Package ‘rerf”’

March 15, 2019
Type Package

Title Randomer Forest
Version 2.0.4
Date 2019-03-15

Description R-RerF (aka Randomer Forest (RerF) or Random Projection
Forests) is an algorithm developed by Tomita (2016) <arXiv:1506.03410v2>
which is similar to Random Forest - Random Combination (Forest-RC)
developed by Breiman (2001) <doi:10.1023/A:1010933404324>. Random
Forests create axis-parallel, or orthogonal trees. That is, the feature
space is recursively split along directions parallel to the axes of the
feature space. Thus, in cases in which the classes seem inseparable
along any single dimension, Random Forests may be suboptimal. To
address this, Breiman also proposed and characterized Forest-RC, which
uses linear combinations of coordinates rather than individual
coordinates, to split along. This package, 'rerf’, implements RerF
which is similar to Forest-RC. The difference between the two
algorithms is where the random linear combinations occur: Forest-RC
combines features at the per tree level whereas RerF takes linear
combinations of coordinates at every node in the tree.

Depends R (>=3.3.0), Rcpp (>=1.0.0)
License Apache License 2.0 | file LICENSE

URL https://github.com/neurodata/R-RerF

BugReports https://github.com/neurodata/R-RerF/issues
Imports parallel, RcppZiggurat, utils, stats, dummies, mclust
Suggests roxygen2 (>=5.0.0), testthat

LinkingTo Rcpp, ReppArmadillo

SystemRequirements GNU make

ByteCompile true

RoxygenNote 6.1.1

NeedsCompilation yes

https://github.com/neurodata/R-RerF
https://github.com/neurodata/R-RerF/issues

2 R topics documented:

Author Jesse Patsolic [ctb, cre],
Benjamin Falk [ctb],
Jaewon Chung [ctb],
James Browne [aut],
Tyler Tomita [aut],

Joshua Vogelstein [ths]

Maintainer Jesse Patsolic <software@neurodata.io>
Repository CRAN
Date/Publication 2019-03-15 18:50:03 UTC

R topics documented:

BICCutFast e 3
BICCutMclust 3
BuildTree e 4
checkInputMatrix e 5
ComputeSimilarity e 5
FeatureImportance L L 6
flipWeights e 7
getFeatures L e e e e 8
getWeights 8
GrowUnsupervisedForest 9
makeA e e e 10
makeABo 10
101 01] 11
OOBPredict o e 12
PackForest. e 13
PackPredict e 13
Predict e 14
PrintTree e 15
RandMatBinary 16
RandMatContinuous o e 17
RandMatCustom e 17
RandMatFRC e 18
RandMatFRCN o 19
RandMatlmageControl 20
RandMatlmagePatch L 21
RandMatPoisson 22
RandMatRF o e 22
RandMatTSpatch 23
RerF . . . o e 24
RunFeaturelmportance L 27
RunFeatureImportanceBinary L o 27
RunFeatureImportanceCounts Lo 28
RunOOB 29
RunPredict 29

RunPredictLeaf e 30

BICCutFast 3
StrCorr . . .o 30
TwoMeansCut 31
uniqueByEquivalenceClass 31
Urerf o 32

Index 34

BICCutFast Find minimizing BIC Cut for Vector

Description

Find minimizing BIC Cut for Vector

Usage

BICCutFast(X)

Arguments

X a one dimensional vector

Value

list containing minimizing cut point and corresponding BIC score.

BICCutMclust Find minimizing BIC Cut for Vector

Description

Find minimizing BIC Cut for Vector

Usage
BICCutMclust(X)

Arguments

X a one dimensional vector

Value

list containing minimizing cut point and corresponding BIC score.

4 BuildTree

BuildTree RerF Tree Generator

Description
Creates a single decision tree based on an input matrix and class vector. This is the function used
by rerf to generate trees.

Usage

BuildTree(X, Y, FUN, paramList, min.parent, max.depth, bagging,
replacement, stratify, class.ind, class.ct, store.oob, store.impurity,
progress, rotate)

Arguments

X an n by d numeric matrix (preferable) or data frame. The rows correspond to
observations and columns correspond to features.

Y an n length vector of class labels. Class labels must be integer or numeric and
be within the range 1 to the number of classes.

FUN a function that creates the random projection matrix.

paramList parameters in a named list to be used by FUN. If left unchanged, default values
will be populated, see defaults for details.

min.parent the minimum splittable node size. A node size < min.parent will be a leaf node.
(min.parent = 6)

max.depth the longest allowable distance from the root of a tree to a leaf node (i.e. the
maximum allowed height for a tree). If max.depth=0, the tree will be allowed to
grow without bound.

bagging a non-zero value means a random sample of X will be used during tree creation.
If replacement = FALSE the bagging value determines the percentage of sam-
ples to leave out-of-bag. If replacement = TRUE the non-zero bagging value is
ignored.

replacement if TRUE then n samples are chosen, with replacement, from X.

stratify if TRUE then class sample proportions are maintained during the random sam-
pling. Ignored if replacement = FALSE.

class.ind a vector of lists. Each list holds the indexes of its respective class (e.g. list 1
contains the index of each class 1 sample).

