical coordinates of points on sphere. Column names

are phi and lambda.

pa If TRUE, make this an area-preserving projection

preserve Quantity to preserve locally in the projection. Options are latitude, area or

angle

Value

2-column Matrix of Cartesian coordinates of points on polar projection. Column names should be x and y

Author(s)

David Sterratt

```
sphere.spherical.to.sphere.cart
```

Convert from spherical to Cartesian coordinates

Description

Convert locations of points on sphere in spherical coordinates to points in 3D cartesian space

Usage

```
sphere.spherical.to.sphere.cart(Ps, R = 1)
```

Arguments

Ps N-by-2 matrix with columns containing latitudes (phi) and longitudes (lambda)

of N points

R radius of sphere

sphere.tri.area 99

Value

An N-by-3 matrix in which each row is the cartesian (X, Y, Z) coordinates of each point

Author(s)

David Sterratt

sphere.tri.area

Area of triangles on a sphere

Description

This uses L'Hullier's theorem to compute the spherical excess and hence the area of the spherical triangle.

Usage

```
sphere.tri.area(P, Pt)
```

Arguments

P 2-column matrix of vertices of triangles given in spherical polar coordinates.

Columns need to be labelled phi (latitude) and lambda (longitude).

Pt 3-column matrix of indices of rows of P giving triangulation

Value

Vectors of areas of triangles in units of steradians

Author(s)

David Sterratt

Source

Wolfram MathWorld http://mathworld.wolfram.com/SphericalTriangle.html and http://mathworld.wolfram.com/SphericalExcess.html

Examples

```
## Something that should be an eighth of a sphere, i.e. pi/2
P <- cbind(phi=c(0, 0, pi/2), lambda=c(0, pi/2, pi/2))
Pt <- cbind(1, 2, 3)
## The result of this should be 0.5
print(sphere.tri.area(P, Pt)/pi)
## Now a small triangle
P1 <- cbind(phi=c(0, 0, 0.01), lambda=c(0, 0.01, 0.01))</pre>
```

```
Pt1 <- cbind(1, 2, 3)
## The result of this should approximately 0.01^2/2
print(sphere.tri.area(P, Pt)/(0.01^2/2))
## Now check that it works for both
P <- rbind(P, P1)
Pt <- rbind(1:3, 4:6)
## Should have two components
print(sphere.tri.area(P, Pt))</pre>
```

```
sphere.wedge.to.sphere.cart
```

Convert from 'wedge' to Cartesian coordinates

Description

This in the inverse of sphere.cart.to.sphere.wedge

Usage

```
sphere.wedge.to.sphere.cart(psi, f, phi0, R = 1)
```

Arguments

psi vector of slice angles of N points

f vector of fractional distances of N points

phi0 rim angle as colatitude

R radius of sphere

Value

An N-by-3 matrix in which each row is the cartesian (X, Y, Z) coordinates of each point

Author(s)

spherical.to.polar.area 101

spherical.to.polar.area

Convert latitude on sphere to radial variable in area-preserving projection

Description

Project spherical coordinate system (ϕ, λ) to a polar coordinate system (ρ, λ) such that the area of each small region is preserved.

Usage

```
spherical.to.polar.area(phi, R = 1)
```

Arguments

phi Latitude R Radius

Details

This requires

$$R^2 \delta \phi \cos \phi \delta \lambda = \rho \delta \rho \delta \lambda$$

. Hence

$$R^2 \int_{-\pi/2}^{\phi} \cos \phi' d\phi' = \int_{0}^{\rho} \rho' d\rho'$$

. Solving gives $\rho^2/2 = R^2(\sin \phi + 1)$ and hence

$$\rho = R\sqrt{2(\sin\phi + 1)}$$

As a check, consider that total area needs to be preserved. If ρ_0 is maximum value of new variable then $A=2\pi R^2(\sin(\phi_0)+1)=\pi\rho_0^2$. So $\rho_0=R\sqrt{2(\sin\phi_0+1)}$, which agrees with the formula above.

Value

Coordinate rho that has the dimensions of length

Author(s)

sphericalplot

Spherical plot of reconstructed outline

Description

Spherical plot of reconstructed outline

Usage

```
sphericalplot(r, ...)
```

Arguments

r Object inheriting ReconstructedOutline
... Parameters depending on class of r

Author(s)

David Sterratt

```
spherical plot. Reconstructed Outline \\ Spherical plot of reconstructed outline
```

Description

Draw a spherical plot of reconstructed outline. This method just draws the mesh.

