R
building blocks for user interface code. Internally called by user interface.R-RerF (aka Randomer Forest (RerF), or Random Projection Forests) is a generalization of the Random Forest (RF) algorithm. RF partitions the input (feature) space via a series of recursive binary hyperplanes. Hyperplanes are constrained to be axis-aligned. In other words, each partition is a test of the form Xi > t, where t is a threshold and Xi is one of p inputs (features) {X1, …, Xp}. The best axis-aligned split is found by sampling a random subset of the p inputs and choosing the one that best partitions the observed data according to some specified split criterion. RerF relaxes the constraint that the splitting hyperplanes must be axis-aligned. That is, each partition in RerF is a test of the form w1X1 + … + wpXp > t. The orientations of hyperplanes are sampled randomly via a user-specified distribution on the coefficients wi, although an empirically validated default distribution is provided. Currently only classification is supported. Regression and unsupervised learning will be supported in the future.
Any machine with >= 2 GB RAM
R (>= 3.3.0)
R
packages:
dummies
compiler
RcppArmadillo
RcppZiggurat
parallel
From within R-
First install the devtools
package if not currently installed. From within R-
Next install rerf
from github. From within R-
Runtime for the following examples should be < 1 sec on any machine.
To create a forest the minimum data needed is an n by d input matrix (X) and an n length vector of corresponding class labels (Y). Rows correspond to samples and columns correspond to features.
Expected output
forest$trees[[1]]
#> $treeMap
#> [1] 1 2 -6 3 5 -1 4 -2 -3 -4 -5
#>
#> $CutPoint
#> [1] -0.80 -6.15 1.85 1.55 0.85
#>
#> $ClassProb
#> [,1] [,2] [,3]
#> [1,] 0 1 0
#> [2,] 0 1 0
#> [3,] 0 0 1
#> [4,] 0 0 1
#> [5,] 0 1 0
#> [6,] 1 0 0
#>
#> $matAstore
#> [1] 4 -1 1 -1 2 -1 3 1 4 1 1 1 3 -1
#>
#> $matAindex
#> [1] 0 2 4 8 10 14
#>
#> $ind
#> NULL
#>
#> $rotmat
#> NULL
#>
#> $rotdims
#> NULL
#>
#> $delta.impurity
#> NULL
forest
is a trained forest which is needed for all other rerf functions. Additional parameters and more complex examples of training a forest can be found using the help function (?RerF
)
In the example below, trainIdx is used to subset the iris dataset in order to make a training set and a testing set.
trainIdx <- c(1:40, 51:90, 101:140)
X <- as.matrix(iris[,1:4])
Y <- iris[[5L]]
forest <- RerF(X[trainIdx, ], Y[trainIdx], num.cores = 1L, rank.transform = TRUE, seed = 1)
# Using a set of samples with unknown classification
predictions <- Predict(X[-trainIdx, ], forest, num.cores = 1L, Xtrain = X[trainIdx, ])
error.rate <- mean(predictions != Y[-trainIdx])
Expected output
predictions
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor versicolor virginica virginica virginica virginica
#> [25] virginica virginica virginica virginica virginica virginica
#> Levels: setosa versicolor virginica
error.rate
#> [1] 0
If a testing set is not available the error rate of a forest can be determined based on the samples held out-of-bag while training (out-of-bag samples are randomly chosen for each tree in the forest).
X <- as.matrix(iris[,1:4])
Y <- iris[[5L]]
forest <- RerF(X, Y, store.oob=TRUE, num.cores = 1L, seed = 1L)
predictions <- OOBPredict(X, forest, num.cores = 1L)
oob.error <- mean(predictions != Y)
Expected output
predictions
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa setosa
#> [13] setosa setosa setosa setosa setosa setosa
#> [19] setosa setosa setosa setosa setosa setosa
#> [25] setosa setosa setosa setosa setosa setosa
#> [31] setosa setosa setosa setosa setosa setosa
#> [37] setosa setosa setosa setosa setosa setosa
#> [43] setosa setosa setosa setosa setosa setosa
#> [49] setosa setosa versicolor versicolor versicolor versicolor
#> [55] versicolor versicolor versicolor versicolor versicolor versicolor
#> [61] versicolor versicolor versicolor versicolor versicolor versicolor
#> [67] versicolor versicolor versicolor versicolor virginica versicolor
#> [73] virginica versicolor versicolor versicolor versicolor virginica
#> [79] versicolor versicolor versicolor versicolor versicolor virginica
#> [85] versicolor versicolor versicolor versicolor versicolor versicolor
#> [91] versicolor versicolor versicolor versicolor versicolor versicolor
#> [97] versicolor versicolor versicolor versicolor virginica virginica
#> [103] virginica virginica virginica virginica versicolor virginica
#> [109] virginica virginica virginica virginica virginica virginica
#> [115] virginica virginica virginica virginica virginica versicolor
#> [121] virginica virginica virginica virginica virginica virginica
#> [127] virginica virginica virginica virginica virginica virginica
#> [133] virginica versicolor virginica virginica virginica virginica
#> [139] virginica virginica virginica virginica virginica virginica
#> [145] virginica virginica virginica virginica virginica virginica
#> Levels: setosa versicolor virginica
oob.error
#> [1] 0.04666667
Computes pairwise similarities between observations. The similarity between two points is defined as the fraction of trees such that two points fall into the same leaf node (i.e. two samples are similar if they consistently show up in the same leaf node). This function produces an n by n symmetric similarity matrix.