class.ct a cumulative sum of class counts.

store.oob if TRUE then the samples omitted during the creation of a tree are stored as part

of the tree. This is required to run OOBPredict().

store.impurity if TRUE then the reduction in Gini impurity is stored for every split. This is
required to run FeatureImportance().

progress if true a pipe is printed after each tree is created. This is useful for large datasets.

rotate if TRUE then the data matrix X is uniformly randomly rotated.

checkInputMatrix 5

Value

Tree

Examples

x <- iris[, -5]
y <- as.numeric(iris[, 51])
BuildTree(x, y, RandMatBinary, p = 4, d = 4, rho = 0.25, prob = 0.5)

checkInputMatrix Determine if given input can be processed by Urerf.

Description

Determine if given input can be processed by Urerf.

Usage

checkInputMatrix(X)
Arguments

X an Nxd matrix or Data frame of numeric values.
Value

stops function execution and outputs error if invalid input is detected.

ComputeSimilarity Compute Similarities

Description

Computes pairwise similarities between observations. The similarity between two points is defined
as the fraction of trees such that two points fall into the same leaf node.

Usage

ComputeSimilarity(X, forest, num.cores = @QL, Xtrain = NULL)

6 FeatureImportance
Arguments

X an n sample by d feature matrix (preferable) or data frame which was used to
train the provided forest.

forest a forest trained using the rerf function, with COOB=TRUE.

num.cores the number of cores to use while training. If num.cores=0 then 1 less than the
number of cores reported by the OS are used. (num.cores=0)

Xtrain an n by d numeric matrix (preferable) or data frame. This should be the same
data matrix/frame used to train the forest, and is only required if RerF was called
with rank.transform = TRUE. (Xtrain=NULL)

Value
similarity a normalized n by n matrix of pairwise similarities
Examples

library(rerf)

X <- as.matrix(iris[, 1:41)

Y <- iris[[5L]]

forest <- RerF(X, Y, num.cores = 1L)

sim.matrix <- ComputeSimilarity(X, forest, num.cores = 1L)

FeatureImportance Compute Feature Importance of a RerF model
Description
Computes feature importance of every unique feature used to make a split in the RerF model.
Usage
FeatureImportance(forest, num.cores = OL, type = NULL)
Arguments

forest a forest trained using the RerF function with argument store.impurity = TRUE

num.cores number of cores to use. If num.cores = 0, then 1 less than the number of cores
reported by the OS are used. (num.cores = 0)

type character string specifying which method to use in calculating feature impor-

tance.

’C’ specifies that unique combinations of features should be *c*ounted across
trees.

’R’ feature importance will be calculated as in *R*andomForest.

’E’ calculates the unique projections up to *e*quivalence if the vector of pro-
jection weights parametrizes the same line in RP.

flipWeights 7

Value
a list with 3 elements,
imp The vector of scores/counts, corresponding to each feature.

features The features/projections used.

type The code for the method used.

Examples

library(rerf)
num.cores <- 1L
forest <- RerF(as.matrix(iris[, 1:4]), iris[[5L]1], num.cores = 1L, store.impurity = TRUE)

imp.C <- FeatureImportance(forest, num.cores, "C")
imp.R <- FeatureImportance(forest, num.cores, "R")

imp.E <- FeatureImportance(forest, num.cores, "E")

fRF <- RerF(as.matrix(iris[, 1:4]), iris[[5L1],
FUN = RandMatRF, num.cores = 1L, store.impurity = TRUE)

fRF.imp <- FeaturelImportance(forest = fRF, num.cores = num.cores)

flipWeights Change the sign of the weights

Description

A helper function to extract the feature weights from the projection vector stored in a tree object.
Used in RunFeatureImportanceBinary.

Usage
flipWeights(x)
Arguments
X a list of unique.projections from the intermediate steps of the FeatureImportance
function.
Value

x with sign of weights flipped.

8 getWeights

getFeatures Extract feature indicies from the sparse projection vector.

Description

A helper function to extract the feature indices from the projection vector stored in a tree object.

Usage
getFeatures(x)
Arguments
X a list of unique.projections from the intermediate steps of the FeatureImportance
function.
Value

list of unique feature combinations

getWeights Extract feature weights from the sparse projection vector.

Description

A helper function to extract the feature weights from the projection vector stored in a tree object.

Usage
getWeights(x)
Arguments
X a list of unique.projections from the intermediate steps of the FeatureImportance
function.
Value

list of unique feature weights

GrowUnsupervisedForest 9

GrowUnsupervisedForest
Creates Urerf Tree.

Description

Creates Urerf Tree.