Usage

```
## S3 method for class 'ReconstructedOutline'
sphericalplot(r, strain = FALSE, surf = TRUE, ...)
```

Arguments

surf

r ReconstructedOutline object strain If TRUE, plot the strain

... Other graphics parameters – not used at present

If TRUE, plot the surface

Author(s)

StitchedOutline 103

StitchedOutline

Class containing functions and data relating to Stitching outlines

Description

A StitchedOutline contains a function to stitch the tears, setting the correspondences hf, hb and h

Super classes

```
retistruct::OutlineCommon -> retistruct::Outline -> retistruct::PathOutline -> retistruct::AnnotatedOutline -> retistruct::TriangulatedOutline -> StitchedOutline
```

Public fields

Rset the set of points on the rim

TFset list containing indices of points in each forward tear
epsilon the minimum distance between points, set automatically

Methods

Public methods:

- StitchedOutline\$new()
- StitchedOutline\$stitchTears()
- StitchedOutline\$clone()

```
Method new(): Constructor
  Usage:
  StitchedOutline$new(...)
  Arguments:
  ... Parameters to superclass constructors
```

Method stitchTears(): Stitch together the incisions and tears by inserting new points in the tears and creating correspondences between new points.

```
Usage:
StitchedOutline$stitchTears()
```

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
StitchedOutline$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

Author(s)

104 stretchMesh

strain.colours

Generate colours for strain plots

Description

Generate colours for strain plots

Usage

```
strain.colours(x)
```

Arguments

Х

Vector of values of log strain

Value

Vector of colours corresponding to strains

Author(s)

David Sterratt

stretchMesh

Stretch mesh

Description

Stretch the mesh in the flat retina to a circular outline

Usage

```
stretchMesh(Cu, L, i.fix, P.fix)
```

Arguments

Cu Edge matrix

L Lengths in flat outline
i.fix Indices of fixed points
P.fix Coordinates of fixed points

Value

New matrix of 2D point locations

Author(s)

tri.area 105

tri.area

Area of triangles on a plane

Description

Area of triangles on a plane

Usage

```
tri.area(P, Pt)
```

Arguments

P 3-column matrix of vertices of triangles

Pt 3-column matrix of indices of rows of P giving triangulation

Value

Vectors of areas of triangles

Author(s)

David Sterratt

tri.area.signed

"Signed area" of triangles on a plane

Description

"Signed area" of triangles on a plane

Usage

```
tri.area.signed(P, Pt)
```

Arguments

P 3-column matrix of vertices of triangles

Pt 3-column matrix of indices of rows of P giving triangulation

Value

Vectors of signed areas of triangles. Positive sign indicates points are anticlockwise direction; negative indicates clockwise.

Author(s)

TriangulatedFragment Class to triangulate Fragments

Description

A TriangulatedFragment contains a function to create a triangulated mesh over an fragment, and fields to hold the mesh information.

Super class

```
retistruct::Fragment -> TriangulatedFragment
```

Public fields

- T 3 column matrix in which each row contains IDs of points of each triangle
- A Area of each triangle in the mesh has same number of elements as there are rows of T
- Cu 2 column matrix in which each row contains IDs of points of edge in mesh
- L Length of each edge in the mesh has same number of elements as there are rows of Cu
- A. signed Signed area of each triangle generated using tri.area.signed. Positive sign indicates points are anticlockwise direction; negative indicates clockwise.

Methods

Public methods:

- TriangulatedFragment\$new()
- TriangulatedFragment\$clone()

Method new(): Constructor

```
Usage:
TriangulatedFragment$new(
  fragment,
  n = 200,
  suppress.external.steiner = FALSE,
  report = message
)
Arguments:
```

fragment Fragment to triangulate

n Minimum number of points in the triangulation

suppress.external.steiner If TRUE prevent the addition of points in the outline. This happens to maintain triangle quality.

report Function to report progress

Method clone(): The objects of this class are cloneable with this method.