X <- as.matrix(iris[,1:4])
Y <- iris[[5L]]
forest <- RerF(X, Y, num.cores = 1L, seed = 1L)
sim.matrix <- ComputeSimilarity(X, forest, num.cores = 1L)
Expected output
sim.matrix[1, ]
#> [1] 1.000 0.958 0.962 0.958 0.996 0.948 0.970 0.992 0.936 0.966 0.964
#> [12] 0.986 0.958 0.938 0.788 0.746 0.954 1.000 0.794 0.994 0.994 0.994
#> [23] 0.982 0.976 0.984 0.962 0.988 1.000 0.998 0.962 0.964 0.992 0.954
#> [34] 0.848 0.964 0.970 0.878 0.994 0.938 0.998 0.992 0.884 0.948 0.984
#> [45] 0.976 0.954 0.992 0.960 0.968 0.972 0.000 0.000 0.000 0.000 0.000
#> [56] 0.000 0.000 0.008 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000
#> [67] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
#> [78] 0.000 0.000 0.000 0.002 0.004 0.000 0.000 0.008 0.000 0.000 0.000
#> [89] 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.014
#> [100] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
#> [111] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
#> [122] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
#> [133] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
#> [144] 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Computes estimates of tree strength and correlation according to the definitions in Breiman’s 2001 Random Forests paper.
set.seed(24)
nsamp <- 30 ## number of training samples per species
trainIdx <- vapply(list(1:50, 51:100, 101:150), sample, outer(1,1:nsamp), size = nsamp)
X <- as.matrix(iris[,1:4])
Y <- iris[[5L]]
forest <- RerF(X[trainIdx, ], Y[trainIdx], num.cores = 1L, seed = 1L)
predictions <- Predict(X[-trainIdx, ], forest, num.cores = 1L, aggregate.output = FALSE)
scor <- StrCorr(predictions, Y[-trainIdx])
Expected output
Computes the Gini importance for all of the unique projections used to split the data. The returned value is a list with members imp and features. The member imp is a numeric vector of feature importances sorted in decreasing order. The member features is a list the same length as imp of vectors specifying the split projections corresponding to the values in imp. The projections are represented by the vector such that the odd numbered indices indicate the canonical feature indices and the even numbered indices indicate the linear coefficients. For example a vector (1,-1,4,1,5,-1) is the projection -X1 + X4 - X5. Note: it is highly advised to run this only when the splitting features (projections) have unweighted coefficients, such as for the default setting or for RF.
X <- as.matrix(iris[, 1:4]) # feature matrix
Y <- iris$Species # class labels
p <- ncol(X) # number of features in the data
d <- ceiling(sqrt(p)) # number of features to sample at each split
# Here we specify that we want to run the standard random forest algorithm and we want to store the decrease in impurity at each split node. The latter option is required in order to compute Gini feature importance.
forest <- RerF(as.matrix(iris[, 1:4]), iris[[5L]], FUN = RandMatRF,
paramList = list(p = p, d = d), num.cores = 1L,
store.impurity = TRUE, seed = 1L)
feature.imp <- FeatureImportance(forest, num.cores = 1L, type = "R")
#> Message: Computing feature importance for RandMatRF.
Expected output
feature.imp
#> $imp
#> [1] 23549.727 20799.581 4617.132 1026.042
#>
#> $features
#> $features[[1]]
#> [1] 4 1
#>
#> $features[[2]]
#> [1] 3 1
#>
#> $features[[3]]
#> [1] 1 1
#>
#> $features[[4]]
#> [1] 2 1
#>
#>
#> $type
#> [1] "R"
S-RerF samples and evaluates a set of random features at each split node, where each feature is defined as a random linear combination of intensities of pixels contained in a contiguous patch within an image. Thus, the generated features exploit local structure inherent in images.
To be able to run this example quickly we will consider training and testing on the digits 3
and 5
. You can try a differernt subset of digits by changing numsub
in the code chunk below.
data(mnist)
## Get a random subsample, 100 each of 3's and 5's
set.seed(320)
threes <- sample(which(mnist$Ytrain %in% 3), 100)
fives <- sample(which(mnist$Ytrain %in% 5), 100)
numsub <- c(threes, fives)
Ytrain <- mnist$Ytrain[numsub]
Xtrain <- mnist$Xtrain[numsub,]
Ytest <- mnist$Ytest[mnist$Ytest %in% c(3,5)]
Xtest <- mnist$Xtest[mnist$Ytest %in% c(3,5),]
# p is number of dimensions, d is the number of random features to evaluate, iw is image width, ih is image height, patch.min is min width of square patch to sample pixels from, and patch.max is the max width of square patch
p <- ncol(Xtrain)
d <- ceiling(sqrt(p))
iw <- sqrt(p)
ih <- iw
patch.min <- 1L
patch.max <- 5L
forest <- RerF(Xtrain, Ytrain, num.cores = 1L, FUN = RandMatImagePatch,
paramList = list(p = p, d = d, iw = iw, ih = ih,
pwMin = patch.min, pwMax = patch.max),
seed = 1L)
predictions <- Predict(Xtest, forest, num.cores = 1L)
mnist.error.rate <- mean(predictions != Ytest)
Expected output
Using the Iris dataset we will show how to use the unsupervised verison.
disSim <- hclust(as.dist(1 - u1$similarityMatrix), method = 'mcquitty')
clusters <- cutree(disSim, k = 3)
table(clusters, truth = as.numeric(iris[[5]]))
#> truth
#> clusters 1 2 3
#> 1 50 0 0
#> 2 0 20 37
#> 3 0 30 13