Usage

GrowUnsupervisedForest(X, MinParent = 1, trees = 100, MaxDepth = Inf,
bagging = 0.2, replacement = TRUE, FUN = makeAB, options = list(p
= ncol(X), d = ceiling(ncol(X)*0.5), sparsity = 1/ncol(X)),
Progress = TRUE, splitCrit = "twomeans"”, LinearCombo = TRUE)

Arguments
X an Nxd matrix or Data frame of numeric values.
MinParent the minimum splittable node size (MinParent=1).
trees the number of trees to grow in a forest (trees=100).
MaxDepth the maximum depth allowed in a forest (MaxDepth=Inf).
bagging only used experimentally. Determines the hold out size if replacement=FALSE
(bagging=.2).
replacement method used to determine boot strap samples (replacement=TRUE).
FUN the function to create the rotation matrix used to determine mtry features.
options options provided to FUN.
Progress logical that determines whether to show tree creation status (Progress=TRUE).
splitCrit split based on twomeans(splitCrit="twomeans") or BIC test(splitCrit="bicfast")
LinearCombo logical that determines whether to use linear combination of features. (Lin-
earCombo=TRUE).
Value

tree

10 makeAB

makeA Create rotation matrix used to determine mtry features.

Description

This function is the default option to make the projection matrix for unsupervised random forest.
The sparseM matrix is the projection matrix. The creation of this matrix can be changed, but the
nrow of sparseM should remain p. The ncol of the sparseM matrix is currently set to mtry but this
can actually be any integer > 1; can even be greater than p. The matrix returned by this function
creates a sparse matrix with one feature per column.

Usage
makeA(p, d, sparsity, ...)
Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
sparsity areal number in (0, 1) that specifies the distribution of non-zero elements in the
random matrix.
used to handle superfluous arguments passed in using paramList.
Value

rotationMatrix the matrix used to determine which mtry features or combination of features will be
used to split a node.

makeAB Create rotation matrix used to determine linear combination of mtry
features.

Description

This function is the default option to make the projection matrix for unsupervised random forest.
The sparseM matrix is the projection matrix. The creation of this matrix can be changed, but the
nrow of sparseM should remain p. The ncol of the sparseM matrix is currently set to mtry but this
can actually be any integer > 1; can even be greater than p. The matrix returned by this function
creates a sparse matrix with multiple features per column.

Usage

makeAB(p, d, sparsity, ...)

mnist 11

Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
sparsity areal number in (0, 1) that specifies the distribution of non-zero elements in the
random matrix.
used to handle superfluous arguments passed in using paramList.
Value

rotationMatrix the matrix used to determine which mtry features or combination of features will be
used to split a node.

mnist A subset of the MNIST dataset for handwritten digit classification

Description

A dataset consiting of 10 percent of the MNIST training set and the full test set

Usage

data(mnist)

Format

A list with four items: Xtrain is a training set matrix with 6000 rows (samples) and 784 columns
(features), Xtrain is an integer array of corresponding training class labels, Xtest is a test set matrix
of 10000 rows and 784 columns, and Ytest is the corresponding class labels. Rows in Xtrain and
Xtest correspond to different images of digits, and columns correspond to the pixel intensities in
each image, obtained by flattening the image pixels in column-major ordering.

Source

MNIST

References
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document
recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

Examples

data(mnist)

http://yann.lecun.com/exdb/mnist/

12 OOBPredict

O0OBPredict Compute out-of-bag predictions

Description

Computes out-of-bag class predictions for a forest trained with store.0oob=TRUE.

Usage

00BPredict(X, forest, num.cores = QL, Xtrain = NULL,
output.scores = FALSE)

Arguments
X an n sample by d feature matrix (preferable) or data frame which was used to
train the provided forest.
forest a forest trained using the RerF function, with store.0ob=TRUE.
num.cores the number of cores to use while training. If num.cores=0 then 1 less than the
number of cores reported by the OS are used. (num.cores=0)
Xtrain an n by d numeric matrix (preferable) or data frame. This should be the same

data matrix/frame used to train the forest, and is only required if RerF was called
with rank.transform = TRUE. (Xtrain=NULL)

output.scores if TRUE then predicted class scores (probabilities) for each observation are re-
turned rather than class labels. (output.scores = FALSE)

Value

predictions a length n vector of predictions in a format similar to the Y vector used to train the forest

Examples

library(rerf)

X <- as.matrix(iris[, 1:4])

Y <- iris[[5L]]

forest <- RerF(X, Y, store.oob = TRUE, num.cores = 1L)
predictions <- 00BPredict(X, forest, num.cores = 1L)
oob.error <- mean(predictions !=Y)

PackForest 13

PackForest Packs a forest and saves modified forest to disk for use by PackPredict
function

Description

Efficiently packs a forest trained with the RF option. Two intermediate data structures are written
to disk, forestPackTempFile.csv and traversalPackTempFile.csv. The size of these data structures is
proportional to a trained forest and training data respectively. Both data structures are removed at
the end of the operation. The resulting forest is saved as forest.out. The size of this file is similar to
the size of the trained forest.

Usage

PackForest(X, Y, forest)

Arguments
X an n by d numeric matrix (preferable) or data frame used to train the forest.
Y a numeric vector of size n. If the Y vector used to train the forest was not of type
numeric then a simple call to as.numeric(Y) will suffice as input.
forest a forest trained using the RerF function using the RF option.
PackPredict Compute class predictions for each observation in X
Description

Predicts the classification of samples using a trained forest.