Usage:

TriangulatedOutline 107

```
TriangulatedFragment$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

TriangulatedOutline Class containing functions and data relating to Triangulation

Description

A TriangulatedOutline contains a function to create a triangulated mesh over an outline, and fields to hold the mesh information. Note that areas and lengths are all scaled using the value of the scale field.

Super classes

```
retistruct::OutlineCommon -> retistruct::Outline -> retistruct::PathOutline -> retistruct::AnnotatedOutline
-> TriangulatedOutline
```

Public fields

- T 3 column matrix in which each row contains IDs of points of each triangle
- A Area of each triangle in the mesh has same number of elements as there are rows of T
- A. tot Total area of the mesh
- Cu 2 column matrix in which each row contains IDs of
- L Length of each edge in the mesh has same number of elements as there are rows of Cu

Methods

Public methods:

- TriangulatedOutline\$triangulate()
- TriangulatedOutline\$mapTriangulatedFragment()
- TriangulatedOutline\$clone()

Method triangulate(): Triangulate (mesh) outline

Usage

```
TriangulatedOutline$triangulate(n = 200, suppress.external.steiner = FALSE)
```

Arguments:

n Desired number of points in mesh

```
suppress.external.steiner Boolean variable describing whether to insert external Steiner points - see TriangulatedFragment
```

108 vecnorm

```
Method mapTriangulatedFragment(): Map the point IDs of a TriangulatedFragment on the point IDs of this Outline
```

Usage:

TriangulatedOutline\$mapTriangulatedFragment(fragment, pids)

Arguments:

fragment TriangulatedFragment to map

pids Point IDs in TriangulatedOutline of points in TriangulatedFragment

Method clone(): The objects of this class are cloneable with this method.

Usage:

TriangulatedOutline\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

David Sterratt

Examples