Usage

PackPredict(X, num.cores = 1)

Arguments
X an n by d numeric matrix (preferable) or data frame. The rows correspond to
observations and columns correspond to features of a test set, which should be
different from the training set.
num.cores the number of cores to use while predicting. (num.cores=0)
Value

predictions an n length vector of prediction class numbers

14

Examples

library(rerf)

Predict

trainIdx <- c(1:40, 51:90, 101:140)
X <- as.matrix(iris[, 1:41)
Y <- as.numeric(iris[, 51])

paramList <- list(p = ncol(X), d = ceiling(sqgrt(ncol(X))))

forest <- RerF(X, Y, FUN = RandMatRF, paramList = paramList, rfPack = TRUE, num.cores = 1)

predictions <- PackPredict(X)

Predict

Compute class predictions for each observation in X

Description

Predicts the classification of samples using a trained forest.

Usage

Predict(X, forest, OOB = FALSE, num.cores = QL, Xtrain = NULL,
aggregate.output = TRUE, output.scores = FALSE)

Arguments

X

forest
00B

num. cores

Xtrain

an n by d numeric matrix (preferable) or data frame. The rows correspond to
observations and columns correspond to features of a test set, which should be
different from the training set.

a forest trained using the RerF function.
if TRUE then run predictions using out-of-bag samples.

the number of cores to use while training. If NumCores=0 then 1 less than the
number of cores reported by the OS are used. (NumCores=0)

an n by d numeric matrix (preferable) or data frame. This should be the same
data matrix/frame used to train the forest, and is only required if RerF was called
with rank.transform = TRUE. (Xtrain=NULL)

aggregate.output

output.scores

if TRUE then the tree predictions are aggregated weighted by their probabil-
ity estimates. Otherwise, the individual tree probabilities are returned. (aggre-
gate.output=TRUE)

TODO: Remove option for aggregate output? Only options for returning aggre-
gate predictions or probabilities

if TRUE then predicted class scores (probabilities) for each observation are re-
turned rather than class labels. (output.scores = FALSE)

PrintTree 15

Value

predictions an n length vector of predictions

Examples

library(rerf)

trainldx <- c(1:40, 51:90, 101:140)

X <- as.matrix(iris[, 1:41)

Y <- as.numeric(iris[, 51)

forest <- RerF(X[trainIdx,], Y[trainIdx], num.cores = 1L, rank.transform = TRUE)

Using a set of samples with unknown classification

predictions <- Predict(X[-trainIdx,], forest, num.cores = 1L, Xtrain = X[trainIdx, 1)

error.rate <- mean(predictions != Y[-trainIdx])
PrintTree RerF Tree Printer
Description

Prints the layout of a specified tree.

Usage

PrintTree(forest, numTree = 1, pretty = FALSE)

Arguments
forest a rerf forest structure.
numTree the tree number to print. (numTree=1)
pretty boolean if TRUE the column of cut features are formatted nicely for viewing.
(FALSE)
Value

a data.frame with the following information about the tree:

* nodeNum The node number

* LC The id of the left child of the node

* RC The id of the right child of the node

e CutValue The cut value of non-terminal nodes, otherwise NA.

* nodeClass The class vote of a terminal node when used for classification/prediction.

* CutFeatures a list of ordered pairs (d, w), where d is the original feature and w is the corre-
sponding weight.

16 RandMatBinary

Examples

Train RerF on numeric data #i##

library(rerf)

numTree <- 1

forest <- RerF(as.matrix(iris[, 1:4]), iris[, 5], num.core = 1L)

forest.rmc <- RerF(as.matrix(iris[, 1:4]), iris[, 5], num.core = 1L, RandMatContinuous)
(out <- PrintTree(forest, numTree))

(out.rmc <- PrintTree(forest.rmc, numTree))

RandMatBinary Create a Random Matrix: Binary

Description

Create a Random Matrix: Binary

Usage
RandMatBinary(p, d, sparsity, prob, catMap = NULL, ...)
Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
sparsity areal number in (0, 1) that specifies the distribution of non-zero elements in the
random matrix.
prob a probability € (0, 1) used for sampling from —1, 1 where prob = @ will only
sample -1 and prob = 1 will only sample 1.
catMap a list specifying specifies which one-of-K encoded columns in X correspond to
the same categorical feature.
used to handle superfluous arguments passed in using paramList.
Value

A random matrix to use in running RerF.

Examples

p <8

d<-3

sparsity <- 0.25

prob <- 0.5

set.seed(4)

(a <- RandMatBinary(p, d, sparsity, prob))

RandMatContinuous 17

RandMatContinuous Create a Random Matrix: Continuous

Description

Create a Random Matrix: Continuous

Usage
RandMatContinuous(p, d, sparsity, catMap = NULL, ...)
Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
sparsity areal number in (0, 1) that specifies the distribution of non-zero elements in the
random matrix.
catMap a list specifying specifies which one-of-K encoded columns in X correspond to
the same categorical feature.
used to handle superfluous arguments passed in using paramList.
Value

A random matrix to use in running RerF.

Examples
p <-38
d<-3

sparsity <- 0.25
set.seed(4)
(a <- RandMatContinuous(p, d, sparsity))

RandMatCustom Create a Random Matrix: custom

Description

Create a Random Matrix: custom

Usage

RandMatCustom(p, d, nnzSample, nnzProb, ...)

18 RandMatFRC

Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
nnzSample a vector specifying the number of non-zeros to sample at each d. Each entry
should be less than p.
nnzProb a vector specifying probabilities in one-to-one correspondance with nnzSample.
used to handle superfluous arguments passed in using paramList.
Value

A random matrix to use in running RerF.

Examples
p <- 28
d<-38

nnzSample <- 1:8

nnzProb <- 1 / 36 x 1:8

paramList <- list(p = p, d = d, nnzSample, nnzProb)
set.seed(8)

(a <- do.call(RandMatCustom, paramList))

RandMatFRC Create a Random Matrix: FRC

Description

Create a Random Matrix: FRC

Usage

RandMatFRC(p, d, nmix, catMap = NULL, ...)

Arguments
p integer the number of dimensions.
d integer the number of desired columns in the projection matrix.
nmix integer mupliplier to d to specify the number of non-zeros.
catMap a list specifying specifies which one-of-K encoded columns in X correspond to
the same categorical feature.
used to handle superfluous arguments passed in using paramList.
Value

A random matrix to use in running RerF.

RandMatFRCN 19

Examples

p <-38

d<-2

nmix <- 5

paramList <- list(p = p, d = d, nmix = nmix)
set.seed(4)

(a <- do.call(RandMatFRC, paramList))

RandMatFRCN Create a Random Matrix: FRCN

Description

Create a Random Matrix: FRCN

Usage
RandMatFRCN(p, d, nmix, catMap = NULL, ...)
Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
nmix mupliplier to d to specify the number of non-zeros.
catMap a list specifying specifies which one-of-K encoded columns in X correspond to
the same categorical feature.
used to handle superfluous arguments passed in using paramList.
Value

A random matrix to use in running RerF.

Examples

p <-38

d<-38

nmix <- 5

paramList <- list(p = p, d = d, nmix = nmix)
set.seed(8)

(a <- do.call(RandMatFRCN, paramList))

20 RandMatImageControl

RandMatImageControl Create a Random Matrix: image-control

Description

Create a Random Matrix: image-control

Usage

RandMatImageControl(p, d, ih, iw, pwMin, pwMax, ...)
Arguments

p the number of dimensions.

d the number of desired columns in the projection matrix.

ih the height (px) of the image.

iw the width (px) of the image.

pwMin the minimum patch size to sample.

pwMax the maximum patch size to sample.

used to handle superfluous arguments passed in using paramList.

Value

A random matrix to use in running RerF.

Examples
p <- 28*2
d<-38
ih <= iw <- 28
pwMin <- 3
pwMax <- 6

paramList <- list(p = p, d = d, ih = ih, iw = iw, pwMin = pwMin, pwMax = pwMax)
set.seed(8)
(a <- do.call(RandMatImageControl, paramList))

RandMatImagePatch 21

RandMatImagePatch Create a Random Matrix: image-patch

Description

Create a Random Matrix: image-patch

Usage

RandMatImagePatch(p, d, ih, iw, pwMin, pwMax, ...)
Arguments

p the number of dimensions.

d the number of desired columns in the projection matrix.

ih the height (px) of the image.

iw the width (px) of the image.

pwMin the minimum patch size to sample.

pwMax the maximum patch size to sample.

used to handle superfluous arguments passed in using paramList.

Value

A random matrix to use in running RerF.

Examples
p <- 28*2
d<-38
ih <= iw <- 28
pwMin <- 3
pwMax <- 6

paramList <- list(p = p, d = d, ih = ih, iw = iw, pwMin = pwMin, pwMax = pwMax)
set.seed(8)
(a <- do.call(RandMatImagePatch, paramList))

22 RandMatRF

RandMatPoisson Create a Random Matrix: Poisson

Description

Samples a binary projection matrix where sparsity is distributed Poisson(\).

Usage
RandMatPoisson(p, d, lambda, catMap = NULL, ...)
Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
lambda passed to the rpois function for generation of non-zero elements in the random
matrix.
catMap a list specifying specifies which one-of-K encoded columns in X correspond to
the same categorical feature.
used to handle superfluous arguments passed in using paramList.
Value

A random matrix to use in running RerF.

Examples

p<-8
d<-8

lambda <- 9.5

paramList <- list(p = p, d = d, lambda = lambda)
set.seed(8)

(a <- do.call(RandMatPoisson, paramList))

RandMatRF Create a Random Matrix: Random Forest (RF)

Description

Create a Random Matrix: Random Forest (RF)

Usage
RandMatRF(p, d, catMap = NULL, ...)

RandMatTSpatch

Arguments
p the number of dimensions.
d the number of desired columns in the projection matrix.
catMap a list specifying specifies which one-of-K encoded columns in X correspond to
the same categorical feature.
used to handle superfluous arguments passed in using paramList.
Value

A random matrix to use in running RerF.