```
\begin{array}{lll} P <& rbind(c(1,1), & c(2,1), & c(2,-1), \\ & c(1,-1), & c(1,-2), & c(-1,-2), \\ & c(-1,-1), & c(-2,-1), & c(-2,1), \\ & c(-1,1), & c(-1,2), & c(1,2)) \\ o <& TriangulatedOutline$new(P) \\ o$addTear(c(3, 4, 5)) \\ o$addTear(c(6, 7, 8)) \\ o$addTear(c(9, 10, 11)) \\ o$addTear(c(12, 1, 2)) \\ flatplot(o) \end{array}
```

vecnorm

Vector norm

Description

Vector norm

Usage

vecnorm(X)

Arguments

Χ

Vector or matrix.

vecnorm 109

Value

If a vector, returns the 2-norm of the vector. If a matrix, returns the 2-norm of each row of the matrix

Author(s)

Index

AnnotatedOutline, 4, 28, 29, 32, 71 azel.to.sphere.colatitude, 8 azimuthal.conformal, 9 azimuthal.equalarea, 10, 62, 64 azimuthal.equidistant, 11 bary.to.sphere.cart, 12 central.angle, 12, 40 checkDatadir, 13 circle, 14 colors, 16, 25, 46, 60 compute.intersections.sphere, 14 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 f, 23, 34 FeatureSet, 16, 24, 25, 45, 53-55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.ReconstructedOutline, 30 identity.transform, 36 if irend.dataset, 37, 89 interpolate.image, 38 invert.sphere.to.hemisphere, 39 interpolate.image, 38 invert.sphere.to.hemisphere, 40 kde.chat, 12 kacher.mead.dataset, 37, 89 interpolate.image, 28 interpolate.image, 38 invert.sphere.to.hemisphere, 40 kde.chat, 12 kde.fhat, 15, 41 kde.fhat, 15, 42 kr.compute.concentration, 43 kr.yhat, 15, 44 kr.yhat, 25, 46, 60 ormpute.concentration, 41 kde.fhat, 15, 42 kr.compute.concentration, 43 kr.syhat, 15, 44 kr.yhat, 26, 48 kr.yhat, 15, 44 kr.y
azimuthal.conformal, 9 azimuthal.equalarea, 10, 62, 64 azimuthal.equidistant, 11 invert.sphere., 38 invert.sphere. to.hemisphere, 39 bary.to.sphere.cart, 12 central.angle, 12, 40 checkDatadir, 13 circle, 14 colors, 16, 25, 46, 60 compute.intersections.sphere, 14 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 dE, 20 Ecart, 22 f, 23, 34 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 interpolate.image, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere.to.hemisphere, 39 invert.sphere.to.hemisphere, 40 kde.compute.concentration, 41 kde.fhat, 15, 44 kr.compute.concentration, 43 kr.yhat, 15, 44 kr.scompute.concentration, 41 kde.fhat, 15, 44 kr.compute.concentration, 42 kr.scompute.acconcentration
azimuthal.equalarea, 10, 62, 64 azimuthal.equidistant, 11 bary.to.sphere.cart, 12 central.angle, 12, 40 checkDatadir, 13 circle, 14 colors, 16, 25, 46, 60 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 f, 23, 34 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 karcher.mage, 38 invert.sphere, 38 invert.sphere, to.hemisphere, 39 kneyt.sphere, 10 karcher.mage, 38 invert.sphere, 28 invert.sphere, 20 karcher.mage, 38 invert.sphere, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere, 20 karcher.mage, 38 invert.sphere, 20 karcher.mean.sphere, 40 kde.compute.concentration, 41 kde.fhat, 15, 41 kde.fhat, 15, 41 kde.fhat, 15, 41 kde.fhat, 25, 41 kde.fhat, 27, 4 kr.compute.concentration, 41 kde.fhat, 25, 41 k
azimuthal.equidistant, 11 bary.to.sphere.cart, 12 central.angle, 12, 40 checkDatadir, 13 circle, 14 colors, 16, 25, 46, 60 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 dE, 20 Eart, 22 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 karcher.sphere, 38 invert.sphere, 10 invert.sphere, 38 invert.sphere, 10 invert.sphere, 38 invert.sphere, 10 karcher.mean.sphere, 40 kde.compute.concentration, 41 kde.fhat, 15, 44 kr.compute.concentration, 43 kr.spat, 45, 53, 54, 69 line.line.inine.infersection, 46 list.datasets, 47 list_to_R6, 48 livs_lplate, 45, 53, 54, 69 line.line.angle, 49 orthographic, 50 outline, 16, 24, 28–30, 45, 51, 58, 59 outlineCommon, 54 flatplot.AnnotatedOutline, 29 flatplot.AnnotatedOutline, 29 flatplot.AnnotatedOutline, 29 flatplot.AnnotatedOutline, 29 flatplo