Examples
p <- 38
d<-3

paramList <- list(p = p, d = d)
set.seed(4)
(a <- do.call(RandMatRF, paramList))

RandMatTSpatch Create a Random Matrix: ts-patch

Description

Create a Random Matrix: ts-patch

Usage

RandMatTSpatch(p, d, pwMin, pwMax, ...)
Arguments

p the number of dimensions.

d the number of desired columns in the projection matrix.

pwMin the minimum patch size to sample.

pwMax the maximum patch size to sample.

used to handle superfluous arguments passed in using paramL.ist.

Value

A random matrix to use in running RerF.

24

Examples

p <-38
d<-38
pwMin <- 3
pwMax <- 6

RerF

paramList <- list(p = p, d = d, pwMin = pwMin, pwMax = pwMax)

set.seed(8)

(a <- do.call(RandMatTSpatch, paramList))

RerF

RerF forest Generator

Description

Creates a decision forest based on an input matrix and class vector. This is the main function in the

rerf package.

Usage

RerF(X, Y, FUN = RandMatBinary, paramList = list(p = NA, d = NA,
sparsity = NA, prob = NA), min.parent = 1L, trees = 500L,
max.depth = @, bagging = 0.2, replacement = TRUE,
stratify = TRUE, rank.transform = FALSE, store.oob = FALSE,
store.impurity = FALSE, progress = FALSE, rotate = FALSE,
num.cores = QL, seed = sample(@:1e+08, 1), cat.map = NULL,
rfPack = FALSE)

Arguments

X

FUN

paramList

min.parent

trees

an n by d numeric matrix (preferable) or data frame. The rows correspond to
observations and columns correspond to features.

an n length vector of class labels. Class labels must be integer or numeric and
be within the range 1 to the number of classes.

a function that creates the random projection matrix. If NULL and cat.map
is NULL, then RandMat is used. If NULL and cat.map is not NULL, then
RandMatCat is used, which adjusts the sampling of features when categorical
features have been one-of-K encoded. If a custom function is to be used, then it
must return a matrix in sparse representation, in which each nonzero is an array
of the form (row.index, column.index, value). See RandMat or RandMatCat for
details.

parameters in a named list to be used by FUN. If left unchanged, default values
will be populated, see defaults for details.

the minimum splittable node size. A node size < min.parent will be a leaf node.
(min.parent = 1)

the number of trees in the forest. (trees=500)

RerF 25

max.depth the longest allowable distance from the root of a tree to a leaf node (i.e. the
maximum allowed height for a tree). If max.depth=0, the tree will be allowed to
grow without bound. (max.depth=0)

bagging a non-zero value means a random sample of X will be used during tree creation.
If replacement = FALSE the bagging value determines the percentage of sam-
ples to leave out-of-bag. If replacement = TRUE the non-zero bagging value is
ignored. (bagging=.2)

replacement if TRUE then n samples are chosen, with replacement, from X. (replacement=TRUE)

stratify if TRUE then class sample proportions are maintained during the random sam-
pling. Ignored if replacement = FALSE. (stratify = FALSE).

rank.transform if TRUE then each feature is rank-transformed (i.e. smallest value becomes 1
and largest value becomes n) (rank.transform=FALSE)

store.oob if TRUE then the samples omitted during the creation of a tree are stored as part
of the tree. This is required to run OOBPredict(). (store.0ob=FALSE)

store.impurity if TRUE then the decrease in impurity is stored for each split. This is required
to run FeatureImportance() (store.impurity=FALSE)

progress if TRUE then a pipe is printed after each tree is created. This is useful for large
datasets. (progress=FALSE)

rotate if TRUE then the data matrix X is uniformly randomly rotated for each tree.
(rotate=FALSE)

num.cores the number of cores to use while training. If num.cores=0 then 1 less than the
number of cores reported by the OS are used. (num.cores=0)

seed the seed to use for training the forest. For two runs to match you must use the
same seed for each run AND you must also use the same number of cores for
each run. (seed=sample((0:100000000,1)))

cat.map a list specifying which columns in X correspond to the same one-of-K encoded
feature. Each element of cat.map is a numeric vector specifying the K column
indices of X corresponding to the same categorical feature after one-of-K encod-
ing. All one-of-K encoded features in X must come after the numeric features.
The K encoded columns corresponding to the same categorical feature must be
placed contiguously within X. The reason for specifying cat.map is to adjust
for the fact that one-of-K encoding cateogorical features results in a dilution of
numeric features, since a single categorical feature is expanded to K binary fea-
tures. If cat.map = NULL, then RerF assumes all features are numeric (i.e. none
of the features have been one-of-K encoded).

rfPack boolean flag to determine whether to pack a random forest in order to improve
prediction speed. This flag is only applicable when training a forest with the "rf"
option. (rfPack = FALSE)

Value

forest

26 RerF

Examples

Train RerF on numeric data #it#
library(rerf)
forest <- RerF(as.matrix(iris[, 1:4]), iris[[5L]], num.cores = 1L)