bary.to.sphere.cart, 12 central.angle, 12, 40 checkDatadir, 13 circle, 14 colors, 16, 25, 46, 60 compute.intersections.sphere, 14 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 dE, 20 Ecart, 22 name.list, 49 f, 23, 34 Fcart, 23 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 flatplot.Outline, 29 karcher.mean.sphere, 40 karcher.mean.sphere, 40 karcher.mean.sphere, 40 karcher.mean.sphere, 40 kde.compute.concentration, 41 kde.fhat.cart, 42 kde.fhat.cart, 42 kde.fhat.cart, 42 kde.fhat.cart, 42 kde.fhat.cart, 42 kde.fhat.cart, 42 kr.compute.concentration, 43 kr.sscv, 43 kr.syhat, 15, 44 kr.yhat.cart, 45 LandmarkSet, 45, 53, 54, 69 line.line.intersection, 46 list.datasets, 47 list_to_R6, 48 lvsLplot, 48 Ecart, 22 name.list, 49 normalise.angle, 49 orthographic, 50 Outline, 16, 24, 28-30, 45, 51, 58, 59 OutlineCommon, 54 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 flatplot.Outline, 29 flatplot.outline, 29 flatplot.annotatedOutline, 29 flatplot.outline, 29 flatplot.outline, 29
bary.to.sphere.cart, 12 central.angle, 12, 40 checkDatadir, 13 circle, 14 colors, 16, 25, 46, 60 compute.intersections.sphere, 14 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 dE, 18 depthplot3D, 20 dE, 20 Ecart, 22 f, 23, 34 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 karcher.mean.sphere, 40 kde.compute.concentration, 41 kde.fhat, 15, 41 kde.fhat, 15, 41 kde.fhat, 15, 42 kde.that, 15, 42 kde.that, 42 kde.that, 25, 42 kde.that, 42 kde.that, 15, 44 kr.compute.concentration, 43 kde.that, 15, 44 kde.fhat, 15, 41 kde.fhat, 15, 42 kde.that, 15, 44 kde.fhat, 15, 44 kr.compute.concentration, 43 kr.sysc, 43 kr.yhat, 15, 44 kr.compute.concentration, 43 kde.fhat, 15, 44 kde.fhat, 15, 44 kde.fhat, 15, 44 kde.fhat, 15, 44 kr.compute.concentration, 43 kde.fhat, 15, 44 kr.compute.concentration, 41 kde.fhat, 15, 44 kde.fhat, 15, 44 kr.compute.concentration, 43 kr.compute.concentration, 43 kr.compute.concentration, 43 kr.compute.concentration, 42 kr.compute.c
karcher.mean.sphere, 40 kde.compute.concentration, 41 kde.KDatadir, 13 circle, 14 colors, 16, 25, 46, 60 compute.intersections.sphere, 14 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 dE, 20 Ecart, 22 name.list, 49 f, 23, 34 Fcart, 23 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 kde. that, 15, 41 kde. fhat, 15, 42 kr. compute.concentration, 41 kde. fhat, 15, 42 kde. fhat, 25, 41 kde. fhat, 25 kde. L, 42 compute.concentration, 41 kde. fhat, 25 kde. L, 42 kr. compute.concentration, 41 kde. fhat, 25 kde. L, 42 compute.concentration, 41 kde. fhat, 25 kde. L, 42 ke. L, 42 compute. concentration, 42 kr. compute.concentration, 43 kr. compute.concentration, 42 kr. compute.concentration, 43 kde. L, 42 compute. concentration, 43 kr. compute.concentration, 45 kr. compute.concentration, 45 kr. compute.concentration, 42 kr. compute.concentration, 42 kr. compute.concentration, 45 kr. compute.concentration, 45 kr. compute.concentration, 45 kr. compute.concentration, 45 kr. compute.concentration, 42 kr. compute.concentration, 42 kr. compute.concentration, 45
central.angle, 12, 40 kde.compute.concentration, 41 checkDatadir, 13 kde.fhat, 15, 41 circle, 14 kde.fhat.cart, 42 colors, 16, 25, 46, 60 kde.L, 42 compute.intersections.sphere, 14 kr.compute.concentration, 43 compute.kernel.estimate, 15, 68, 76 kr.sscv, 43 CountSet, 16, 24, 67 kr.yhat, 15, 44 create.polar.cart.grid, 17 kr.yhat.cart, 45 csv.read.dataset, 18, 89 LandmarkSet, 45, 53, 54, 69 dE, 18 line.line.intersection, 46 depthplot3D, 20 list.datasets, 47 list_datasets, 47 list_low.plot, 48 E, 20 low.plot, 48 Ecart, 22 name.list, 49 normalise.angle, 49 f.23, 34 normalise.angle, 49 FeatureSet, 16, 24, 25, 45, 53-55, 59, 68, 69, 75, 80 orthographic, 50 Outline, 16, 24, 28-30, 45, 51, 58, 59 OutlineCommon, 54 fire, 27, 74 flatplot, 28 panlabel, 55 flatplot.AnnotatedOutline, 29 parabola.invarclength, 56 flatplot.Outline, 29 parabola.invarclength, 56
checkDatadir, 13 kde.fhat, 15, 41 circle, 14 kde.fhat.cart, 42 colors, 16, 25, 46, 60 kde.L, 42 compute.intersections.sphere, 14 kr.compute.concentration, 43 compute.kernel.estimate, 15, 68, 76 kr.sscv, 43 CountSet, 16, 24, 67 kr.yhat, 15, 44 create.polar.cart.grid, 17 kr.yhat.cart, 45 csv.read.dataset, 18, 89 LandmarkSet, 45, 53, 54, 69 dE, 18 line.line.intersection, 46 depthplot3D, 20 list.datasets, 47 list_to_R6, 48 lvsLplot, 48 E, 20 lvsLplot, 48 Ecart, 22 name.list, 49 f, 23, 34 normalise.angle, 49 Fcart, 23 orthographic, 50 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 Outline, 16, 24, 28–30, 45, 51, 58, 59 Outline, 16, 24, 28–30, 45, 51, 58, 59 OutlineCommon, 54 fire, 27, 74 panlabel, 55 flatplot.AnnotatedOutline, 29 parabola.arclength, 56 flatplot.Outline, 29 parabola.invarclength, 56
circle, 14 colors, 16, 25, 46, 60 compute.intersections.sphere, 14 compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 dE, 20 Ecart, 22 rame.list, 49 f, 23, 34 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 kde.fhat.cart, 42 kde.L, 42 kde.L, 42 kr.compute.concentration, 43 kr.sscv, 43 kr.syhat, 15, 44 kr.yhat.cart, 45 kr.sphat, 16, 44 kr.compute.concentration, 43 kr.scv, 43 kr.syhat, 15, 44 kr.sphat, 16, 44 kr.compute.concentration, 43 kr.scv, 43 kr.sphat, 15, 44 kr.sphat, 16, 44 kr.compute.concentration, 43 kr.scv, 43 kr.sphat, 15, 44 kr.sphat, 16, 44 kr.compute.concentration, 43 kr.sphat, 16, 24 kr.compute.concentration, 43 kr.sphat, 25 kr.yhat, 15, 44 kr.sphat, 15, 44 kr.compute.concentration, 43 kr.sphat, 25 kr.sphat, 15, 44 kr.compute.concentration, 43 kr.sphat, 25 kr.sphat, 15, 44 kr.compute.concentration, 43 kr.sphat, 25 kr.sphat, 15, 44 kr.sphat, 15, 44 kr.compute.concentration, 43 kr.sphat, 25 kr.sphat, 15, 44 kr.sphat, 25 kr.sphat, 26 kr.sphat, 27 kr.sphat, 28 kr.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
compute.intersections.sphere, 14 kr.compute.concentration, 43 compute.kernel.estimate, 15, 68, 76 kr.sscv, 43 CountSet, 16, 24, 67 kr.yhat, 15, 44 create.polar.cart.grid, 17 kr.yhat.cart, 45 csv.read.dataset, 18, 89 LandmarkSet, 45, 53, 54, 69 dE, 18 line.line.intersection, 46 depthplot3D, 20 list.datasets, 47 list_dR6, 48 lvsLplot, 48 Ecart, 22 name.list, 49 f, 23, 34 normalise.angle, 49 FeatureSet, 16, 24, 25, 45, 53-55, 59, 68, 69, 75, 80 orthographic, 50 FeatureSetCommon, 25 Outline, 16, 24, 28-30, 45, 51, 58, 59 FeatureSetCommon, 25 OutlineCommon, 54 fire, 27, 74 panlabel, 55 flatplot.AnnotatedOutline, 29 parabola.arclength, 56 flatplot.Outline, 29 parabola.invarclength, 56
compute.kernel.estimate, 15, 68, 76 CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20