Train RerF on one-of-K encoded categorical data
df1 <- as.data.frame(Titanic)
nc <- ncol(df1)
df2 <- df1[NULL, -nc]
for (i in which(df1$Freq != 0L)) {
df2 <- rbind(df2, df1[rep(i, df1$Freq[il), -ncl)
3
n <- nrow(df2) # number of observations
p <- ncol(df2) - 1L # number of features
num.categories <- apply(df2[, 1:pl, 2, function(x) length(unique(x)))
p.enc <- sum(num.categories) # number of features after one-of-K encoding
X <- matrix(@, nrow = n, ncol = p.enc) # initialize training data matrix X
cat.map <- vector("list", p)
col.idx <- oL
one-of-K encode each categorical feature and store in X
for (3 in 1:p) {
cat.map[[j]] <- (col.idx + 1L):(col.idx + num.categories[j])
convert categorical feature to K dummy variables
X[, cat.map[[j1]] <- dummies::dummy(df2[[j1])
col.idx <- col.idx + num.categories[j]

Y <- df2$Survived

specifying the cat.map in RerF allows training to

be aware of which dummy variables correspond

to the same categorical feature

forest <- RerF(X, Y, num.cores = 1L, cat.map = cat.map)

Not run:

takes longer than 5s to run.

adding a continuous feature along with the categorical features
must be prepended to the categorical features.
set.seed(1234)

xp <= runif(nrow(X))

Xp <- cbind(xp, X)

cat.mapl <- lapply(cat.map, function(x) x + 1)

forestW <- RerF(Xp, Y, num.cores = 1L, cat.map = cat.mapl)

End(Not run)

Train a random rotation ensemble of CART decision trees (see Blaser and Fryzlewicz 2016)
forest <- RerF(as.matrix(iris[, 1:4]), iris[[5L1],

num.cores = 1L,

FUN = RandMatRF, paramList = list(p = 4, d = 2), rotate = TRUE
)

RunFeatureImportance 27

RunFeatureImportance Compute Feature Importance of a single RerF tree

Description

Computes feature importance of every unique feature used to make a split in a single tree.

Usage

RunFeatureImportance(tree, unique.projections)

Arguments

tree a single tree from a trained RerF model with argument store.impurity = TRUE.
unique.projections
a list of all of the unique split projections used in the RerF model.

Value

feature.imp

RunFeaturelImportanceBinary
Compute Feature Importance of a single RerF tree

Description

Computes feature importance of every unique feature used to make a split in a single tree.

Usage

RunFeatureImportanceBinary(tree, unique.projections)

Arguments
tree a single tree from a trained RerF model with argument store.impurity = TRUE.
unique.projections
a list of all of the unique split projections used in the RerF model.
Value

feature.imp

28 RunFeatureImportanceCounts

Examples

library(rerf)

X <- iris[, -5]

Y <- iris[[5]]

store.impurity <- TRUE

FUN <- RandMatBinary

forest <- RerF(X, Y, FUN = FUN, num.cores = 1L, store.impurity = store.impurity)
FeatureImportance(forest, num.cores = 1L)

RunFeatureImportanceCounts
Tabulate the unique feature combinations used in a single RerF tree

Description

Computes feature importance of every unique feature used to make a split in a single tree.

Usage

RunFeatureImportanceCounts(tree, unique.projections)

Arguments

tree a single tree from a trained RerF model with argument store.impurity = TRUE.

unique.projections
a list of all of the unique split projections used in the RerF model.

Value

feature.counts

Examples

library(rerf)

X <- iris[, -5]

Y <- iris[[5]]

store.impurity <- TRUE

FUN <- RandMatContinuous

forest <- RerF(X, Y, FUN = FUN, num.cores = 1L, store.impurity = store.impurity)
FeatureImportance(forest, num.cores = 1L, type = "C")

RunOOB 29

RunO0B Predict class labels on out-of-bag observations using a single tree.

Description

This is the base function called by OOBPredict.

Usage

RunO0B(X, tree)

Arguments
X an n sample by d feature matrix (preferable) or data frame which was used to
train the provided forest.
tree a tree from a forest returned by RerF.
Value

out prediction matrix used by OOBPredict

RunPredict Predict class labels on a test set using a single tree.

Description

This is the base function called by Predict.

Usage

RunPredict (X, tree)

Arguments
X an n sample by d feature matrix (preferable) or data frame which was used to
train the provided forest.
tree a tree from a forest returned by RerF.
Value

predictions an n length vector of prediction based on the tree provided to this function

30 StrCorr

RunPredictLeaf Calculate similarity using a single tree.

Description

This is the base function called by ComputeSimilarity.

Usage

RunPredictLeaf (X, tree)

Arguments
X an n sample by d feature matrix (preferable) or data frame which was used to
train the provided forest.
tree a tree from a forest returned by RerF.
Value

similarity based on one tree

StrCorr Compute tree strength and correlation

Description

Computes estimates of tree strength and correlation according to the definitions in Breiman’s 2001
Random Forests paper.

Usage

StrCorr(Yhats, Y)

Arguments
Yhats predicted class labels for each tree in a forest.
Y true class labels.