CountSet, 16, 24, 67 create.polar.cart.grid, 17 csv.read.dataset, 18, 89 dE, 18 depthplot3D, 20 line.line.intersection, 46 list.datasets, 47 list_to_R6, 48 lvsLplot, 48 Ecart, 22 name.list, 49 normalise.angle, 49 Fcart, 23 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 frack. xer. yhat, 15, 44 kr. yhat.cart, 45 kr. yhat, 15, 44 kr. yhat.cart, 45 kr. yhat, 15, 44 kr. yhat.cart, 45 kr. yhat.cart, 45 kr. yhat, 15, 44 kr. yhat.cart, 45 kr. yhat, 15, 44 kr. yhat.cart, 45 kr. yhat.cart, 47 kr. yhat.cart, 45 kr. yhat.cart, 45 kr. yhat.cart, 45 kr. yhat
create.polar.cart.grid, 17 kr.yhat.cart, 45 csv.read.dataset, 18, 89 LandmarkSet, 45, 53, 54, 69 dE, 18 line.line.intersection, 46 depthplot3D, 20 list.datasets, 47 list_to_R6, 48 lvsLplot, 48 Ecart, 22 name.list, 49 f, 23, 34 normalise.angle, 49 FeatureSet, 16, 24, 25, 45, 53-55, 59, 68, 69, 75, 80 orthographic, 50 FeatureSetCommon, 25 Outline, 16, 24, 28-30, 45, 51, 58, 59 FeatureSetCommon, 25 OutlineCommon, 54 fire, 27, 74 panlabel, 55 flatplot.AnnotatedOutline, 29 parabola.arclength, 56 flatplot.Outline, 29 parabola.invarclength, 56
csv.read.dataset, 18, 89 LandmarkSet, 45, 53, 54, 69 dE, 18 depthplot3D, 20 list.datasets, 47 list_to_R6, 48 E, 20 Ecart, 22 name.list, 49 f, 23, 34 Fcart, 23 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 LandmarkSet, 45, 53, 54, 69 line.line.intersection, 46 list.datasets, 47 list_to_R6, 48 lvsLplot, 48 evaluation orthographic, 50 Outline, 16, 24, 28–30, 45, 51, 58, 59 OutlineCommon, 54 fire, 27, 74 flatplot. AnnotatedOutline, 29 flatplot.Outline, 29 parabola.invarclength, 56 parabola.invarclength, 56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
dE, 18 depthplot3D, 20 list.datasets, 47 list_to_R6, 48 E, 20 lvsLplot, 48 Ecart, 22 name.list, 49 normalise.angle, 49 Fcart, 23 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 flatplot.Outline, 29 flatplot.direction, 46 list.datasets, 47 list.data
depthplot3D, 20 list.datasets, 47 list_to_R6, 48 E, 20 lvsLplot, 48 Ecart, 22 name.list, 49 normalise.angle, 49 Fcart, 23 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 reatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 flatplot.Outline, 29 list.datasets, 47 list_to_R6, 48 lvsLplot, 48 rormalise.angle, 49 orthographic, 50 Outline, 16, 24, 28–30, 45, 51, 58, 59 OutlineCommon, 54 panlabel, 55 parabola.arclength, 56 parabola.invarclength, 56
list_to_R6, 48 lvsLplot, 49 list, 4
E, 20
Ecart, 22 f, 23, 34 Fcart, 23 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69, 75, 80 FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 flatplot.Outline, 29 flatplot.outline, 29 name.list, 49 normalise.angle, 49 orthographic, 50 Outline, 16, 24, 28–30, 45, 51, 58, 59 OutlineCommon, 54 panlabel, 55 parabola.arclength, 56 parabola.invarclength, 56
$\begin{array}{c} \text{name.list, 49} \\ \text{f, 23, 34} \\ \text{Fcart, 23} \\ \text{FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69,} \\ \hline 75, 80 \\ \text{FeatureSetCommon, 25} \\ \text{fire, 27, 74} \\ \text{flatplot, 28} \\ \text{flatplot.AnnotatedOutline, 29} \\ \text{flatplot.Outline, 29} \\ \end{array}$
$\begin{array}{lll} \text{f, 23, } 34 & \text{normalise.angle, 49} \\ \text{Fcart, 23} & \\ \text{FeatureSet, } 16, 24, 25, 45, 53-55, 59, 68, 69, \\ & 75, 80 & \text{orthographic, 50} \\ \text{FeatureSetCommon, 25} & \text{Outline, } 16, 24, 28-30, 45, 51, 58, 59} \\ \text{FeatureSetCommon, 25} & \text{OutlineCommon, 54} \\ \text{fire, 27, } 74 & \\ \text{flatplot, 28} & \text{panlabel, 55} \\ \text{flatplot.AnnotatedOutline, 29} & \text{parabola.arclength, 56} \\ \text{flatplot.Outline, 29} & \text{parabola.invarclength, 56} \\ \end{array}$
Fcart, 23 FeatureSet, 16, 24, 25, 45, 53–55, 59, 68, 69,