Value

SCor

TwoMeansCut 31

Examples

library(rerf)

trainldx <- c(1:40, 51:90, 101:140)

X <- as.matrix(iris[, 1:4])

Y <- iris[[5]]

forest <- RerF(X[trainIdx,], Y[trainIdx], num.cores = 1L)

predictions <- Predict(X[-trainIdx,], forest, num.cores = 1L, aggregate.output = FALSE)
scor <- StrCorr(predictions, Y[-trainIdx])

TwoMeansCut Find minimizing Two Means Cut for Vector

Description

Find minimizing Two Means Cut for Vector

Usage

TwoMeansCut (X)

Arguments

X a one dimensional vector

Value

list containing minimizing cut point and corresponding sum of left and right variances.

uniqueByEquivalenceClass
Remove unique projections that are equivalent due to a rotation of 180
degrees.

Description

This function finds the projections that are equivalent via a 180 degree rotation and removes the
duplicates.

Usage

uniqueByEquivalenceClass(p, unique.projections)

32 Urerf

Arguments

p the number of features in the original data. This can be obtained from a forest
object via forest$params$paramList$p.

unique.projections
a list of projections from intermediate steps of the FeatureImportance func-
tion.

Value

unique.projections a list which is a subset of the input.

See Also

FeatureImportance

Urerf Unsupervised RerF forest Generator

Description

Creates a decision forest based on an input matrix.

Usage

Urerf (X, trees = 100, min.parent = round(nrow(X)*0.5),
max.depth = NA, mtry = ceiling(ncol(X)*0.5), sparsity = 1/ncol(X),
normalizeData = TRUE, Progress = TRUE, splitCrit = "twomeans”,
LinearCombo = TRUE)

Arguments

X an n by d numeric matrix. The rows correspond to observations and columns
correspond to features.

trees the number of trees in the forest. (trees=100)

min.parent the minimum splittable node size. A node size < min.parent will be a leaf node.
(min.parent = round(nrow(X)".5))

max.depth the longest allowable distance from the root of a tree to a leaf node (i.e. the
maximum allowed height for a tree). If max.depth=NA, the tree will be allowed
to grow without bound. (max.depth=NA)

mtry the number of features to test at each node. (mtry=ceiling(ncol(X)".5))

sparsity areal number in (0, 1) that specifies the distribution of non-zero elements in the

random matrix. (sparsity=1/nrow(X))

normalizeData alogical value that determines if input data is normalized to values ranging from
0 to 1 prior to processing. (normalizeData=TRUE)

Progress boolean for printing progress.

Urerf 33

splitCrit split based on twomeans(splitCrit="twomeans") or BIC test(splitCrit="bicfast")

LinearCombo logical that determines whether to use linear combination of features. (Lin-
earCombo=TRUE).
Value

urerfStructure

Examples

Train RerF on numeric data #i##

library(rerf)

urerfStructure <- Urerf(as.matrix(iris[, 1:41))

urerfStructure.bic <- Urerf(as.matrix(iris[, 1:4]), splitCrit = 'bicfast')

dissimilarityMatrix <- hclust(as.dist(1 - urerfStructure$similarityMatrix), method = "mcquitty")
clusters <- cutree(dissimilarityMatrix, k = 3)

Index

+Topic datasets
mnist, 11

BICCutFast, 3
BICCutMclust, 3
BuildTree, 4

checkInputMatrix, 5
ComputeSimilarity, 5

defaults, 4, 24

FeatureImportance, 6, 32
flipWeights, 7

getFeatures, 8
getWeights, 8
GrowUnsupervisedForest, 9

makeA, 10
makeAB, 10
mnist, 11

OOBPredict, 12

PackForest, 13
PackPredict, 13
Predict, 14
PrintTree, 15

RandMatBinary, 16
RandMatContinuous, 17
RandMatCustom, 17
RandMatFRC, 18
RandMatFRCN, 19
RandMatImageControl, 20
RandMatImagePatch, 21
RandMatPoisson, 22
RandMatRF, 22
RandMatTSpatch, 23
RerF, 16-23, 24

34

rpois, 22
RunFeaturelImportance, 27
RunFeatureImportanceBinary, 27
RunFeatureImportanceCounts, 28
Run0O0B, 29

RunPredict, 29
RunPredictLeaf, 30

StrCorr, 30
TwoMeansCut, 31

uniqueByEquivalenceClass, 31
Urerf, 32

	BICCutFast
	BICCutMclust
	BuildTree
	checkInputMatrix
	ComputeSimilarity
	FeatureImportance
	flipWeights
	getFeatures
	getWeights
	GrowUnsupervisedForest
	makeA
	makeAB
	mnist
	OOBPredict
	PackForest
	PackPredict
	Predict
	PrintTree
	RandMatBinary
	RandMatContinuous
	RandMatCustom
	RandMatFRC
	RandMatFRCN
	RandMatImageControl
	RandMatImagePatch
	RandMatPoisson
	RandMatRF
	RandMatTSpatch
	RerF
	RunFeatureImportance
	RunFeatureImportanceBinary
	RunFeatureImportanceCounts
	RunOOB
	RunPredict
	RunPredictLeaf
	StrCorr
	TwoMeansCut
	uniqueByEquivalenceClass
	Urerf
	Index