FeatureSet, 16, 24, 25, 45, 53-55, 59, 68, 69, 75, 80 Outline, 16, 24, 28-30, 45, 51, 58, 59 FeatureSetCommon, 25 OutlineCommon, 54 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 parabola.arclength, 56 parabola.invarclength, 56
75,80 Coutline, 16,24,28-30,45,51,58,59 FeatureSetCommon, 25 CoutlineCommon, 54 CoutlineCommon, 54 CoutlineCommon, 54 CoutlineCommon, 54 CoutlineCommon, 54 CoutlineCommon, 54 Coutline, 27,74 Flatplot, 28 CoutlineCommon, 54 CoutlineCom
FeatureSetCommon, 25 fire, 27, 74 flatplot, 28 flatplot.AnnotatedOutline, 29 flatplot.Outline, 29 flatplot.Outline, 29 flatplot.Outline, 29 parabola.invarclength, 56
fire, 27, 74 flatplot, 28 panlabel, 55 flatplot.AnnotatedOutline, 29 parabola.arclength, 56 flatplot.Outline, 29 parabola.invarclength, 56
flatplot, 28 panlabel, 55 flatplot.AnnotatedOutline, 29 parabola.arclength, 56 flatplot.Outline, 29 parabola.invarclength, 56
flatplot.AnnotatedOutline, 29 parabola.arclength, 56 parabola.invarclength, 56
flatplot.Outline, 29 parabola.invarclength, 56
•
flatplot.ReconstructedOutline.30 parse.dependencies 57
flatplot.StitchedOutline, 31 PathOutline, 5, 57
flatplot.TriangulatedOutline, 32 PointSet, 53, 54, 59, 76
flipped.triangles, 33 polar.cart.to.sphere.spherical, 60, 98
flipped.triangles.cart, 33 polartext, 61
fp, 34 projection, 61, 61 Fragment, 35, 52, 106 projection.ReconstructedOutline, 62

INDEX 111

projection.RetinalReconstructedOutline, 63	retistruct::ReconstructedFeatureSet, 67,69,76
	retistruct::ReconstructedOutline,79
R6_to_list, 64	retistruct::StitchedOutline, 78
Rcart, 65	retistruct::TriangulatedOutline, 78,
read.datacounts, 18,66	103
read.datapoints, <i>18</i> , <i>37</i> , <i>66</i>	rotate.axis, 93
ReconstructedCountSet, 67, 68	
ReconstructedFeatureSet, 25, 68, 75, 80	simplifyFragment, 93
ReconstructedLandmarkSet, 69	simplifyOutline, 94
ReconstructedOutline, 16, 17, 30, 31, 46,	sinusoidal, <i>62</i> , <i>64</i> , 95
48, 60–62, 67–69, 70, 76, 79, 80, 102	sphere.cart.to.sphere.dualwedge,96
ReconstructedPointSet, 75, 76, 80	sphere.cart.to.sphere.spherical,96
remove.identical.consecutive.rows, 77	sphere.cart.to.sphere.wedge, 97, 100
remove.intersections, 77	sphere.spherical.to.polar.cart, 60,98
report, 78	sphere.spherical.to.sphere.cart, 98
RetinalOutline, 18, 37, 78, 89, 91, 92	sphere.tri.area,99
RetinalReconstructedOutline, 64, 79, 88,	sphere.wedge.to.sphere.cart, 100
91, 92	spherical.to.polar.area, 101
retistruct, 81	sphericalplot, 102
retistruct.batch, 81, 84	sphericalplot.ReconstructedOutline,
retistruct.batch.analyse.summaries, 82	102
retistruct.batch.analyse.summary, 83	StitchedOutline, 28, 31, 70, 78, 103
retistruct.batch.export.matlab, 83	strain.colours, 104
retistruct.batch.figures, 84	stretchMesh, 73, 104
retistruct.batch.get.titrations, 84, 85	, ,
retistruct.batch.plot.titrations, 85	tri.area, 105
retistruct.batch.summary, 85	tri.area.signed, 105, <i>106</i>
retistruct.check.markup, 86	TriangulatedFragment, 106, 107, 108
retistruct.cli, 86	TriangulatedOutline, 20, 32, 107
retistruct.cli.figure, 87	
retistruct.cli.process, 86, 87, 88	vecnorm, 108
retistruct.export.matlab, 88	
retistruct.read.dataset, 89, 90, 91	
retistruct.read.markup, 89	
retistruct.read.recdata, 90	
retistruct.reconstruct, 91	
retistruct.save.markup, 92	
retistruct.save.recdata, 92	
retistruct::AnnotatedOutline, 78, 103,	
107	
retistruct::FeatureSet, 16, 45, 59	
retistruct::FeatureSetCommon, 16, 24, 45,	
59, 67–69, 76	
retistruct::Fragment, 106	
retistruct::Outline, 4, 58, 78, 103, 107	
retistruct::OutlineCommon, 4, 51, 58, 70,	
78, 79, 103, 107	
retistruct::PathOutline, 4, 78, 103, 107	